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Abstract—This paper proposes a segmental conditional ran-
dom field framework for large vocabulary continuous speech
recognition. Fundamental to this approach is the use of acatic
detectors as the basic input, and the automatic constructio of
a versatile set of segment-level features. The detector sams
operate at multiple time scales (frame, phone, multi-phone
syllable or word) and are combined at the word level in the
CRF training and decoding processes. A key aspect of our
approach is that features are definedat the word level, and
are naturally geared to explain long span phenomena such
as formant trajectories, duration, and syllable stress paerns.
Generalization to unseen words is possible through the usef o
decomposable consistency features [1], [2], and our framewk
allows for the joint or separate discriminative training of the
acoustic and language models. An initial evaluation of this
framework with voice search data from the Bing Mobile (BM)
application results in a 2% absolute improvement over an HMM
baseline.

Index Terms—speech recognition, conditional random field,
direct modeling, detector features

|. INTRODUCTION

extensions previously made in a maximum likelihood frame-
work, e.g. [14], [15]. The states in our model represent
words, and features are defined on the combination of a
hypothesized word and a tempogsphn of observations. This
allows for the clean integration of a full ngram language
model in the training and decoding processes. The necessary
dynamic programming recursions are derived and presented
along with a gradient-descent based training process. From
the feature perspective, we use multi-scale detectorregea
and, critically, propose a process for automatically gatier
ing several classes of segment-level features based oe thes
streams. The resulting framework allows for the consistent
integration of numerous detector streams, and joint orrs¢pa
discriminative training of the language and acoustic madel
The remainder of this paper is organized as follows. In Sec-
tion Il, we present the mathematical formulation of segrakent
CRFs and relate it to past work. Section Il then describes th
specializations necessary to adapt it to the speech raamgni
task. Section IV presents the dynamic programming recossio

The use of Hidden Markov Models with MFCC or PLP necessary for computing with SCRFs. Section V continues by

derived features marks a state-of-the-art in speech rémgn outlining the feature classes we use, and Section VI present
systems which is hard to beat. With discriminative training set of experimental results using the complete framework.
and speaker-adaptation techniques, advanced systemsthre b
efficient and effective. Nevertheless, in spite of the poafer
current methods, there has been a significant amount of inter N )
est in alternative approaches from at least two differemtpo  Segmental Conditional Random Fields - also known as
of view: feature definition and underlying statistical misde Semi-Markov Random Fields [16] or SCRFs - underlie our
In terms of features, it is reasonable to expect a performan@PProach. They relax the Markov assumption from the frame-
improvement if we can inject additional knowledge into theState level to the word level, where states now correspotid wi
system via the use of multiple feature representations adgvariable and automatically derived time span. To explain
signal processing methods. Examples of work in this ardhese, we begin with the standard Conditional Random Field
include the use of Neural Net features [3], [4], Iandmarlfnoo_le' [17], as illustrated in Figure 1. Associ_ated with each
based ASR [5], and recent work with acoustic-detector bas¥§'tical edgev are one or more feature functiorfs(s., o)
systems [6], [7], [8]. In terms of the underlying statistica reIapng th(=T state vana_ble to the associated observatien.
models, there has been significant interest in non-gemeratSociated with each horizontal edgeare one or more feature
techniques, also referred to as “direct models.” Exampfes $nctionsga(sf, s7) defined on adjacent left and right states.
this work include Maximum Entropy Markov Models [9], (We uses; ands¢ to denote the Ie_ft and_ right states asso_ciated
Conditional Random Fields [10], [11], [12], [13], and |:|atv_v|th an edgee. ) The set of functlons_(lndexed Byandd) is
Direct Models [1], [2]. fixed across segments. A set of trainable parametgrand

In this work, we merge elements of both these research are also present in the model. The conditional probability
directions, and develop a segmental CRF approach for speedfrhe state sequencegiven the observations is given by
recognition. From the modeling perspective, this approach exp(Zv,k Nefi (50, 00) +Ze,d paga(st, s))

extends previous direct modeling work by operating at the(s|o) = -
segment rather than frame level, similar to segment level > e €XP(D, k A Sr (80, 00) + D2 4 paga(si, s)°))

Il. SEGMENTAL CRF FORMULATION




Fig. 1. Graphical representation of a CRF.

