
Secure Sessions for Web Services

Karthikeyan Bhargavan
Microsoft Research

Ricardo Corin
University of Twente and

Microsoft Research

Cédric Fournet
Microsoft Research

Andrew D. Gordon
Microsoft Research

ABSTRACT
WS-Security provides basic means to secure SOAP traffic, one en-
velope at a time. For typical web services, however, using WS-
Security independently for each message is rather inefficient; be-
sides, it is often important to secure the integrity of a whole ses-
sion, as well as each message. To these ends, recent specifications
provide further SOAP-level mechanisms. WS-SecureConversation
introducessecurity contexts, which can be used to secure sessions
between two parties. WS-Trust specifies how security contexts are
issued and obtained.

We develop a semantics for the main mechanisms of WS-Trust
and WS-SecureConversation, expressed as a library for TulaFale, a
formal scripting language for security protocols. We model typical
protocols relying on these mechanisms, and automatically prove
their main security properties. We also informally discuss some
limitations of these specifications.

1. INTRODUCTION
The recent specifications WS-Trust and WS-SecureConversation

provide mechanisms for communicating parties to establish shared
security contexts and to use them to secure SOAP-based sessions.
This paper investigates the security guarantees offered by these
specifications by constructing formal models in the TulaFale script-
ing language [6]. We built our models by studying both the spec-
ifications and the WSE implementation [24]. Modelling reveals
some potential vulnerabilities as well as allowing us to prove some
formal properties.

Background: Web Services Security.Web services are built
on asynchronous communication of SOAP envelopes [29]. The
mechanisms of WS-Security [26] provide means to secure these
messages to achieve end-to-end security, usingsecurity tokens. Ex-
amples of security tokens include X.509 certificates, username to-
kens, and XML-encoded Kerberos tickets.

In itself, WS-Security provides mechanisms for securing a single
envelope. However, typically a web service and a client may inter-
act by exchanging series of messages grouped in sessions. While
in principle WS-Security could secure each separate message of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM Workshop on Secure Web Services,October 29, 2004, Fairfax VA,
USA.
Copyright 2004 ACM X-XXXXX-XXX-X ...$5.00.

Figure 1: A typical protocol relying on WS-Trust and WS-
SecureConversation

the session, this can become inefficient (for example, if X.509 cer-
tificates are used in each message). Also, it is often desirable to
guarantee integrity of a whole session, and not just each message.
For instance, a client querying two services should not be led to
attribute a response to the wrong service.

Session establishment is of course not a new issue in cryptog-
raphy: indeed, numerous classic protocols aim at the mutual au-
thentication of the parties involved in the session, the negotiation
of various parameters for the session, and the protection of further
traffic. (See for example [11, 27, 14, 17].) Moreover, their main
secrecy and authentication properties have often been thoroughly
studied. Most of their concepts and mechanisms can be usefully
applied to SOAP-based protocols, but experience also suggests that
this adaptation is not straightforward.

Background: WS-Trust and WS-SecureConversation.
Building on top of WS-Security, WS-Trust [21] describes how se-
curity tokens are requested and issued by SOAP processors; it relies
on a dedicatedsecurity token service(STS) to evaluate requests and
issue tokens. Moreover, WS-SecureConversation [20] describes
the usage of one such token, named asecurity context token. The
token points to asecurity context(SC) typically shared between a
client and a web service; its contents can be used to derive keys to
protect traffic between these two parties.

Figure 1 shows a typical usage scenario of WS-Trust and WS-
SecureConversation. It roughly corresponds to the sample protocol
given in a WSE tutorial [16]; we refer to this tutorial for additional
implementation details.

Three SOAP processors are displayed: a client, a security token
service STS, and a web service. For simplicity, both the STS and
the service are co-located and share a session cache (the dashed line
in the figure). The STS is configured to establish secure contexts,
SCs, with authenticated clients, to be used between clients and ser-

vices. The first two steps are mechanisms covered by WS-Trust,
while the latter exchanges (step 3) are specified by WS-Secure-
Conversation.

The execution proceeds as follows. At step 1, the client contacts
the STS with aRequest Security Token(RST) message, including
some form of identity token plus information about the target ser-
vice. The STS, after authorization of the request, generates a new
secure context SC, caches it and replies with aRequest Security
Token Response(RSTR) message, including a security context to-
ken (SCT) to indicate a new SC has been created (step 2). Cru-
cially, the RSTR contains enough information to allow the client to
compute the same SC (with the same shared secret) as the cached
version. This allows the client and service to start exchanging mes-
sages (step 3) protected using keys derived from the shared secret
of the SC.

Our Contribution. We propose a formal counterpart to web
services security specifications for session management, as a col-
lection of predicates and processes reflecting their semantics. We
describe a realistic but partial threat model for web services, es-
sentially an active attacker with some access to insider secrets. We
develop simple, typical protocols relying on these specifications,
and experiment with their implementation using WSE. We state
and prove a series of core security properties for these protocols,
thereby gaining confidence in our model of these specifications.
We also informally discuss some limitations and potential vulnera-
bilities.

To the best of our knowledge, this is the first formal analysis
of these two web services specifications, and these are the most
complex SOAP-based security protocols yet formalized.

Structure of the Paper.Section 2 reviews our prior work on
modelling web services security. Section 3 outlines the WS-Trust
specification and Section 4 formalizes an RST/RSTR exchange con-
forming to WS-Trust. Theorem 1 shows that the exchange allows
the two parties to reach agreement on a security context. Theorem 2
shows that the key associated with the newly-established security
context is a secret shared between the two parties. Section 5 out-
lines the WS-SecureConversation specification and Section 6 de-
velops a formal model of request/response exchanges conforming
to WS-SecureConversation, that builds on an initial RST/RSTR ex-
change. Theorem 3 shows that the two parties can agree on the con-
tents and correlation of the first request and response, and that the
secrecy of the request and response bodies is preserved, Theorem 4
generalizes these results to unbounded sequences of exchanges, and
shows that the parties agree on the contents of the whole session,
and that the secrecy of all bodies is preserved. Finally, Section 7
discusses related work and Section 8 concludes.

For the sake of brevity, this paper only provides small excerpts
from the TulaFale scripts used to establish its main results. A long
version of the paper includes the complete scripts [3]. TulaFale
itself is available fromhttp://Securing.WS .

2. MODELLING SYSTEMS AND THREATS
The security results in this paper are relative to the formal threat

model of Dolev and Yao [12]. In this model, protocol participants
use idealized cryptographic primitives, and there is an active at-
tacker able to record, compute, and send messages, but not simply
to guess secrets.

Our formalizations are based on TulaFale [6], an XML version
of the Dolev-Yao model embedded within the pi calculus. The pi
calculus [25] is a theory of concurrency in which concurrent com-

putations are expressed within a small syntax of message-passing
processesthat communicate on named channels. A computation in
the pure pi calculus consists of a sequence ofreductionsin which a
message is passed from a sender to a receiver process. When con-
sidering cryptographic protocols in the pi calculus, protocol partic-
ipants are written as explicit processes, whereas the active attacker
is thought of as an arbitrary unknown process running in parallel
to the protocol participants. There is a wide range of formal tech-
niques, including automated tools, for analyzing such models of
cryptographic protocols expressed in variations of the pi calculus.
In particular, our TulaFale tool makes use of Blanchet’s ProVerif
analyzer [7, 8].

This section divides into two parts. The first part reviews the
TulaFale language. The second part explains the particular threat
model considered in this paper.

