

FORMAL REASONING OF VARIOUS
CATEGORIES OF WIDELY EXPLOITED
SECURITY VULNERABILITIES USING
POINTER TAINTEDNESS SEMANTICS1

Shuo Chen, Karthik Pattabiraman, Zbigniew Kalbarczyk and Ravi K. Iyer
Center for Reliable and High-Performance Computing, Coordinated Science Laboratory,
University of Illinois at Urbana-Champaign, 1308 W. Main Street, Urbana, IL 61801.
{shuochen , pattabir, kalbar, iyer}@crhc.uiuc.edu

Abstract: This paper is motivated by a low level analysis of various categories of severe
security vulnerabilities, which indicates that a common characteristic of many
classes of vulnerabilities is pointer taintedness. A pointer is said to be tainted if
a user input can directly or indirectly be used as a pointer value. In order to
reason about pointer taintedness, a memory model is needed. The main
contribution of this paper is the formal definition of a memory model using
equational logic, which is used to reason about pointer taintedness. The
reasoning is applied to several library functions to extract security
preconditions, which must be satisfied to eliminate the possibility of pointer
taintedness. The results show that pointer taintedness analysis can expose
different classes of security vulnerabilities, such as format string, heap
corruption and buffer overflow vulnerabilities, leading us to believe that
pointer taintedness provides a unifying perspective for reasoning about
security vulnerabilities.

Key words: Security Vulnerability, Static Analysis, Program Semantics, Equational Logic,
Pointer Taintedness

1 This work is supported in part by a grant from Motorola Inc. as part of Motorola Center for

Communications, in part by MURI Grant N00014-01-1-0576, and in part by NSF CCR
00-86096 ITR.

2 Shuo Chen, Karthik Pattabiraman, Zbigniew Kalbarczyk and Ravi K. Iyer

1. INTRODUCTION

Programming flaws that result in security vulnerabilities are constantly
discovered and exploited in real applications. A significant number of
vulnerabilities are caused by improper use of library functions in programs.
For example, omitting buffer size checking before calling string
manipulation functions, such as strcpy and strcat, causes many buffer
overflow vulnerabilities. Passing user input string as the format string in
printf-like functions causes format string vulnerabilities. Heap corruption
vulnerabilities are the result of invoking the free function with a pointer
pointing to an overflowed buffer or a buffer that has not been allocated by
the heap manager. Library functions are usually secure only under certain
conditions, and therefore, formally extracting security conditions from
library code can be a valuable aid in implementing applications free of
security vulnerabilities.

We introduce the notion of pointer taintedness as a basis for reasoning
about security vulnerabilities. The notion of pointer taintedness is based on
the observation that the root cause of many reported vulnerabilities is due to
the fact that a pointer value (including return address) can be derived directly
or indirectly from user input. Since pointers are internal to applications, their
values should be transparent to users. Thus a taintable pointer is a potential
security vulnerability. By analyzing the application source code, the
potential for pointers to be tainted can be determined and hence possible
vulnerabilities can be identified.

Existing compiler-based techniques, such as CQUAL [7] and SPLINT
[1], perform taintedness analysis by associating an attribute or a type
qualifier with program symbols, i.e., variables, constants, arguments and
return values. Although these techniques allow reasoning about taintedness
of symbols, they cannot analyze the taintedness of pointers unless C
statements explicitly perform the tainting. As we will show, there are many
situations (e.g., format string vulnerabilities, heap corruptions and stack
buffer overflows) where pointers become tainted without explicit assignment
statements in the code. Pointer taintedness that leads to well known
vulnerabilities usually occurs as a consequence of low level memory writes,
typically hidden from the high level code. Hence a memory model is
necessary to reason about pointer taintedness. This paper proposes a
formalization to define and analyze pointer taintedness so as to uncover
potential security vulnerabilities. We focus on commonly used library
functions because many widely exploited vulnerabilities are caused by
pointer taintedness occurring in library functions.

Formal Reasoning of Various Categories of Widely Exploited Security
Vulnerabilities Using Pointer Taintedness Semantics

3

A memory model is formally defined in this paper using equational

logic2, which forms the basis of the semantics of pointer taintedness. A
mechanical reasoning technique is applied to several library functions to
examine the possibility of a pointer being tainted. The analysis process for
each library function yields a set of formally specified preconditions that
must be satisfied to eliminate the possibility of pointer taintedness. These
pre-conditions either correspond to already known vulnerability scenarios
(e.g., format string vulnerability and heap corruption) or indicate the
possibility of function invocation scenarios that may expose new
vulnerabilities.

2. RELATED WORK

Security vulnerabilities have been reported in many applications. The
Bugtraq vulnerability list and CERT advisories maintain information about
reported vulnerabilities. Security vulnerabilities can be modeled using finite
state machines, by breaking them into multiple simple operations, each of
which may be associated with one or more logical predicates [10].

Many static detection techniques have been developed based on the
recognition of existing categories of security vulnerabilities. Techniques
such as [1] and [2] can check security properties if vulnerability analysts are
able to specify them as annotations in the code. Domain-specific techniques
require less human effort, but each technique only detects a specific type of
vulnerability. Static detection techniques are proposed to detect to buffer
overflow vulnerabilities, e.g. [6]. Runtime mechanisms against security
attacks have been introduced in [8] and [9]. Xu et. al. [5] recently proposed
efficient approaches to randomize memory layout and to encode control flow
information, which aims at defeating various attacks in a generic manner.

The notion of taintedness was first proposed in Perl language as a
security feature. Inspired by this, static detection tools like SPLINT [1] and
CQUAL [7] also use taintedness analysis to guarantee that user input data is
never used as the format string argument in printf-like functions. In both
these tools, taintedness is an attribute associated with C program symbols. A
symbol gets tainted only if an explicit C statement passes a tainted value to it
by assignment, argument passing or function return. As shown in the next
section, in many real attacks, pointers are tainted without explicit C
statements tainting program symbols. Since these tools do not have a
memory model, they cannot determine whether an address is tainted and

2 An introduction to equational logic can be found in [11].

4 Shuo Chen, Karthik Pattabiraman, Zbigniew Kalbarczyk and Ravi K. Iyer

hence cannot reason about the underlying memory status. In [12], several
examples are provided where data can be tainted without being detected by
SPLINT and CQUAL. The inability to reason about taintedness at the
memory level is an inherent limitation of existing taintedness analysis tools.

