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ABSTRACT

Humans understand the world by classifying objects into an
appropriate level of categories. This process is often auto-
matic and subconscious. Psychologists and linguists call it
as Basic-level Categorization (BLC). BLC can benefit lots of
applications such as knowledge panel, advertising and rec-
ommendation. However, how to quantify basic-level concepts
is still an open problem. Recently, much work focuses on con-
structing knowledge bases or semantic networks from web
scale text corpora, which makes it possible for the first time
to analyze computational approaches for deriving BLC. In
this paper, we introduce a method based on typicality and
PMI for BLC. We compare it with a few existing measures
such as NPMI and commute time to understand its essence,
and conduct extensive experiments to show the effectiveness
of our approach. We also give a real application example to
show how BLC can help sponsored search.
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1. INTRODUCTION

Humans understand the world by classifying objects into
concepts. The concepts an object belongs to form a set of
hierarchically organized categories, ranging from extremely
general to extremely specific [23]. Furthermore, different lev-
els of categorization reflect different levels of abstraction,
which associate with different properties.
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1.1 Basic-level category

A human being usually maps an object to an appropri-
ate level of category, and regard the object as equivalent to
other objects in the category. For example, one would say I
have a house, a car, and a dog instead of I have
asset, vehicle, and mammal. Similarly, when some-
one sees an iPhone 6, he most likely thinks of high end
smartphone or Apple’s product, instead of item or popular
cellular wireless network phone. For humans, this process of
categorization is often automatic and subconscious, and psy-
chologists call the process Basic-level Categorization (a.k.a.
Basic-level Conceptualization, or BLC for short).

BLC is important because it provides rich information
with little cognitive efforts [23]. When a person obtains the
basic-level category of an unfamiliar object, he will asso-
ciate the object with the known properties of the basic cate-
gory, and he suddenly understands almost everything about
the object. The fact that he can do this with little cogni-
tive efforts® has intrigued and pushed researchers to better
understand BLC. One of the most important properties of
BLC was obtained by Rosch et al. [24]. We summarize their
findings in Table 1, which shows that, at the basic level, per-
cetved similarity among category members is maximized and
perceived similarities across contrasting categories is mini-
mized. As a result, the basic-level category of an object is
usually in the middle of the object’s taxonomic hierarchies.

Category Level | Informative? | Distinctive?
Superordinate No Yes
Basic-level Yes Yes
Subordinate Yes No

Table 1: Differences among category levels

As an example, consider the term Microsoft, which can
be categorized into a large number of concepts, for example,
company, large company, Redmond IT giant, etc. Let us take
a closer look at the following three concepts:

1. company
2. software company
3. largest OS vendor

Both 1 and 3 are highly related to Microsoft in the
sense that when we think of Microsoft, we think of it as a

Tt is shown that three-year-olds already master basic-level
categorization perfectly [16].



company, and when we think of largest OS vendor, we think
of Microsoft. However, neither of them is an appropri-
ate basic-level concept for Microsoft. To see this, assume
we want to find objects that are similar to Microsoft.
If we go through company, we may find objects such as
McDonald’ s and ExxonMobil, which have not much sim-
ilarity to Microsoft. If we go through largest OS vendor,
we may not be able to find any reasonable object other than
Microsoft. On the other hand, if we go through software
company, we may find Oracle, Adobe, IBM, which are a
lot more similar to Microsoft. Thus, software company is
a more appropriate basic-level concept for Microsoft, or
in other words, properties associated with software company
are more readily applied to Microsoft, which is also the
reason why through software company we can find many
objects that are similar to Microsoft.

Unfortunately, although much work has been done on this
topic, we still do not have a clean formula to infer the basic-
level category for any given object. In other words, we do
not know how to pick software company from thousands of
concepts that Microsoft belongs to. Psychologists have
used word association tests on human subjects to infer con-
cepts that may correspond to the basic-level categories [24].
But such approaches do not scale. On the other hand, an
increasing number of applications in the field of information
retrieval, natural language understanding, and artificial in-
telligence require a computational approach for BLC. Short
text conceptualization [25, 15, 14, 30] in one of the funda-
mental techniques. It maps a short text to the concept space,
and can benefit web table understanding [28], query intent
detection [29], query recommendation [27], etc. BLC is the
basic unit of conceptualization, and is crucial for short text
conceptualization.