2.1 Systems Modelling in TulaFale
A TulaFale script defines an explicit system of multiple parallel

processes, representing protocol participants. Processes interact by
sending and receiving messages on a fixed set of channels. Mes-
sages are terms in an algebraic model of XML, with signature and
encryption primitives represented by idealized cryptographic func-
tions [4]. The message formats of typical Dolev-Yao formalisms
are rather abstract, and omit many details of the wire represen-
tation. In contrast, the TulaFale message format has the detailed
structure of XML, and hence is sensitive to rewriting attacks that
exploit this structure, such as for instance the compound structure
of XML digital signatures. Moreover, we can directly transcribe
the message formats of web services specifications into TulaFale,
and check fidelity of the model with respect to messages generated
by implementations.

We use logic programming to construct and check messages. For
example, the following predicate asserts that the term tok is a user-
name token [26, Section 6.2] for a principal with username u and
password pwd, and that k is the symmetric key derived from this
password using the nonce n and the timestamp t embedded in the
token.

predicate isUserToken (tok:item,u,pwd:string,n:bytes,t:string,k:bytes) :−
tok = <UsernameToken>

<Username> u </>
<Nonce> base64(n)</>
<Created> t </>

</> ,
k = psha1(pwd,concat(utf8("WS-Security"),concat(n,utf8(t)))).

All the predicates shown in the remainder of the paper are ex-
tracted from the code of our executable formal model [3]. For
the sake of brevity, TulaFale omits all XML namespace informa-
tion, and uses some non-standard abbreviations, such as omitting
the tag in a closing element bracket</> . Also, literal strings
such as"WS-Security" are always quoted, whether they are
within attributes or elements. Unquoted identifiers, such as u in
<Username> u</> , are variables. Every variable has a sort: a
string is an XML string, anitem is an XML element or string, and
a bytes is an array of bytes. Function symbols such as base64 and
psha1 are abstract representations of operations on the data model;
the function psha1 is an idealized hash function with no inverse.
Given certain implementability constraints [4], predicates may be
used in different modes, depending on whether each parameter is
an input or an output. In our example, if tok and k are output para-
meters, and all the other parameters are inputs, TulaFale computes
the two outputs, to yield a username token and its associated key.

We model web services and their clients as explicit processes
that send and receive messages on a single soap channel, which

models arbitrary transport layers for SOAP messaging. We anno-
tate processes with events to indicate different phases of protocols.
There are two kinds of events,begin andend, to mark initiation
and apparently successful completion, respectively. Events carry
data such as participant identities and the contents of messages
exchanged. We model the unknown active attacker as an implicit
process that runs alongside the explicit processes, and which may
interact with them via public channels, such as soap. By default, all
channels are public; the attacker process has no direct access to any
channels marked private, which typically model private databases
shared between one or more clients and servers.

For a given TulaFale script, arun is any series of (potentially
nondeterministic) pi calculus reductions and events starting from
the explicit system composed with the attacker. The attacker process
is arbitrary, except it may not itself generate any events. The ob-
servable result of a run is a set of events. Our authentication re-
sults are one-to-many correspondences [30] (also known as non-
injective agreements [23]) between events. We formulate these as
robust safetytheorems: that in every run of the system, every oc-
currence of anendevent has a correspondingbeginevent carrying
the same data. For instance, authentication of an RST message is
expressed as a correspondence between events marking the client
sending and the server receiving the RST. Most security proper-
ties of TulaFale models stated in this paper are proved automati-
cally by compiling to an intermediate pi calculus, and then running
ProVerif.

2.2 Principals, Authentication Materials, Ses-
sions, and Key Leakage

Our models assume the following participants and authentication
materials:

• A single certification authority (CA), with public/private key-
pair kr/sr, that issues X.509 public-key certificates identify-
ing clients and services, signed by the private key sr.

• Multiple principals, each identified by a username u, and eq-
uipped with passwords or X.509 certificates issued by the CA.

We assume a single trusted database (coded as messages on a
private channel anyPrincipal) that relates usernames to passwords
or private keys and certificates. We allow each principal to have
multiple passwords and multiple certificates. A certificate for prin-
cipal u has subject name u. This database is not accessible to the
attacker, but is accessible to client and server processes acting on
behalf of users. In practice, of course, access to this database would
be achieved by partial replication, but this is outside our model.

We do not fix a particular principal population; instead, we pro-
vide public channels to allow the attacker to trigger the generation
of fresh authentication materials for arbitrary usernames. Similarly,
we do not fix any particular protocol sessions or bound the number
of concurrent sessions. We allow the attacker to initiate sessions
with arbitrary principals in the roles of clients and servers, and with
other parameters chosen by the attacker.

We assume the attacker never gains knowledge of the private key
of the CA. However, to model insider attacks, we allow passwords,
private keys, and security contexts to leak to the attacker. In our
setting, we say a principal isunsafeif any of their passwords or
private keys has been leaked to the attacker; otherwise, we say the
principal issafe. Similarly, we say a WS-Trust security context is
unsafeif it has been leaked to the attacker, and issafeotherwise.

In summary, our system model provides an interface—a set of
public channels—to the attacker, giving it the following abilities:

• To send and receive on the soap channel.

• To trigger the generation of a fresh password or a new cer-
tificate for any principal.

• To initiate sessions and provide their parameters to clients
and servers.

• To cause the leak of passwords or certificates for any princi-
pal (but not the certificate authority).

• To cause the leak of established security contexts.

This amounts to a realistic threat model for XML rewriting at-
tacks on web services; it is essential to consider vulnerabilities due
to unsafe principals—insider attacks—and indeed we describe such
vulnerabilities. (Other threats to web services outside the scope of
this model include SQL injection attacks in SOAP payloads and
buffer overruns on the networking stack.) Our formal properties
concern safe principals, and hold despite the active attacker’s abil-
ity to craft messages using the authentication materials of unsafe
principals. This model of systems and potentially unsafe principals
is similar to the TulaFale model in an earlier paper [5].

3. WEB SERVICES TRUST LANGUAGE
WS-Trust “provides a framework for requesting and issuing se-

curity tokens, and to broker trust relationships” [21]. We survey
and discuss its contents, focusing on the parts modelled in this pa-
per. We refer to the specification for additional information.

3.1 WS-Trust as a Protocol Framework
WS-Trust introduces dedicated web services, namedsecurity to-

ken services(STS), that handle requests for security tokens (RSTs),
and send responses (RSTRs). Like any SOAP messages, envelopes
carrying RSTs and RSTRs may be protected using a selection of
mechanisms described in WS-Security.

WS-Trust is deliberately abstract; it provides a general terminol-
ogy, some precise XML syntax for exchanged data, and an infor-
mal description of their usage in context establishment protocols.
On the other hand, it avoids defining complete protocols; for in-
stance, it never prescribes any kind of authorization procedure for
establishing a security context.

In a common case, a single exchange establishes context: the
client sends an RST as the body of an envelope; the STS replies
with an RSTR as the (partly encrypted) body of another envelope;
and both envelopes include security headers for authentication.

However, other flows of RSTs and RSTRs are possible. In more
complex exchanges, any subsequent messages received by the STS
are also formatted as RSTRs. In addition, STSs may initiate ex-
changes by sending unsolicited RSTRs. STSs implement three
SOAP actions and corresponding message elements for managing
security tokens: for issuance, renewal, and validation. Moreover,
these elements need not appear as envelope bodies; they may also
be embedded in the security headers of envelopes carrying some
other primary payload. WS-Trust allows security token exchanges
to be nested. For example, a client may need to contact several
STSs in order to accumulate enough cryptographic evidence be-
fore accessing a service; similarly, an STS may contact other STSs
in the process of gathering security tokens. Finally, this traffic may
itself be protected using tokens previously exchanged.

