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Abstract: This paper is motivated by a low level analysis of various categories of severe 
security vulnerabilities, which indicates that a common characteristic of many 
classes of vulnerabilities is pointer taintedness. A pointer is said to be tainted if 
a user input can directly or indirectly be used as a pointer value. In order to 
reason about pointer taintedness, a memory model is needed. The main 
contribution of this paper is the formal definition of a memory model using 
equational logic, which is used to reason about pointer taintedness. The 
reasoning is applied to several library functions to extract security 
preconditions, which must be satisfied to eliminate the possibility of pointer 
taintedness. The results show that pointer taintedness analysis can expose 
different classes of security vulnerabilities, such as format string, heap 
corruption and buffer overflow vulnerabilities, leading us to believe that 
pointer taintedness provides a unifying perspective for reasoning about 
security vulnerabilities. 
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1. INTRODUCTION 

Programming flaws that result in security vulnerabilities are constantly 
discovered and exploited in real applications. A significant number of 
vulnerabilities are caused by improper use of library functions in programs. 
For example, omitting buffer size checking before calling string 
manipulation functions, such as strcpy and strcat, causes many buffer 
overflow vulnerabilities. Passing user input string as the format string in 
printf-like functions causes format string vulnerabilities. Heap corruption 
vulnerabilities are the result of invoking the free function with a pointer 
pointing to an overflowed buffer or a buffer that has not been allocated by 
the heap manager. Library functions are usually secure only under certain 
conditions, and therefore, formally extracting security conditions from 
library code can be a valuable aid in implementing applications free of 
security vulnerabilities.  

We introduce the notion of pointer taintedness as a basis for reasoning 
about security vulnerabilities. The notion of pointer taintedness is based on 
the observation that the root cause of many reported vulnerabilities is due to 
the fact that a pointer value (including return address) can be derived directly 
or indirectly from user input. Since pointers are internal to applications, their 
values should be transparent to users. Thus a taintable pointer is a potential 
security vulnerability. By analyzing the application source code, the 
potential for pointers to be tainted can be determined and hence possible 
vulnerabilities can be identified.  

Existing compiler-based techniques, such as CQUAL [7] and SPLINT 
[1], perform taintedness analysis by associating an attribute or a type 
qualifier with program symbols, i.e., variables, constants, arguments and 
return values. Although these techniques allow reasoning about taintedness 
of symbols, they cannot analyze the taintedness of pointers unless C 
statements explicitly perform the tainting. As we will show, there are many 
situations (e.g., format string vulnerabilities, heap corruptions and stack 
buffer overflows) where pointers become tainted without explicit assignment 
statements in the code. Pointer taintedness that leads to well known 
vulnerabilities usually occurs as a consequence of low level memory writes, 
typically hidden from the high level code. Hence a memory model is 
necessary to reason about pointer taintedness. This paper proposes a 
formalization to define and analyze pointer taintedness so as to uncover 
potential security vulnerabilities. We focus on commonly used library 
functions because many widely exploited vulnerabilities are caused by 
pointer taintedness occurring in library functions. 
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A memory model is formally defined in this paper using equational 

logic2, which forms the basis of the semantics of pointer taintedness. A 
mechanical reasoning technique is applied to several library functions to 
examine the possibility of a pointer being tainted. The analysis process for 
each library function yields a set of formally specified preconditions that 
must be satisfied to eliminate the possibility of pointer taintedness. These 
pre-conditions either correspond to already known vulnerability scenarios 
(e.g., format string vulnerability and heap corruption) or indicate the 
possibility of function invocation scenarios that may expose new 
vulnerabilities.  

2. RELATED WORK 

Security vulnerabilities have been reported in many applications. The 
Bugtraq vulnerability list and CERT advisories maintain information about 
reported vulnerabilities. Security vulnerabilities can be modeled using finite 
state machines, by breaking them into multiple simple operations, each of 
which may be associated with one or more logical predicates [10]. 

Many static detection techniques have been developed based on the 
recognition of existing categories of security vulnerabilities. Techniques 
such as [1] and [2] can check security properties if vulnerability analysts are 
able to specify them as annotations in the code. Domain-specific techniques 
require less human effort, but each technique only detects a specific type of 
vulnerability. Static detection techniques are proposed to detect to buffer 
overflow vulnerabilities, e.g. [6]. Runtime mechanisms against security 
attacks have been introduced in [8] and [9]. Xu et. al. [5] recently proposed 
efficient approaches to randomize memory layout and to encode control flow 
information, which aims at defeating various attacks in a generic manner. 

The notion of taintedness was first proposed in Perl language as a 
security feature. Inspired by this, static detection tools like SPLINT [1] and 
CQUAL [7] also use taintedness analysis to guarantee that user input data is 
never used as the format string argument in printf-like functions. In both 
these tools, taintedness is an attribute associated with C program symbols. A 
symbol gets tainted only if an explicit C statement passes a tainted value to it 
by assignment, argument passing or function return. As shown in the next 
section, in many real attacks, pointers are tainted without explicit C 
statements tainting program symbols. Since these tools do not have a 
memory model, they cannot determine whether an address is tainted and 

 
2 An introduction to equational logic can be found in [11]. 



4 Shuo Chen, Karthik Pattabiraman, Zbigniew Kalbarczyk and Ravi K. Iyer
 
hence cannot reason about the underlying memory status. In [12], several 
examples are provided where data can be tainted without being detected by 
SPLINT and CQUAL. The inability to reason about taintedness at the 
memory level is an inherent limitation of existing taintedness analysis tools.  