1.2 Applications

For many applications, including query understanding and
ads matching, finding an object’s basic-level category is im-
portant. Here, we give two real life applications that may
serve to demonstrate the need of BLC.

e Knowledge panel: Search engines display a knowl-
edge panel for queries that contain well-known enti-
ties. Fig. 1(a) shows the content of Google’s knowledge
panel when people search for Albert Einstein. Sim-
ilarly, Bing also provides knowledge panel (As Fig. 1(b)
shows). It is worth noting that Albert Einstein
is labeled as a theoretical physicist, which, compared
to world famous German-born American physicist or
just physicist, is arguably the “just-right” concept to
describe Albert Einstein. Unfortunately, there is
no good inferencing mechanism to derive such “just-
right” concepts, and as a result such labels are cur-
rently hand-created by human editors.

e Advertising and recommendation: Recommend-
ing entities similar to a given entity is important in
many applications. As an example, for users who show
interest in Samsung Galaxy S5, we may want to
recommend HTC One M8 or iPhone 6, rather than
Samsung LED TV. As we know, an entity’s basic-level
category usually contains many entities that are sim-
ilar to the entity. In the above example, entities in
the category of popular smartphone or high end smart-
phone may be good candidates. Thus, knowing the

Albert Einstein

ITheoretical Physicist
,,,,,,,,,, a

Albert Einstein was a German-born theoretical physicist and philosopher
of science. He developed the general theory of relativity, one of the two
pillars of modern physics. Wikipedia

(a) Google’s knowledge panel

Larry Page

> bing
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Lawrence "Larry” Page is an American computer scientist and internet
entrepreneur who cofounded Google Inc. with Sergey Brin, and is the
corporation’s current CEO. Page is the inventor of PageRank, Google's
most well-known search ranking algorithm. As of November 2014, Page
leads a global organization that consists of 55,600 employees ope... +

en.wikipedia.org
(b) Bing’s knowledge panel

Figure 1: Examples of the Application for BLC

basic-level category enables us to provide good rec-
ommendations. Currently, good recommendations are
usually based on signals from click logs, but click logs
are not always available, especially for new entities.

1.3 Computational approaches for BLC

The rise of applications such as those mentioned above
is pushing for computational approaches for BLC. It has
become clear that a better understanding of the human cog-
nitive process helps us build machines that understand the
human world. In recent years, a large variety of knowledge
bases [3, 26, 9, 32, 5] have been constructed for text under-
standing and a variety of other tasks. Some of these knowl-
edge bases define a rich concept space, and provides a map-
ping from a term to the concept space. However, there is
no mechanism to determine the basic-level concept for the
term, which makes it difficult for machines to “understand”
the term, which in turn hampers the impact of such knowl-
edge bases in natural language understanding and other ap-
plications.

In this paper, we focus on computational approaches for
deriving BLC. Based on previous studies [24], an object’s



basic-level concept is considered to be in the middle of the
taxonomic hierarchies. In other words, basic-level concepts
are a trade-off between general concepts and specific con-
cepts. It is also a trade-off between the accuracy of clas-
sification and the power of prediction. Based on this ob-
servation, we introduce a method based on typicality and
PMI for BLC. We compare our approach with a few exist-
ing measures including graph commute time to understand
its essence. We also conduct extensive experiments to show
the effectiveness of our approach.

1.4 Paper Organization

The rest of the paper is organized as follows. Section 2 in-
troduces background knowledge. Section 3 focuses on com-
putational approaches of BLC. We discuss typicality, PMI,
and introduce our own approach. Section 4 compares our
approach with existing approaches. We conclude in Section
5.

2. KNOWLEDGE BASES

A large variety of knowledge bases, including lexcial knowl-
edge bases and encyclopedic knowledge bases, have been
constructed for various applications. Some of them, such as
WordNet [10], Wikipedia [31], Cyc [18], and Freebase [3],
are created by human experts or community efforts. Oth-
ers, such as KnowItAll [9], NELL [5], and Probase [32], are
created by data-driven approaches. Because information in
data-driven knowledge bases is usage based, it is particularly
useful for natural language understanding. More specifically,
data-driven-based knowledge bases are special in the follow-
ing aspects:

1. Data-driven knowledge bases contain more fine-grained
concepts than human-crafted ones. For example, Free-
base has thousands of human crafted concepts, while
Probase has millions of concepts (shown in Fig. 2).

