Assembler: Efficient Discovery of Spatial Co-evolving
Patterns in Massive Geo-sensory Data

Chao Zhang'~

Yu Zheng?

Xiuli Ma3? Jiawei Han*

'Dept. of Computer Science, University of lllinois at Urbana-Champaign, Urbana, IL, USA
“Microsoft Research, Beijing, China
3School of Electronics Engineering and Computer Science, Peking University, Beijing, China

{czhang82, hanj}@illinois.edu 2yuzheng@microsoft.com *maxl@cis.pku.edu.cn

ABSTRACT

Recent years have witnessed the wide proliferation of geo-sensory
applications wherein a bundle of sensors are deployed at different
locations to cooperatively monitor the target condition. Given mas-
sive geo-sensory data, we study the problem of mining spatial co-
evolving patterns (SCPs), i.e., groups of sensors that are spatially
correlated and co-evolve frequently in their readings. SCP mining
is of great importance to various real-world applications, yet it is
challenging because (1) the truly interesting evolutions are often
flooded by numerous trivial fluctuations in the geo-sensory time
series; and (2) the pattern search space is extremely large due to
the spatiotemporal combinatorial nature of SCP. In this paper, we
propose a two-stage method called Assembler. In the first stage,
Assembler filters trivial fluctuations using wavelet transform and
detects frequent evolutions for individual sensors via a segment-
and-group approach. In the second stage, Assembler generates
SCPs by assembling the frequent evolutions of individual sensors.
Specifically, it leverages the spatial constraint to conceptually or-
ganize all the SCPs into a novel structure called the SCP search
tree, which facilitates the effective pruning of the search space to
generate SCPs efficiently. Our experiments on both real and syn-
thetic data sets show that Assembler is effective, efficient, and
scalable.

1. INTRODUCTION

Wireless sensor network (WSN) has been serving as an indis-
pensable tool for our society ever since its advent in the 1970s. In
a typical WSN, a bunch of sensors are deployed at different geo-
graphical locations to continuously and cooperatively monitor the
target condition (e.g., air pollution, temperature, traffic volume).
Spurred by the recent development of urban computing [24], mod-
ern geo-sensory applications, ranging from traffic monitoring to
environment control, often involve hundreds of sensors, and each
sensor can potentially generate millions of records — depending
on the sampling rate and duration.

While the massive geo-sensory data can be informative multi-
facetedly, one particularly important and challenging problem is,

*The research was done when the first author was an intern in Mi-
crosoft Research under the supervision of the second author.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions @acm.org.

KDD’15, August 10-13, 2015, Sydney, NSW, Australia.

@ 2015 ACM. ISBN 978-1-4503-3664-2/15/08 ...$15.00.

DOI: http://dx.doi.org/10.1145/2783258.2783394.

how to discover a group of sensors that are spatially correlated and
co-evolve frequently in their readings? Let us consider a real-life
scenario in Figure 1. As shown, a number of air quality sensors
are deployed in Beijing, and every hour, each sensor measures the
real-time air quality index (AQI') around it. The AQI measured by
each sensor is stable most of the time, but does change substan-
tially during some time intervals — which we call evolving inter-
vals. During the three evolving intervals marked in Figure 1, one
can observe that sensor s1, s2, and s3 exhibit a recurring behavior:
the AQIs of s2 and s3 increase substantially, while the AQI of s
drops sharply. Since s1, s2, and s3 are spatially close, it is likely
the air pollution is dispersed from s; to sz and s3. According to
an investigation into this pattern, the road traffic largely flows from
s1 to {s2, s3} during off-work hours, deteriorating the air quality
there with heavy emissions.

Given a set S of sensors and their records over n timestamps,
we are interested in discovering groups of spatially correlated sen-
sors from S, along with their co-evolving behaviors that occur fre-
quently in the n timestamps. We call such frequent behaviors spa-
tial co-evolving patterns (SCPs for short). The discovery of SCPs
has significant impacts on a wide spectrum of applications. Con-
tinuing with the above air quality monitoring example, the pattern
s1 — {s2,s3} indicates that air pollution is frequently dispersed
from s; to s2 and s3. By analyzing the contexts (e.g., traffic,
weather, social activities) in which the dispersions occur, we can
identify the major factors that cause such behaviors and come up
with effective strategies to alleviate air pollutant diffusion through-
out the city. Another example application is traffic analysis. As-
sume we have deployed sensors to monitor the traffic volumes in
different regions within a city. If severe traffic jams are often ob-
served in a region r, the SCPs among different regions can help
us discover the regions from which the traffic tends to flow into r
and cause the traffic jam. Such an understanding is very useful for
improving the road network design and urban planning.

Considering the sheer size of modern geo-sensory systems, min-
ing all SCPs from massive geo-sensory data is by no means a triv-
ial problem. First, interesting evolutions are often flooded by trivial
Sfluctuations. In practice, each sensor constantly generates measure-
ments no matter the condition changes or stays stable, hence the
time series is overwhelmed by numerous uninteresting fluctuations.
For example, the histogram in Figure 2(a) is obtained from one-
year AQI data of the sensor s; in Figure 1, by computing the AQI
change of every pair of consecutive measurements. We can see the
change is highly concentrated on small values. While many of the
small values result from random fluctuations and redundant sam-
pling, some are caused by slow but long-lasting evolutions (Figure
2(b)). It is important yet challenging to filter uninteresting fluctu-

"Larger AQI means more air pollutants and thus worse air quality.

—— Sensor 1

we - Sensor 2

5 --+- Sensor 3

B o seerr e
. v

Voaaet et . !
v MR »‘*~.<‘*~44¢~om"
Y R a m

sa_a Tt Y

R .
" i

° A |
»
o S3-:S2 8 150 !
ol gne= " | |
< = 1
vy o o £ 10 ;
a Rei®yg 5 I
. ¥ *= & :
‘‘‘‘‘ -
- < m 2 50 ;
..... o . :
g |+ 1y ;
‘‘‘‘‘ . % ‘ 20

40 60 80 100
Time (Hour)

Figure 1: The air quality sensors in Beijing and the measurements of sensor s;, s and s3 during an 100-hour period. The gray areas
mark three evolving intervals during which the measurements of s1, s2, and s3 change significantly.

ations and identify evolving intervals in the time series. Second,
the pattern search space is extremely large. An SCP can contain
an arbitrary number of sensors, and the matching time intervals of
an SCP can have quite different durations. The combinatorial na-
ture of SCP leads to an exponential pattern search space, calling for
novel and efficient pattern search methodologies.

40,

04 35

L:’\‘0 3 — 30 True Evolution

g 925

o <

202 20

~ Uninteresting Fluctuation
0.1 15."'.‘“.,l\',l\.'_.‘."l.,.—.
0.0 W36 9 12 1
=500 -250 0 250 500 . >

Change Time

(a) Change distribution. (b) Evolution v.s. fluctuation.

Figure 2: Characteristics of geo-sensory time series.