3. POINTER TAINTEDNESS EXAMPLES 

Our study indicates that many known security vulnerabilities, such as 
format string, heap corruption, buffer overflow and Glibc glob 
vulnerabilities, arise due to pointer taintedness. In these examples, the 
pointers become tainted without explicit C assignment statements. Due to 
space limitations, only the example of the format string vulnerability is 
discussed in detail. Other examples are described in the extended version of 
this paper [12]. In this section, we first give a high level description (Table 
1) of the format string vulnerability, and show how it can be exploited. We 
then show that a memory model (Figure 1) is necessary for reasoning about 
pointer taintedness.  

Table 1: Format String Vulnerability Illustration 
� � � � � �� ��� � � � ��� 	 
 � � 
 � � �� � �� � ��� �� � � �
� �� � � � �� � �� �� � ��� � � � �
� � � � � � � � � �� � � � � � � � � � � �
� � � � � � � � � � � �� �� � � �� �
� � � � � � � � � � � � � � � �� � � � �� � � � � �
� �  � � � � � � 	 � � �� � � � � � � � � �� � � �� �
� � � � � � � � � � � � � � � �
� � � ! � �
�
� � � � � � �� " � � � ��� 	 �� � ��� �� � � � � �� � � � �� � # # # � �
� � � � � � � � �� �� � ��� � � $ � � � � � � � � � � �
� %  � � � � ��� � � � ��� 	 ��& � � �� � �� � � � �� � � � $ � � �
� � � � � � � � � �
� � � � ! �
�
� � � � � � �� � � '� �
� � � � � � �� � � � � 	 � �
� � � � � � �� � � � ( � �) � * * + � �

� � � � � � � ,,-� � �� � � � � �.� �� � �� � � � ������� �� � � / ��� 0�
� � � � � � � ��� �� 0	 ( � �� 1 � / � � � 1 � � �
� � � � � � � � � � % 2 3� �
� 2  � � � " � � � ��	 1 ��� � � $ � 4 �5� & � �� � 4 & 5� 4 � 1 � ( � �� � � 6'� � �
� � � � � � � � " � � � ��	 1 �� �� � � � � �� � �� � / � $ �� � 4 & 5� 1 � '� � � �
�
� � � � � � � ,,-� � �� � � � � �.� �� � � � �� ��� � � $ � �� � � / � � ( � � � �0� � ��� � ��
� � � � � � � � ��� � �	 74 �8� ( � �� � �
� � 3 � � � " � � � ��	 ( � �� � �
� � 9  � � � " � � � ��	 1 5� � � 4 & 5� 1 � � � � �
� � � � � � � ! �
�

������� � �	
�	
� �

: �  � � � � � � � � � ��� � � $ � � / � � � �
: %  � � � � � � � � � & � �� � � % 2 3�
: 2  � � � � � � � � � �� �� � � � � �� � �� � / � $ �� � % 2 �
: 3 � � � � � � � � � � � � � � 2 39 � 3; 3; � % 2 3� 2 39 � < � = > � % 2 39 �
: 9  � � � � � � � � � � � 2 � �

The format string vulnerability is caused by incorrect invocation of 
printf-like functions (e.g., printf, sprintf, snprintf, fprintf and syslog). Table 1 
gives examples of correct and incorrect invocations of Printf() (a simplified 
version of LibC printf() that we developed). This sample program produces 
five lines of output (shown in Table 1). Output lines O1 and O2 result from 
executing line L3 of the code: the string buf hosting “hello”, and the integer i 
has the value 1234. In addition, line L3 uses the format directive %n to write 
the character count (i.e., the number of characters printed up to that point) 
into the address of the corresponding integer variable. In this case, the length 
of “string=hello¶data=1234¶” is 23, so Printf() writes 23 to the integer j. 
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This value is printed out in line O3 of the program output. The format string 
vulnerability is caused by incorrect invocation of Printf in line L4, which 
directly uses buf as the format string (the proper usage should be 
Printf(“%s”, buf)). 
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Figure 1: How to Overwrite the Global Integer i 

We now show how an attacker can exploit this vulnerability. Let’s 
assume that the attacker wants to corrupt an arbitrary memory location (e.g., 
the global integer i).  In order to do this, he/she constructs an input string buf 
as given below (observe that the beginning of the input string corresponds to 
the address of global integer i): 