The goal of these exchanges is to reach an agreement on asecu-
rity context(SC) shared between different parties. The nature of the
agreement is left unspecified. For instance, an STS may simply be
a public repository for X.509 certificates that accepts anonymous
requests and responds with matching certificates, with no particu-
lar trust relationship or agreement at the end of the exchange. On

the other hand, an STS may establish a protected session between
a client and a service, after authenticating the client and enforcing
access control to the service, thereby ensuring a precise agreement
between the client and the service.

Our formal model (in Section 4) focuses on the core security as-
pects of WS-Trust. The model omits some other aspects: renewal
and validation actions; error handling; unsolicited RSTRs; and ad-
vanced algorithm negotiation and delegation mechanisms. WS-
Trust also proposes an optional attribute RequestSecurityToken/
@context for correlation between RST and RSTRs. In our model,
we rely instead on the message identifier of the enclosing envelope,
which plays a similar role.

3.2 Syntax for RST/RSTR Exchanges
In the following, we focus on STSs implementing a simple, two-

message RST/RSTR exchange for establishing a security context,
as described in the specification [21, Section 6.1-2]. We begin by
explaining the detail of the syntax of these messages and their in-
tended semantics, which we accurately reflect in our models.

Principals: An RST may contain a BaseToken, typically an X.509
certificate or a username token, that identifies the requesting
principal and that is used to authenticate the enclosing enve-
lope. Alternatively, the RST may be anonymous. The RST
may also contain an<AppliesTo> indicating the service
with whom the client wishes to establish a security context.

Keying: WS-Trust provides optional mechanisms for key estab-
lishment: both the client and the STS may include some
(encrypted) fresh random value in their message, referred
to asentropy; the established context key, if any, is either
one of these values, or their joint hash. In the latter case,
for instance, each party decrypts the other party’s entropy,
then computes sckey = psha1(clientEntropy,stsEntropy) and
stores this key as part of the newly-established security con-
text. A benefit of this computation is that the freshness of
the key is guaranteed, irrespective of the other party’s choice
of entropy. (Conversely, if for instance the client accepts an
STS-only key, an unsafe STS may supply an arbitrary key,
possibly already used in another session.)

Negotiation: RSTs may include additional information, used for
instance to demand some choice of cryptographic algorithm
or policy, or to provide further authorization materials. We
deal abstractly with such additional information, by record-
ing it in the security context.

As a first concrete example of TulaFale code modelling WS-
Trust, we give the predicates verifying the structure of RST and
RSTR elements in our script. Anticipating WS-SecureConversa-
tion, we assume that"SecurityContextToken" (SCT) is the
type of the requested security token: a basic token with an identity
and a key, computed here from client and server entropies.

predicateEntropicRST(rst:item,srvURI,ref:string,etok,ExtraInfo:item):−
rst =<RequestSecurityToken>

<TokenType>"SecurityContextToken"</>
<RequestType>"Issue"</>
<AppliesTo><EndpointReference> srvURI</></>
<Base><SecurityTokenReference> ref</></>
<Entropy> etok</>
ExtraInfo

</> .

The STS decomposes each incoming RST with this predicate; it
relies on pattern matching to decompose a (presumed) rst element
passed as the first argument into a series of elements. The constant

parts in the pattern ensure the RST is a request for SCT issuance;
srvURI provides information on the intent of the SCT, here the URI
of the web service; etok is the client entropy, encrypted for the
service; ref is a fragment URI to the security token identifying the
requestor; finally, ExtraInfo collects elements not explicitly used in
our model, but perhaps trusted by the protocol participants.

RSTRs returned by the STS include aRequested Security Token,
indicating the identifier of the (newly created) SCT and aRequested
Proof Token, containing (typically encrypted) server entropy used
to compute the SCT key. It may also include an<AppliesTo>
(not necessarily matching the RST).

predicateEntropicRSTR(rstr:item,srvURI:string,BaseToken:item,
uriSTS:string,sctid:string,etok:item):−

rstr =<RequestSecurityTokenResponse>
<AppliesTo><EndpointReference> srvURI</></>
<RequestedSecurityToken>

<SecurityContextToken>
<Identifier> sctid</></></>

<Entropy> etok</>
<RequestInfo>

BaseToken
uriSTS</>

</> .

The client decomposes each incoming RSTR with this predicate;
it extracts the srvURI (implicitly comparing it to the request srvURI
if this parameter is bound when calling the predicate) and the STS’s
contributions to the SC (namely its identifier sctid and its encrypted
entropy etok).

Our model extends the specification to require that the RSTR in-
clude a non-standard element,<RequestInfo> , with additional
information about the RST, namely the token used to sign the RST
and the URI it was sent to. As detailed in Section 4.5, without this
extension, it is not possible to securely correlate the RSTR with
its RST.

3.3 Towards an Explicit Exchange Agreement
Session establishment is a well-studied goal for cryptographic

protocols. In contrast to specifications of fixed protocol, however,
WS-Trust omits several important aspects that should be carefully
considered when assembling a protocol.

Crucially, RST/RSTR exchanges aim to establish shared secu-
rity contexts, but the contents of these contexts (including the par-
ticipants’ intentions) is left implicit. This can be a source of con-
fusion, inasmuch as the flexibility of web services enables many
different levels of agreement between processors sharing a context.
Ideally, the specifications should help secure precise agreements
on security contexts between clients, STSs, and servers. Following
well-established prudent practices, a simple way to achieve strong
agreement would be to supplement the syntax of RSTs and RSTRs
with (optional, well-defined) data on the exchange, such as selected
modes for authentication and keying, and identities of the requester,
issuer, and target service. It is also important that this syntax be
specified, so that its presence and contents can be validated.

For a given system, one should explicitly state what is guaran-
teed, both when an STS accepts an RST and issues an RSTR, and
then when a client accepts an RSTR. These guarantees depend both
on the contents and processing of the RST and RSTR. Hence, one
should carefully review:

1. what needs to be agreed upon—typically not just the SCT
key;

2. what is passed in the RST/RSTR (notably the signed materi-
als in these messages);

3. whether the web service implementations actually provide an
agreement based on their processing of the exchange.

In a given implementation, an effective agreement depends on
details of envelope processing. Still, the safety of security con-
texts should not overly rely on implementation choices. At least,
whenever an exchange succeeds, the protocol designer may expect
that any piece of data recorded in the security context is authen-
tic. In comparison, traditional session establishment protocols like
SSL [14] or IKE [17] have specific options and guarantees to reach
precise agreements, typically covering at least any data exchanged
by the protocol.

Following the scenario illustrated in Figure 1, we define a con-
crete agreement. The agreement should at least cover the actual
contents of SCs observed in the WSE implementation: a shared
SCT identifier, a key, and some identity information for the three
involved principals. It should also cover security parameters used
in the exchange, such as:

• Whether the RST client is authenticated or anonymous. For
instance, a client may be convinced it is authenticated be-
cause its signature was accepted, whereas the STS received
an unsigned request with the same message identifier and as-
sumed an anonymous token was requested.

• Whether both the client and server, or the server alone, pro-
vided entropy. A mismatch may lead to an apparently suc-
cessful SC recording a bad key.

