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Abstract—We use the term Unit Visualizations to describe a class of visualizations that explicitly represent every row in a data set.
They have been around in one form or another for hundreds of years, usually in static form (e.g. tallies, scatterplots, Dot Plots, Unit
Charts, Pixel Charts, or Isotypes.) We characterize their design space and propose a unifying framework that can produce common
types of Unit Visualizations. In addition, we introduce SandDance, a tool built to explore the effectiveness of animating between and
interacting with unit representations when analyzing and presenting multidimensional datasets.
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1 INTRODUCTION

We use the term Unit Visualizations to describe a class of visualiza-
tions where each row of the data-table has a single graphic representa-
tion which we refer to as a unit. Unit Visualizations stand in contrast
to aggregate visualizations (like Bar Charts) where a single graphic
element represents a statistic (e.g. count, sum, mean) of a group of
rows. Unit Visualizations have been called by a range of names, in-
cluding Unit Charts, to Dot Plots, Tallies, Pixel Charts or Isotypes)
[13, 32, 21, 29, 22].

Unit Visualizations are often used in simple, static, info-graphic
type illustrations, perhaps because of the straightforward way that a
particular graphical element is tied to the semantic meaning of a row
(so that an icon of a person might represent a row of data that repre-
sents a person). Some have commented that they are simplistic [13]
but they have several potential advantages, especially when used in
interactive systems.

1.1 Advantages
The key aspect of unit visualizations is that they maintain a one-to-one
correspondence between rows in a data table with representations (or
units) while still allowing visual attributes (such as color or size) to be
mapped onto the individual units.

The forest and the trees: Since all rows are represented on the
screen individually, they can simultaneously show overall patterns as
well as individual outliers. Other common forms of representations,
such as bar charts, histograms, pie charts, or even tree-maps require a
level of aggregation of the data such that multiple rows are combined
and that combination is then mapped onto a shape shown in the chart.
Strictly speaking, some Unit Visualizations do perform some aggrega-
tion, but only in that marks are proportional to the number of data rows
(e.g. A single mark might represent 1000 people in a census.) Aggre-
gation can hide outlying data, or have outlying data unduly influence
the aggregate representation.
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Semantic Constancy: The association between a row and a unit
is maintained even when the position or visual attributes (color, size,
shape) of the unit changes. While aggregation is powerful, it re-
quires a certain level of abstraction —the bars may represent different
quantities depending on what aggregation function is being performed
(sums, means, maximums, etc. on a particular attribute). This power
can require a certain amount of cognitive effort to understand what
a particular representation might mean. Even when people are ex-
perienced with understanding visualizations, aggregating information
can hide underlying variables that might help explain a situation (e.g.
Simpson’s Paradox [5]).

Direct Interaction: Individual units provide an affordance for in-
teracting directly with each row of the data (e.g. tooltips, selection).
Interaction with Unit Visualizations allows a user to directly select and
find information about a single constituent unit (which is not possible
for aggregate visualizations). In multiple views of the same dataset,
brushing and linking is straightforward; units selected in one visual-
ization are highlighted in another. In aggregate visualizations, it is
more difficult to show correspondences between two different visual-
izations where the aggregation might be along different parameters.

Animation: Direct correspondence between units in different vi-
sualizations of the same datatable enable us to animate smoothly be-
tween them. Transitions need, therefore, to only update between be-
fore and after positions of every element since they are all present in
both visualizations. A straightforward, linear interpolation of posi-
tions can be used, or more sophisticated transitions, including bun-
dled trajectories [10], or dimension adding/rotating such as Scatter-
Dice [11] or temporal distortions [8]. Since individual items can be
selected in one view, they can be tracked as they transition to a new
view, which can also help users understand patterns in the data. An-
imations between aggregate visualizations require shapes to distort,
break apart, or come together or even do a simple cut or cross fade
when there are no clear, direct relationships between the visualiza-
tions. These can make it harder to undertand sequences [15].