���� � ���� � ����� ���� � 	
 � 	
 � 	
 � �� 
� �� 
� �� 
� ��
� �� 
� 	� � �

The string is read by scanf() and passed to Printf(), which in turn, calls 
Vfprintf(). Just before Line L1 is executed, the stack layout is like the one in 
Figure 1. In Vfprintf(), there are two pointers: p is the pointer to sweep over 
the format string buf (from “\x78” to”%n”), and ap is the pointer to sweep 
over the arguments (starting from the 12-byte gap). The attacker deliberately 
embeds three “%d” directives in buf so that ap can consume the 12-byte gap 
and get to the word 0x08049978. A padding string “12345” follows the 
“%d” directives in order to adjust the character count. As we see in the 
program output line O4, the words in the 12-byte gap are printed as three 
integers followed by a padding string “12345”. Eventually, when p arrives at 
the position of “%n” (i.e., the code line L1 is about to be executed), ap 
happens to arrive at the position of 0x08049978. Line L1 writes the character 
count count to the location pointed by *ap. In this case, since the content in 
the location pointed by *ap is the address of the integer i, the character count 
31 is written to i. Note that this attack can overwrite any memory location, 
including locations containing return addresses or the global offset table of 
an application, which can result in the execution of the attacker’s code. 
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We can view the above vulnerability as a consequence of pointer 
taintedness. In the above code (Table 1), the string buf is obtained from user 
input and is hence tainted (as indicated in Figure 1 as a grey area). When the 
pointer ap sweeps over the stack and points to buf, *ap becomes tainted. ap 
is then dereferenced in Line L1, and the tainted value of *ap is the target 
address of  the write operation. This can lead to the corruption of an arbitrary 
memory location. Thus we see that pointer taintedness is the root cause of 
this vulnerability. Note that the pointer *ap gets tainted because ap moves 
into the tainted memory locations, and there is no explicit assignment of a 
tainted value to *ap in the C code. Hence a memory model is necessary to 
reason about the taintedness of *ap. The next section defines the formal 
semantics of pointer taintedness using a memory model, and Section 5 
shows how the semantics can be used to reason about security vulnerabilities 
in library functions. 

4. SEMANTICS FOR POINTER TAINTEDNESS 

Starting with the programming semantics of Goguen and Malcolm [3], 
this section proposes a formal semantics to reason about pointer taintedness 
in programs. The semantics proposed in [3] defines instructions, variables 
and expressions. We extend this semantics to include memory locations and 
addresses. Using the memory model, the notion of taintedness is 
incorporated into the semantics.  

We define tainted data as: (1) data coming from input devices (e.g., by 
scanf(), fscanf(), recv(), recvfrom()), or (2) data copied or arithmetically 
calculated from tainted data. A tainted pointer is a pointer whose value 
(semantically equivalent to “data”) is tainted. This definition can be 
formalized in equational logic using the Maude tool [4], which we used to 
reason about pointer taintedness.  

In the semantics defined in [3], a Store represents the current state of all 
program variables. We extend this definition of a Store to be a snapshot of 
the entire memory state at a point in the program execution. The execution 
of a program instruction is defined as a function taking two arguments, a 
Store and an instruction, and producing another Store. There are two 
attributes associated with every memory location of a Store: content and 
taintedness. Accordingly, two operations, fetch and location-taintedness, are 
formally defined. The fetch operation ���� ��� �� gives the content of the 
address �  in store �; the location-taintedness operation ������� ��  returns a 
Boolean value indicating whether the content of the specified address is 
tainted.  
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There is no notion of “variable” in this semantics. Any variable in a C 

program is mapped to a memory location addressed by the integer with the 
same name as the program variable. For example, the C program variable 
��� is mapped as a memory location addressed by the integer ���. We define 
the �  operator to dereference an integer, i.e., to fetch the location addressed 
by the integer. Note that the address (a.k.a., the left value) of the C program 
variable ��� is represented by the integer ��� in the semantics; and the 
content (a.k.a., the right value) of the C program variable ��� is represented 
by �� � ���� . The expressions in the semantics are arithmetic operators (e.g., 
+, - and *) concatenating integers and integer dereferences. For example, 
expression ��� ������ represents  “200 plus the content of the C program 
variable ���”. Expression ��� ��� represents “200 plus the address of the C 
program variable ���”.  

We define two operations – evaluation and expression-taintedness – for 
expressions, based on the fetch and location-taintedness operations. The 
evaluation operation !"# $ ���! �  gives the result of evaluating the expression !  
under store �; the expression-taintedness operation !�%����! �  indicates 
whether expression !  contains any data from a tainted location, e.g., 
!�%���� �� ���� ��  indicates whether the expression �� ���� � contains any 
data from a tainted location, which is equivalent to checking whether the 
memory location addressed by ��� is tainted. Thus pointer taintedness is 
defined as a dereference of a tainted expression. 

Table 2 lists a set of axioms for the evaluation and expression-
taintedness operations, and gives examples of applying the equations.  

Table 2: Axioms of Evaluation and Expression-Taintedness Operations 
Axioms Examples  

1 
2 
 
3 
4 
 
5 
6 
7 
8 
 
9 
A 
 
 
B 
C 

Eval(S,I) =  I  
Eval(S, ^ E1) = Ftch(S, Eval(S,E1))  
 
Eval(S, - E1) = - Eval(S, E1) 
Eval(S, E1 – E2) =  Eval(S, E1) - Eval(S, E2) 

 
Eval(S, E1 + E2) =  Eval(S, E1) + Eval(S, E2)  
Eval(S, E1 * E2) =  Eval(S, E1) * Eval(S, E2) 
ExpT (S,I) = false  
ExpT(S, ^ E1) = LocT(S,Eval(S,E1))  

 
ExpT(S, - E1) = ExpT(S,E1)  
ExpT(S,E1-E2)=ExpT(S,E1) or ExpT(S,E2) 
 
 
ExpT(S,E1+ E2)=ExpT(S,E1)or ExpT(S,E2) 
ExpT(S,E1*E2)=ExpT(S,E1) or ExpT(S,E2) 