• Any data used to authorize the issuance of the RSTR, such
as the security token providing client authentication, or cre-
dentials presented in the RST.

• The URI and action for the STS. This may matter if differ-
ent STSs enforce distinct authorization policies for the same
service.

We arrive at the following content for the security context in our
model, expressed as a TulaFale predicate:

predicateSC(SC:item,sctid:string,sckey:bytes,mode:string,
UserToken,StsInfo:item,appTo:string,extra:item) :−

SC =<SecurityContext>
<Identifier> sctid</>
<Key>base64(sckey)</>
<Base> UserToken</>
<STSInfo> StsInfo</>
<AppliesTo> appTo</>
<EntropyMode> mode</>
<ExtraInfo> extra</></> .

Elements<Base> , <STSInfo> , and<AppliesTo> record in-
formation on the identity of the three principals involved: the client,
the STS, and the service. We (arbitrarily) record the details of the
security tokens identifying the client and the STS, and only record
a URI for the service.

3.4 Other Security Considerations
WS-Trust leaves authorization checks unspecified. They may be

performed both at the STS and the service. For a given system,
it is important to document who performs the checks, and how to
interpret the privileges associated with a valid security token.

WS-Trust does not prescribe a particular message flow once the
security token has been established, but (apparently) often assumes
a single client will initiate all traffic. Although each token may typ-
ically be associated with a single session between two endpoints, in
principle it may be involved in parallel sessions by multiple proces-
sors, and may be accepted by multiple services. This flexibility can

Figure 2: Establishing a secure context in entropic mode

seriously complicate session management, and replay protection in
particular. Also, the web service may in principle access and use
a security context before the client completes the protocol, with
weaker security guarantees. For example, if an attacker has tam-
pered with the RST, the client will detect the attack once it receives
the RSTR, but in the meantime the service may have proceeded on
the basis of the tampered RST.

Regarding privacy, although it is possible to use pseudonyms [19],
an eavesdropper that monitors an exchange may extract detailed
information on its participants from the explicit, semi-structured
message format, including for instance their identities, and some-
times the purpose of the session. Moreover, this information may
be signed using long-term certificates, and thereby provides non-
repudiable evidence.

In general, to resist denial-of-service attacks, responders in ses-
sion establishment protocols should avoid allocating resources or
performing expensive computation until initiators are authenticated.
In our scenario, the web service is reasonably protected but the
STS is open to attack. For example, an attacker may replay mes-
sages with modified elements, leading to expensive (failing) sig-
nature verifications. This problem can be alleviated using several
tiers of STSs, or two-round RST/RSTR protocols with weak au-
thentication in the first round guarding public-key authentication in
the second round.

4. MODELLING AND VERIFYING USES OF
WS-TRUST

We present our model of a single RST/RSTR exchange, such as
the first exchange of the protocol depicted in Figure 1. The goal of
the exchange is to ensure an agreement on a shared security con-
text. We describe the exchange, detailing our implementation of
principals and the processing of RST and RSTR envelopes, then
state our main theorems for the resulting script, verified using the
TulaFale and ProVerif tools.

4.1 Mapping Principals to TulaFale Processes
A normal RST/RSTR exchange consists of two messages ex-

changed between a client and an STS process, as depicted in Fig-
ure 2. The goal of the exchange is for the two processes to estab-
lish and agree on an SC with a fresh identifier sctid and shared key
sckey. This agreement is achieved in two steps. After the RST mes-
sage has been accepted, the client and STS agree on apartial SC,
that consists of all the elements of the SC except<Identifier>
and<Key> , which are undetermined at this stage. After the RSTR
message is accepted at the client, both processes agree on the full

established SC. In the rest of this section, we describe how the two
processes construct and check messages to achieve this agreement.

To begin with, both processes know kr, the public key of the CA
needed to check the validity of public key certificates, and share the
trusted database of principal secrets.

In our exchange, each envelope embeds a globally unique identi-
fier; its structure is represented by the predicate uid, and it con-
sists of a freshly generated message identifier, id, and a public
timestamp, t.

The process Client in Figure 2 represents an instance of a SOAP
client sending RSTs and processing RSTRs on behalf of a user.
Each run is in one of two operation modes: eitherentropic mode,
where the client provides entropy for the security context, ornon-
entropicmode, where it does not. In either mode, the server pro-
vides entropy. (We do not model a third mode, allowed by the
specification, where the client alone provides entropy.) Figure 2
depicts a typical run in entropic mode. In both modes, the attacker
initializes the client process by sending it a PartialSC that provides
the parameters for a new security context, including the name of
the user and the URIs for the STS and service. The client then re-
trieves the user record U from the trusted database (see Section 2)
and constructs an RST message corresponding to PartialSC. A user
record contains either a username and password or an X.509 certifi-
cate and its associated private signing key. The RST message has
a unique identifier, rstUid, and in entropic mode, it also contains a
fresh client-generated value, clientEntropy.

The process STS represents an STS server. It first retrieves a
server principal record Sts, containing a URL address uriSTS, an
X.509 public-key certificate certSTS, and the associated private
signing key skSTS. When it receives an RST, it also retrieves the
principal record U for the client. The trusted database thus rep-
resents all authorized clients of the STS. After checking the RST,
the STS process generates a new security context with fresh iden-
tifier sctid and the received parameters PartialSC. It generates its
own stsEntropy and uses it to compute the shared sckey associated
with this context. It then returns an RSTR, uniquely identified by
rstrUid, containing the sctid and stsEntropy to the client.

The server entropy in the RSTR, and, in entropic mode, the client
entropy in the RST, are encrypted and then signed, as in the WSE
implementation [24].

The intentions of and the agreement between the client and STS
are recorded usingbegin andend events, as follows. Before send-
ing the RST, the client records its proposed security context as the
eventbeginC1. After checking the RST, the STS indicates its ac-
ceptance of the proposed context as the eventendC1. Similarly,
before sending the RSTR, the STS records the established security
context asbegin C2, and after checking the received RSTR, the
client indicates acceptance of the context withendC2.

The correspondence assertion C1 after the first message requires
that the client and STS processes agree on the values of the pro-
posed parameters PartialSC, the rstUid, and the clientEntropy:

C1 = (PartialSC,rstUid,clientEntropy)

Including the rstUid in C1 enables replay detection: if the STS
process were to further ensure that it never accepts two RSTs with
the same Uid, then agreement on C1 implies that each message sent
by the client is accepted at most once by the STS process.

The correspondence assertion C2 after the second message re-
quires that the client and STS processes agree on the full estab-
lished SC, and the unique identifiers of both messages (again to
enable replay detection).

C2 = (SC,rstUid,rstrUid)

We say that a principal is a client, STS, or server in C1 (or C2) if
it is recorded under the corresponding role in the security context
PartialSC (or SC). For instance, we say that C1 has asafe clientif
the principal recorded in the Base field of PartialSC is safe.

4.2 Processing the RST Envelope
In our exchange, the SOAP envelope that carries the RST has a

header consisting of a message identifier,<To> and<Action> el-
ements designating an STS for issuing an SCT, and a<Security>
element that itself consists of a timestamp, a token identifying the
client, and a digital signature. This structure is expressed as a pred-
icate:

predicateenvRST(env,rst:item,uriSTS,id,t:string,Sig,BaseToken:item) :−
env =<Envelope>

<Header>
<MessageId> id</>
<To>uriSTS</>
<Action>"RSTSCT"</>
<Security>

<Timestamp><Created> t</></>
BaseToken
Sig</></>

<Body> rst</></> .