3. POINTER TAINTEDNESS EXAMPLES

Our study indicates that many known security vulnerabilities, such as
format string, heap corruption, buffer overflow and Glibc glob
vulnerabilities, arise due to pointer taintedness. In these examples, the
pointers become tainted without explicit C assignment statements. Due to
space limitations, only the example of the format string vulnerability is
discussed in detail. Other examples are described in the extended version of
this paper [12]. In this section, we first give a high level description (Table
1) of the format string vulnerability, and show how it can be exploited. We
then show that a memory model (Figure 1) is necessary for reasoning about
pointer taintedness.

Table 1: Format String Vulnerability Illustration
� � � � � �� ��� � � � ��� 	
 � �
 � � �� � �� � ��� �� � � �
� �� � � � �� � �� �� � ��� � � � �
� � � � � � � � � �� � � � � � � � � � � �
� � � � � � � � � � � �� �� � � �� �
� � � � � � � � � � � � � � � �� � � � �� � � � � �
� � � � � � � � 	 � � �� � � � � � � � � �� � � �� �
� � � � � � � � � � � � � � � �
� � � ! � �
�
� � � � � � �� " � � � ��� 	 �� � ��� �� � � � � �� � � � �� � # # # � �
� � � � � � � � �� �� � ��� � � $ � � � � � � � � � � �
� % � � � � ��� � � � ��� 	 ��& � � �� � �� � � � �� � � � $ � � �
� � � � � � � � � �
� � � � ! �
�
� � � � � � �� � � '� �
� � � � � � �� � � � � 	 � �
� � � � � � �� � � � (� �) � * * + � �

� � � � � � � ,,-� � �� � � � � �.� �� � �� � � � ������� �� � � / ��� 0�
� � � � � � � ��� �� 0	 (� �� 1 � / � � � 1 � � �
� � � � � � � � � � % 2 3� �
� 2 � � � " � � � ��	 1 ��� � � $ � 4 �5� & � �� � 4 & 5� 4 � 1 � (� �� � � 6'� � �
� � � � � � � � " � � � ��	 1 �� �� � � � � �� � �� � / � $ �� � 4 & 5� 1 � '� � � �
�
� � � � � � � ,,-� � �� � � � � �.� �� � � � �� ��� � � $ � �� � � / � � (� � � �0� � ��� � ��
� � � � � � � � ��� � �	 74 �8� (� �� � �
� � 3 � � � " � � � ��	 (� �� � �
� � 9 � � � " � � � ��	 1 5� � � 4 & 5� 1 � � � � �
� � � � � � � ! �
�

������� � �	
�	
� �

: � � � � � � � � � � ��� � � $ � � / � � � �
: % � � � � � � � � � & � �� � � % 2 3�
: 2 � � � � � � � � � �� �� � � � � �� � �� � / � $ �� � % 2 �
: 3 � � � � � � � � � � � � � � 2 39 � 3; 3; � % 2 3� 2 39 � < � = > � % 2 39 �
: 9 � � � � � � � � � � � 2 � �

The format string vulnerability is caused by incorrect invocation of
printf-like functions (e.g., printf, sprintf, snprintf, fprintf and syslog). Table 1
gives examples of correct and incorrect invocations of Printf() (a simplified
version of LibC printf() that we developed). This sample program produces
five lines of output (shown in Table 1). Output lines O1 and O2 result from
executing line L3 of the code: the string buf hosting “hello”, and the integer i
has the value 1234. In addition, line L3 uses the format directive %n to write
the character count (i.e., the number of characters printed up to that point)
into the address of the corresponding integer variable. In this case, the length
of “string=hello¶data=1234¶” is 23, so Printf() writes 23 to the integer j.

Formal Reasoning of Various Categories of Widely Exploited Security
Vulnerabilities Using Pointer Taintedness Semantics

5

This value is printed out in line O3 of the program output. The format string
vulnerability is caused by incorrect invocation of Printf in line L4, which
directly uses buf as the format string (the proper usage should be
Printf(“%s”, buf)).

… …

format

%n

string 12345

%d%d%d

0x08049978
V
f
p
r
i
n
t
f

P
r
i
n
t
f

ap

format

s

p

p

ap
ap

12-byte gap

High

Low

St
ac

k
gr

ow
th

ReturnAddr of Printf

FramePointer of Printf

arg

count

m
a
i
n buf

ReturnAddr of Vfprintf

FramePointer of Vfprintf

Tainted locations
Figure 1: How to Overwrite the Global Integer i

We now show how an attacker can exploit this vulnerability. Let’s
assume that the attacker wants to corrupt an arbitrary memory location (e.g.,
the global integer i). In order to do this, he/she constructs an input string buf
as given below (observe that the beginning of the input string corresponds to
the address of global integer i):

���� � ���� � ����� ���� � 	
 � 	
 � 	
 � ��
� ��
� ��
� ��
� ��
� 	� � �

The string is read by scanf() and passed to Printf(), which in turn, calls
Vfprintf(). Just before Line L1 is executed, the stack layout is like the one in
Figure 1. In Vfprintf(), there are two pointers: p is the pointer to sweep over
the format string buf (from “\x78” to”%n”), and ap is the pointer to sweep
over the arguments (starting from the 12-byte gap). The attacker deliberately
embeds three “%d” directives in buf so that ap can consume the 12-byte gap
and get to the word 0x08049978. A padding string “12345” follows the
“%d” directives in order to adjust the character count. As we see in the
program output line O4, the words in the 12-byte gap are printed as three
integers followed by a padding string “12345”. Eventually, when p arrives at
the position of “%n” (i.e., the code line L1 is about to be executed), ap
happens to arrive at the position of 0x08049978. Line L1 writes the character
count count to the location pointed by *ap. In this case, since the content in
the location pointed by *ap is the address of the integer i, the character count
31 is written to i. Note that this attack can overwrite any memory location,
including locations containing return addresses or the global offset table of
an application, which can result in the execution of the attacker’s code.