Eval(S,5) = 5 
Eval(S, ^ foo) = Ftch(S,Eval(S,foo)) 
                        = Ftch(S,foo) 
Eval(S, - 30) = - Eval(S, 30) = - 30 
Eval(S, 3-2) = Eval(S, 3) – Eval(S, 2) 
                    = 3–2 = 1 
Eval(S, 3+2)=Eval(S, 3)+Eval(S,2) = 5 
Eval(S, 3*2)=Eval(S, 3)*Eval(S, 2) = 6 
ExpT(S,5) = false 
ExpT(S,^foo) =LocT(S,Eval(S,foo)) 
                       =LocT(S,foo) 
ExpT(S, -5) = ExpT(S, 5)= false 
ExpT(S, (^foo)–2)  
   = ExpT(S, (^foo)) or ExpT(S, 2) 
   = LocT(S,foo) or false = LocT(S,foo) 
ExpT(S, (^foo)+2) = … = LocT(S,foo) 
ExpT(S, (^foo)*2) = … = LocT(S,foo) 

Lines 1-6 define how to evaluate an expression under store �. For 
example, line 1 indicates that the evaluation result of a constant �  under store 
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� is the constant � . Line 2 indicates that !"# $ ����!� �  can be computed by first 
evaluating !�  under �, then applying fetch operation on the evaluation result. 
The semantics of arithmetic operations are defined in Lines 3-6. 

Lines 7-C define the expression-taintedness operator. Note that the 
relationship between the expression-taintedness and location-taintedness 
operators is similar to the relationship between the evaluation and fetch 
operators. Line 7 indicates that an integer constant is not a tainted 
expression. Line 8 indicates that determining whether the expression �!�  is 
tainted is equivalent to checking whether the location addressed by the 
evaluation result of !�  is tainted. Line B indicates that the expression !�  !�  
is tainted if either !�  or !�  is tainted. The example of Line C shows that the 
expression �� ���� �  � �  is tainted if and only if the location pointed to by ��� 
is tainted, according to the equation in Lines 7 and 8. 

Table 3: Semantics of Statements 
���������� ������� 	
 �

� ��� � � � � � 	 
 � �� � � ��
� �� 
� 
�� � � ��� �� � �
�� � �� ��� �� 
� 
���
��� �� � �� � ��� �� 
� �
� ����
� ����� �� � ����
��
� � ��� �� 
� 
�� � � ��� �� � �
�� � �� ��� �� 
 � 
���
��� �� � � � �

� �� �� �� 
� � �� �

� �
� �� � �� � �

 �� �� 
� ��� � � �� �� � �� � � � ��� 
! � ��
�� �
� �� �
��� 
�"� �
� 
�
�� �
 � �� �

"� � � 
 � �� �� � � � �� �  �� �� 
� ��� � � �� �� � �� � � � ��� 
! � 
�
�� �
� � ! � �
�
��� � � �� � � �� � � � �� � �
� �

Table 3 gives the informal semantics of a subset of the supported 
statements. Their formal semantics are similar to the specifications given in 
[3], and are sufficient to analyze a wide variety of program constructs in the 
C language. However, they are not sufficient to faithfully model all C 
statements. For example, the program counter has not been defined in the 
semantics. So certain C statements, such as &���� � ' ()#*� � ��� �+ � , )� � ()�, (� and
)�+ � cannot be modeled, but it is relatively easy to extend the semantics for 
these also.  

Formal specifications of statements other than the -�" statement are 
fairly straightforward. Axioms defining -�" statement semantics are shown 
in Table 4. The goal is to define the fetch (Ftch) and location-taintedness 
(LocT) operations after applying a -�" instruction on store �.  

Table 4: Equations Defining ��� Statement Semantics  
� �
� �
# �
$ �

%��� &&' � ( � ���� � � � � � 	 
 � �� ) !*� ) � + � ��� � &'!�� ) � � �� &��� � &'!�� ) � � � � *� ) � , �
% ��� &&' � ( � ���� � � � � � 	 
 � �� ) !*� ) � + � %��� &'!*� ) � � �� � ��� &��� � &'!�� ) � � � � *� ) � , � �
-���&&' � ( � ���� � � � � � 	 
 � �� ) !*� ) � + � ����&'!�� ) � � �� &��� � &'!�� ) � � � � *� ) � , �
-���&&' � ( � ���� � � � � � 	 
 � �� ) !*� ) � + � -���&'!*� ) � � �� � ��� &��� � &'!�� ) � � � � *� ) � , �

The semicolon operator in our notation represents the execution of an 
instruction on a store, which results in a new store. For example, 
��.-�"/ !� 0 1 2!��  is the store after executing -�"/ !� 0 1 2!�  on store �. Line 1 
indicates that if the expression !�  evaluates to 3�  under store �, then when 
fetching the location 3� after executing the instruction -�"/ !� 0 1 2!� , we get 
the evaluation result of !�  under store �. Line 2 indicates that if the 
expression !�  does not evaluate to 3�  under �, then when fetching the 
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location 3�  after executing the instruction -�"/ !� 0 1 2!� , we still get the 
content in the location 3�  under � (i.e., before executing the instruction 
-�"/ !� 0 1 2!�). Similarly, the ���� operation is defined for -�" statement in 
Lines 3 and 4. 