Although multi-dimensional motif discovery techniques [20, 14,
17] have been developed to retrieve recurring subsequences in a
bundle of time series, none of them are applicable to SCP min-
ing. First, since geo-sensory data typically suffers from redundant
sampling, applying motif discovery can only retrieve trivial mo-
tifs where the condition shows little change. Second, the matching
subsequences of a motif must have the same length, whereas the
matching intervals of an SCP usually differ in length due to the du-
ration variation of the pattern. Last, motif discovery overlooks the
spatial correlations among the sensors and typically obtain patterns
that span across all the dimensions. In contrast, SCP mining re-
quires one to discover groups of sub-dimensions (i.e., sensors) that
are spatially correlated and co-evolve frequently.

In this paper, we present Assembler, a two-stage method that
can effectively and efficiently discover SCPs from massive geo-
sensory data. Assembler first extracts frequent evolutions for
each individual sensor, and then finds SCPs by merging the fre-
quent evolutions of individual sensors. Our main contributions are
summarized as follows.

1. In the first stage of Assembler (Section 3.1), we decom-
pose each geo-sensory time series using wavelet transform,
and show that different evolutions are captured by the large
wavelet coefficients at different levels. Hence, we filter the
trivial fluctuations in the wavelet space, and design a segment-
and-group approach to effectively extract frequent evolutions
for individual sensors.

2. In the second stage of Assembler (Section 3.2), we prove
SCP satisfies the anti-monotonicity property. Although the
Apriori rule [1] can be used to prune the search space and find

all SCPs, it overlooks the spatial constraint and also suffers
from excessive generation of candidate patterns. We design
a novel structure called the SCP search tree, which concep-
tually organizes all the SCPs based on the spatial constraint.
The depth-first construction of the SCP search tree can effi-
ciently retrieve all SCPs without candidate generation.

3. We have conducted extensive experiments on both real-life
and synthetic geo-sensory data sets (Section 4). The results
demonstrate that Assembler is indeed capable of retriev-
ing meaningful patterns, and it achieves excellent efficiency
and scalability.

2. PROBLEM DESCRIPTION

Let S = {s1,82,...,Sm} be a set of sensors in a geographical
region. Each sensor s; € S (1 < ¢ < m) is deployed at a loca-
tion I; to periodically measure the target condition around it. All
the sensors in S have synchronized measurements over the time
domain 7 = (t1,t2,...,tn), where each t; (1 < j < n)isa
timestamp and all ¢;’s are equally spaced. The measurement of
sensor s; at timestamp ¢, denoted by s;t;], is a real value.

As mentioned earlier, the time series of each sensor often suffers
from redundant sampling, i.e., the time domain 7 includes many
trivial intervals in which the monitored condition shows random
and small fluctuations. To obtain meaningful patterns, we are not
interested in the entire time domain 7, but only demand the inter-
vals in which the condition exhibits evident changes.

DEFINITION 1. [Evolving Interval] For sensor s;, a length-I
evolving interval T = (tj,t;jq1,...,t;41) is a consecutive subse-
quence in T where the measurement of s; has evident change. The
timestamps t;, . .. ,t;41—1 are called evolving timestamps for s;.

DEFINITION 2. [Change Rate] Given a sensor s; € S and an
evolving timestamp t;, the change rate of s; at timestamp t; is

siltj+1] = sifts]

Ti[tj] = ti1 —t;
J J

Note that: (1) Definition 1 provides an informal and intuitive de-
scription of evolving interval. Later in Section 3.1.1, we will elabo-
rate this definition and show how we define “evident” changes. (2)
Each sensor can have multiple evolving intervals, and the evolving
intervals of two different sensors do not necessarily overlap.

One may wonder why not just examine the change rate for ev-
ery timestamp in 7 and extract the timestamps having large change
rates to define evolving intervals. The reason is that such a defini-
tion tends to miss slow but long-lasting changes: as shown by the
example in Figure 3, while both slow and sharp changes are inter-
esting evolutions, change rate alone only identifies sharp changes
and fails to distinguish slow changes from trivial fluctuations.

Slow (Ijhange Sharp Change

Trivial ‘ o
Fluc/tuation | o

0 75 10 15 20 25
Timestamp

20

Figure 3: Trivial fluctuation, slow change, and sharp change in
a geo-sensory time series: (1) in [to, 4], the measure shows ran-
dom and trivial fluctuations; (2) in [t4, t11], the measure shows
slow but long-lasting increase; and (3) in [t20, t21], the measure
increases sharply.

Given the set S of sensors, our goal is to discover a group of
sensors from & that are spatially correlated and meanwhile ex-
hibit frequent co-evolutions. We define spatial connectivity and
co-evolution as follows.

DEFINITION 3. [Spatial Connectivity] Given a distance thresh-
old h and a subset of sensors G C S, G is spatially connected if
Vs € G,3s' € G — {s} s.t. dist(s,s’) < h where dist(s,s")
is the geographical distance between s and s'.

DEFINITION 4. [Co-evolution] Let G = {s1,s2,...,Sq} be a
set of spatially connected sensors. A co-evolution Ec over G has
the form {R1, Ra, ..., Ry} where each R; = [lb;,ub;] (1 < i <
g) specifies a range of change rate for sensor s; € G.

Now we proceed to define the matching relationship between a
co-evolution and a timestamp, based on which we define the sup-
port of a co-evolution.

DEFINITION 5 (MATCH). Let G = {s1, S2,..., 84} be a set
of spatially connected sensors and Eq = {R1,Ra,...,Rq} be a
co-evolution on G. A timestamp t; matches Eq, denoted as t; ~»
Eq, if t; satisfies V1 < i < g: (1) t; is an evolving timestamp
for sensor s;; and (2) the change rate of s; at t; falls in the range
R; = [lbi, ub;], namely 1b; < r;[t;] < ub;.

DEFINITION 6 (SUPPORT). The support of a co-evolution Ec
is the number of its matching timestamps in the time domain T, i.e.,
Sup(Eg) = ‘{tj‘tj eTA tj ~> Ec}l

If a co-evolution appears frequently in the time domain, we call
it a spatial co-evolving pattern (SCP).

DEFINITION 7 (SPATIAL CO-EVOLVING PATTERN). Let Eq
be a co-evolution defined over a set G of spatially connected sen-
sors. Given a minimum support 0, Eq is a spatial co-evolving
pattern if Sup(Eq) > 0.

EXAMPLE 1. In Figure 1, let G = {s1, $2, 83} be a set of spa-
tially connected sensors. An example co-evolution over G is

Ec = {[-20/h,—15/h], [+15/h,+20/R], [+15/h, +20/h]},

meaning the AQI of s1 is decreasing by 15 to 20 per hour, while
the AQIs of s2 and s3 are increasing by 15 to 20 per hour. Given
a minimum support 0 = 10, Eq is a frequent pattern as it matches
24 evolving timestamps in the 100-hour period.

We are now ready to describe the SCP mining problem. Given
the sensory data of S over the time domain 7, a minimum support
0, and a distance threshold h, find the groups of spatially connected
sensors from S along with their co-evolutions that have support
larger than 6.

3. THE ASSEMBLER METHOD

In this section, we present our two-stage SCP mining method
Assembler. In what follows, we describe the detailed two stages
in Section 3.1 and 3.2, respectively. Then we analyze the cost of
Assembler and discuss how to set the parameters in Section 3.3.

3.1 Stage I: Detecting Individual Evolutions

In this subsection, we present the first stage of Assembler. It
first extracts evolving intervals using wavelet transform, and then
detects frequent evolutions for individual sensors via a segment-
and-group approach.