6 Shuo Chen, Karthik Pattabiraman, Zbigniew Kalbarczyk and Ravi K. Iyer

We can view the above vulnerability as a consequence of pointer
taintedness. In the above code (Table 1), the string buf is obtained from user
input and is hence tainted (as indicated in Figure 1 as a grey area). When the
pointer ap sweeps over the stack and points to buf, *ap becomes tainted. ap
is then dereferenced in Line L1, and the tainted value of *ap is the target
address of the write operation. This can lead to the corruption of an arbitrary
memory location. Thus we see that pointer taintedness is the root cause of
this vulnerability. Note that the pointer *ap gets tainted because ap moves
into the tainted memory locations, and there is no explicit assignment of a
tainted value to *ap in the C code. Hence a memory model is necessary to
reason about the taintedness of *ap. The next section defines the formal
semantics of pointer taintedness using a memory model, and Section 5
shows how the semantics can be used to reason about security vulnerabilities
in library functions.

4. SEMANTICS FOR POINTER TAINTEDNESS

Starting with the programming semantics of Goguen and Malcolm [3],
this section proposes a formal semantics to reason about pointer taintedness
in programs. The semantics proposed in [3] defines instructions, variables
and expressions. We extend this semantics to include memory locations and
addresses. Using the memory model, the notion of taintedness is
incorporated into the semantics.

We define tainted data as: (1) data coming from input devices (e.g., by
scanf(), fscanf(), recv(), recvfrom()), or (2) data copied or arithmetically
calculated from tainted data. A tainted pointer is a pointer whose value
(semantically equivalent to “data”) is tainted. This definition can be
formalized in equational logic using the Maude tool [4], which we used to
reason about pointer taintedness.

In the semantics defined in [3], a Store represents the current state of all
program variables. We extend this definition of a Store to be a snapshot of
the entire memory state at a point in the program execution. The execution
of a program instruction is defined as a function taking two arguments, a
Store and an instruction, and producing another Store. There are two
attributes associated with every memory location of a Store: content and
taintedness. Accordingly, two operations, fetch and location-taintedness, are
formally defined. The fetch operation ���� ��� �� gives the content of the
address � in store �; the location-taintedness operation ������� �� returns a
Boolean value indicating whether the content of the specified address is
tainted.

Formal Reasoning of Various Categories of Widely Exploited Security
Vulnerabilities Using Pointer Taintedness Semantics

7

There is no notion of “variable” in this semantics. Any variable in a C

program is mapped to a memory location addressed by the integer with the
same name as the program variable. For example, the C program variable
��� is mapped as a memory location addressed by the integer ���. We define
the � operator to dereference an integer, i.e., to fetch the location addressed
by the integer. Note that the address (a.k.a., the left value) of the C program
variable ��� is represented by the integer ��� in the semantics; and the
content (a.k.a., the right value) of the C program variable ��� is represented
by �� � ���� . The expressions in the semantics are arithmetic operators (e.g.,
+, - and *) concatenating integers and integer dereferences. For example,
expression ��� ������ represents “200 plus the content of the C program
variable ���”. Expression ��� ��� represents “200 plus the address of the C
program variable ���”.

We define two operations – evaluation and expression-taintedness – for
expressions, based on the fetch and location-taintedness operations. The
evaluation operation !"# $ ���! � gives the result of evaluating the expression !
under store �; the expression-taintedness operation !�%����! � indicates
whether expression ! contains any data from a tainted location, e.g.,
!�%���� �� ���� �� indicates whether the expression �� ���� � contains any
data from a tainted location, which is equivalent to checking whether the
memory location addressed by ��� is tainted. Thus pointer taintedness is
defined as a dereference of a tainted expression.

Table 2 lists a set of axioms for the evaluation and expression-
taintedness operations, and gives examples of applying the equations.

Table 2: Axioms of Evaluation and Expression-Taintedness Operations
Axioms Examples

1
2

3
4

5
6
7
8

9
A

B
C

Eval(S,I) = I
Eval(S, ^ E1) = Ftch(S, Eval(S,E1))

Eval(S, - E1) = - Eval(S, E1)
Eval(S, E1 – E2) = Eval(S, E1) - Eval(S, E2)

Eval(S, E1 + E2) = Eval(S, E1) + Eval(S, E2)
Eval(S, E1 * E2) = Eval(S, E1) * Eval(S, E2)
ExpT (S,I) = false
ExpT(S, ^ E1) = LocT(S,Eval(S,E1))

ExpT(S, - E1) = ExpT(S,E1)
ExpT(S,E1-E2)=ExpT(S,E1) or ExpT(S,E2)

ExpT(S,E1+ E2)=ExpT(S,E1)or ExpT(S,E2)
ExpT(S,E1*E2)=ExpT(S,E1) or ExpT(S,E2)

Eval(S,5) = 5
Eval(S, ^ foo) = Ftch(S,Eval(S,foo))
 = Ftch(S,foo)
Eval(S, - 30) = - Eval(S, 30) = - 30
Eval(S, 3-2) = Eval(S, 3) – Eval(S, 2)
 = 3–2 = 1
Eval(S, 3+2)=Eval(S, 3)+Eval(S,2) = 5
Eval(S, 3*2)=Eval(S, 3)*Eval(S, 2) = 6
ExpT(S,5) = false
ExpT(S,^foo) =LocT(S,Eval(S,foo))
 =LocT(S,foo)
ExpT(S, -5) = ExpT(S, 5)= false
ExpT(S, (^foo)–2)
 = ExpT(S, (^foo)) or ExpT(S, 2)
 = LocT(S,foo) or false = LocT(S,foo)
ExpT(S, (^foo)+2) = … = LocT(S,foo)
ExpT(S, (^foo)*2) = … = LocT(S,foo)

Lines 1-6 define how to evaluate an expression under store �. For
example, line 1 indicates that the evaluation result of a constant � under store

8 Shuo Chen, Karthik Pattabiraman, Zbigniew Kalbarczyk and Ravi K. Iyer

� is the constant � . Line 2 indicates that !"# $ ����!� � can be computed by first
evaluating !� under �, then applying fetch operation on the evaluation result.
The semantics of arithmetic operations are defined in Lines 3-6.