These advantages are especially important given that multiple views
of a data set (or sequences of visualizations) are often more effective
for both exploring and conveying stories about data [26, 17] than a
single, static view.



Fig. 1. ISOTYPES, from Neurath, an early form of Unit Visualization
used in Infographics[22]

1.2 Disadvantages
While there are many advantages, there are some potential disadvan-
tages, both in terms of optimal interaction and implementation.

It is often easier to judge the values of aggregate bars vs. unit bars
(via the y axis) and aggregate charts can be visually simple (with less
clutter).

Aggregate charts provide a natural affordance for getting informa-
tion about the aggregate (count, sum) while unit charts must provide
an additional affordance for accessing aggregate infomration since a
unit has both individual information as well as information about the
particular group it is contained within.

More significantly, aggregate visualizations have the potential to
scale much more readily to large data sets. They can be much quicker
to display, and have no upper limit to the number of individual items
that they represent, while unit visualizations reach a limit on pixel
density or drawing speed of display hardware. From a representa-
tional point of view, there are only a finite amount of pixels on the
screen and eventually, showing all the data might be meaningless un-
less data is represented by subpixel marks, in which case outliers might
be missed. Opacity can be adjusted to create semi-transparent shapes
which allow for more overlap, but eventually, a limit on the number of
shapes that can be clearly discerned will be reached. In addition, as the
number of marks increases, transitions start to become potentially in-
comprehensible without more sophisticated bundling techniques [10].

Finally, in a client-server configuration, a server might calculate
aggregates, requiring very little information to be passed back to a
client, while unit visualizations require significantly more (per unit)
information.

Because of these disadvantages, unit visualizations may not be ap-
propriate in every circumstance, and in fact, Elmqvist & Fekete [12]
discuss an overview of situations where aggregation can be useful es-
pecially for reducing clutter and scaling. Still, many disadvantages can
be overcome by careful design choices and in the interaction model
and the relative advantages can be compelling, especially when work-
ing with multidimensional datasets of up to 1 million rows where
screen densities and client server communication latencies are less of
a problem.

1.3 Contributions
After having discussed some basic advantages and disadvantages for
unit visualizations, we will use the rest of this paper as follows:

We first survey the literature on the the historical use of Unit Visu-
alizations.

We then show that a simple yet powerful framework for laying
out units can generate unit versions of many common charts, includ-
ing Scatter Plots, Bar and Column Charts, Box and Violin Plots, and
2D histograms (also referred to as Fluctuation Diagrams [16]). This
framework also allows us to explore unit representations that are po-
tentially useful but less commonly seen. Most importantly, this frame-
work allows a simple, unified method of animating between and in-
teracting with all of these representations. We subsequently introduce
SandDance, a prototype that was built to explore the effectiveness of
this representation for analyzing and presenting moderately sized mul-
tidimensional datasets (1K-300K rows by 4-30 dimensions) and show

its utility, especially for telling data stories to novices, and report on
anecdotal results from a deployment for over 50 people.

2 RELATED WORK

The notion of having a direct correspondence between rows of data
with shapes or ‘marks’ in a visualization has a long history. Tallies
(figure 1a), are perhaps one of the simplest visualizations where a spe-
cific mark is made to correspond with a single observation and can be
used as a shorthand to help count the number of observations present
[24].

Fig. 2. Tallies, Tukey’s Stem and Leaf Plots, Wilkinson’s Dot Plots

Neurath [22] and others developed ISOTYPES (Fig. 1) (Interna-
tional System of Typographic Picture Education) in the 30s not only
for signage but also for use in constructing visualizations. Tukey re-
formulated Tallies as stem-and-leaf plots [29], while Dot Plots [32],
(figures 1b and 1c) are used to represent observations laid out along
a single axis where we can immediately see the relative values of a
particular variable associated with the observations.

While dot plots show a single variable associated with an obser-
vation, scatterplots show two variables associated with a single row,
mapped onto the Cartesian plane. Scatterplots, one of the original unit
charts, have been considered to be one of the most versatile, and useful
invention in the history of statistical graphics [14] and it was estimated
by Tufte in 1983 [28] that 70-80% of graphs used in scientific publi-
cations are scatterplots. Scatterplots suffer from overplotting and the
framework described here finds general ways of avoiding overplotting.