3.1.1 Evolving Interval Extraction

As mentioned earlier, geo-sensory time series is usually over-
whelmed by numerous trivial fluctuations due to redundant sam-
pling. To find meaningful SCPs, one first needs to filter uninter-
esting fluctuations and identify the evolving intervals, otherwise
the result pattern set will be dominated by the trivial fluctuations.
However, the condition change can occur with quite different rates
and durations: some changes are sharp and short, while some are
slow and long-lasting (Figure 3). How do we effectively capture
those multi-scale changes in the long geo-sensory time series?

To address this problem, we use wavelet transform to obtain a
multi-resolution representation of the time series. As we will see,
multi-scale changes appear clearly at different levels in the wavelet
space and thus can be easily identified.

Wavelet transform. Wavelet transform [5] is a multi-resolution
signal decomposition tool that provides time and frequency local-
ization simultaneously. To decompose the geo-sensory time series,
we choose the Haar wavelet transform due to its simplicity and
practical effectiveness. Haar wavelet transform relies on a scaling
Sunction ¢(t) and a mother wavelet function 1 (t):

1 0<t<1/2

1 0<t<l1,
P(t) = . Pt)y={ -1 1/2<t<1,
0 otherwise. .
0 otherwise.

Intuitively, given an input signal defined over the range [0, 1],
the scaling function ¢(¢) models the average strength of the signal,
while the mother wavelet 1 (¢) models the detailed change of the
signal. To decompose discrete time series data, the mother wavelet
function 1 (t) can be scaled and shifted to generate a set of orthog-
onal bases. Those bases capture changes that occur at different res-
olutions and locations. As a concrete example, Figure 4 shows the
Haar wavelet bases for length-8 signals: (1) at level 1, 11,1 models
the change from [t1,t4] to [ts5, ts]; (2) at level 2, 1p2,1 models the
change from [t1, 2] to [t3,t4], and 12 2 models the change from
[ts,ts] to [t7,ts]; and (3) at level 3, 13,1 models the change from
t1 to t2, 13,2 models the change from ¢3 to ¢4, efc.

1 1
ot P31 | 0
1 1
P11 3o 0 0
' -1 1
1 1
Pa2.1 q 0 V3.3 0 B
1 1

a2 0 3.4 0

-1 -1

Figure 4: The Haar wavelet bases for length-8 signals.

With the Haar wavelet bases, an arbitrary time series s; can be
represented as a linear combination of them, namely

1 kg
si=co-go+ Y Y cij iy,

i=1 j=1

where [is the total number of levels, k; is the number of mother
wavelets at level 4, and c;; is the wavelet coefficient for basis 1); ;.
The wavelet coefficients can be efficiently obtained using pair-wise
average-difference computation. Specifically, given a length-2m
signal [v1,v2,...,Vam—1, V2m], the pair-wise computation takes
every two adjacent values (v2;—1,v2;)(1 < j < m) and compute

aj = (voj—1 +v25)/2, 5 = (v2j—1 — v25)/2.

Here, c; is returned as the wavelet coefficient for interval j at cur-
rent level, and the average a; is fed to the next higher level for fur-
ther average-difference computation. For instance, Table 1 shows
the process of computing the Haar wavelet coefficients for a length-
8 signal (1,1,6,8,9,11, 15, 25).

Table 1: An illustration for wavelet coefficient computation.

Level Average Difference
(1,1,6,8,9,11, 15, 25)
3 (1,7,10,20) (0,—1,—1,-5)
2 (4,15) (—3,-5)
1 (9.5) (—5.5)

Extracting evolving intervals. In the wavelet representation of a
signal, the coefficient c;; measures the signal’s strength of change
in the j-th interval at level 4: (1) a large positive c;; means the sig-
nal decreases significantly in the interval; (2) a large negative c;;
means the signal increases significantly in the interval; and (3) a
small absolute value of c;; means the signal does not change much.
The level ¢ determines the resolution of observation; while the po-
sition j captures where the change occurs.

The above observation leads to our strategy for filtering trivial
fluctuations and preserving multi-resolution changes in the geo-
sensory time series. As shown in Algorithm 1, given a signal s;,
we obtain its wavelet coefficients and compare them with a change
threshold §. Specifically, we examine whether the absolute value
of ¢;; is larger than § (line 5). If true, we add the corresponding
timestamps into the results set 7" (line 6). The pre-specified thresh-
old § has a clear physical meaning as it measures how much change
do we think is significant.

It is worth mentioning that, when extracting the evolving inter-
vals, we only consider the levels larger than min_level. This is
because the evolving behaviors of sensors are usually caused by
external events (e.g., air pollutions mostly result from heavy traf-
fic, wind, manufacturing activity, etc.) and do not span a very long
time period. Our goal is capture such short-term but frequently oc-
curring changes, not the long-term trend in the geo-sensory data.
Hence, we ignore the levels that are too coarse.

3.1.2 Mining Frequent Evolutions

Once the evolving intervals have been identified for each sensor
s, next task is to detect evolving behaviors that frequently occur.
Our observation is that, the evolution of a sensor may experience
several different stages during each evolving interval. If we treat
each evolving interval as a basic unit, we may not easily observe
similar behaviors. However, if we break each interval into several
segments, “similar” segments from different intervals can consti-
tute frequent behaviors.

As an example, Figure 5 shows two evolving intervals, Z; and
Ts, of asensor. Z; and 7 are clearly dissimilar if we treat each one

Algorithm 1: Evolving interval extraction.

Input: Geo-sensory time series s;, change threshold §.
Output: The set of evolving timestamps in s;.

1 C < Haar wavelet coefficients of s;;

2 T+ ¢

3 for i = min_level to [do

4 for j = 1to k; do

5 if |ci;| > 6 then
6 L Add into 7" the timestamps in interval j of level ¢;
7 return 7',

as a whole. However, suppose we break Z; into five line segments
and 7 into four, the clusters Cy, C2, Cs, C4y become evident. The
line segments in each cluster are “similar” in the sense that they
have very similar slopes.

Value

Time
Figure 5: Segment-and-group of evolving intervals.

A segment-and-group approach. The above observation moti-
vates us to first partition the evolving intervals into line segments,
and then group similar line segments to detect frequent evolutions.

The segmentation of each evolving interval can be done with
the widely adopted bottom-up approach (see details in [8]): for
each evolving interval, we start from the smallest segments, and
iteratively merge two neighboring segments into a larger one that
has the minimum approximation error. The segmentation process
terminates when every possible merge leads to an error larger than
a threshold e.

After segmenting each evolving interval, we obtain a set of result
line segments that have different slopes. Our goal is to divide them
into groups such that the segments in the same group have similar
slopes. How do we do this without knowing the number of groups
beforehand? Below, we design a grouping strategy based on mean
shift [4], a non-parametric clustering method based on kernel den-
sity estimation. Compared with other classic clustering methods
like K-means and DBSCAN, mean shift has several nice proper-
ties for our purpose. First, it does not assume any prior knowledge
about the number of clusters or the data distribution. Thus it can
effectively discover arbitrarily shaped clusters in a complex data
space. Second, it has only one parameter, namely the bandwidth,
which has a physical meaning as the scale of observation.