2. Information in data-driven knowledge bases is not black
or white, but is associated with various weights and
probabilities such as typicality (i.e., how typical is an
instance for a concept), etc.

In this paper, we are concerned with basic-level catego-
rization. Many basic-level concepts, such as high-end smart-
phone, software company, and theoretical physicist, are fine-
grained concepts that are not present in manual-crafted knowl-
edge bases. Furthermore, inferring basic-level concepts re-
quires the statistical information associated with the knowl-
edge. Therefore, we choose data-driven knowledge bases for
inferring basic-level concepts.

We use Probase? [32] to provide us fine-grained concepts
and their statistics, but our techniques can be applied to
other knowledge bases which meet above requirements, such
as KnowltAll and NELL. Probase is acquired from 1.68
billion web pages. It extracts isa relations from sentences
matching Hearst patterns [12]. For example, from the sen-
tence ... presidents such as Obama ...,itextracts
evidence for the claim that Obama is an instance of the con-
cept president. The core version of Probase contains 3,024,814
unique concepts, 6,768,623 unique instances, and 29,625,920
isA relations.

2Probase data is publicly available at
http://probase.msra.cn/dataset.aspx

Term | Concept
apple fruit
apple company
apple food
apple movie
apple guitarist
apple | music track
apple book

Table 2: The Term Apple and Its Concepts

3. BASIC LEVEL OF CATEGORIZATION

In this section, we describe computational approaches for
BLC. We start with two popular measures, namely typicality
and PMI, and we show why they are insufficient to derive
the basic-level category. Based on the insights from these
measures, we introduce our approach, and also the intuition
why our approach is a better mechanism for BLC.

3.1 Preliminary

Scoring is very useful for machines when they leverage
knowledge bases. It can make machines do reasoning like hu-
man beings. Without scores, knowledge facts in the knowl-
edge base or semantic network are not easy to use. E.g. for
the term apple, it may belongs to lots of categories, such as
fruit, company, book, movie, and music track. For human be-
ings, probably they will think of fruit or company when they
see apple. For machines, if they do not have scores, they
will treat music track as important as fruit or company. This
makes machines cannot reason over the knowledge base as
human beings. What is worse, according to our observations,
all kinds of terms or phrases may be names of book, movie,
or music track, etc. Without scores, machines will think all
texts are related, because they all belong to these concepts.
This leads to many errors when machines understand texts.

3.2 Typicality

Typicality is an important measure for understanding the
relationship between an object and its concept. Each cate-
gory (concept) may contain one or more typical items, which
are ideal or average examples that people extract from see-
ing real examples [23]. For example, given a concept bird,
people are more likely to think of robin than penguin,
although penguin is also a bird. Similarly, when someone
mentions Barack Obama without a context, we are more
likely to think of the concept of president than author, al-
though Barack Obama is actually a best-selling author of
several books.

More specifically, we use P(e|c) to denote the typical grade
of an instance e in concept ¢, and we use P(c|e) to denote the
typical grade of a concept ¢ for instance e. We call P(e|c)
and P(cle) typicality. For our previous examples, we have
P(robin|bird) > P(penguin|bird) and P(president|Obama)
> P(author|Obama).

How to compute typicality is an interesting and challeng-
ing problem. Mervis et al. [21] found that frequency on its
own does not predict typicality. For example, chicken is a
bird, and it appears frequently in day-to-day conversations
or in texts. But it is much less typical than some much less
frequently encountered or discussed birds, such as robin.
On the other hand, how often an item is thought of as being
a member of a category can be used to measure its typi-
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Figure 2: Frequency distribution of the 3 million concepts

cality [1]. For example, by leveraging Hearst patterns [12],
we find chicken is used as an example of bird 130 times
in a corpus, while robin is used 279 times. This result is
consistent with the fact that robin is more typical than
chicken as a bird. Based on the above observation, in our
work, we derive typicality from co-occurrences of concept
and instance pairs:

L CO
P(e|c) = . conle,er) (1)
P(cle) = e

ZeEci ’I’L(Ch 6)

where n(c, e) is the co-occurrence of concept ¢ and instance
e in Hearst patterns’ sentences from Web documents.