In speech recognition applications, the labels of interest

o, o

beling of each observation is unknown. Hidden CRFs [18]
address this issue by summing over all labelings consisten
with a known or hypothesized word sequence. However, in the
recursions presented in [18], the Markov property is applie

at the individual state level, with the result that segmienta
properties are not modeled. Further, there is an inheren
mismatch between the scale of the labels of interest (words
and the scale of the observations (100 per second). In this
work, we are instead interested in making a direct assoaiati

between a word-level state variable, and a word-scale span @
observations. This is motivated by a desire to use long-spar

Fig. 2. A Segmental CRF and two different segmentations.

e
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features that directly relate segment level acoustic ptigse Fig. 3. Incorporating last-state information in a SCRF.
to the word label, and to incorporate these in a model in as
straightforward way as possible. the state (word) sequencg i.e. for which the number of

To do this, we adopt the formalism of segmental CRFssegments equals the length of the state sequence.
In contrast to a CRF, the structure of the model is not Denote byqg a segmentation of the observation sequences,

fixed a priori. Instead, with N observations, all possible fOF €xample that of Fig. 3 whergy| = 3. The segmentation

. . : induces a set of (horizontal) edges between the statesiaefe
state chains of lengti < N are considered, with the to below ase € q. One such edge is labeled in Fig.

observations segmented intochunks in all possible ways. 3. Further, for any given edge, let o(e) be the segment
Figure 2 illustrates this. The top part of this figure showsese associated with the right-hand state as illustrated in Fig. 3.

observations broken into three segments, while the botatn p The segment(e) will span aett)!QCk of observations from some
shows the same observations partitioned into two segmengi@'t time to some endtimeg;; in Fig, 3, o(e) is identical to

: : : . e blockoi. With this notation, we represent all functions
For a given segmentation, feature functions are definedths w F(s5. s 0(c)) whereo(e) are the observations associated

standard CRFs. Because of the segmental nature of the mo S[h the segment of the right-hand state of the edge. The
transitions only occur at logical points, and it is clear whaconditional probability of a state (word) sequencgiven an
span of observations to use to model a given symbol. observation sequenaefor a SCRF is then given by

In considering Fig. 1, one may note that the same graphical . e
representation has in the literature also been used fot joinp(s|o) = 2q st Jal=ls| XP(Lecqr M (5T, 57, 0(€))) )
rather than conditional distributions. Further, the CRFfo- s Do st Jal=ls'| XP(Eecqr M Sr(8), 81¢, 0(€)))
lation allows feature functions involvingll the observations
at once. Despite this ambiguity, we maintain the structure Training is done by gradient descent using Rprop [19].
of [17]. Similarly, in Figs. 2 and 3, feature functions canTaking the derivative ofZ = log P(s|o) with respect to\,
in principle involve the entire observation span; the blogk we obtain the necessary gradient:
structure is best thought of as indicating t&ual observa-
tions which are compuationally used by the feature funstion

Since they functions already involve pairs of states, it is no 0L Ya st fal=ls] Te(@) exp(X e g Ak fi(s7.55,0(€)))
more computationally expensive to expand th&unctions to a—)\k - Ya st Jal=ls| XP(ceqr MeSr(sf58,0(€)))
include pairs of states as well, as |Ilustrate_d in Figurel@sT o T st et Th(@ XD ecqn Ak fi(sie,s1%,0(e))
structure has the further benefl_t of allowing us to drop the — S T st Jale | FP(Cecqp M TE (S 0(@)
distinction betweery and f functions. To denote a block of
original observations, we will use/ to refer to observations where Ty(q) = decq fr(s7,s7,0(€)) and Tj(q) =
i throughjj inclusive. > eeq fr(s1%, 51, 0(e)). This derivative can be computed effi-

In the semi-CRF work of [16], the segmentation of theciently with dynamic programming and a 1st pass state space
training data is known. However, in speech recognition iapplreduction, using the recursions described in Section IV. In
cations, this is not the case. Therefore, in computing secpie practice, we add L1 and L2 regularization termgtto obtain
likelihood, we must consider all segmentations consistétfit  an regularized objective function.