5. FORMAL REASONING ON POINTER 
TAINTEDNESS VIOLATIONS 

This section presents pointer taintedness analysis for three common 
library functions based on the defined semantics, and extracts their 
associated security preconditions. The analysis identifies several known 
vulnerabilities, such as format string, buffer overflow and heap corruption 
vulnerabilities, thereby showing that pointer taintedness based reasoning is 
able to unify different kinds of vulnerabilities.  

Our experience suggests that statements needing critical examination for 
pointer taintedness are typically indirect writes, where a pointer points to a 
target address to be written, e.g., the pointer %  in 4% � 5 � ��� and 
-)-�%6�% � ���� � �� �  Checking indirect write statements is important because 
these statements can result in two types of pointer taintedness violations. For 
example, in the statement 4% � 5 � ���, (1) if the value of %  is tainted, then data 
��� can be written to any memory location; (2) if %  is a pointer to a buffer but 
points to a location outside the buffer, then the statement 4% � 5 � ��� can taint 
the memory location %  points to, which may be a location of a return 
address, a function frame pointer or another pointer.  

5.1 Analysis of strcpy() 

A simple but interesting example is strcpy(), which copies a NULL-
terminated source string to a destination buffer. The string manipulation 
functions, including strcpy(), strcat() and sprintf(), are known to cause a 
significant number of buffer overflow vulnerabilities. Our formal reasoning 
extracts security preconditions from the implementation of strcpy(). The 
source code of strcpy() and its formal representation are given in Table 5.   

As the only indirect write operations in the source code are in Line 1 and 
Line 2, it is enough to prove the three theorems listed in Table 6. We assume 
that the NULL-terminator (i.e., the character ‘\0’) of the source string 7(� is 
at the location �7(��  � 7(�$ )� � , and that the size of the buffer 
7� is 
7�7+ 8). 
Theorem NV1 ensures that before Line L1, the content of the variable 
7� is 
not tainted; Theorem NV2 ensures that for any address 9 outside the buffer 

7� (from 
7� to 
7� 
7�7+ 8)), the taintedness of location 9 after Line L1 is 
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same as the taintedness of location 9 before Line L0. NV3 is similar to NV1, 
but proves the property for the memory state before Line L2 is executed.  

Table 5: Source Code and Formal Semantics of strcpy() 
�� �� � . � ������� &�� �� � . � ���! � �� �� � . � ���) � / �

� � � � �� �� � . � �
�( �
0 1 � � � � � � � �
�� + ���( �

� � � � "� � � 
 � &. ���2 + 0) � / �
� 1 � � � � � � � � . ���+ .���( �

� � � � � � � ��3 3 ( �
� � � � � � ���3 3 ( �
� � � � � 4 �

� 1 � � � � � � . ���+ 0( �
� � � � �
�� �� � �
�( � 4 �

�
�
-0 1 � � � ��� � �
�� � 	 
 � &5 � ���) � ( �
� � � � � � "� � � 
 � &6 &&5 � 5 � ���) � � � � 0) ) � ��� �
-� 1 � � � � � � � ��� � 5 � ���� � 	 
 � &5 � 5 � ���) � ( �
� � � � � � � � � � � ��� � ���� � 	 
 � &5 ���� 3 � � ) � ( �
� � � � � � � � � � � ��� � ���� � 	 
 � &5 � ���� 3 � � ) �
� � � � � � �� � ( �
-� 1 � � � ��� � 5 � ���� � 	 
 � 0 � , �

Table 6: Theorems to Prove for Function strcpy() 
��
��
� � 7 8� 1 �  �� '� � � � � �� 
 � ����
� �
���
� - � � 
 � -� ! � �� 
� �

-���&'� !���) � + � �� � �
 � �
�� 
��
� � 7 8� 1 �  �� '0 � � � � �� 
 � ����
� �
���
� - � � 
 � -0! � �� � � '� � � � � �� 
 � ����
 � ���
� � - � � 
� -� ! �
� � � ∀ � 9� ∈ �  7 �� • � � � � 9� 	 � ��� � &'0! � 5 ���) � � �� � � �� � &'0! � 5 ���3 ����� :
) � ≤� 9� � + ; �
� � � � � � � � � � � � � � � � � � � � � � � -���&'� !9) � + � -���&'0! � 9) �
�� 
��
� � 7 8# 1 �  �� '# � � � � �� 
 � ����
� �
���
� - � � 
 � -� ! � �� 
� �

-���&'# !���) � + � �� � �
 
Table 7 gives a set of security preconditions extracted in the process of 

proving the theorems. Among the four preconditions, Condition 4 is known 
because of the large number of buffer overflow vulnerabilities caused by 
string manipulation. This condition has already been documented on Linux 
MAN page of strcpy. Condition 2 indicates the scenario of overlap between 
7(� and 
7� and is examined further in Section 6.2. Violation of Condition 3 
may occur when a program miscalculates the location of a stack buffer, 
causing the function frame of strcpy() to be covered by the buffer and is 
discussed in Section 6.1. 