Lines 7-C define the expression-taintedness operator. Note that the
relationship between the expression-taintedness and location-taintedness
operators is similar to the relationship between the evaluation and fetch
operators. Line 7 indicates that an integer constant is not a tainted
expression. Line 8 indicates that determining whether the expression �!� is
tainted is equivalent to checking whether the location addressed by the
evaluation result of !� is tainted. Line B indicates that the expression !� !�
is tainted if either !� or !� is tainted. The example of Line C shows that the
expression �� ���� � � � is tainted if and only if the location pointed to by ���
is tainted, according to the equation in Lines 7 and 8.

Table 3: Semantics of Statements
���������� ������� 	
 �

� ��� � � � � � 	
 � �� � � ��
� ��
�
�� � � ��� �� � �
�� � �� ��� ��
�
���
��� �� � �� � ��� ��
� �
� ����
� ����� �� � ����
��
� � ��� ��
�
�� � � ��� �� � �
�� � �� ��� ��
 �
���
��� �� � � � �

� �� �� ��
� � �� �

� �
� �� � �� � �

 �� ��
� ��� � � �� �� � �� � � � ���
! � ��
�� �
� �� �
���
�"� �
�
�
�� �
 � �� �

"� � �
 � �� �� � � � �� � �� ��
� ��� � � �� �� � �� � � � ���
! �
�
�� �
� � ! � �
�
��� � � �� � � �� � � � �� � �
� �

Table 3 gives the informal semantics of a subset of the supported
statements. Their formal semantics are similar to the specifications given in
[3], and are sufficient to analyze a wide variety of program constructs in the
C language. However, they are not sufficient to faithfully model all C
statements. For example, the program counter has not been defined in the
semantics. So certain C statements, such as &���� � ' ()#*� � ��� �+ � ,)� � ()�, (� and
)�+ � cannot be modeled, but it is relatively easy to extend the semantics for
these also.

Formal specifications of statements other than the -�" statement are
fairly straightforward. Axioms defining -�" statement semantics are shown
in Table 4. The goal is to define the fetch (Ftch) and location-taintedness
(LocT) operations after applying a -�" instruction on store �.

Table 4: Equations Defining ��� Statement Semantics
� �
� �
�
$ �

%��� &&' � (� ���� � � � � � 	
 � ��) !*�) � + � ��� � &'!��) � � �� &��� � &'!��) � � � � *�) � , �
% ��� &&' � (� ���� � � � � � 	
 � ��) !*�) � + � %��� &'!*�) � � �� � ��� &��� � &'!��) � � � � *�) � , � �
-���&&' � (� ���� � � � � � 	
 � ��) !*�) � + � ����&'!��) � � �� &��� � &'!��) � � � � *�) � , �
-���&&' � (� ���� � � � � � 	
 � ��) !*�) � + � -���&'!*�) � � �� � ��� &��� � &'!��) � � � � *�) � , �

The semicolon operator in our notation represents the execution of an
instruction on a store, which results in a new store. For example,
��.-�"/ !� 0 1 2!�� is the store after executing -�"/ !� 0 1 2!� on store �. Line 1
indicates that if the expression !� evaluates to 3� under store �, then when
fetching the location 3� after executing the instruction -�"/ !� 0 1 2!� , we get
the evaluation result of !� under store �. Line 2 indicates that if the
expression !� does not evaluate to 3� under �, then when fetching the

Formal Reasoning of Various Categories of Widely Exploited Security
Vulnerabilities Using Pointer Taintedness Semantics

9

location 3� after executing the instruction -�"/ !� 0 1 2!� , we still get the
content in the location 3� under � (i.e., before executing the instruction
-�"/ !� 0 1 2!�). Similarly, the ���� operation is defined for -�" statement in
Lines 3 and 4.

5. FORMAL REASONING ON POINTER
TAINTEDNESS VIOLATIONS

This section presents pointer taintedness analysis for three common
library functions based on the defined semantics, and extracts their
associated security preconditions. The analysis identifies several known
vulnerabilities, such as format string, buffer overflow and heap corruption
vulnerabilities, thereby showing that pointer taintedness based reasoning is
able to unify different kinds of vulnerabilities.

Our experience suggests that statements needing critical examination for
pointer taintedness are typically indirect writes, where a pointer points to a
target address to be written, e.g., the pointer % in 4% � 5 � ��� and
-)-�%6�% � ���� � �� � Checking indirect write statements is important because
these statements can result in two types of pointer taintedness violations. For
example, in the statement 4% � 5 � ���, (1) if the value of % is tainted, then data
��� can be written to any memory location; (2) if % is a pointer to a buffer but
points to a location outside the buffer, then the statement 4% � 5 � ��� can taint
the memory location % points to, which may be a location of a return
address, a function frame pointer or another pointer.

5.1 Analysis of strcpy()

A simple but interesting example is strcpy(), which copies a NULL-
terminated source string to a destination buffer. The string manipulation
functions, including strcpy(), strcat() and sprintf(), are known to cause a
significant number of buffer overflow vulnerabilities. Our formal reasoning
extracts security preconditions from the implementation of strcpy(). The
source code of strcpy() and its formal representation are given in Table 5.