I1l. ADAPTATIONS FOR SPEECHRECOGNITION « An ARPA ngram backoff language model. We consider
A. Language Modeling the language model to have a start stdte that associ-
ated with the ngram<s> - and a set of final state® -

Specific to the speech recognition task, we define the state consisting of the ngram states endingeiris>.

transition functions with reference to a finite state repres S )
tation of an ARPA language model. In our formulation, the * S.mrt(t)’ which is a funct_lon that re“.””s a set Of. words
states in the SCRF correspond to language model states rathe likely to start ‘F.j‘t observatioy along with their endtimes.
than wordsper se, with the necessary word identity being ° succ(s,w) delivers the language model state that results
implicit in the language model state. There is a state for from seeing \I/vordw n states. .
each0...n — 1 gram word sequence in the language model. * features(s, s', st, et) returns a set of feat/uretmdméfs
. : .

Thus, from a hypothetical state corresponding to “the dog,” andj the corresponding feature .\IalLﬁ$s,s ’Ost)j
a transition to “dog barked” would be present in a trigram Let Q-Z.. represent_ th'e sgt of p%ssmle segmentations of the
language model containing the trigram “the dog barked.” Rbservations from tlmgtOJ. Let .S, represent the set pf st_ate
transition to the lower-order state “dog” would also be pras S€duénces starting with saccessor to statea and ending in
to allow for bigram sequences such as “dog nipped” that mayfateb: We definea(i, s) as
not be present as suffixes of trigrams. Any word sequence,(; o) — ox e e
. . . 3 - p )\kfk Spy Sy 0(€ .
is possible, due to the presence of backoff arcs, ultimately (i-5) Z Z (Z (s, 8, ole))
to the null-history state. Note that this does not imply an ) o
exponential number of language model states: the number'iéhen the sums are unconstrained, the normalization cdnstan
limited to those seen in the training data, and in generahtcouneeded in training is given by, . » a(IV, s) We defines(i, s)
cutoffs limit the number further. We have experimented witt#S
two types of language model features. The first uses just ong; .y — ex \ e e

. e ' 8) = p ki (87, sy, 0(e))).
language model feature function, which simply returns thgeE ) Z Z (Z (si, 57, 0(e)))
appropriate transition probability from the language niode

s€S5 aeQistlal=ls|  e€ak

SESYET qeQN,  st.|al=]s| e€q,k

e e e . e The normalization score can again be extracted as

Fin(si, sy, ) = LM(si, sp). 5(0, startstate). Now let U(i, j,s) be the set of joint seg-
Note that this is not restricted to a bigram language modementations and state assignments such that a segment exists
for example the language model state might refer to a 5-graff®m time i thoughj inclusive, and is labeled by. The sum
history in a 6-gram model. of the path scores of all segmentations and state assigament

In the second approach, we jointly (and discriminativelyin U is given by

train the acoustic and language models - see also [20], [21]. , , -
To do this, we introduce g bigr]1ary feature for each[ar<]: iL 63 Za(z B 1’8“)5(3’8)6)(10(2 Ak fi(5a; 5,07))-
finite state representation of the language model. Thizifeat ™ . k .
is 1 if the arc is traversed in transitioning from one languagd hiS fact is used in the computation of the gradient.
model state to another on a hypothesized word. Note that The following pseudocode outlines the efficient computa-
in general this may involve traversing backoff arcs as weffon of thea and 3 quantities. Alla and 5 quantities are set
as word-labeled arcs. This approach is similar to [22], bdf O when first referenced.
integrated with acoustic training. Alpha Recursion:
pred(s,x) =0 Vs, x