3.3 Using Typicality for BLC

On the first look, typicality can be used directly for BLC:
For a given instance e, how likely is the concept ¢ that max-
imizes P(c|e) be the basic-level concept for e? Or, how likely
is the concept ¢ that maximizes P(e|c)?

In this section, we argue that neither is a good candidate
for the basic-level concept. Let us go back to the Microsoft
example we mentioned in Section 1. It is easy to see that
company is a very typical concept for Microsoft, that is,
when we think of Microsoft, we think of it as a com-
pany. On the other hand, Microsoft is a very typical in-
stance of the concept largest OS vendor, that is, when we
talk about largest OS vendor, we are likely talking about
Microsoft. In other words, c; = company has very large
typicality P(cil|e) and c3 = largest OS vendor has very large
typicality P(e|cs), where e = Microsoft. But neither is an
appropriate basic-level concept for Microsoft, for the rea-
sons we described in Section 1. In fact, the two concepts
represent two extremes: company is a very general concept
for Microsoft, while largest OS vendor is a very specific con-
cept. These two extremes have the following characteristics:

e For the purpose of classifying an instance into the right
category, general concepts tend to maximize the accu-
racy. For example, if we classify instances to general

concepts such as item or object, it may always be cor-
rect.

e For the purpose of making prediction, specific concepts
tend to have greater power. For example, largest OS
vendor is able to predict more about Microsoft (its
properties) with a higher confidence than company.

In other words, general concepts may be correct answers to
a given instance, but they cannot distinguish different kinds
of instances. On the other hand, specific concepts preserve
more useful information about instances, but their coverage
is limited. What we look for is a compromise of the two.

3.4 Using Typicality with Smoothing for BLC

The typicality score we discussed above tends to give higher
score to “extreme” concepts, that is, concepts either very
general or very specific. The reason is obvious: (1) when e is
given, P(c|e) is proportional to the co-occurrence of ¢ and
e, so it tends to map e to some general concepts; (2) when e
is given, P(e|c) tends to return those specific concepts that
only contain e.

Usually, to address the problem of “extreme” values, we
can use the technique of smoothing. We define smoothed typ-
icality as follows:

n(c,e) +¢ )
Zei Ec TL(C, 67,') + €Ninstance ( )

P(efe) =

where Nipstance 18 the total number of instances, and ¢ is a
small constant which assumes every (concept, instance) pair
has a very small co-occurrence probability in the real world,
no matter whether we observe it or not.

Smoothed typicality reduces extreme values. For example,
assume originally we have P(Microsoft|largest OS vendor)
= 1. In other words, Microsoft is the only instance in
the category of largest OS vendor. Assume ¢ = 0.001 and
Ninstance = 1M, we derive smoothed typicality according
to Eq 2 as P(e|c) = (1 + 0.001)/(1 + 0.001 * 10%) = 0.001,
which is much smaller than the original value. This trans-
lates to boosting the typicality of other concepts such as



software company, which makes it possible for us to choose
a more appropriate basic-level category.

However, the smoothing approach has two problems. First,
the results are very sensitive to e, which is difficult to tune.
Second and more importantly, smoothing helps avoid ex-
treme values using a rationale totally inconsistent with ours.
For example, it assumes that there are many largest OS ven-
dors for which we do not observe, and as a result it discounts
P(Microsoft|largest OS vendor) to 0.001. But the fact is,
Microsoft is indeed one of the very few largest OS vendor,
and reducing its typicality to 0.001 does not make sense.
Thus, smoothing does not address the fundamental chal-
lenges in finding the basic-level category.

3.5 Using PMI for BLC

Pointwise Mutual Information (PMI) [20] is a common
measure of the strength of association between two terms.
We may consider using the PM I between concept ¢ and in-
stance e to find the basic-level concepts, that is, we consider
¢ = argmax. PMI(e,c) as e’s basic-level concept, where
PMI(e,c) is defined as

P(e,c)

PMI(e,c) = log P(e)P(c)

®3)

This leads to
P(e|c)P(c)
P(e)P(c)

For a given e, log P(e) is a constant. Then, ranking concepts
by PMI is equivalent to ranking by typicality P(e|c). In
other words, PMI is equivalent to typicality. But as we have
already shown in Section 3.3, using typicality to find basic-
level concept does not work.