For a line segment [; over the sub-interval [ts, t.], we consider
l; as a data point x;, where the value x; is the slope of [; (derived
from the start timestamp ¢ and the end timestamp ¢.). Meanwhile,
each z; is associated with a weight w;, which is the length of /;,
namely t. — t5. Based on mean shift, we cluster the data points
by detecting modes (density maxima) and grouping the points that
share the same mode. Specifically, for each data point, we find
its mode by iteratively shifting a length-2w window. The window
is called the kernel window and the radius w is called the band-
width. In each iteration, let y(k) be the center of the current win-
dow, and {1, 2,...,Zm} be the m data points inside the win-

dow, then the window center is shifted to the weighted mean of
{z1,22,...,Zm}, resulting in the maximum increase of density
for y*). The shifting operation leads to a new kernel window lo-
cated at the weighted mean of {x1,x2,...,Zm}, namely

y(k+1) _ iwle/ iwi. 1)
=1 =1

As shown in Figure 6, for each point x, we start with an initial
kernel window centered at y(®) = x, and iteratively shift the win-
dow according to Equation 1. The sequence {y(k>} will converge
to the mode that = belongs to. After performing the mean shift pro-
cess for every point, we group the points that have the same mode
into one cluster.

kernel mean shift kernel
window vector segment window

‘ AN —

slope

bandwidth 3 y*+D
Figure 6: Cluster the segments using mean shift.

Frequent evolution discovery. Now we have obtained the clusters
of similar segments, along with the matching evolving timestamps
for each cluster. We consider each cluster as an evolution behavior,
where the change rate range is derived from its matching times-
tamps, and the support is the number of the matching timestamps.
Recall that we want to find frequent evolutions of the sensor. With
the minimum support 8, we eliminate the clusters that have support
lower than 6, then the remaining clusters are returned as frequent
evolutions for the sensor.

3.2 Stage II: SCP Generation

For each sensor s, we now have a set Ps of its frequent evolu-
tions, along with the matching timestamps for each pattern p € Ps.
In the second stage of Assembler, we assemble the frequent evo-
lutions of individual sensors into SCPs.

3.2.1 The Anti-monotonicity Property

THEOREM 1. Let G = {s1, $2,...,84} be a set of spatially
connected sensors, and Eq = {R1, Ra, ..., Ry} be an SCP on G.
For any G’ = {Si1, Sia,---,8i, } C G that is spatially connected,

the co-evolution Eq: = {Ri,, Riy, ..., Ri, } isan SCP on G'.

PROOF. The proof is obvious because the matching timestamps
of E¢ must also match E s/, hence the support of E must be no
smaller than the minimum support 6. []

Theorem 1 amounts to saying that, if there are no SCPs over a
set G’ of sensors, then no supersets of G’ can have any SCPs. This
property ensures that, if we generate SCPs on large sensor sets by
assembling the SCPs on small sensor sets, we effectively prune the
search space without missing any patterns.

The pattern assembling operation is achieved via timestamp in-
tersection. As shown in Figure 7, suppose we have extracted a
frequent evolution P; for sensor s1, and P> for sensor sz. If s1 and
s2 are spatially connected, then we merge P, and P> to generate a
co-evolution over {s1, $2 }, namely Pi2. The matching timestamps
of Pi2 is simply the common timestamps of P; and P». With the
derived matching timestamps, it is trivial to compute the support
of P2 and determine whether it is frequent or not. Note that Fig-
ure 7 is only an example for assembling one pair of patterns, when

@ Pattern P, [+20/h, +50/h]
Timestamps {tl,tg,[t4, t7,tg, t10, t11, t12, t133t14}
@ Pattern P» [-30/h, -10/h]
Timestamps | {t2, ({4} t5t7, to, t10, t11, t12, t13)t17}
Pattern P {[+20/h, +50/h], [-30/h, -10/h]}
®_@ Timestamps {ts,t7,t9,t10,t11, t12, t13}

Figure 7: Find SCP by intersecting matching timestamps.

there are multiple patterns on both s; and s, we need to perform
pairwise pattern assembling to obtain all the SCPs on {s1, s2}.

Based on the assembling operation and the anti-monotonicity
property, one idea is to use the Apriori rule [1] to find SCPs in
a bottom-up manner: starting with the single frequent evolutions,
we examine pairs of spatially connected sensors to generate size-2
SCPs. Once the size-k SCPs have been discovered, we join ev-
ery possible pair of size-k SCPs to generate size-(k + 1) candi-
date SCPs, and judge whether each candidate is frequent. Such a
bottom-up process is terminated when no more SCPs exist for the
current size.

Unfortunately, the Apriori-based mining process suffers from
two problems: (1) to generate large-size SCPs, it needs to generate
a huge number of small-size SCPs as candidates and keep them in
memory, which incurs substantial overhead; and (2) when generat-
ing size-(k + 1) candidates from size-k patterns, it need to examine
every pair of size-k patterns and determine whether they are join-
able. It fails to take advantage of the spatial constraint and leads to
a huge number of unnecessary comparisons.

3.2.2 The SCP Search Tree

We design a novel structure called the SCP search tree to facili-
tate more efficient SCP generation. We first introduce the concept
of connectivity graph.

DEFINITION 8 (CONNECTIVITY GRAPH). Given a set S of
sensors and a distance threshold h, the connectivity graph Gs is
constructed as follows: (1) each vertex in G corresponds to a sen-
sor in S; and (2) there is an edge between two vertices if their
corresponding sensors have a distance no larger than h.

©

® ©

(a) A set S of sensors and a dis- (b) The connectivity
tance threshold h. graph Gs.

Figure 8: The connectivity graph for the sensor set S.

Figure 8 is an example of the connectivity graph. Recall that we
want to find groups of spatially connected sensors to form SCPs.
The connectivity graph well models the spatial constraint, because
each set of spatially connected sensors in S uniquely corresponds
to one connected component in the graph G's. Our problem is then
reduced to finding all the connected components in G's that have
SCPs. However, since S can consist of hundreds of sensors, it is

prohibitively expensive to enumerate all the connected components
in Gs and search for the SCPs. Below, we introduce the neighbor
and parent relations between two connected components.

DEFINITION 9 (NEIGHBOR). Given a connectivity graph G,
let X be a size-k connected component in G, andY a size-(k + 1)
one. Y is a neighbor of X if Y includes all the members of X.

DEFINITION 10 (PARENT). LetY be asize-(k+1) connected
component in a connectivity graph G. Given a vertex ordering V,
the roll-up operation on'Y removes one vertex s from'Y such that:
(1) the result set X =Y — {s} is still connected; (2) s is the first
possible vertex in YV on the premise of satisfying Condition (1). We
say X is the parent of Y, and Y is a child of X.

Clearly, any connected component Y has one unique parent.
Hence, from any connected component Y, if we progressively per-
form the roll-up operation, we will reach the empty set ¢.

EXAMPLE 2. Consider the graph Gs in Figure 8(b). Suppose
the vertex ordering isV =1 — 2 — 3 — 4 — 5 — 6. The roll-
up operation on the connected component {245} generates {25},
because sensor sy is the first possible one in V that ensures the
remaining sensors are still connected. Similarly, the roll-up opera-
tion on {25} generates its parent {5}. Finally, the roll-up operation
on {5} outputs ¢.