As the only indirect write operations in the source code are in Line 1 and
Line 2, it is enough to prove the three theorems listed in Table 6. We assume
that the NULL-terminator (i.e., the character ‘\0’) of the source string 7(� is
at the location �7(�� � 7(�$)� � , and that the size of the buffer
7� is
7�7+ 8).
Theorem NV1 ensures that before Line L1, the content of the variable
7� is
not tainted; Theorem NV2 ensures that for any address 9 outside the buffer

7� (from
7� to
7�
7�7+ 8)), the taintedness of location 9 after Line L1 is

10 Shuo Chen, Karthik Pattabiraman, Zbigniew Kalbarczyk and Ravi K. Iyer

same as the taintedness of location 9 before Line L0. NV3 is similar to NV1,
but proves the property for the memory state before Line L2 is executed.

Table 5: Source Code and Formal Semantics of strcpy()
�� �� � . � ������� &�� �� � . � ���! � �� �� � . � ���) � / �

� � � � �� �� � . � �
�(�
0 1 � � � � � � � �
�� + ���(�

� � � � "� � �
 � &. ���2 + 0) � / �
� 1 � � � � � � � � . ���+ .���(�

� � � � � � � ��3 3 (�
� � � � � � ���3 3 (�
� � � � � 4 �

� 1 � � � � � � . ���+ 0(�
� � � � �
�� �� � �
�(� 4 �

�
�
-0 1 � � � ��� � �
�� � 	
 � &5 � ���) � (�
� � � � � � "� � �
 � &6 &&5 � 5 � ���) � � � � 0)) � ��� �
-� 1 � � � � � � � ��� � 5 � ���� � 	
 � &5 � 5 � ���) � (�
� � � � � � � � � � � ��� � ���� � 	
 � &5 ���� 3 � �) � (�
� � � � � � � � � � � ��� � ���� � 	
 � &5 � ���� 3 � �) �
� � � � � � �� � (�
-� 1 � � � ��� � 5 � ���� � 	
 � 0 � , �

Table 6: Theorems to Prove for Function strcpy()
��
��
� � 7 8� 1 � �� '� � � � � ��
 � ����
� �
���
� - � �
 � -� ! � ��
� �

-���&'� !���) � + � �� � �
 � �
��
��
� � 7 8� 1 � �� '0 � � � � ��
 � ����
� �
���
� - � �
 � -0! � �� � � '� � � � � ��
 � ����
 � ���
� � - � �
� -� ! �
� � � ∀ � 9� ∈ � 7 �� • � � � � 9� 	 � ��� � &'0! � 5 ���) � � �� � � �� � &'0! � 5 ���3 ����� :
) � ≤� 9� � + ; �
� -���&'� !9) � + � -���&'0! � 9) �
��
��
� � 7 8# 1 � �� '# � � � � ��
 � ����
� �
���
� - � �
 � -� ! � ��
� �

-���&'# !���) � + � �� � �

Table 7 gives a set of security preconditions extracted in the process of

proving the theorems. Among the four preconditions, Condition 4 is known
because of the large number of buffer overflow vulnerabilities caused by
string manipulation. This condition has already been documented on Linux
MAN page of strcpy. Condition 2 indicates the scenario of overlap between
7(� and
7� and is examined further in Section 6.2. Violation of Condition 3
may occur when a program miscalculates the location of a stack buffer,
causing the function frame of strcpy() to be covered by the buffer and is
discussed in Section 6.1.

Table 7: Sufficient Conditions to Ensure the Validity of Theorems NV1 – NV3
� , � � � �� � � � �! � ��
� � ����� �� � ��� ���� � � � � ��� �� � � �
� , � �
� , � ��
� �� ��
��� ���� �� � � ���� ��� � ��� ��
�� �� � � � � �� �� � � � "��� �� ��� ��
� �� ��
� � � ��� ���
�� �

��
� 7 < --
�
�� � � ���� � ��� ��
� ���� ��� � � = , � �
, � ��
� �� ��
� � � ��� ��
�� � ��� ���
� � ��
� �� � ��� �� � ����
� ��� ��������! � "� � �� � ��� �� ���� ��� ��
 �

� ����� �� �� >���! � >���� �� � � >�
�, � �

4. ����
� � 	 � � ���� :

5.2 Analysis of Free()

We implemented a binary buddy heap management system including
function Malloc() and Free(). The memory block to be freed is pointed to by
pointer �())
: $ ��*. The binary buddy heap management algorithm requires
the deallocated memory block �())
: $ ��* to be merged with its buddy
block if the buddy block is also free. The pointer :,

6: $ ��* points to the
buddy block. �())
: $ ��* and :,

6: $ ��* are structs of type ;!9<=:�>?@ as

Formal Reasoning of Various Categories of Widely Exploited Security
Vulnerabilities Using Pointer Taintedness Semantics

11

shown in Table 8. The �+ 8) field indicates the size of the memory chunk. The
', 76 field indicates whether the memory chunk is free. Fields �A
 and :#*
are pointers to maintain a doubly-link list of free memory chunks.

Table 8: Indirect Write Statements in Free() Source Code
���
�
�� ���� ��� ?@ �9�?A-BCD� / �
� � � � � � �� � � � � � � � � � � � � ' � :
(� � � � � � � � � � � EE� ��
� �� :
 � ��� ��
� � � ��F, �
� � � � � � �� � � � � � � � � � � � � A � ��(� � � � � � � � � � � EE� � � �� � � � � � ��F� �� ��G �
� � � � ���� ��� ?@ �9�?A-BCD� . � %"� !. � A�F(� EE� - � ��� ��� ��
� ��

 � � � ��F�� ��� ��
 � ���
� �� :
�
4 � @ �9�?A-BCD(
There are three lines in the Free() function where indirect write

operations are performed. Six pointers are involved in the operations,
including �())
: $ ��*� :,

6: $ ��*� �())
: $ ��*2B �A
 � �())
: $ ��*2B :#*�

:,

6: $ ��*2B �A
 and :,

6: $ ��*2B :#*. Table 9 states the theorem to be
proved for conditions guaranteeing that pointers are not tainted. It is
assumed that the offset of the �A
 field in the ;!9<=:�>?@ structure is 2,
and that the offset of the :#* field is 3. Theorem NV1 ensures that none of
the six pointers is tainted before executing any indirect writes.