The client uses this predicate (and others) to assemble an RST en-
velope; conversely, the STS uses this predicate to check that a re-
ceived envelope complies with this structure, as a first step of its
processing. The full processing for the RST envelope is coded by
the predicate:

predicate isRSTEnvelope(msgrst:item,kr:bytes,U,Sts:item,
PartialSC,rstUid:item,clientEntropy:bytes) :−

envRST(msgrst,rst,uriSTS,id1,t1,sig1,BaseToken),
EntropicRST(rst,srvURI,BaseTokenid,etok,ExtraInfo),
isSTS(Sts,StsInfo,uriSTS,subjSTS,sx,certSTS),
isEncryptedKey(etok,clientEntropy,sx,certSTS),
isX509TokenPub(kr,BaseToken,u,BaseTokenid,ek,certU),
isSignature(sig1,"rsasha1" ,ek,

[<Body> rst</><To> uriSTS</><Action>"RSTSCT"</>
<MessageId> id1</><Created> t1</>]),

uid(rstUid,id1,t1),
PartialSC(PartialSC,"Both" ,BaseToken,StsInfo,srvURI,ExtraInfo).

This predicate takes as input the received envelope (msgrst) and
checks it using the public key of the CA (kr) and the principal
records for the user (U) and for the STS (STS). It then extracts as
output the proposed context PartialSC, the unique identifier rstUid,
and the received clientEntropy.

The predicate first parses msgrst using envRST, extracting the
rst, the relevant header fields, the message signature sig1, and the
user’s authenticating BaseToken. It then uses isEntropicRST to
parse the rst and retrieve etok, which contains the encrypted client-
Entropy, checking that it contains a fragment URI BaseTokenId
pointing to the user’s BaseToken. The predicate isSTS checks that
the STS record Sts has a uriSTS that matches the<To> header of
the RST, and extracts the certificate certSTS and private key sx cor-
responding to the STS. This private key is then used to decrypt etok
to retrieve the clientEntropy. Then, the predicate isX509TokenPub
extracts the user’s public key from BaseToken and the predicate
isSignature checks that the corresponding private signing key has
been used to generate the message signature sig1, and that sig1 cov-
ers the message body and all the parsed header elements. Finally,
the predicates uid and PartialSC construct the outputs rstUid and
PartialSC.

Here, we depict the clause used to check an entropic RST signed
using a user’s X.509 public-key certificate. The script contains sim-
ilar clauses for checking the other cases, and it defines a symmetric
predicate for preparing RST envelopes on the client side.

4.3 Processing the RSTR Envelope
The SOAP envelope carrying RSTRs has a similar structure to

the RST envelope. The main difference is that the<To> header is
replaced with a<RelatesTo> header that contains the message
identifier of the RST being responded to.

Both the creation of RSTRs at the service and the correspond-
ing checks at the client are again expressed as symmetric predi-
cates. In Figure 2, the checking predicate isRSTREnvelope parses
an entropic RSTR, checks that it is consistent with the requested
PartialSC and unique identifier rstUid sent in the RST. It further
checks that the body contains an stsEntropy encrypted under the
clientEntropy, and that the body and the message identifier, the
timestamp, and the<RelatesTo> headers are jointly signed us-
ing the known STS certificate certSTS. Finally, it extracts, as out-
put, the sctid and stsEntropy sent in the RSTR, along with the
unique identifier rstrUid.

4.4 Authentication and Secrecy Results
As described in Section 2, our full TulaFale script models our

system as an explicit pi calculus process consisting of an unbounded
number of clients and STSs running in parallel and willing to com-
municate over a public channel, under the control of the attacker.
Although the opponent is powerful, our theorems assert that the
RST/RSTR exchange preserves our authentication, correlation, and
secrecy goals. The authentication and correlation goals are stated
in terms of the correspondence betweenbeginandendevents gen-
erated by client and STS processes; the attacker cannot generate
events.

THEOREM 1 (ROBUST SAFETY OF C1, C2). For all runs of
the script in the presence of an active attacker (and hence all choices
of operation modes):

• For eachendC1 event with a safe client, there is a matching
beginC1 event.

• For eachendC2 event with a safe client and a safe STS, there
is a matchingbeginC2 event.

Hence, the exchange guarantees that any RST envelope from a
safe client, accepted by a safe STS, and used to allocate a secure
context actually corresponds to a genuine request with matching
parameters.

Secrecy is stated in terms of the attacker’s knowledge of the es-
tablished session key.

THEOREM 2 (SESSION-KEY SECRECY). For all runs of the
script in the presence of an active attacker (and hence all choices
of operation mode), for eachbeginC2 with safe client and STS, the
Key element recorded in SC remains secret.

Hence, even if the service immediately uses the SC key to en-
crypt messages, only the client may decrypt those messages. Com-
bining the two theorems, this also holds once the client issues a
matchingendC2 and starts using the SC key.

In addition, we have checked that the result holds even if, in en-
tropic mode (that is, where both client and server provide entropy),
one of the participants uses a value known to the attacker instead of
a fresh value as its entropy.

As a corollary, if both the client and the STS are safe and the
client completes the exchange, then the two parties agree on an SC
containing a shared, secret key.

These results are automatically proved by running TulaFale on
the script that models the exchange, listed in the full paper [3].
In addition to security properties, we also check a series of basic
functional properties, checking for instance that the protocol can
successfully complete for each choice of mode and safe principals.

4.5 Cautionary Notes
As discussed in Section 3.3, properly checking (and correlating)

the contents of the RST and RSTR is critical for reaching our ex-
pected agreements. To conclude this section, we illustrate a few
vulnerabilities that occur in variants of our model featuring weaker
enforcement mechanisms.

Suppose the RSTR does not include the client identity (that is,
consider omitting BaseToken from the predicate EntropicRSTR in
Section 3.2) and suppose the attacker has obtained the private key
of an unsafe user, sayE. When another (safe) userC sends a signed
RST,E can intercept the envelope, possibly modify its content (for
instance ExtraInfo), and substituteE’s certificate and valid signa-
ture for C ’s. The STS accepts the modified message as an RST
from E, recordsE’s identity and ExtraInfo in a new SC, and sends
back a signed RSTR toE. The attacker forwards the RSTR en-
velope toC, who accepts it as a valid reply to its original request.
Subsequently, messages sent byC to the service will be accepted
and mis-attributed toE. Even if the client insists on using entropic
mode, the attack persists as long as the entropy is encrypted for the
STS before being signed as part of the RST, since the attacker can
blindly resign the encrypted entropy.

Similarly, if the RSTR omits uriSTS, we lose agreement on the
URI of the STS. This may become problematic in case several
(safe) STSs sign RSTRs using the same certificate but enforce dif-
ferent authorization policies.

This difficulty in correlating RST and RSTR messages is a par-
ticular instance of a general problem: the current WS-Security stan-
dard [26] does not prescribe any general mechanism to correlate
requests and responses securely. One solution—an IBM/Microsoft
proposal to the WS-Security Technical Committee—involves echo-
ing and signing (parts of) the signature of the request in the re-
sponse message. Another solution, specific to WS-Trust, involves
returning alongside the RSTR an “authenticator” hash of the con-
tents of the RST and RSTR.

5. WEB SERVICES SECURE CONVERSA-
TION LANGUAGE

WS-SecureConversation “defines mechanisms for establishing
and sharing security contexts, and deriving keys from established
security contexts (or any shared secret)” in order to secure series of
messages [20]. We survey the specification, and in particular focus
on the new security tokens it introduces.