With the roll-up operation, all the connected components in the
connectivity graph actually form a tree structure, with the empty set
¢ as the root. We call such a structure the SCP search tree. Each
node in the tree stores a set of spatially connected sensors, as well
as the SCPs occurring on them. Figure 9 show the SCP search tree
for the sensors in Figure 8(a).

123456

Figure 9: The SCP search tree.

The SCP search tree effectively organizes all the connected com-
ponents into a tree structure based on the spatial constraint. The
remaining concern is, how do we obtain the vertex ordering V in
order to define the SCP search tree? Actually, V is only used to en-
sure the roll-up operation on any connected component generates
a unique parent. Any choice of V can lead to a valid SCP search
tree, and the cost of SCP generation is not sensitive to the specific
choice of V. In our implementation, we simply obtain V based on
sensor id.

3.2.3 Depth-first SCP Search

Note that the SCP search tree organizes the connected compo-
nents only conceptually. To generate SCPs, we do not need to

construct the entire tree structure beforehand. Instead, we perform
depth-first construction from the root node ¢, and only visit the
nodes that have SCPs. Specifically, for any node /N in the tree, if IV
does not have any SCPs, then no descendants of N can have SCPs
(Theorem 1), and the subtree rooted at N can be safely pruned.

Algorithm 2 sketches the depth-first SCP search process. To ob-
tain all SCPs, we just need to feed Algorithm 2 with X = ¢, i.e.,
searching from the root ¢. As shown, given node X, we output the
SCPs on X if X contains no less than one sensor. Then we start
depth-first search from X. First, we find all the neighbors of X in
the SCP search tree (line 3), which can be easily done by adding a
new sensor that is adjacent to X in G. For each neighbor Y, we
perform the roll-up operation to verify whether Y is indeed a child
of X .2 If true and Y contains SCPs (lines 5-7), we recursively per-
form depth-first search on Y (line 8), otherwise we safely prune all
the subtree rooted at Y.

Algorithm 2: Search(G, X)

Input: Connectivity graph G, connected component X C G.
Output: The SCPs on X.

1 if | X| > 1 then

2 L Output the SCPs on X;

NS(X) <« neighbors of X in the SCP search tree;
foreachY € NS(X) do
if roll_up(Y) = X then
Py <+ the SCPsonY;
if Py is not empty then
L Search(G,Y);

® N A e W

3.3 Discussions

Time Complexity. The cost of the first stage involves two parts:
(1) wavelet transform, and (2) the segment-and-group process. For
each sensor, the wavelet transform takes O (m) time where m is the
length of the time series. Now consider the segment-ang-group pro-
cess. For each sensor, let n. be the number of evolving intervals, .
be the average length of the evolving intervals, and [, the segment
length, then the segmentation takes O(ne - l. - I5) time for each
sensor. Since n. - e < m and [, is usually small, the segmentation
time complexity is O(m). For mean shift clustering, assume the
number of segments is n; and the average number of shifting oper-
ations is k, the time cost of mean shift is then O(n; - k) = O(m).
Hence, the total time complexity of the first stage is O (nm).

For the second stage, let n be the number of connected compo-
nents in G that have SCPs. During the depth-first search, Algorithm
2 are called n times. For each call of Algorithm 2, the time cost
is determined by line 3, line 5, and line 6. Denote by |E¢| the
number of edges in G. For any connected component X in G, its
neighbors can be obtained in O(|Eg|) time (line 3). For line 5,
each roll-up operation takes O(| E¢|) time. For line 6, let n;, be the
maximum number of SCPs on a connected component and n, be
the maximum support of an SCP. Since the SCPs of Y are derived
by intersecting the timestamps of the SCPs on X and the SCPs on
the sensor Y — X, the time cost of line 6 is O(ngns). The for loop
outside line 5 iterates at most n (the number of sensors) times as X
can have at most n neighbors. Hence, the total time complexity of
the second stage is O(ng (n|Eg| + nans)).

Space Complexity. The space complexity of the first stage is O (m)
as the space cost of both wavelet transform and the segment-and-
group process is linear in input size. For the second stage, since

Note that not every neighbor Y is necessarily a child of X.

Assembler performs depth-first search and examines one path at
a time, there are at most n connected components maintained in
memory. For each connected component, we need to maintain its
SCPs along with the matching timestamps. Hence, the space com-
plexity of the second stage is O(n - ny - ns).

Parameter Setting. There are four parameters in Assembler:
(1) the minimum support 0; (2) the distance threshold h; (3) the
change threshold J; and (4) the mean shift bandwidth w. The first
three paramters are easy to set based on application need, because it
is intuitive to determine: (1) how many occurrences can be consid-
ered frequent enough; (2) what distance makes two sensors reach-
able w.r.z. the monitored condition; and (3) how much change in the
reading reflects a significant and unusual behavior. The bandwidth
parameter w comes with the mean shift algorithm, and various tech-
niques have been proposed to specify it. For example, the Scott’s
rule of thumb and the data-driven selection [3] are two popular ap-
proaches for this purpose.

4. EXPERIMENTS

In this section, we evaluate the empirical performance of the
Assembler method. All the algorithms were implemented in
JAVA and the experiments were conducted on a computer with Intel
Core i7 2.4Ghz CPU and 8GB memory.

4.1 Experimental Setup

Data Sets. Our experiments are based on two real geo-sensory data
sets and multiple synthetic data sets:

1. Air is an air quality data set. 180 air quality sensors are
deployed in 16 cities in northern China (Beijing, Tianjin, and
14 cities in the Hebei Province). Each sensor has measured
the hourly AQI during the period 2013.02.08 —2014.08.27.

2. Bike is the Citi Bike rental data set>. For the 332 rental docks
in New York, we record the number of available bikes at each
dock every 30 minutes during 2013.07.01 — 2014.08.30.

3. Syn-Sensor is a collection of 4 synthetic data sets used to
evaluate the scalability of Assembler w.rt. the number of
sensors n. We set n = 100, 200, 400, 800. For each n, we
generate n uniformly distributed sensors. For each sensor,
we first generate a length-100000 synthetic time series with
the autoregressive model, then randomly insert 1000 length-
10 changes into the time series.

4. Syn-Length is a collection of 4 synthetic data sets used to
evaluate the scalability of Assembler w.rt. the length of
time series m. We set m = 10%,10%,10%,10°. For each
m, we first generate 200 randomly distributed sensors. For
each sensor, we mix a length-m synthetic autoregressive time
series with 0.01m length-10 changes.

Compared Method. To the best of our knowledge, no existing

methods can be directly used for SCP mining in geo-sensory data.

In order to compare with Assembler, we design a baseline method
called WaveApriori. Itis also a two-stage method and shares

the same first stage with Assembler. However, in the second

stage, WaveApriori uses the Apriori rule for SCP search (Sec-

tion 3.2.1) instead of the SCP search tree.

3https://www.citibikenyc.com/

4.2 Experimental Results

In this subsection, we report our experimental results. Below, we
first examine several illustrating SCPs discovered by Assembler
on the two real data sets. Then, we study the efficiency and scala-
bility of Assembler under various parameter settings.