Table 7: Sufficient Conditions to Ensure the Validity of Theorems NV1 – NV3 
� , �  � � �� � � � �! � �� 
� � ����� �� � ��� ���� � � � � ��� �� � � �
� , � �
� , � �� 
� �� ��
��� ���� �� � � ���� ��� � ��� ��
�� �� � � � � �� �� � � � "��� �� ��� �� 
� �� ��
� � � ��� ���
�� �

�� 
� 7 < --
�
�� � � ���� � ��� �� 
� ���� ��� � � = , � �
# , � �� 
� �� ��
� � � ��� ��
�� � ��� ���
� � �� 
� �� � ��� �� � ����
� ��� ��������! � "� � �� � ��� �� ���� ��� �� 
 �

� ����� �� �� >���! � >���� �� � � >�
�, � �

4. ���� 
� � 	 � � ���� :
 

5.2 Analysis of Free() 

We implemented a binary buddy heap management system including 
function Malloc() and Free(). The memory block to be freed is pointed to by 
pointer �())
: $ ��*. The binary buddy heap management algorithm requires 
the deallocated memory block �())
: $ ��* to be merged with its buddy 
block if the buddy block is also free. The pointer :,

6: $ ��* points to the 
buddy block. �())
: $ ��* and :,

6: $ ��* are structs of type ;!9<=:�>?@ as 
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shown in Table 8. The �+ 8) field indicates the size of the memory chunk. The 
', 76 field indicates whether the memory chunk is free. Fields �A
  and :#* 
are pointers to maintain a doubly-link list of free memory chunks.  

Table 8: Indirect Write Statements in Free() Source Code 
���
�
�� ���� ��� ?@ �9�?A-BCD� / �
� � � � � � �� � � � � � � � � � � � � ' � :
( � � � � � � � � � � � EE� �� 
� �� :
 � ��� �� 
� � � ��F, �
� � � � � � �� � � � � � � � � � � � � A � ��( � � � � � � � � � � � EE�  � � �� � � � � � ��F� �� ��G �
� � � � ���� ��� ?@ �9�?A-BCD� . � %"� !. � A�F( � EE� - � ��� ��� �� 
� ��

 � � � ��F�� ��� �� 
 � ���
� �� :
�
4 � @ �9�?A-BCD(  
There are three lines in the Free() function where indirect write 

operations are performed. Six pointers are involved in the operations, 
including �())
: $ ��*� :, 

6: $ ��*� �())
: $ ��*2B �A
 � �())
: $ ��*2B :#*�

:,

6: $ ��*2B �A
  and :,

6: $ ��*2B :#*. Table 9 states the theorem to be 
proved for conditions guaranteeing that pointers are not tainted. It is 
assumed that the offset of the �A
 field in the ;!9<=:�>?@ structure is 2, 
and that the offset of the :#* field is 3. Theorem NV1 ensures that none of 
the six pointers is tainted before executing any indirect writes. 

Table 9: Theorems to Prove for Function Free() 
��
��
� � 7 8� 1 �  �� ' � � � � �� 
 � ����
 � �
���
 � 
�
�� �� � = � �� 
� � � � � �
��� "�� �
�! � �� 
� �

� � ����&'! � &5 � % �

�A � ��F)) � + � �� � �
 � �� � � � � �
� � ����&'! � &5A����A � ��F)) � + � �� � �
 � �� � � � � �
� � ����&'! � 5 &&5 � %�

�A � ��F) � 3 � � ) ) � + � �� � �
 � � �� � �
� � ����&'! � 5 &&5 � %�

�A � ��F) � 3 � # ) ) � + � �� � �
 � � �� � �
� � ����&'! � 5 &&5 � A� ���A � ��F) � 3 � � ) ) � + � �� � �
� � �� � �
� � ����&'! � 5 &&5 � A� ���A � ��F) � 3 � # ) ) � + � �� � �
� � �

EE%�

�A � ��F� � � � � ��� �� � � �
� � � � � �
EEA� ���A � ��F� � � � � ��� �� � � �
� � � � � �
EE%�

�A � ��F
; %"� � � � � � ��� �� � � �
� �
EE%�

�A � ��F
; A�F� � � � � ��� �� � � �
� �
EEA� ���A � ��F
; %"� � � � � � ��� �� � � �
� �
EEA� ���A � ��F
; A�F� � � � � ��� �� � � �
� �

The process of proving the theorems extracted a set of formally specified 
conditions that guarantee the validity of Theorem NV1. Table 10 describes 
the conditions. The function Free() is safe to be called when the caller 
function can guarantee these conditions. Violations of condition 1 are 
unlikely to occur, and the same is true for condition 7. Violations of 
condition 6 cause the classic double-free errors, and violations of condition 3 
and 4 lead to the popular heap buffer overflow vulnerability. An example 
illustrating violation of condition 2 is presented in Section 6.3.  