Table 9: Theorems to Prove for Function Free()
��
��
� � 7 8� 1 � �� ' � � � � ��
 � ����
 � �
���
 �
�
�� �� � = � ��
� � � � � �
��� "�� �
�! � ��
� �

� � ����&'! � &5 � % �

�A � ��F)) � + � �� � �
 � �� � � � � �
� � ����&'! � &5A����A � ��F)) � + � �� � �
 � �� � � � � �
� � ����&'! � 5 &&5 � %�

�A � ��F) � 3 � �)) � + � �� � �
 � � �� � �
� � ����&'! � 5 &&5 � %�

�A � ��F) � 3 � #)) � + � �� � �
 � � �� � �
� � ����&'! � 5 &&5 � A� ���A � ��F) � 3 � �)) � + � �� � �
� � �� � �
� � ����&'! � 5 &&5 � A� ���A � ��F) � 3 � #)) � + � �� � �
� � �

EE%�

�A � ��F� � � � � ��� �� � � �
� � � � � �
EEA� ���A � ��F� � � � � ��� �� � � �
� � � � � �
EE%�

�A � ��F
; %"� � � � � � ��� �� � � �
� �
EE%�

�A � ��F
; A�F� � � � � ��� �� � � �
� �
EEA� ���A � ��F
; %"� � � � � � ��� �� � � �
� �
EEA� ���A � ��F
; A�F� � � � � ��� �� � � �
� �

The process of proving the theorems extracted a set of formally specified
conditions that guarantee the validity of Theorem NV1. Table 10 describes
the conditions. The function Free() is safe to be called when the caller
function can guarantee these conditions. Violations of condition 1 are
unlikely to occur, and the same is true for condition 7. Violations of
condition 6 cause the classic double-free errors, and violations of condition 3
and 4 lead to the popular heap buffer overflow vulnerability. An example
illustrating violation of condition 2 is presented in Section 6.3.

Table 10: Sufficient Conditions to Ensure the Validity of Theorem NV1
� , � ��
� �
����� ��� =
� ��� ��
� �
�� � �� � � ��
� �
����� ��� =
� ��� ��
� �� ��
� �� �� � ��� �� �

����
� ��� � ��� ��
� � �� , �
� , � ��
� � � �
� �� �
���
� 	�

��� � � � �� � �
� ! � % �

�A � ��F� ��� � �� � ��� � � � ����� �� � �� � ��
� �
�� , �
, � ��
� � � �
� �� �
���
� 	�

��� � � � �� � �
� ! � ��
 � %"� � �� � � A �F� � � � F�� ��� ��
 � � � ��F� ���

% �

�A � ��F� � �
� � ��� �� � � �
� , �
$, � 9� � � ��

�� � � F� ��� � �

 � � � F
� � � � ��� � � �
� "� �� � � � ��
� �
�� � ��� =
! � � ,
, ! � � �� %"� � �� � A�F�

� � � F�� ��� � �� � ��� �� �� � ����� �� � �� ��� �
� ��
 � �
�� , �
H , � 7 �� %"� � �� � A �F� ��� � �
��� � � � �� �� ��

�� � � F� ��� � �

 � � � F
� � � � ��� � �
� �� � � �
� , �
I , � A
���
� 	�

��� � � � �� � �
� ! � % �

�A � ��F� � � � � ��� � � � F
� � � � � �� �� ��

�� � � F� � � ��, �

7. �� A� ���A � ��F� � � � ��

! � ��
� � A� ���A � ��F� � � � � � � F
� � � � � � � ��

�� � � F� ��� � �

 � � � F
� � � � ��,

12 Shuo Chen, Karthik Pattabiraman, Zbigniew Kalbarczyk and Ravi K. Iyer

5.3 Analysis of Printf()

We implemented a function Printf(), similar to the LibC function printf(),
except that Printf() calls its child function Vfprintf(), which is a simplified
version of LibC function vfprintf(). Vfprintf() implements the format
directives %%, %d, %s and %n. The total length of Vfprintf() is 55 lines.
Pointer % is used to sweep over the format string ��(-#�. The argument list is
swept over by pointer #% .

There are only two lines of indirect write operations in the function
(Table 11). Line L1 is to get the last digit of
#�# and save it in the nth
position of the buffer ', �. Line L2 is to assign the character count to the
memory location pointed by the current argument. Note that #% is the
argument list pointer pointing to the current argument.

Corresponding to the two indirect write operations, we need to prove the
theorems given in Table 12. Theorem NV1A ensures that before executing
code in Line L1, the memory location containing the variable n is not
tainted. Theorem NV1B ensures that after Line L1, the memory location
', � � � is not tainted. Theorem NV1A and NV1B can be easily proved by
the theorem prover. Theorem NV2 ensures that before Line L2, the
expression �� � � � #%� � is not tainted, i.e., the memory location pointed by �� �
#%� is not tainted, i.e., the memory location pointed by the content of
variable #% is not tainted. The preconditions extracted in the process of
proving Theorem NV2 are given in Table 13.