4.2.1 lllustrating Patterns

For SCP mining, four parameters need to be specified: (1) the
minimum support 0, (2) the connectivity distance h, (3) the change
threshold §, and (4) the mean shift bandwidth w. On Air, we set
6 = 200,h = 30 km,§ = 30, w = 10. Note that the AQI change
of 30 (§ = 30) indicates quite evident increase/decrease of air qual-
ity. Under such a setting, Assembler obtains 8328 SCPs in total,
we are particularly interested in the SCPs that involve a large num-
ber of sensors. Hence, we demonstrate in Figure 10 two size-10
patterns. We can see that the first pattern P; is a more localized
pattern that occur on the sensors in Beijing. In P;, the sensors
S1, 82, 53 in the periphery of Beijing have evident AQI decrease,
while the sensors $4, ..., s10 in downtown Beijing shows evident
AQI increase. We have also investigated the time and the wind di-
rection when P; occurs. Interestingly, the occurring hours of P;
show clear peaks in two intervals: [6am-9am] and [8pm-10pm].
During these hours, the traffic may move from the periphery area
to the downtown area for work and nightlife activities, thus deteri-
orating the air quality in downtown. For the pattern P, the AQIs
of the sensors s1, ..., s4 decrease while the AQIs of ss, ... s10 in-
crease. As shown in Figure 10, the occurring hours of this pattern
seem to be randomly distributed, but the wind direction is mostly
West when this pattern occurs. It is quite likely the wind carries the
air pollutants from s1, ..., 4 t0 S5, . .. S10 and causes this pattern.

Figure 11 shows two example patterns on the Bike data set, with
the parameters § = 150,h = 1 km,§ = 10,w = 3. Both pat-
terns occur mostly in the morning. For P, the number of bikes
decreases for the docks (s4, . . ., s7) around the ferry station; while
the number of bikes increases for the docks (s1, s2, s3) in the office
zone. This pattern is probably because people arrive at Manhattan
by ferry in the morning, and then rent bikes to ride to their offices.
The situation is similar for the pattern P», the docks ss, . . ., sg are
located in a residence area, while the docks s1, . . ., s4 are in down-
town Manhattan. Many people may choose to rent bikes to go to
work due to the heavy traffic in the morning.

4.2.2 Efficiency Study

In this subsection, we compare the efficiency of Assembler
and WaveApriori. Since Assembler works in two stages, we
break its cost into two parts: Assembler-1 for the first stage, and
Assembler-2 for the second. WaveApriori is also a two-stage
method and has the same first stage as Assembler, we use Apri-
ori to denote the cost of its second stage.

As aforementioned, there are four parameters for SCP mining: 6,
h, d, and w. In the following, we study the effect of each parameter
while the other parameters are fixed at their default values. Table 2
shows our parameter settings on the Air and Bike data sets, where
the numbers in bold denote the default values.

Table 2: Parameter settings on the Air and Bike data sets.
Parameter Air Bike

0 150, 200, 250, 300 | 100, 150, 200, 250, 300
h 5, 10, 15, 20, 25, 30 0.5,1.0,1.5,2.0,2.5
0 15, 20, 25, 30 6, 8,10, 12

w 6, 8,10, 12 2,3,4,5

Varying 6. In the first set of experiments, we examine the effect
of the minimum support 6 on the performance of Assembler

S sy —174+5.1

o S.4 SS“S.lo sp: —186+6.5

o ekl syt —201+45
~e S6® « sg: +16.2+3.7 2
@ sge'e s5: +459+31| 2
.S sa: +565+£73| ©

7 s7: +45.3+6.2

sg: +31.0%£3.7

B3 sg: +26.1+£49

510 +21.6 £8.6

Pattern 1 AQI Change

sp: —44.3+3.6

— —_ [
Count

IS

f=]

80)

=N
=)

20,
0!

6 9 12 15 18 21 24

Hour

No N S E w
Wind direction

Hour Distribution Wind Direction

3 6 9

0f

0f

0 No N S W E
Wind direction

Wind Direction

12 15 18 21 24
Hour

Hour Distribution

Figure 10: Two example patterns on the Air data set.

Sie sp: —41.2+7.8
= s - s3: —51.6+6.5
e 1% 53 si: —317+£95| =
. £y s5: 4518455 3
4 - 56 312+85] ©
) e i
¥ S6 ‘. s7: +56.5+6.6
: S80%59 sg: +45.5+8.3
o So: +35.2+72
" S10: +36.9+7.3
Pattern 2 AQI Change
10
i ¢ <,
s 80
008 S3
o % 60)
1O 40
S4 .]
§ S77es”
Sho®, 5 20
iS5
g / 558 oz s 2T 24
A\ ! Hour
Pattern 1 Hour Distribution

i /%
S1
i, Ses3 60
e 7 .
: Z 340
<
e GE
S5 %
20,
S6.*
7
s§§9 b 0 3 6 9 12 1518 21 24
‘ Hour
Pattern 2 Hour Distribution

Figure 11: Two example patterns on the Bike data set.

and WaveApriori. As shown in Figure 12(a), the running time
of both methods decreases with 6 on the Air data set. The de-
crease comes from the second stage for both methods. With larger
0, fewer sets of spatially connected sensors can have SCPs and
the pattern search space is smaller for both methods. This phe-
nomenon can be observed in Figure 12(b), where the number of
SCPs decreases rapidly with 6 on the Air data set. Comparing the
running time of the two methods, we can see the second stage of
Assembler is much faster than that of WaveApriori. This is
because Assembler effectively leverages the spatial constraint
when generating SCPs from single frequent evolutions. Figure
13(a) shows the running time of the two methods on the Bike data
set, where similar trends are observed.

5
[Assembler-1 =250,
40 Apriori %
o) EEl Assembler-2 :200
]
@30 E s
£ g
£ S0
! 'QE 501
=]
E]
Z 0
150 200 250 300 150 200 350 300

Minimum support Minimum support

(a) Running time. (b) Number of patterns.

Figure 12: Varying minimum support 6 on the Air data set.

Varying h. In the second set of experiments, we evaluate the
performance of Assembler and WaveApriori as the distance
threshold A varies. Figure 14(a) and 13(b) show the running time
of the two methods on the Air and Bike data sets, respectively.
The first stage of the two methods is not affected by h, while the
cost of the second stage increases with h for both methods. This is
expected. As h increases, the number of spatially connected sen-
sor set becomes larger, leading to more SCPs and a larger pattern

12 [Assembler-1 [Assembler-1
Apriori 20 Apriori

3 90 EEl Assembler-2 Y EEl Assembler-2
2 2 15 7
b p 7
E 60 = %
[= /
30 5 %
/)

@! g
150 200 250 1.0 15 20 25

==
100 300

0.5
Distance threshold (km)

(b) Time v.s. h.

Minimum support

(a) Time v.s. 6.

Figure 13: Running time comparison on the Bike data set.

search space. As shown in Figure 14(b), the number of SCPs in-
creases roughly linearly with h on the Air data set. Meanwhile,
one can observe again the second stage of Assembler is much
more efficient than that of WaveApriori. The performance gap
is particularly significant when h is very small. This phenomenon
suggests that the SCP search tree indeed effectively utilizes the dis-

tance constraint to largely prune the search space.
12

[Assembler-1 7 g 10
9 Apriori E 8
> Il Assembler-2 7] 2
2 7 5 60
2 g
= 5 40
3 2
£ 20
E}
0 Z
5.0 10.0 15.0 20.0 25.0 30.0 5 10 15 20 25 30

Distance threshold (km) Distance threshold (km)

(a) Running time. (b) Number of patterns.