Table 10: Sufficient Conditions to Ensure the Validity of Theorem NV1  
� , � �� 
� �
����� ��� =
� ��� �� 
� � 
�� � �� � � �� 
� �
����� ��� =
� ��� �� 
� �� ��
� �� �� � ��� �� �

����
� ��� � ��� ��
� � �� , �
� , �  ��
� � � �
� �� �
���
� 	�

��� � � � �� � � 
� ! � % �

�A � ��F� ��� � �� � ��� � � � ����� �� � �� � �� 
� � 
�� , �
# , �  ��
� � � �
� �� �
���
� 	�

��� � � � �� � � 
� ! � �� 
 � %"� � �� � � A �F� � � � F�� ��� �� 
 � � � ��F� ���

% �

�A � ��F� � �
� � ��� �� � � �
� , �
$, � 9� � � ��


�� � � F� ��� � � 

 � � � F
� � � � ��� � � �
� "� �� � � � �� 
� � 
�� � ��� =
! � � , 
, ! � � �� %"� � �� � A�F�

� � � F�� ��� � �� � ��� �� �� � ����� �� � �� ��� �
� �� 
 � � 
�� , �
H , � 7 �� %"� � �� � A �F� ��� � �
��� � � � �� �� ��


�� � � F� ��� � � 

 � � � F
� � � � ��� � �
� �� � � �
� , �
I , � A
���
� 	�

��� � � � �� � � 
� ! � % �

�A � ��F� � � � � ��� � � � F
� � � � � �� �� ��


�� � � F� � � ��, �

7.  �� A� ���A � ��F� � � � ��

! � �� 
� � A� ���A � ��F� � � � � � � F
� � � � � � � ��


�� � � F� ��� � � 

 � � � F
� � � � ��,  
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5.3 Analysis of Printf() 

We implemented a function Printf(), similar to the LibC function printf(), 
except that Printf() calls its child function Vfprintf(), which is a simplified 
version of LibC function vfprintf(). Vfprintf() implements the format 
directives %%, %d, %s and %n. The total length of Vfprintf() is 55 lines. 
Pointer %  is used to sweep over the format string ��(-#�. The argument list is 
swept over by pointer #% .  

There are only two lines of indirect write operations in the function 
(Table 11). Line L1 is to get the last digit of 
#�#  and save it in the nth 
position of the buffer ', �.  Line L2 is to assign the character count to the 
memory location pointed by the current argument. Note that #%  is the 
argument list pointer pointing to the current argument.  

Corresponding to the two indirect write operations, we need to prove the 
theorems given in Table 12. Theorem NV1A ensures that before executing 
code in Line L1, the memory location containing the variable n is not 
tainted. Theorem NV1B ensures that after Line L1, the memory location 
', � � � is not tainted. Theorem NV1A and NV1B can be easily proved by 
the theorem prover. Theorem NV2 ensures that before Line L2, the 
expression �� � � � #%� � is not tainted, i.e., the memory location pointed by �� �
#%�  is not tainted, i.e., the memory location pointed by the content of 
variable #%  is not tainted. The preconditions extracted in the process of 
proving Theorem NV2 are given in Table 13. 

Table 11: Indirect Write Statements in Vfprintf() Source Code 
-� 1 � � � �� �� � � + ����J� 03 K0 K ( ��
-� 1 � � � . & � � �. )�� � + � ��� � �� (  

Table 12: Theorems Need to Prove for Vfprintf() 
��
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��
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Table 13: Sufficient Conditions to Ensure the Validity of Theorem NV2 
� , � �� � � 
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4. .�� � � 
�
� � ��� � ��� ��� �� �� � ����� �� � "� �� � � � ������
�
�
������
,  
The four conditions form a set of sufficient conditions, which if satisfied, 

guarantee that there is no pointer taintedness situation in the analyzed 
version of Vfprintf(). Format string vulnerabilities do not satisfy condition 3 
(Table 13). As illustrated in Figure 1, the tainted data (word 0x08049978) is 
located in the activity range of #% , i.e., #% points to this data. For the other 
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three conditions, we are currently unaware of any existing applications 
violating them.  

6. EXAMPLES ILLUSTRATING VIOLATIONS OF 
LIBRARY FUNCTIONS’ PRECONDITIONS 

In the previous section, we have given a significant number of 
preconditions for common library functions. Not all of them are likely to 
occur in real application code. In this section, we give possible scenarios 
(constructed examples) in which some of the preconditions detailed in the 
previous section are violated, and explain how an attacker can exploit them.  
To the best of our knowledge, these vulnerabilities have not been reported in 
any real application or described in the literature. 

6.1 Example of strcpy() violation – condition 3 

Condition 3 in Table 7 for strcpy() states that the buffer dst does not 
cover the function frame of strcpy(), which consists of dst, src and res. 
Otherwise it is possible to overwrite the stack frame of strcpy() and modify 
the address of the dst string. Since strcpy() can write to the location (*dst), 
this can be used to write to any memory location, including function 
pointers, and hence transfer control to malicious code.  

Consider the code sample in Table 14a, in which buf and input are 
allocated on the stack in the function frame of foo(). The string input is 
obtained from the user and passed as the src argument of strcpy().  The dst 
argument of strcpy() is buf + index, where index is computed by subtracting 
the length of input from the end of the buffer buf. After strcpy() is called, the 
stack frame looks as shown in Table 14b. Assume that the attacker enters an 
input string longer than 20 bytes as input. Since the input buffer has a size of 
100 bytes, this may not cause buffer overflow. However, this makes the 
value of index computed to become negative, which in turn makes dst point 
to a stack location before buf and in the function frame of strcpy() (thereby 
violating the pre-condition). In the above example, setting the index to (-16) 
makes dst point to the location of itself on the stack. The strcpy() code then 
writes to the location of (*dst), thereby overwriting dst itself. Subsequent 
writes to (*dst) can then modify the contents of the location pointed to by 
this new value of dst. This allows the attacker to write any value to any 
memory location, including sensitive locations such as function pointers. 