5.1 Tokens for Contexts and Key Derivations
WS-SecureConversation introduces two new kinds of security

token: SCTs and DKTs.
A security context token(SCT) in the security header of an en-

velope represents (an abstract pointer to) a shared security context
(SC), typically established using an RST/RSTR exchange, as de-
scribed in previous sections. The SCT simply embeds acontext
identifier, so that the recipient can access the relevant context, no-
tably the authenticated identity of the sender. Local references to
the SCT can appear in the envelope whenever a symmetric key is
needed, to indicate that the recipient should read the key from the
SC. In our scripts, we use the following structural predicate for
SCTs:

predicateSCT(sct:item,sctid:string):−
sct =<SecurityContextToken><Identifier> sctid</></> .

A derived key token(DKT) provides a reference to a master key,
an algorithm, and additional parameters to compute a separate key.
For instance, a typical DKT embeds a fresh nonce and a reference

to an SCT, and indicates that the recipient should compute a de-
rived key as the hash of that nonce keyed with the SC key. Such
DKTs may be used to secure independent requests relying on the
same SC, or to derive distinct keys for encryption and for authenti-
cation.

In our scripts, we use the structural predicate DKSCT to decom-
pose DKTs that refer to SCTs and the predicate deriveKey to com-
pute the associated key:

predicateDKSCT(dksct:item,sctid:string,nonce:bytes):−
dksct =<DerivedKeyToken>

<SecurityTokenReference>
<Reference> sctid</>
<valueType>"SCT"</></>

<Nonce> base64(nonce)</></> .

predicatederiveKey(dk:bytes,key:bytes,nonce:bytes):−
dk = psha1(base64(nonce),key).

In general, the parent token need not be an SCT; instead one can
use, for example, a Kerberos token, or another DKT. WS-Secure-
Conversation also supports other variants of key derivation, a light-
weight derived-key mechanism that provides the same functionality
as a DKT within a key reference, and some SCT propagation and
amendment mechanisms. We do not model these advanced mecha-
nisms in this paper.

5.2 Security Considerations
As advocated in Section 3.3, one should carefully review the in-

tent and usage of security contexts, especially when they are used
to derive authentication materials. Otherwise, a weak (or unauthen-
ticated) agreement may for instance lead to correct but ambiguous
signatures, which may be misinterpreted by the recipient after an
attacker has rewritten unsigned parts of the envelope.

Unlike fixed protocols, key selection and derivation are dynami-
cally driven by the tokens included in the envelope; these elements
are often unauthenticated or used before authentication. Thus, even
if the recipient can successfully decrypt or validate a signature us-
ing the derived key suggested in the envelope, it is equally im-
portant for this recipient to check that the key is derived from an
adequate security token. If the key is derived from an SCT, for
instance, this may involve comparing the target URI and appar-
ent sender of the envelope to the<AppliesTo> and BaseToken
recorded in the SC.

Despite the terminology, the uniqueness (or freshness) of SC
identifiers and derived key nonces should not be taken for granted,
especially when they are passed in the clear. For instance, a hostile
service may eavesdrop an SCT and initiate its own sessions with
the same identifier; this may invalidate the context, or lead to con-
fusion about its contents.

Finally, although WS-SecureConversation promotes the deriva-
tion of a separate key for each purpose, more efficient keying mech-
anisms are often available. In the absence of knowledge of the us-
age of the keys, it is prudent to generate a fresh key systematically,
as this may prevent interference between cryptographic algorithms.
Nonetheless, for signing a sequence of messages sent by a single
client, for example, a key implicitly derived from a hash of the ses-
sion identifier and sequence number is more efficient than a key
derived from a random nonce that additionally signs these two ele-
ments. Besides, for common encryption algorithms, a random ini-
tialization vector can play a role similar to the nonce in a derived
key, at a fraction of the cost.

6. MODELLING AND VERIFYING USES OF
WS-SECURECONVERSATION

Continuing with the example of Figure 1, we now consider ex-
changes between a client and a service following the completion
of an RST/RSTR exchange, as modelled in Section 4. The secu-
rity goals of these exchanges are to achieve mutual authentication
between client and service, to ensure message correlation between
requests and responses, and to preserve the secrecy of all message
bodies. We first model a single request/response exchange, before
generalizing our results to “open-ended conversations” comprising
arbitrary sequences of exchanges.

A typical run of the protocol is depicted in Figure 3 (but disre-
gard the dashed lines for now). It involves a process Client that
sends a request to a web service using an existing security context
and waits for a response, and a process Service that handles such
requests, for some given address and SOAP action (srvURI,srvAC).

Figure 3: Iterating exchanges

6.1 Mapping Principals to TulaFale Processes
When considering each envelope in this protocol, we use an ab-

stract parameter, DestInfo, to represent the concatenation of some
WS-Addressing [9] headers included in the envelope.

First, the client inputs from the attacker a Request envelope,
which provides a security context identifier sctid, a timestamp t,
and target service information srvURI and srvAC. The client then
fetches from the SC database a security context matching sctid, if
any, and completes Request by adding a fresh message identifier
and a secret request body. (Hence, Request is an envelope with
some DestInfo that includes headers containing the request mes-
sage identifier and target service information.)

In addition, the attacker can also choose between two opera-
tion modes: either securing the request with the shared SC key,
or securing it with fresh keys derived from the SC key. These key-
derivation details are recorded in an element, RequestMode, which
contains either two nonces used to derive keys for encryption and
signature, or a constant indicating that the SC key is directly used.

As in Section 4, our processes issue events that record their in-
tent: before sending the request, the client emitsbeginC3; after
receiving the request and checking its validity, the web service
records the acceptance by emittingendC3. These events record
the following data:

C3 = (SC,Request,RequestMode)

After accepting a request from a client, the service similarly pre-
pares a Response containing a response body and some addressing
headers: DestInfo now includes headers echoing the server address
srvURI and the request identifier, plus a header containing a fresh

response identifier. For simplicity, the service uses the same opera-
tion mode as the client: if the request used derived keys, so does the
response. The corresponding key derivation details are recorded in
ResponseMode.

Before sending its response, the service emitsbeginC4. Af-
ter checking the validity of the response, the client emitsendC4.
These events record data for both the request and the response:

C4 = (C3,Response,ResponseMode)

where C3 includes data on the request, and Response and Response-
Mode include data on the response.

Next, we describe the structure and processing of envelopes that
effectively protect these requests and responses.

6.2 Processing Envelopes
Since the request and response envelopes are processed similarly,

we use generic predicates for both purposes. When using derived
keys, the structure of these SOAP envelopes is given by the predi-
cate:

predicateenv(Env:item,DestInfo:items,t:string,sig,ebody:item,
sctid:string,mode:item) :−

Env =<Envelope>
<Header>

<Security>
<Timestamp><Created> t</></>
sct dksctEnc dksctSig
sig</> @

DestInfo</>
<Body> ebody</></> ,

SCT(sct,sctid),
DKSCT(dksctEnc,sctid,EncNonce), DKSCT(dksctSig,sctid,SigNonce),
derivedKeyMode(mode,EncNonce,SigNonce).

The structure of the envelope is similar to those defined in Sec-
tion 4.2, with three main differences: The envelope now includes a
security context token (sct) and two derived key tokens (dksctEnc
and dksctSig) used to indicate keys for encryption and signing. The
envelope also includes a generic parameter DestInfo that provides
headers specific to requests and responses. Finally, the envelope
includes an encrypted body (ebody).