Table 11: Indirect Write Statements in Vfprintf() Source Code
-� 1 � � � �� �� � � + ����J� 03 K0 K (��
-� 1 � � � . & � � �.)�� � + � ��� � �� (

Table 12: Theorems Need to Prove for Vfprintf()
��
��
� � 7 8� 91 � �� '� � � � � ��
 � ����
� �
���
�
�
�� �� � = � - � �
 � -� ! � ��
� � �

����&'� ! &5 � �)) � + � �� � �
�
��
��
� � 7 8� A 1 � �� '� � � � � ��
� ����
� ���
� �
�
�� �� � = � - � �
 � -� ! � ��
� � � �

-���&'� !&�� �� 3 � � 0)) � + � �� � �
� �
��
��
� � 7 8� 1 � �� '# � � � � ��
 � ����
� �
���
�
�
�� �� � = � - � �
� -� ! � ��
� � �

����&'# ! � &5 � 5 � ��)) � + � �� � �

Table 13: Sufficient Conditions to Ensure the Validity of Theorem NV2
� , � �� � �
�
� � ��� � ��� ��� �� �� � ����� �� � "� �� � � � ��
� �� ��
� �� �� � ��� �� � ����
, �
� , � . �� � �
�
� � ��� � ��� ��� ��
� � ����� �� � ��� ��� � �� �
� �� ! � � ,
, ! � . �� � 2 + � >�� , �
, � '� ����
� ��
� �
����� �
=�
� �� �� ��� �� � �"

��� ��
� � � � � �� � �
� � ������
�
�
������
! �

� �� � ����� �� �� "� �� � � � ������
�
�
������
� � �
 � �� � � �
� � �
���
� ����
������ � � � �� � �
� , �

4. .�� � �
�
� � ��� � ��� ��� �� �� � ����� �� � "� �� � � � ������
�
�
������
,
The four conditions form a set of sufficient conditions, which if satisfied,

guarantee that there is no pointer taintedness situation in the analyzed
version of Vfprintf(). Format string vulnerabilities do not satisfy condition 3
(Table 13). As illustrated in Figure 1, the tainted data (word 0x08049978) is
located in the activity range of #% , i.e., #% points to this data. For the other

Formal Reasoning of Various Categories of Widely Exploited Security
Vulnerabilities Using Pointer Taintedness Semantics

13

three conditions, we are currently unaware of any existing applications
violating them.

6. EXAMPLES ILLUSTRATING VIOLATIONS OF
LIBRARY FUNCTIONS’ PRECONDITIONS

In the previous section, we have given a significant number of
preconditions for common library functions. Not all of them are likely to
occur in real application code. In this section, we give possible scenarios
(constructed examples) in which some of the preconditions detailed in the
previous section are violated, and explain how an attacker can exploit them.
To the best of our knowledge, these vulnerabilities have not been reported in
any real application or described in the literature.

6.1 Example of strcpy() violation – condition 3

Condition 3 in Table 7 for strcpy() states that the buffer dst does not
cover the function frame of strcpy(), which consists of dst, src and res.
Otherwise it is possible to overwrite the stack frame of strcpy() and modify
the address of the dst string. Since strcpy() can write to the location (*dst),
this can be used to write to any memory location, including function
pointers, and hence transfer control to malicious code.

Consider the code sample in Table 14a, in which buf and input are
allocated on the stack in the function frame of foo(). The string input is
obtained from the user and passed as the src argument of strcpy(). The dst
argument of strcpy() is buf + index, where index is computed by subtracting
the length of input from the end of the buffer buf. After strcpy() is called, the
stack frame looks as shown in Table 14b. Assume that the attacker enters an
input string longer than 20 bytes as input. Since the input buffer has a size of
100 bytes, this may not cause buffer overflow. However, this makes the
value of index computed to become negative, which in turn makes dst point
to a stack location before buf and in the function frame of strcpy() (thereby
violating the pre-condition). In the above example, setting the index to (-16)
makes dst point to the location of itself on the stack. The strcpy() code then
writes to the location of (*dst), thereby overwriting dst itself. Subsequent
writes to (*dst) can then modify the contents of the location pointed to by
this new value of dst. This allows the attacker to write any value to any
memory location, including sensitive locations such as function pointers.

The functionality of the code shown in Table 14a is to push data to the
end of a buffer. We believe it is possible that applications require such a

14 Shuo Chen, Karthik Pattabiraman, Zbigniew Kalbarczyk and Ravi K. Iyer

functionality. For example, a program may need to copy data at the end of a
buffer and prefix headers in front the data. The pointer arithmetic shown in
Table 14a is an efficient means of implementing such an operation, so we
argue that the sample code demonstrates a possible scenario in real
applications.

Table 14: Violation of condition 3 of strcpy()
�
 � ������� �����
��� � � ���& � �) � / �
� � � � �� � � �
�(� �
� � �� �� � � � �� �� � 00� (�
� � �� �� � �� �� �0� (�
� � ���� �&LJ�M! � � � �� ��) (�
� � � � �
�� + � �0 � N� � ��� �
� & � � � �� ��) (�
� � ������& � �� �� 3 � � � �
�� ! � � � � �� ��) (�
4

�
 � ���	�� �����
�

buf

s
t
r
c
p
y

f
o
o

res

buf
buf+indexinput

High

Low

St
ac

k
gr

ow
th

Return Address

Frame Pointer

src

dst

index

6.2 Example of strcpy() violation – condition 2

In Table 7, condition 2 of strcpy() states that src and dst do not overlap in
such a way that dst covers the null-terminator of src, otherwise the null-
terminator of src string gets overwritten and the program can go into an
infinite loop. This can happen in two ways: by a buffer overflow error or by
an inadvertent free error, as illustrated in Table 15a and Table 15b,
respectively.

Table 15: Examples of strcpy() condition 2 violations
a) Buffer Overflow Error
char* src = malloc(20);
char* dst = malloc(20);
sprintf(src,”string with > 20 characters”);
strcpy(dst, src);

b) Inadverent Free Error
src = malloc(40);
snprintf(src, 30, “some string of 30 or
more characters”);
free(src);
foo = malloc (10);
dst = malloc(20);
strcpy(dst, src);

In the first piece of code (Table 15a), two buffers are allocated on the
heap and one of them is overflowed. This buffer is then passed as the src
argument to strcpy(), and the other one as the dst argument. Upon running
this code multiple times3, we found that the memory manager consistently
allocated nearly consecutive, successive memory addresses to src and dst
respectively. As a result, when the src buffer is overflowed, its contents spill

3 We tried it with glibc on x86-linux and Sun Solaris platforms. Our results indicate that this

is not an OS or platform specific phenomenon, but a feature of glibc.