Further differentiation of the values in any Unit Visualization can
be accomplished by associating color, shape, and size with each of the
marks.

Fig. 3. Keim’s Pixel Charts [21]

There has been a long history of trying to combine the best of both
worlds by representing both the individual points as well as a sense of
their aggregation. Perhaps the closest related to this work are Keim’s
Pixel Bar Charts [21] where individual items are represented as pixels
grouped together within either space filling or bar chart form (figure
3). Keim describes a formalism for pixel bar charts which involves
coloring, ordering and partitioning of the bars. We generalize this
work, allowing units to take on a greater variety of shapes, and support
hierarchically nested containers to achieve a greater number of final
chart types. We also support interactive and animated transformation
of charts from one representation to another as well as the interactions
that Keim proposes.

Since we support nesting of containers, each with potentially dif-
ferent layout criteria, our work also has similar properties to Wick-
ham’s Product Plots, where combinations of rectangles with area pro-
portional to underlying counts or probabilities are supported. Since at
the base level of our work, units are laid out in groups, these groups
can be often be thought of as ’mass preserving’ where Density =
(Mass ∗Count)/Area . Many chart layouts, as discussed below, use
a notion of constant density, and as such this equation reduces to
Area = Mass∗Count or area is proportional to the count of elements
in a group. As such, many of the same analytic benefits of the Product
Plot system are realized [31]. While Product Plots focus strictly on
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aggregations, Unit Visualizations show aggregations in terms of how
the units are grouped on the screen.

A core notion of many of the layouts in Unit Visualization is to
avoid overplotting. Dang et al [7] discussed a generalization of stack-
ing (in 2 and 3D) for a variety of chart types including dot plots and
parallel coordinates. As such, this work shares similarities, though we
generalize the notion to a framework for specifically dealing with unit
representations.

Other inspiration for the Unit Visualization framework comes from
Wilkinson’s Grammar of Graphics [33] (and Wickham’s refinement of
it in [30]). We use a similar notion of marks and aesthetics such as fill
color, stroke, opacity, shape, and size that are assigned to the marks,
but only at the unit level. Thus many levels of the grammar remain the
same, but operations which change the number of rows in the data are
not permitted. We also explore animated transitions and interaction
which are currently not part of these grammars.

Several vertical domains have shown the usefulness of Unit Visu-
alizations including image editing and machine learning. Histomages
[6] show the benefits of using Unit Visualizations for interacting with
both images and color histograms allowing convenient selection in ei-
ther space. The Model Tracker visualization [3] enables outliers to
be immediately identified in context by displaying all labeled and pre-
dicted results in a Unit Visualization.

Huron et al have explored the use of physical tokens to help man-
ually construct tangible unit representations of data. They found that
representing data in this way helped novices effectively build and com-
municate visualizations [19]. This tangible form of Unit Visualization
helps illuminate how novices can construct visualizations.

Several physically based/inspired representations such as Yi et al’s
Dust and Magnets [35], Rzeszotarski’s TouchViz [25] and Huron’s Vi-
sual Sedimentation [20] all use the notion that individual rows of data
that are physically represented as units on the screen, and move and
are laid out using physical constraints. In our system, we do not fo-
cus on physical simulations, but instead use layout rules to achieve
non-overlapping packing of containers.

Image based layout systems like MediaBrowser and PhotoMesa [9,
4]are examples of Unit Visualizations where the unit represented is
an image. Most do not focus on general layout based on numerical
attributes associated with the image though binning by dates or events
are often used.