After setting the structure of the envelope, the env predicate in-
spects the SCT and DKTs, in order to return an SC identifier (sctid)
and a mode descriptor embedding the two nonces used for key
derivation (EncNonce and SigNonce).

We now give a predicate used for validating incoming envelopes:
requests for the service, and responses for the client.

predicate isEnv(Env:item,EnvelopeInfo:item,SC:item,mode:item) :−
env(Env,DestInfo,t,sig,ebody,sctid,mode),
SC(SC,sctid,sckey,entropyMode,UserToken,StsInfo,appTo,extra),
computeKeys(mode,sckey,EncKey,SigKey),
isEncryptedDataSym(ebody,b,EncKey),
EnvInfo(EnvelopeInfo,t,sctid,DestInfo,b),
isSignature(sig,"hmacsha1" ,SigKey,

[<Body> ebody</> <Created> t</> @ DestInfo]).

In the predicate, env parses the envelope, extracting DestInfo and
other sub-elements. Next, predicate SC checks sctid against the se-
curity context SC and then retrieves the security context key sckey.
Predicate computeKeys uses that key and the two nonces passed in
mode to compute the keys EncKey and SigKey protecting the en-
velope, as explained in Section 5.1. EncKey is then used to decrypt
the message body, whereas SignKey is used to verify a signature
binding the encrypted message body, a timestamp, and the address-
ing headers. Finally, information extracted from the envelope is
returned in EnvelopeInfo.

6.3 Authentication and Secrecy Results
The following theorem establishes the agreement, message cor-

relation, and secrecy properties for the exchange described above:

THEOREM 3 (ROBUST SAFETY OF C3, C4AND SECRECY).
For all runs of the script in the presence of an active attacker (and
hence all choices of operation modes):

• For eachendC3 with a safe security context, there is a match-
ing beginC3.

• For eachendC4 with a safe security context, there is a match-
ing beginC4.

• For each exchange with a safe security context, the request
and response bodies are kept secret.

6.4 Open-Ended Conversations
We now extend our protocol to allow clients and services to iter-

ate their exchanges—as suggested by the dashed lines of Figure 3—
thus modelling a more substantial conversation. For simplicity, we
fix the operation mode and always use derived keys.

Each session is identified by sessionId, freshly generated by the
client before sending its first request. Each request within the ses-
sion is indexed by a sequence number. To this end, we (mostly)
comply with the syntax of WS-ReliableMessaging [13] and use
its simple request acknowledgment mechanism: requests carry a
<Sequence> header, including the sessionId and a message num-
bern, set to zero by the client in the first request, and incremented
by one in every subsequent request. The structure of this header is
given by the predicate:

predicatesequence(Sequence:item,sessionId:string,msgNumber:bytes):−
Sequence =<Sequence>

<Identifier> sessionId</>
<MessageNumber> base64(msgNumber)</></> .

Similarly, responses carry a<SequenceAcknowledgement>
header echoing the received sessionId and message number.

To specify an agreement on the conversation as a whole, our
client and service collect detailed information in events, as follows.

For then-th request and response, respectively, C3n and C4n
record not only the envelope just sent (forbeginevents) or accepted
(for endevents), but also the preceding sequence of all previously-
processed envelopes for the session, and their shared session identi-
fier sessionId and security context SC (which provides in particular
client and service identification).

C3n = (SC,sessionId,Req0, Resp0, . . . , Reqn)
C4n = (SC,sessionId,Req0, Resp0, . . . , Reqn, Respn)

To establish the correspondences, we use a script that protects the
service from replays of initial requests with identical session iden-
tifiers. (This is necessary because the server does not contribute to
the generation of the session identifier, and thus could be lead to
run several sessions for a single client session.)

THEOREM 4 (ROBUST SAFETY OF C3n, C4n AND SECRECY).
For all runs of the script in the presence of an active attacker (and
hence all choices of operation modes), and for alln ≥ 0, we have:

• For eachendC3n with a safe security context, there is a
matchingbeginC3n.

• For eachendC4n with a safe security context, there is a
matchingbeginC4n.

• All request and response bodies protected by a safe security
context remain secret.

The theorem is obtained by running ProVerif on a similar, but
slightly more abstract script, in which sequencing is also controlled
by the environment. We then manually carry over the properties
from one script to another, relying on standard equivalences in the
pi calculus [2].

6.5 Cautionary Notes
As in Section 4.5, we mention some attacks observed as we mod-

elled weaker variants of the protocol.
Upon receiving a message secured using SCTs, it is important

to attribute the message to the correct sending principal, typically
by verifying that the message is signed and encrypted using keys
derived from the same SC. Conversely, envelopes with multiple
SCTs are often problematic. Consider, for instance, a web server
that attributes the message to the principal associated with the first
SCT in the security header. Then, an attacker can intercept a mes-
sage protected (that is, signed or encrypted) using an SCT, and can
rewrite it by inserting a different SCT at the beginning of the se-
curity header. Assuming both SCTs are associated with valid SCs
for the same service but for different clients, the service will accept
the rewritten request and attribute it to the wrong client. Consider
now a web server that attributes the message to the principal asso-
ciated with the encrypting SCT, but accepts messages signed with
a different SCT. Then, if the attacker knows the secret stored in an
(unsafe) SC, it can impersonate any sender using a (safe) SC, by
intercepting, modifying and re-signing its messages.

Concerning open-ended conversations using WS-ReliableMes-
saging, as illustrated in Section 6.4, the current specification makes
it necessary to enforce replay protection for initial client requests.
This contrasts with a common pattern in protocols, whereby the
first request has no effect on the server, and thus replays are con-
sidered harmless in the first exchange. Besides, replay protection
is hard to implement for web server farms, where several servers
share the same SOAP address and STS.

Without replay protection, a subtle “session replication” attack
appears when the same initial client request can be accepted several
times. Starting from the first request, an attacker can systematically
replicate each request towardsn server instances of the session,
forward one selected response to the client, and discard the other
responses. As soon as some of the responses differ, some instances
of the server will accept requests that do not correspond to their
previous responses.

7. RELATED WORK
There has been great recent progress in formalisms and tools for

the Dolev-Yao model, but protocols of the level of complexity con-
sidered here have only recently come within the reach of formal
methods. We mention two roughly comparable examples.

Paulson [28] shows authentication, secrecy, and integrity proper-
ties of a model of the SSL/TLS protocol with the interactive prover
Isabelle; Paulson’s was the first formal study of SSL/TLS to put no
finite bounds on the numbers of principals or concurrent sessions—
an assumption made in earlier approaches using model-checking.

More recently, Abadi, Blanchet, and Fournet [1] show various
security properties of the JFK key establishment protocol using
ProVerif [7, 8]. ProVerif needs little user interaction compared to
Isabelle, and also supports unbounded models of the protocol.

There are by now many implementations of SOAP and XML
security, but there is comparatively little work on formalizing the
resulting security properties. Damianiet al [10] show access con-
trol properties for SOAP-based web services, relying on an under-
lying secure channel such as SSL/TLS. Gordon and Pucella [15]
prove authentication properties of SOAP-based security protocols,

but do not consider key establishment and do not model XML syn-
tax in detail. Kleiner and Roscoe [22] extract abstract descrip-
tions of some simple WS-Security protocols from XML message
sequences. These descriptions are intended for finite-state analysis
with the FDR model checker, although in principle many tools for
the Dolev-Yao model may be applicable.