B. Pruning
L . a(0, startstate) = 1
In the segmental framework, it is theoretically necessary ) s\ — 0, s # startstate

to consider the possible existence of a segment between q;ey; 0. N—-1
pair of observations. The runtime is quadratic in the nunatber
observations, linear in the vocabulary, and linear in thaber
of language states. Thus, the computation is excessivasinle
constrained in some way. To implement this constraint, vee us
a form of fast-match [23] and use a functieturt(t) which
returns the set of words likely to begin at eveénirhe words
are returned along with hypothesized end times. A default
implementation ofstart(t) is built in, which reads a set of Beta Recursion:
possible word spans from a file,g. generated by a standard 5(V,s) =1, s € F
speech recognizer. B(N,s)=0, s¢ F
fori=N...1
IV. COMPUTATION WITH SCRFMODELS ,
_ foreachs s.t. 6(i,s) # 0

A. Forward Backward Recursions foreach(ps, st) € pred(s, )

The recursions make use of the following data structures K = features(ps, s, st + 1,1)

and functions: B(st,ps)+ = B(i, s) exp(X e M fr(DS, 8,044 1))

foreachs s.t. a(i, s) # 0
foreach(w, et) € start(i + 1)
ns = succ(s, w)
K = features(s,ns,i+ 1, et)
alet,ns)+ = al(i, s) exp(zzke,C A fr(s,ms, ofil))
pred(ns,et) = pred(ns,et) U (s,1)



A dictionary providing canonical word pronunciations can
_ _ be provided for each feature stream. For example, phonetic

B. Gradient Computation and syllabic dictionaries could be provided. As discussed
Let L be the constraints encoded in th&rt() function below, the existence of a dictionary enables the automatic

with which the recursions are executed. For each utteranceconstruction of certain consistency features that indicat
we compute: (in)consistency between a sequence of detected units and
those expected given a word hypothesis. These allow for

eneralization to words not seen in the training data.
ZE(u) =Y o (N, s) = B(0, startstate) g g

FL=0Vk B. Feature Parameterization
fori=N...1 With the inputs above, we are able to automatically define
foreachs s.t. 3(i, s) # 0 a variety of different feature types:
foreach(ps, st) € pred(s, i) 1) Ngram Existence Features: Recall that a language
K = features(ps, s, st +1,1) model states implies the identity of the last word that was
FcheIC(u)+_: _ decodedw(s). Existence features simply indicate whether a
fk(psys-,ozm)a(st,ps)ﬁ(i-,zs)Lc(z?(Zkem M fi(sis00041))  detector unit exists in a word’s span. They are of the form:

fu(s,s’,0%) = 6(w(s") = u)d(u € span(st,et)).

For each utterance, w e compute this once with constraintsyq dictionary is necessary for these; however, no generaliz
corresponding to the correct words to obt&iff(u). This is  tjon is possible across words. Higher order existence feafu
implemented by constraining the words returnedsbyrt(t)  gefined on the existence aframs of detector units, are also
to those starting at time in a forced alignment of the z,tomatically constructed. Since the total number of erisé
transcription. We then compute this without constrain®s, i features is the number of words times the number of unit
with start(t) allowed to return any word, to obtaifii"’(u).  ngrams, we must constrain the creation of such features in

The gradient is given by: some way. Therefore, we create an existence feature in two
or w oo circumstances only:
N Z(Fk (u) = F™ (u))- « when a word and ngram of units exists together in a
“ dictionary

Decoding proceeds analogously to the alpha recursion, with, when a word exists in a transcription file, and an ngram
sums replaced by maxima, and only the best predecessor exists in a corresponding detector file
maintained.
2) Ngram Expectation Features. Denote the pronunciation
V. FEATURE CONSTRUCTION of a word in terms of atomic units ag-on(w). Expectation