Formal Reasoning of Various Categories of Widely Exploited Security
Vulnerabilities Using Pointer Taintedness Semantics

15

into the dst buffer, causing it to overlap with the src string and cover the
null-terminator, leading to a violation of the pre-condition.

The src and dst arguments can also overlap if the destination buffer is
allocated from some portion of the source buffer. This situation is illustrated
in Table 15b. Here src is first allocated on the heap and then freed, which
returns the src buffer to the free pool. When malloc() requests are made
subsequently for foo and dst, the memory manager reuses the block most
recently returned to it, namely the src buffer, for allocating the buffers foo
and dst. When strcpy() is called, src and dst overlap in such a way that dst
covers the null terminator of src, which is a violation of the pre-condition. In
real codes, this can happen as a result of using a buffer that is freed on an
infrequently executed path and may not be uncovered during testing.

6.3 Example of free() violation – condition 2

Condition 2 of the free() function in Table 10 states that the pointer
passed to free() must be within the heap range. This arises from the fact that
the free() function itself does not perform this check. When a block is freed,
the free() function checks for an integer value at the beginning of the block,
which represents the size of the block to be freed. If it finds such an integer,
it does the free, irrespective of whether the block is on the heap or not.

Consider what happens when a local buffer on the stack is passed to the
free() function in Table 16. In this code, the local array buf of function foo()
is passed to the function print_str(), which checks if the length of the string
passed to it is more than the value n specified by the user, and if so, frees the
buffer. The pointer � which is freed by print_str() is aliased to buf, which is
allocated on the stack in the function frame of foo(), leading to a violation of
the pre-condition. Since this happens only when the user enters a string of
more than 50 characters, it may not be uncovered while testing. In this
example, the integer i, which is a local variable of foo() is present on the
stack at the beginning of the block buf. The free() function assumes that this
is the size of the buffer buf and attempts to deallocate a block of that size.
Since the user also supplies this value, it is possible to free a block of any
arbitrary size on the stack, and overwrite the contents of any memory
location.

Table 16: Violation of condition 2 of free()
void foo() {
 char buf[100];
 int i;
 scanf(“%d”, &i);
 scanf(“%s”, buf);
 print_str(buf , 50); }

void print_str(char* p, int n) {
 if (strlen(p) > n) {
 free(p);
 return;
 }
 printf(stdout, “%s”, p); }

16 Shuo Chen, Karthik Pattabiraman, Zbigniew Kalbarczyk and Ravi K. Iyer

7. CONCLUSIONS AND FUTURE DIRECTIONS

This paper is motivated by a low level analysis of various security
vulnerabilities, which indicates that the common cause of the vulnerabilities
is pointer taintedness. To reason about pointer taintedness, a memory model
is needed. The main contribution of this paper is the equational definition of
a memory model, which associates the taintedness attribute with memory
locations rather than with program symbols. Pointer taintedness analysis is
applied on several C library functions to extract security preconditions. The
results show that pointer taintedness analysis can expose different classes of
security vulnerabilities, leading us to believe that pointer taintedness
provides a unifying perspective for reasoning about security vulnerabilities.
We plan to extend this work in a number of ways: (1) Reduce the amount of
human intervention in the theorem proving tasks; (2) Define semantics for
other C statements, such as &���, '()#* and ��� �+ � ,) to make the technique
more widely applicable; (3) Incorporate this technique into compiler-based
static checking tools to extend to large applications.
Acknowledgments:

We thank Jose Meseguer for his insightful suggestions on the project, and
Tammi O'Neill for her careful reading of an early draft of this manuscript.
References:
[1] D. Evans and D. Larochelle. Improving Security Using Extensible Lightweight Static

Analysis. In IEEE Software, Jan/Feb 2002
[2] B. Chess. Improving Computer Security Using Extended Static Checking. IEEE

Symposium on Security and Privacy 2002
[3] J. A. Goguen and G. Malcolm. Algebraic Semantics of Imperative Programs. MIT Press,

1996, ISBN 0-262-07172-X
[4] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J. Meseguer and C. Talcott The

Maude 2.0 System. In Proc. Rewriting Techniques and Applications, 2003, 2003.
[5] J. Xu, Z. Kalbarczyk and R. K. Iyer. Transparent Runtime Randomization for Security. To

appear in Proc. Symposium on Reliable and Distributed Systems, 2003.
[6] D. Wagner, J. Foster, E. Brewer, and A. Aiken. A First Step Towards Automated

Detection of Buffer Overrun Vulnerabilities. Network and Distributed System Security
Symposium (NDSS2000).

[7] U. Shankar, K. Talwar, J. Foster, and D. Wagner. Detecting Format String Vulnerabilities
With Type Qualifiers. 10th USENIX Security Symposium, 2001.

[8] C. Cowan, C. Pu, D. Maier, et al. Automatic Detection and Prevention of Buffer-
Overflow Attacks. 7th USENIX Security Symposium, San Antonio, TX, January 1998.

[9] A. Baratloo, T. Tsai, N. Singh, Transparent Run-Time Defense Against Stack Smashing
Attacks, Proc. USENIX Annual Technical Conference, June 2000.

[10] S. Chen, Z. Kalbarczyk, J. Xu, R. K. Iyer. "A Data-Driven Finite State Machine Model
for Analyzing Security Vulnerabilities". in IEEE International Conf. on Dependable
Systems and Networks, 2003.

[11] Introduction to equational logic. http://www.cs.cornell.edu/Info/People/gries/Logic/
Equational.html

[12] S. Chen, K. Pattabiraman, Z. Kalbarczyk, R. K. Iyer. Formal Reasoning of Various
Categories of Widely Exploited Security Vulnerabilities By Pointer Taintedness
Semantics (Full Version). http://www.crhc.uiuc.edu/~shuochen/pointer_taintedness