In order to make PM1I less sensitive to occurrence fre-

PMI(e,c) =log =log P(e|c) —log P(e)  (4)

quency and at the same time more easily interpretable, Bouma

et al [4] proposes a normalized pointwise mutual information
(NPMI). The NPMI between concept ¢ and instance e is
defined as:

PMI(e,c)
—log P(e, c)
log P(e|c) — log P(e)

- —log P(e, c) (%)

As we can see from Eq 5, similar to PM I and typicality,
NPMI also tends to produce concepts either too general or
too specific. More specifically,

NPMI(e,c) =

e when P(e,c) is large (close to 1), P(e,c) dominates
NPMTI because —logP(e,c) tends to go to 0. This
leads to top basic-level concepts too general.

e when P(e,c) is small, m does not change much
when P(e,c) changes, thus, PMI dominates NPM]I
in this case. As mentioned above, this leads to top
basic-level concepts too specific.

3.6 Using Rep(e,c) for BLC

Neither typicality nor PM I produces basic-level concepts.
Based on previous studies [24], we know basic-level concepts
are concepts neither too general nor too specific. To this
end, we make an intuitive compromise and define a scoring
function Rep as follows:

Rep(e, ¢) = P(cle) - P(elc) (6)

For an instance e, we use the above score to find its basic-
level concept:

blc(e) = arg max Rep(e, c) (7

Intuitively, our measure tries to boost such a concept ¢ for
a given instance e: i) concept c is e’s typical concept, and ii)
instance e is also ¢’s typical instance.

Moreover, if we take the logarithm of our scoring function
in Eq 6, we get

P(e,c)?
108 506 ()
= PMI(e,c)+log P(e,c) (8)

log Rep(e, ¢)

This in fact corresponds to PMI?, which is a normalized
form of PMT in the PMI* family [7]. PMI? is proposed
in an attempt to investigate how to improve upon PM I by
introducing the P(e,c) inside the logarithm. It normalizes
the upper bound of PMI [4]. Therefore, PMI? can reduce
the extreme values, and help to boost concepts in the middle
of the taxonomy.

One important property of an instance’s basic-level cate-
gory is that the category is more likely to contain its similar
instances. In our Microsoft example in Section 1, we men-
tioned that going through too general concepts (such as com-
pany) or too specific concepts (such as largest OS vendor)
we cannot find instances similar to Microsoft. If instead
we go through a likely basic-level category (such as software
company) we find many similar instances. This inspires a
graph traversal approach to finding basic-level categories.
In the rest of this section, we show that a graph traversal
approach is equivalent to our approach of maximizing the
scoring function Rep in Eq 7.

Random walk on
IsA graph

Figure 3: Random Walk on the IsA Network

As we mentioned above, given the instance e, the basic-
level concept ¢ should be one of e’s typical concepts, in other
words, ¢ should have “shortest distance” with e. Similarly,
given this basic-level concept ¢, e should have “shortest dis-
tance” with c. Therefore, for an instance e, we consider the
process of finding its basic-level concepts as a process of find-
ing concepts that have shortest expected distance to e. Intu-
itively, traversing from node e, it is very likely we arrive
at the concept, and traversing from the concept, it is very
likely we come back to e. This corresponds to a random walk
problem of finding nearest nodes reached by a given node, as
shown in Fig. 3. We use commute time [19] as a measure of
the distance between two nodes in a graph. Commute time
is defined as the expected number of steps that a random



walk starting at node ¢, going through node j once, and re-
turning to 7 again. The commute time between an instance
e and a concept c is:

Time(e,c) = Z(2k) * Py(e, c)
= Z(2k) * Py(e,c) + Z (2k) * Py (e, c)
k=1 k=T+1
> Z(Zk) * Py(e, c)
+2(T+ 1) (1= Py(e,c)) (9)

k=1

where Py (e, c) is the probability of starting from e to ¢ and
back to e in 2k steps.

As we are only interested in concepts within a short com-
mute, we may just ignore concepts with commute time larger
a threshold of T steps. Let us constrain the random walk
within 4 steps, then we have:

Time'(e,c) = 2x P(cle)P(e|c) + 4 (1 — P(cle)P(elc))
4 —2x P(cle)P(e|c)
4 — 2% Rep(e, c) (10)

This shows that the commute time Time’(e, ¢) has an in-
verse relationship with the scoring function Rep we defined
in Eq 6. Thus, our simple, easy-to-compute scoring method
is equivalent to a graph traversal approach of finding the
basic-level category under this random walk assumption.
But for the complete commute time, our experiments show
that the representativeness score is better than it.