With the segmental CRF framework, we are now abléeatures represent one of three events: the correct-accept
to define features which span multiple observations. Thiglse-reject, or false accept of an ngram of units within a
contrasts with previous worleg. [18] which uses frame level Word's span. In order, these are of the form:
features de_rlved from the MFCCs, [9], which uses .frame- Fuls,s',0%) = 6(u € pron(w(s'))d(u € span(st, et))
level Gaussian rank features, and [11], [12], [13], whick us
frame-level neural net outputs as the basis for features. Th  fu(s,s’,0%) = d(u € pron(w(s'))d(u ¢ span(st, et))
process of feature creation is now described in detail t,Firs "oty = § Mo(u e ‘et
we describe the inputs which extract information from the fuls, s, 0w) = o(u & pron(w(s7))d(u € span(st, et))
utterance in the form of a sequence of symbols. Then, wexpectation features are indicators of consistency betwee
describe how this information is then parameterized into ththe units expected given a worgrpn(w)), and those that

features which are used in our system. are actually in the seen observation span. There is one of
these features for each unit, and they andependent of
A. Detector Inputs word identity. Therefore these features provide important

The inputs to the feature creation process consist of sgeageneralization ability. Even if a particular word is not sée
of detector events, and optionally dictionaries that dgebie  the training data, or if a new word is added to the dictionary,
detection sequences that are expected for the words. EdbRY are still well defined, and thks previously learned can
atomic detector stream provides a sequence of detectorseve#till be used. To measure higher-order levels of consigtenc
which consist of a unit which is detected and a time at whichigrams and trigrams of the atomic detector units can also be
the detection occurs. Each stream defines its own unique ualitomatically generated.
set, and these are not shared across streams. In this work]he case where a word has multiple pronunciations requires
detector inputs are generated from HMM systems, though th#pecial attention. In this case,
has been done for expediency and any detector events can be A correct accept is triggered dny pronunciation con-
plugged in as easily. tains an observed unit sequence.



« A false accept is triggered ifio pronunciation contains VI. EXPERIMENTS
an observ_ed umt sequence. o A Corpus

« A false reject is triggered if all pronunciations contain a )
unit sequence, and it is not present in the detector stream.TO evaluate our approach, we have conducted a series of

Unit ngram features are again restricted to ngrams ocaurrifgXPeriments with data from the Bing Mobile voice-search
in the training data. application (formerly known as Live Search for Mobile) [24]

This application allows users to request local businesges b

3) Levenshtein Features: Levenshtein features are thevoice, from their mobile phones, resulting in queries likéct
strongest way of measuring the consistency between expect®onald’s,” “Fairwood nails,” and “Alabama State Univeysit
and observed detections. To construct these, we compute I{@ to our acquisition of training data, once a query is spoke
edit distance between the units present in a segment and Hi¢ N-best list of alternatives is presented for user valtidat
units in the pronunciation(s) of a word. We then create thgpeech comes in various challenging conditions, including
following features: outside noise, music, side-speech, sloppy pronunciaiod,
different acquisition channels.

For the purpose of this paper, we set aside 12,758 human-
f3*" = number of imes. (in pronunciation) is substituted transcribed interactions for evaluation. For parametaint

fmateh — number of timesu is matched

f;iel — number of timesu is deleted we used a development set of 8,777 utterances. For training,
ins . o we availed ourselves of roughly 3M spoken queries — 2100
fu"* = number of times. is inserted hours of speech. The transcriptions used for these queries

In the context of Levenshtein features, the use of expand#gre the items the users selected from the N-best lists. We
ngram units does not make sense and is not used. Like t@stimate that this form of supervision is about 90% accurate
expectation features, Levenshtein features provide a gfolve Furthermore, we divided the 3M training set into two parts:
generalization ability as they are well-defined for wordatth a hyper-parameter training set, and a model training set. We
have not been seen in training. reserved the former set to build feature detectors, whige th
When multiple pronunciations of a given word are presen§CRF weights were optimized on the model training set. The
the one with the smallest edit distance is selected for ttgetup is similar to [2].
Levenshtein features. The baseline system is a conventional maximum likelihood
i , trained HMM system with a trigram LM, using utterance-level
4) Language Model Features: As mentioned in Sec. l-A, - ye4n normalized MFCCs and clustered cross-word triphones.
the language model features are: It has 11k context dependent states, and 260k Gaussians.
« The language model scores of word transitiongpe paseline produces an error rate of 37.1%. The same

f(S’S/v"Zi)_ :_LM(S’S/) ) HMM acoustic model generated the detector streams. Also,
o« A fe_ature indicating whether the word funk> it generated an 10-best word sequence list for each utter-
« Optionally, a feature for each language model arc, indiynce for use with thetart function. The oracle error rate

cating whether it is traversed in the path fronto s'. of this system on the test data is 24.6%. We note that a