The functionality of the code shown in Table 14a is to push data to the 
end of a buffer. We believe it is possible that applications require such a 
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functionality. For example, a program may need to copy data at the end of a 
buffer and prefix headers in front the data. The pointer arithmetic shown in 
Table 14a is an efficient means of implementing such an operation, so we 
argue that the sample code demonstrates a possible scenario in real 
applications.  

Table 14: Violation of condition 3 of strcpy() 
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6.2 Example of strcpy() violation – condition 2 

In Table 7, condition 2 of strcpy() states that src and dst do not overlap in 
such a way that dst covers the null-terminator of src, otherwise the null-
terminator of src string gets overwritten and the program can go into an 
infinite loop. This can happen in two ways: by a buffer overflow error or by 
an inadvertent free error, as illustrated in Table 15a and Table 15b, 
respectively. 

Table 15:  Examples of strcpy() condition 2 violations 
a) Buffer Overflow Error 
char* src = malloc(20);   
char* dst = malloc(20); 
sprintf(src,”string with > 20 characters”);  
strcpy(dst, src);   

 

b) Inadverent Free Error 
src = malloc(40); 
snprintf(src, 30, “some string of 30 or 
more characters”); 
free( src ); 
foo = malloc (10); 
dst = malloc(20); 
strcpy( dst, src ); 

In the first piece of code (Table 15a), two buffers are allocated on the 
heap and one of them is overflowed. This buffer is then passed as the src 
argument to strcpy(), and the other one as the dst argument. Upon running 
this code multiple times3, we found that the memory manager consistently 
allocated nearly consecutive, successive memory addresses to src and dst 
respectively. As a result, when the src buffer is overflowed, its contents spill 

 
3 We tried it with glibc on x86-linux and Sun Solaris platforms. Our results indicate that this 

is not an OS or platform specific phenomenon, but a feature of glibc. 
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into the dst buffer, causing it to overlap with the src string and cover the 
null-terminator, leading to a violation of the pre-condition.  

The src and dst arguments can also overlap if the destination buffer is 
allocated from some portion of the source buffer. This situation is illustrated 
in Table 15b. Here src is first allocated on the heap and then freed, which 
returns the src buffer to the free pool. When malloc() requests are made 
subsequently for foo and dst, the memory manager reuses the block most 
recently returned to it, namely the src buffer, for allocating the buffers foo 
and dst. When strcpy() is called, src and dst overlap in such a way that dst 
covers the null terminator of src, which is a violation of the pre-condition. In 
real codes, this can happen as a result of using a buffer that is freed on an 
infrequently executed path and may not be uncovered during testing.  

6.3 Example of free() violation – condition 2 

Condition 2 of the free() function in Table 10 states that the pointer 
passed to free() must be within the heap range. This arises from the fact that 
the free() function itself does not perform this check. When a block is freed, 
the free() function checks for an integer value at the beginning of the block, 
which represents the size of the block to be freed. If it finds such an integer, 
it does the free, irrespective of whether the block is on the heap or not.  

Consider what happens when a local buffer on the stack is passed to the 
free() function in Table 16. In this code, the local array buf of function foo() 
is passed to the function print_str(), which checks if the length of the string 
passed to it is more than the value n specified by the user, and if so, frees the 
buffer. The pointer � which is freed by print_str() is aliased to buf, which is 
allocated on the stack in the function frame of foo(), leading to a violation of 
the pre-condition. Since this happens only when the user enters a string of 
more than 50 characters, it may not be uncovered while testing. In this 
example, the integer i, which is a local variable of foo() is  present on the 
stack at the beginning of the block buf. The free() function assumes that this 
is the size of the buffer buf and attempts to deallocate a block of that size. 
Since the user also supplies this value, it is possible to free a block of any 
arbitrary size on the stack, and overwrite the contents of any memory 
location.  

Table 16: Violation of condition 2 of free() 
void foo() { 
        char buf[100]; 
        int i; 
        scanf(“%d”, &i); 
        scanf(“%s”, buf); 
        print_str( buf  , 50);  } 

void print_str( char* p, int n ) { 
          if ( strlen(p) > n ) {            
                  free( p ); 
                  return; 
         }  
         printf(stdout, “%s”, p);     } 
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7. CONCLUSIONS AND FUTURE DIRECTIONS 

This paper is motivated by a low level analysis of various security 
vulnerabilities, which indicates that the common cause of the vulnerabilities 
is pointer taintedness. To reason about pointer taintedness, a memory model 
is needed. The main contribution of this paper is the equational definition of 
a memory model, which associates the taintedness attribute with memory 
locations rather than with program symbols. Pointer taintedness analysis is 
applied on several C library functions to extract security preconditions. The 
results show that pointer taintedness analysis can expose different classes of 
security vulnerabilities, leading us to believe that pointer taintedness 
provides a unifying perspective for reasoning about security vulnerabilities. 
We plan to extend this work in a number of ways: (1) Reduce the amount of 
human intervention in the theorem proving tasks; (2) Define semantics for 
other C statements, such as &���, '()#* and ��� �+ � , ) to make the technique 
more widely applicable; (3) Incorporate this technique into compiler-based 
static checking tools to extend to large applications. 
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