4. EXPERIMENTS

To evaluate the effectiveness of scores proposed in this
paper, we conduct our experiments on the Probase [32] se-
mantic network. The dataset we use is called “core” version.
It contains 3,024,814 unique concepts, 6,768,623 unique in-
stances, and 29,625,920 edges among them.

4.1 Experiment Setting

Conceptualization is one of the essential processes for text
understanding. It maps instances in the text to the concept
space. In this evaluation, we select top queries from Bing
search logs between January 1st, 2015 and January 31st,
2015, then we use the typicality P(cle), P(e|c), and our ap-
proach Rep(e, ¢) to rank concepts corresponding to these in-
stances. Finally, we generate 1,683 (instance, concept) pairs
as labeling candidates.

We also compare our approaches with several baselines:
MI, NPMI, PMI?. Since PMTI is reduced to typicality
P(e|c) in our scenario, we do not treat it as another baseline
separately. The formulas of these baselines are as follows:

Mutual Information (MI):
MI(e,c) =5 Ple,c)log %

Normalized Pointwise Mutual Information (NPMI):
please refer to Equation 5.

3 . 3 _ P(e,c)®
PMI” [4]: PMI"(e, ¢) = log 55500

4.2 Metrics

We now discuss how we evaluate the results of different
approaches. As there is not ground-truth ranking for concep-
tualization results. We submitted a labeling task to UHRS
(Universal Human Rating System), which is a crowdsourcing
and human annotation platform. Each (instance, concept)
pair is labeled by three workers. Therefore we got 5,049 la-
beled records. We took the majority of the labels as the final
label. If all three annotators did not agree with each other,
this pair was sent to the fourth annotator to label, and so on.
In this labeling task, the workers did not our labeling goal.
They just strictly follow the guideline shown in Table 3.

Label Meaning Examples

Excellent | Good matched con- | (bluetooth, wire-
cepts at the basic | less communication
level protocol)

Good A little general or | (bluetooth, accessory)
specific

Fair Too general or spe- | (bluetooth, feature)
cific

Bad Non-sense concepts | (bluetooth, issue)

Table 3: Labeling Guideline for Conceptualization

Then we employ precision@K and nDCG to evaluate the
results of different approaches. The precision@K is used for
evaluating the correctness of concepts, and nDCG is used
to measure the ranking of concepts.

For precisionQK | we treat Good/Excellent as score 1, and
Bad/Fair as 0. We calculate the precision of top-K concepts
as follows:

Efil rel;
=% an

where rel; is the score we define above.
For nDCG, we treat Bad as 0, Fair as 1, Good as 2, and
Ezxcellent as 3. Then we calculate nDCG as follows:

PrecisionQK =

K rel;
reli +3 2, log i (12)

. K idealrel;
ideal_rely + 330, “0

nDCGk =

where rel; is the relevance score of the result at rank i,
and ideal_rel; is the relevance score at rank 7 of an ideal list,
obtained by sorting all relevant concepts in decreasing order
of the relevance score.

4.3 NDCG & Precision

We show the comparison from two aspects: without smooth-
ing, and with smoothing. Fig. 4 shows the top-20 results for
different scoring approaches.

Without smoothing, as Fig. 4(a) shows, the score Rep(e, ¢)
is much better in precision than others. Rep(e, ¢) is the best
for top-2, top-5, and top-10. PMI? is also good for top-
1, but it is worse for other cases. So it is not stable. For
the ranking of top concepts, as Fig. 4(c) shows, Rep(e,c)
outperforms all other methods in all cases.

With smoothing, we try different values of ¢, from fe-3 to
1e-7. We observe that the smoothing technique has a signif-
icant effect on the typicality P(e|c), as shown in Fig. 5. For
P(e|c), its optimized € is Ie-4. With this smoothing setting,
as shown in Fig. 4(b) and Fig. 4(d), the typicality P(e|c)
outperforms all other methods in both precision and nDCG



when K is 2, 3, 5, 10, and 15. However, as we mentioned in
Section 3.4, the rationale of smoothed typicality is totally in-
consistent with our problem. Its top concepts may be good,
but not for the rest of concepts. Besides, it is quite sensitive
to &, which is hard to tune. On the other hand, Rep(e,c)
is still quite good, and it wins the precision@l when its
smoothing e=7Ie-4.