5) Baseline Features: In order to leverage the existencediscriminatively trained HMM baseline would provide a leett
of high-quality baseline HMM systems, we have also addelaseline, but this baseline was unavailable, and wouldlzso
a baseline feature. This is essentially a detector stream theflected in the SCRF system through the baseline feature. Ou

specifies the 1-best word output of a baseline system. Thgncern here is to validate the basic detector based segment
time associated with each word in this stream is its midpoin F approach. In contrast to [18], our features are detector

Denote the number of baseline detections in a timespan fro : :
st to et by C(st, et). In the case that there is just one, let itsand segment based, and not conveniently representable with
value be denoted bJB(st, et). The baseline feature is definedframe based MMI training; thus discriminatively training a
as: conventional system (e.g. HTK) with the same features is not
roety _ ) 1 if C(st,et) =1 andB(st,et) =w(s’)  a practicable alternative.
fo(s,8",05) = { ~1  otherwise
Thus, the baseline feature iswhen a segment spans justB' Results
one baseline word, and the label of the segment matches theéAfter an initial set of experiments, we chose to use order 2
baseline word. It can be seen that the contribution of thghone features (bi-phones) and order 1 multi-phone fegture
baseline features to a path score will be maximized when thecreasing either made little difference. In Table |, wearp
number of segments is equal to the number of baseline wordgntence error rate as detector streams are added. In all
and the labeling of the segments is identical to the baselimxperiments, the baseline feature of Section V-B5 is uded,; i
labeling. Thus, as we can assign a weight approaching infinitise alone reproduces the performance of the HMM baseline.
to the baseline feature, baseline performance is guahntee First, we measure the effect of complementing the baseline
In practice, of course, the baseline weighting is learnedl arsystem with phone detections. We used existence, expecta-
its value will depend on the relative power of the additionalion, and Levenshtein features of order 2 as described in
features. Section V-B. This results in a 0.9% absolute improvement,
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Line 2. We repeat the experiment with a multi-phone streanm”!
described in [2], and features of order 1, to get a larger
1.4% improvement, Line 3. This is a validation of the multi-
phone units, which are designed explicitly to maximize the®!
mutual information between units and words. As we can see
after combination of both streams as Line 4, the informatiori®]
provided by the phone detections is mostly contained if
the multi-phone stream. Recognizing that the multi-phone
segmentation may be ambiguous, we added the second and
third best strings from the multi-phone decoding. They ar
treated entirely independently and share no weights in the
model. This is reported in Line 5. Finally, on Line 6, we
see a small further improvement from discriminative largia ;5
model training. Altogether we achieve 2.1% of the 12.5%
theoretically achievable given our search constraints.

To gauge the contribution of existence, expectation ar%“]
Levenshtein features separately, we removed each from the
system to obtain Table 1l. Removal of any feature results in &3]
degradation of 0.3 to 0.6%. [16]

VIl. CONCLUSION [17]
In this paper, we have proposed a segmental CRF approach
to LVCSR. The approach has the following key charactesstic*®

« The Markov assumption is relaxed to the word level.
. The use of multi-scale detector events as the obser&®!

tions. [20]
« Joint discriminative training of the acoustic and language
models. (21]
« The use of three broad classes of automatically derived
features: Existence, Expectation and Levenshtein. [22]
« The use of a simple baseline feature to facilitate integra-
tion with existing systems. [23]

« Containment of the computational complexity through
the use of a “fast-match” [23] liketart function. (24]

Initial results on a state-of-the-art real-world voiceussh task
show an absolute improvement of 2% in sentence error rate.

Future directions include linguistically motivated fes,,
features not based on HMMs, and a fully contained fast-match
not reliant on a pre-existing HMM system.
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