Figure 14: Varying distance threshold / on the Air data set.

In practice, h should be determined with the guidance of domain
knowledge. On the Air data set, we set h to Skm - 30km because

air pollution can be dispersed faraway due to factors such as wind
and traffic. In contrast, on the Bike data set, we set h to 0.5km -
3km, as people usually take short trips by bike.

Varying §. We proceed to study the effect of the change thresh-
old 4. Figure 15(a) and 15(b) give the results on the Air data set.
When extracting evolving intervals using wavelet transform, we set
min_level to | — 3, namely we only concern about the three most
detailed levels. From Figure 15(a), we see that, the running time of
both methods becomes larger when ¢ is smaller, and this trend is
especially obvious for WaveApriori. Recall that § specifies how
much change we think is significant. When § is small, many small
evolutions are also extracted, and thus the number of result SCPs
becomes much larger (Figure 15(b)).

400

=50
7/ [Assembler-1 =

300! Apriori 3400
) Z I Assembler-2 2

2 3 30
S 200 ‘é

E 7 200
106 7/ 3

g 101
E}

L rr— Z

150 200 250 30.0 15 20 25 30

Change threshold
(a) Running time.

Change threshold
(b) Number of patterns.

Figure 15: Varying change threshold § on the Air data set.

The performance gap between the two methods is extremely large
when ¢ is small. This is because WaveApriori generates numer-
ous small candidate patterns for a small §, the pair-wise candidate
comparison incurs substantial computation overhead, deteriorating
its performance rapidly. Similar results are observed on the Bike
data set, we omit them due to the space limit.

Varying w. Finally, we study the performance of the two meth-
ods when the mean shift bandwidth w varies. Note that w controls
the clustering granularity, when w is large, more data points are
grouped together and thus the co-evolutions on spatially connected
sensors have better chances to exceed the minimum support 6. Fig-
ure 16(a) and 16(b) show that the running time and the number of
SCPs increase for both methods. Specifically, the running time of
the first stage increases slightly with w, while the cost of the second
stages grows more rapidly.

3

W
w

[0 Assembler-1 07 =20
25 S
Apriori / =

520! | Assembler-2 % =15
2 g

2

Pl é % 10
£ 9
=1 / 5
om A
z

=)

6.0 8.0 10.0 12.0
Bandwidth

8 10 12
Bandwidth

(=)

(a) Running time. (b) Number of patterns.

Figure 16: Varying bandwidth w on the Air data set.
4.2.3 Scalability

In this subsection, we study the scalability of Assembler and
WaveApriori using the two collections of synthetic data sets.
The four data sets in Syn-sensor have the same time series length
m but different numbers of sensors n. Figure 17(a) shows the
running time of Assembler and WaveApriori as n increases,
with & = 1000 and h set to the average distance between the sen-
sors. As shown, the cost of the first stage increases linearly with
n for both methods, which is expected according to our theoreti-
cal analysis in Section 3.3. For the second stage, the cost of both

methods increases super-linearly with n. This is due to the com-
binatorial nature of SCP: when n increases, the number of spa-
tially connected sensor set increases rapidly, resulting in larger cost
for SCP search. That said, we notice that the running time of
Assembler increases more slowly than WaveApriori. Itis
because Assembler more effectively leverages the spatial con-
straint to prune the search space.

10° 10?
—e— Assembler-1 R
--®-- Apriori 1 -
'g 10? A Assembler-2 rg 10 A cmemmmm =
Py 5 1000
£ £
=10 = —e— Assembler-1
10 --m-- Apriori
A Assembler-2
10° % 102 5 -
100 200 400 800 10 10 10 10
sensor Length

(a) Time v.s. number of sensors n. (b) Time v.s. sequence length m.

Figure 17: Scalability study.

For the other collection Syn-length, the four data sets have the
same number of sensors n, but different time series length m. Fig-
ure 17(b) shows the running time of the two methods as m varies,
with § = 0.01 - m and h set to the average distance of the sensors.
As shown, the first stage of both methods still increases linearly
with m, while the second stages increases sub-linearly. This sug-
gests that Assembler scales well with the length of time series
and suitable for massive geo-sensory data in practice.

S. RELATED WORK

Generally, our work is related to the following topics.

Motif discovery. Motif discovery in time series has been stud-
ied extensively. Given a distance threshold ¢ and a length [, two
length-/ time series subsequences form a motif if their distance is
smaller than §. The top-K motif discovery problem aims at find-
ing the K subsequences that have the largest number of matches
in the time series. Lin et al. [10] first introduced this problem and
used hash-based counting to find motifs. Chiu ez al. [2] developed
an algorithm that finds approximate motifs in linear time. The key
idea is to maintain a collision matrix and use random projection to
map subsequences into the collision matrix. Mueen et al. [15] pro-
posed a method that fast finds exact motifs with the linear ordering
heuristic and the early abandoning strategy.

Motif discovery in multi-dimensional time series has also been
studied. Tanaka et al. [20] first transformed the multi-dimensional
time series using principal component analysis, and then used ran-
dom projection [2] to find motifs in the transformed signal. Minnen
et al. [14] studied the problem of mining sub-dimensional motifs
that span across only a subset of the dimensions. Patel et al. [17]
introduced lag patterns to capture the invariant ordering of the mo-
tifs extracted from multiple time series. Unfortunately, as discussed
in Section 1, none of these techniques are capable of mining SCPs
because of the redundancy problem of geo-sensory data, as well as
the duration variation and combinatorial nature of SCP.

Time series segmentation and change detection. Sliding win-
dow, top-down, and bottom-up approaches [8] are popular methods
to partition a time series into line segments. Wang et al. [22] pro-
posed the pattern-based hidden Markov model that can segment
a time series as well as learn the relationships between segments.
Methods have also been proposed [9, 6] to obtain piecewise poly-
nomial approximations and/or perform on-line segmentation.
Change detection aims to find the time points where the statis-
tical property of the time series changes significantly. It is closely

related to time series segmentation as such points can be considered
as the boundaries of different segments. Yamanishi et al. [23] uni-
fied the problems of change detection and outlier detection based
on the on-line learning of an autoregressive model. Sharifzadeh
et al. [19] used wavelet footprints to find the points where the
polynomial curve fitting coefficients show discontinuities. Kawa-
hara et al. [7] judged whether a point is a change by computing the
probability density ratio of the reference and test intervals.

While Assembler uses the bottom-up segmentation approach
due to its simplicity and practical effectiveness, it can be easily
adapted to other segmentation algorithms. It is also worth mention-
ing that, the segmentation of Assembler is performed on short
evolving intervals instead of the original long time series, which
renders the segmentation process really fast.

Co-evolving time series analysis. Papadimitriou et al. [16] intro-
duced SPIRIT for multi-sensory time series, with a focus on discov-
ering the hidden variables and summarizing the key trends for the
entire time series collection. Sakurai ef al. [18] studied the problem
of detecting all pairs of time series that have strong lag correlations.
Ma et al. [11] designed a system for analyzing the sensory data in
water distribution systems. One component in the system evaluates
the correlations among the co-evolving multi-sensory data. How-
ever, it simply computes the Pearson’s correlations between two
sensors for a specific time interval, and then clusters the sensors
that have similar trends. In contrast, our SCP does not rely on a
specified time interval, and the member sensors in a SCP do not
necessarily have similar trends.