Based on this evaluation, we have the following conclu-
sions:

e The score Rep(e,c) performs best for conceptualiza-
tion task overall, and more importantly, it is robust.

e The smoothed typicality P(e|c) is very sensitive to e.
It may have a good performance for top results after
a sophisticated tuning on the smoothing value .

4.4 Examples

Some examples are shown in Table 4. We find top concepts
ranked by P(cle) tend to be general. E.g. the top 1 con-
cept of battery is item. Obviously, item is not a good con-
cept to predict the instance’s features. On the other hand,
concepts ranked by P(e|c) (without smoothing) tends to be
specific. Though these concepts have greater power on pre-
diction, they have limited coverage. This makes them use-
less in the computation. E.g. when we compare two related
instances with extremely specific concepts, they may have
little overlapping information. In Table 4, concepts ranked
by Rep(e,c) and P(e|c) with smoothing(e = fe-4) are the
best. They are the trade-off between general concepts and
specific concepts.

However, as we mentioned in Section 3.4, ¢ is difficult to
tune, and the rationale of smoothed typicality is inconsistent
with the problem we want to resolve in this paper. For ex-
ample, largest OS vendor should not be assumed to contain
many other instances for which we do not observe. There-
fore, smoothed typicality may only be good for top concepts,
instead of all concepts.

4.5 Application

With the scores proposed in this paper, the knowledge
base becomes usable for machines. In this subsection, we
showcase one application leveraging the basic-level concepts.
Definitely, more applications can be easily developed for dif-
ferent scenarios.

Sponsored search is one of the most successful business
models for search engine companies. It matches user queries
to relevant ads. In reality, each ad is associated with a list
of keywords. Advertisers bid for keywords, and also specify
matching options for these keywords. One option is ezxact
match where an ad is displayed only when a user query is
identical to one of the bid keywords associated with the ad.
Another option is smart match which is based on semantic
relevance. Exact match targets exact traffic, but it is lim-
ited since queries are various. Currently, smart match is the
default option provided by mainstream search engines.

In smart match, search engines map the query to bid
ad keywords. Since both are short texts, traditional bag-of-
words approaches do not work well in this scenario. There-
fore, we can leverage the knowledge base for this task in
smart match.

For each short text, we first identify instances from the
short text (query, or bid keyword), and map it to basic-level
concepts with the score Rep(e,c). Then we simply merge

the concept vectors of different instances in the short text,
and get a single concept vector as the representation of this
short text. Finally, we can calculate the semantic similar-
ity between queries and bid keywords by comparing their
concept vectors (E.g. using cosine similarity function).

We conduct our experiments on real ads click log of Bing
(from January 1st, 2015 to January 31st, 2015). The exper-
iment process is as follows: first, we calculate the semantic
similarity score of (query, bid keyword) pairs for each record
in the log; Second, we divide all scores into 10 buckets; Third,
we aggregate the click number and impression number in the
same bucket.

The overall results are illustrated in Fig. 6(a). X-axis rep-
resents the bucket number (E.g. bucket I means the sim-
ilarity score is between 0 and 0.1, and so on). Y-axis is
the general click-through rate (CTR) of this bucket, where
CTR = % From the figure, we observe that:
(1) once our semantic similarity score is low, the CTR is low;
(2) once our score is high, the CTR is high; (3) the high-
est CTR is about 3 times of the lowest CTR. This means
our semantic similarity score can be a strong feature for the
query and ads matching.

We further analyze our results by query frequencies. We
separate all queries to 10 deciles in the order of frequency,
and each decile has the same total volume of traffic. Gen-
erally speaking, decile 1 to 3 are head queries, decile 4 to 6
are torso queries, and decile 7 to 10 are tail queries. Usu-
ally, head queries can be covered by exact match. Therefore
we mostly focus on torso queries and tail queries. Results
are shown in Fig. 6(b) and Fig. 6(c). For both torso and
tail queries, the correlation between our semantic similarity
score and CTR is preserved. This is quite good because long
queries usually are lack of click signals, and the semantics
can fill this gap.