Other formal work on web services protocols includes a model
of Atomic Transaction [18].

8. CONCLUSIONS
Our study complements the ongoing work to author and refine

the WS-Trust and WS-SecureConversation specifications, to de-
velop implementations, and to test conformance at interoperability
workshops. Our positive results concerning secrecy and authentic-
ity within a formal threat model increase confidence in particular
usages of the specifications. On the other hand, our negative re-
sults for other usages reveal potential vulnerabilities and suggest
corrections or guidance.

We believe our formal approach can be an asset to the commu-
nity during the standardization process, as we can swiftly verify se-
curity properties of particular proposals. For example, it took only
a few hours to adapt the scripts of this paper to model and check
properties of the protocol used at the WS-Trust and WS-Secure-
Conversation interoperability workshop [31].

Acknowledgment
We gladly acknowledge the help and encouragement of the Mi-
crosoft WSE and Indigo teams.

9. REFERENCES
[1] M. Abadi, B. Blanchet, and C. Fournet. Just fast keying in the

pi calculus. InProceedings of the 13th European Symposium
on Programming (ESOP’04), volume 2986 ofLNCS, pages
340–354. Springer, 2004.

[2] M. Abadi and C. Fournet. Mobile values, new names, and
secure communication. In28th ACM Symposium on Princi-
ples of Programming Languages (POPL’01), pages 104–115,
2001.

[3] K. Bhargavan, R. Corin, C. Fournet, and A. D. Gor-
don. Secure sessions for web services. Long ver-
sion of this paper, including TulaFale scripts, at
http://research.microsoft.com/projects/
samoa/secure-sessions-with-scripts.pdf ,
Oct. 2004.

[4] K. Bhargavan, C. Fournet, and A. D. Gordon. A seman-
tics for web services authentication. In31st ACM Symposium
on Principles of Programming Languages (POPL’04), pages
198–209, 2004. An extended version appears as Microsoft
Research Technical Report MSR–TR–2003–83.

[5] K. Bhargavan, C. Fournet, and A. D. Gordon. Verifying
policy-based security for web services. In11th ACM Confer-
ence on Computer and Communications Security (CCS’04),
2004. To appear.

[6] K. Bhargavan, C. Fournet, A. D. Gordon, and R. Pucella.
TulaFale: A security tool for web services. InInternational
Symposium on Formal Methods for Components and Objects
(FMCO’03), volume 3188 ofLNCS. Springer, 2004.

[7] B. Blanchet. An efficient cryptographic protocol verifier
based on Prolog rules. In14th IEEE Computer Security Foun-
dations Workshop (CSFW-14), pages 82–96. IEEE Computer
Society, 2001.

[8] B. Blanchet. From secrecy to authenticity in security pro-
tocols. In 9th International Static Analysis Symposium
(SAS’02), volume 2477 ofLNCS, pages 342–359. Springer,
2002.

[9] D. Box, F. Curbera, et al. Web Services Ad-
dressing (WS-Addressing), Aug. 2004. At
http://www.w3.org/Submission/2004/
SUBM-ws-addressing-20040810/ .

[10] E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, and
P. Samarati. Securing SOAP e-services.International Journal
of Information Security, 1(2):100–115, 2002.

[11] W. Diffie and M. Hellman. New directions in cryptography.
IEEE Transactions on Information Theory, IT-22(6):644–
654, Nov. 1976.

[12] D. Dolev and A. Yao. On the security of public key protocols.
IEEE Transactions on Information Theory, IT–29(2):198–
208, 1983.

[13] C. Ferris, D. Langworthy, et al.Web Services Reli-
able Messaging Protocol (WS-ReliableMessaging), Mar.
2004. At http://msdn.microsoft.com/ws/2004/
03/ws-reliablemessaging/ .

[14] A. O. Freier, P. Karlton, and P. C. Kocher. The SSL proto-
col: Version 3.0.http://home.netscape.com/eng/
ssl3/draft302.txt , November 1996.

[15] A. D. Gordon and R. Pucella. Validating a web service secu-
rity abstraction by typing. InACM Workshop on XML Secu-
rity 2002, pages 18–29, 2003. An extended version appears as
Microsoft Research Technical Report MSR–TR–2002–108.

[16] M. Gudgin. Using WS-Trust and WS-SecureConversation.
MSDN, May 2004. Athttp://msdn.microsoft.com/
library/default.asp?url=/library/en-us/
dnwebsrv/html/ws-trustandsecureconv.asp .

[17] D. Harkins and D. Carrel. RFC 2409: The Internet
Key Exchange (IKE).http://www.ietf.org/rfc/
rfc2409.txt , Nov. 1998.

[18] J. E. Johnson, D. E. Langworthy, L. Lamport, and F. H. Vogt.
Formal specification of a web services protocol. In1st In-
ternational Workshop on Web Services and Formal Methods
(WS-FM 2004), 2004. University of Pisa.

[19] C. Kaler, A. Nadalin, et al.Web Services Federation
Language (WS-Federation) Version 1.0, July 2003. At
http://msdn.microsoft.com/ws/2003/07/
ws-federation/ .

[20] C. Kaler, A. Nadalin, et al.Web Services Secure Conversa-
tion Language (WS-SecureConversation) Version 1.1, May
2004. At http://msdn.microsoft.com/ws/2004/
04/ws-secure-conversation/ .

[21] C. Kaler, A. Nadalin, et al.Web Services Trust Language
(WS-Trust) Version 1.1, May 2004. At http://msdn.
microsoft.com/ws/2004/04/ws-trust/ .

[22] E. Kleiner and A. W. Roscoe. Web services security: A pre-
liminary study using Casper and FDR. InProceedings of Au-
tomated Reasoning for Security Protocol Analysis (ARSPA
04), 2004.

[23] G. Lowe. A hierarchy of authentication specifications. InPro-
ceedings of 10th IEEE Computer Security Foundations Work-
shop, 1997, pages 31–44. IEEE Computer Society Press,
1997.

[24] Microsoft Corporation.Web Services Enhancements (WSE)
2.0 SP1, July 2004. At http://msdn.microsoft.
com/webservices/building/wse/default.

aspx .
[25] R. Milner. Communicating and Mobile Systems: theπ-

Calculus. Cambridge University Press, 1999.
[26] A. Nadalin, C. Kaler, P. Hallam-Baker, and R. Monzillo.

OASIS Web Services Security: SOAP Message Se-
curity 1.0 (WS-Security 2004), Mar. 2004. At
http://docs.oasis-open.org/wss/2004/01/
oasis-200401-wss-soap-message-security-1.
0.pdf .

[27] R. Needham and M. Schroeder. Using encryption for au-
thentication in large networks of computers.Commun. ACM,
21(12):993–999, 1978.

[28] L. C. Paulson. Inductive analysis of the internet protocol TLS.
ACM Trans. Inf. Syst. Secur., 2(3):332–351, 1999.

[29] W3C. SOAP Version 1.2, 2003. W3C Recommendation, at
http://www.w3.org/TR/soap12 .

[30] T. Woo and S. Lam. A semantic model for authentication pro-
tocols. InIEEE Computer Society Symposium on Research in
Security and Privacy, pages 178–194, 1993.

[31] WS-SecureConversation/WS-Trust Interop Work-
shop, Oct. 2004. At http://msdn.microsoft.
com/webservices/community/workshops/
TrustWorkshopOct2004.aspx .