Trasarti er al. [21] studied the problem of finding regions that
show similar deviations in population density using mobile phone
data. They assume the condition has periodicity, i.e., the daily pop-
ulation densities in a region are similar in different days. While
this assumption is reasonable for population density, it does not
hold in many geo-sensory applications like air quality monitoring.
Moreover, they extract vertical changes in population density by
comparing the same hour of different days. In contrast, we extract
the horizontal changes, i.e., comparing the condition in current time
interval with the previous time interval.

Matsubara et al. [13] proposed a model to summarize the global-
level (i.e., country-level) and the local-level (i.e., state-level) prop-
erties of different diseases. However, it is designed specifically for
epidemic data instead of general geo-sensory data. Matsubara et al.
[12] also designed the AutoPlait model. However, the goal is to au-
tomatically discover the latent states for a bundle of time series and
segment the time series, which clearly differs from our problem.

6. DISCUSSIONS AND CONCLUSIONS

We introduced the problem of mining spatial co-evolving pat-
terns from geo-sensory data. We designed the two-stage method,
Assembler, for effective and efficient SCP mining. It first de-
tects frequent evolutions for individual sensors and then assembles
single patterns into SCPs. Our experimental results demonstrate
that Assembler is effective, efficient, and scalable. We note that
Assembler also enjoys the nice property that both its two stages
can be easily parallelized to achieve even better efficiency. For the
first stage, the wavelet transform and the segment-and-group pro-
cess are performed independently for the sensors. For the second
stage, the branches from the single sensors in the SCP search tree
are mutually independent, and thus can be searched in parallel. For
future work, we plan to leverage the discovered SCPs to improve
the air quality prediction task in different cities in China*, and also

*http://urbanair.msra.cn/

perform a thorough study on the correlation between AQI SCPs and
the traffic patterns in Beijing.

7. ACKNOWLEDGEMENTS

We thank the reviewers for their insightful comments. This work
was sponsored in part by the U.S. Army Research Lab. under Co-
operative Agreement No. W911NF-09-2-0053 (NSCTA), National
Science Foundation 1IS-1017362, 1IS-1320617, and 11S-1354329,
HDTRA1-10-1-0120, and grant 1U54GM 114838 awarded by NIGMS
through funds provided by the trans-NIH Big Data to Knowledge
(BD2K) initiative (www.bd2k.nih.gov), and MIAS, a DHS-IDS Cen-
ter for Multimodal Information Access and Synthesis at UIUC. Xi-
uli Ma is supported by the National Natural Science Foundation of
China under Grant No.61103025 and China Scholarship Council.

8. REFERENCES

[1] R. Agrawal and R. Srikant. Fast algorithms for mining association rules in large
databases. In VLDB, pages 487-499, 1994.

[2] B.Y. Chiu, E. J. Keogh, and S. Lonardi. Probabilistic discovery of time series
motifs. In KDD, pages 493—498, 2003.

[3] D. Comaniciu. An algorithm for data-driven bandwidth selection. IEEE Trans.
Pattern Anal. Mach. Intell., 25(2):281-288, 2003.

[4] D. Comaniciu and P. Meer. Mean shift: A robust approach toward feature space
analysis. IEEE Trans. Pattern Anal. Mach. Intell., 24(5):603-619, 2002.

[5] I Daubechies. The wavelet transform, time-frequency localization and signal
analysis. IEEE Transactions on Information Theory, 36(5):961-1005, 1990.

[6] E.Fuchs, T. Gruber, J. Nitschke, and B. Sick. Online segmentation of time
series based on polynomial least-squares approximations. IEEE Trans. Pattern
Anal. Mach. Intell., 32(12):2232-2245, 2010.

[7]1 Y. Kawahara and M. Sugiyama. Change-point detection in time-series data by
direct density-ratio estimation. In SDM, pages 389-400, 2009.

[8] E.J.Keogh, S. Chu, D. Hart, and M. Pazzani. Segmenting Time Series: A
Survey and Novel Approach. In Data Mining In Time Series Databases,
volume 57, pages 1-22. 2004.

[9] E.J.Keogh, S. Chu, D. M. Hart, and M. J. Pazzani. An online algorithm for
segmenting time series. In ICDM, pages 289-296, 2001.

[10] J.Lin, E. Keogh, S. Lonardi, and P. Patel. Finding motifs in time series. In
Proceedings of the Second Workshop on Temporal Data Mining, pages 53—-68,
2002.

[11] X.Ma, H. Xiao, S. Xie, Q. Li, Q. Luo, and C. Tian. Continuous, online
monitoring and analysis in large water distribution networks. In ICDE, pages
1332-1335,2011.

[12] Y. Matsubara, Y. Sakurai, and C. Faloutsos. Autoplait: automatic mining of
co-evolving time sequences. In SIGMOD, pages 193-204, 2014.

[13] Y. Matsubara, Y. Sakurai, W. G. van Panhuis, and C. Faloutsos. FUNNEL.:
automatic mining of spatially coevolving epidemics. In KDD, pages 105-114,
2014.

[14] D.Minnen, C. L. Isbell, I. A. Essa, and T. Starner. Detecting subdimensional
motifs: An efficient algorithm for generalized multivariate pattern discovery. In
ICDM, pages 601-606, 2007.

[15] A.Mueen, E. J. Keogh, Q. Zhu, S. Cash, and M. B. Westover. Exact discovery
of time series motifs. In SDM, pages 473-484, 2009.

[16] S. Papadimitriou, J. Sun, and C. Faloutsos. Streaming pattern discovery in
multiple time-series. In VLDB, pages 697-708, 2005.

[17] D. Patel, W. Hsu, M. Lee, and S. Parthasarathy. Lag patterns in time series
databases. In DEXA, pages 209-224, 2010.

[18] Y. Sakurai, S. Papadimitriou, and C. Faloutsos. BRAID: stream mining through
group lag correlations. In SIGMOD, pages 599-610, 2005.

[19] M. Sharifzadeh, F. Azmoodeh, and C. Shahabi. Change detection in time series
data using wavelet footprints. In SSTD, pages 127-144, 2005.

[20] Y. Tanaka, K. Iwamoto, and K. Uehara. Discovery of time-series motif from
multi-dimensional data based on MDL principle. Machine Learning,
58(2-3):269-300, 2005.

[21] R. Trasarti, A.-M. Olteanu-Raimond, M. Nanni, T. Couronné, B. Furletti,

F. Giannotti, Z. Smoreda, and C. Ziemlicki. Discovering urban and country
dynamics from mobile phone data with spatial correlation patterns.
Telecommunications Policy, 2014.

[22] P. Wang, H. Wang, and W. Wang. Finding semantics in time series. In
SIGMOD, pages 385-396, 2011.

[23] K. Yamanishi and J. Takeuchi. A unifying framework for detecting outliers and
change points from non-stationary time series data. In KDD, pages 676681,
2002.

[24] Y. Zheng, L. Capra, O. Wolfson, and H. Yang. Urban computing: Concepts,
methodologies, and applications. ACM TIST, 5(3):38:1-38:55, 2014.