S. RELATED WORK

The goal of BLC is for text understanding. Currently,
there are two major efforts on semantic analysis and text
representation. One is implicit knowledge mining, the other
is explicit knowledge mining.

In terms of implicit knowledge mining, some efforts focus
on implicit semantic analysis and topic modeling, such as
traditional latent semantic analysis (LSA) [8], probabilistic
latent semantic indexing (PLSI) [13], and latent Dirichlet
allocation (LDA) [2]. They can be also used for basic-level
concept reasoning. However, the semantics mined by these
approaches cannot be interpreted by human being. Besides,
their computation is quite heavy, which makes them cannot
be easily applied for large scale data. Other efforts try to get
the term embedding by using deep learning techniques [6,
22]. This embedding can be treated as the representation
for a given term in high-dimensional semantic space, and
benefit lots of applications. But ususally the embedding is
not good for those low frequency terms, and it is not easy
to tune once its overall quality is bad.

In terms of explicit knowledge mining, explicit semantic
analysis (ESA) [11] and conceptualization [25, 15] are the
representative work. The former represents the meaning of
texts by Wikipedia’s article titles. But it is still not the nat-
ural way of human thinking, and the “concepts” of a given
instance are related articles instead of its categories. The
latter is the scope of this paper. But previous work [25, 15]
pays attention to short-text level conceptualization, while
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Figure 4: Precision and nDCG Comparison

our paper focuses on a more fundamental part: instance-level
conceptualization. A good instance-level conceptualization
mechanism can further improve short-text level conceptual-
ization.

For scores discussed in this paper, typicality and basic-
level conceptualization are actively studied in cognitive sci-
ence and psychology at first. E.g. psychologist Gregory Mur-
phy’s highly acclaimed book [23] discusses the typicality and
the basic level of concepts from the perspective of psychol-
ogists, which is the basis of these two scores proposed in
this paper. Other work [17, 32] proposes typicality scores
for some special scenarios. Their scoring functions cannot
be easily extended to semantic networks. E.g. Lee et al. [17]
leverage instances as intermedia for calculating typicality
P(alc) between an attribute a and a concept c. Instead,
our typicality is more generic and easy to be adopted by

more applications. Besides, we also discuss a smoothing ap-
proach and Rep score, which have been proved that they
are much better than the standard typicality in instance-
level conceptualization. Furthermore, we compare our BLC
score function with PMI and commute time theoretically,
which reveals the essence of BLC score.

6. CONCLUSION

In this paper, we discuss computational approaches for
Basic-level conceptualization (BLC). We propose our method
based on typicality and PMI. We make deep analysis and
compare it with some popular measures to understand its
essence. We conduct extensive experiments and show the ef-
fectiveness of our approach. We also use a real example to
demonstrate how our score helps current ads system.
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Table 4: Examples of Basic-level Concepts by Different Scoring Approaches
Instance | Rank by | Rank by P(e|c) Rank by Rep(e, c) Rank by P(e|c) with
P(cle)
(same as PM1 in our scenario) (our approach) smoothing (e = Ie-4)
1. company 1. standardized technology industry | 1. software company 1. software company
Microsoft | 2. vendor 2. global and leading organization 2. technology company 2. software vendor
3. corporation 3. large software maker 3. software vendor 3. technology company
1. company 1. leading global MNC handset | 1. original mobile phone 1. mobile phone manufac-
Nokia brand turer
2. brand 2. established technology vendor 2. mobile phone manufacturer | 2. handset maker
3. manufacturer | 3. brand-name cell phone product 3. handset maker 3. handset manufacturer
1. language 1. built-in language environment 1. object-oriented language 1. object-oriented language
Java 2. programming | 2. controllable language 2. programming language 2. programming language
language
3. technology 3. managed language 3. object-oriented program- | 3. object oriented program-
ming language ming system
1. feature 1. connectivity facility 1. wireless technology 1. wireless technology
Bluetooth | 2. technology 2. disable networking capability 2. wireless protocol 2. connectivity option
3. wireless tech- | 3. hands-free communication device | 3. connectivity option 3. wireless protocol
nology
1. item 1. mobile power source 1. power source 1. power source
battery 2. accessory 2. electrical energy storage system | 2. power supply 2. power supply
3. power source | 3. auto supply 3. energy storage device 3. consumable part
3 3
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