We stage transitions between representations (such as filtering out
elements before relaying out visualizations) in a fashion similar to
Heer & Robertson [15]. In general, while we primarily support linear
interpolation between initial and final position of units, more sophisti-

cated transformations such as those in ScatterDice [11] which adds an-
other dimension orthogonal to the current dimensions, rotates to show
that dimension, and then flattens to new dimensions; or bundling ob-
jects that start and end in similar locations to help minimize random
motion [10] can also be used. While theoretically, any unit chart can
be transitioned to any other unit chart of the same data, in our proto-
type system we limit the number of dimensions that can be changed at
any one time via UI affordances. In this way we help achieve logical
sequences that are more comprehensible [18].

Finally, many of the features of the SandDance Prototype itself ex-
plore interactions with unit charts based on systems like Spotfire &
Tableau[1, 27] (simple interactive assignment of attributes to dimen-
sions), brushing, linking, filtering on demand found in most systems.

3 FRAMEWORK

The general framework for Unit Visualizations is described in this sec-
tion. The overall framework is illustrated in figure 4. For purposes of
this discussion, we will use the following definitions:

• Data is defined to represent a datatable which contains multiple
rows with each row containing multiple columns (or attributes)

• Groups are a subset (up to and including the entire datatable)
of rows. Groups can also be nested, so a group might in turn
contain other groups

• Containers are a geometrical abstraction with a position and area
in which a group will be laid out.

• Cells are a special instance of a container which are associated
with one and only one row of the dataset

• Units are the graphical representation of a row of data. They can
have visaul attributes such as color, shape, size (relative to their
enclosing cell), and opacity.

• View is a particular visualization of a datatable; it can be linked
with other views of the same data.

The goal of the framework is to create a common way of laying out,
animating, and interacting with unit representations of a data-table to
facilitate exploration and presentation of the data. While much like
a typical information framework, we focus on a few simple rules for
packing containers within other containers to eventually establish po-
sitions for all the units on the screen. In general, shape assignment,
animation, and interaction is handled in the same way as many other
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existing frameworks, so in this section, we will concentrate primar-
ily on the layout steps required to create a Unit Visualization. In the
following section, we will demonstrate how this framework enables a
consistent interaction and animation model.

Like UI Frameworks [23] that arrange widgets on a screen, we use
a similar pattern of recursively descending a hierarchy asking children
for information in order to determine how much space is necessary to
display their contents. At each level of the hierarchy are groups of
rows (or groups of groups). Once the lowest level of the hierarchy
is reached, information about the relative statistics in each group is
passed back to the root so that a uniform size for cells can potentially
be enforced. The layout algorithm uses layout rules to arrange all the
containers (and eventually, all the leaf containers or cells). Some lay-
outs choose to explicitly make all cells the same size and density, for
easy direct comparison of counts, while other layouts allow different
sizes to support other types of queries including comparisons of sums,
or proportions.

We’ve found that a small set of layout rules (shown in figure 5),
with each rule being applied at a different hierarchy level, can generate
many common and useful representations. These will be discussed in
more detail below.

The following layout examples are based on the Titanic Dataset
which contains one row for each of 1309 passengers. For each passen-
ger, we have information on the gender, age, cabin class, and whether
the passenger survived. Units in any visualization of this data will
always represent a single passenger.

Overall layout is done with the following steps:

1. Data is first divided into abstract groups using a grouping
criterion. For instance, we might first divide by ’cabin class’ to
create three groups and subsequently divide each of the groups
by gender and finally divide by whether the individual survived
or not, creating two groups within each of the above subgroups.
Thus the dataset is divided into 12 different subgroups, each con-
taining a number of rows from the dataset. The largest (Third
Class men who didn’t survive contains 417 members), while the
smallest (First Class women who didn’t survive contains 5). The
grouping criterion can be changed by user interaction.

2. Both rows in the database and containers are optionally
sorted to determine the order of layout. For instance, we may
wish all the women to be shown in containers before men so
we can sort the entire dataset by gender. Or we may wish show
which cabin class has the most passengers, so we can choose to

sort the containers based on the count of rows contained within
each group.

3. Groups are repeatedly laid out using one or more of the lay-
out rules described in figure 5 above in order to create posi-
tions and sizes for containers Layout rules fall into two broad
classes. Unordered rules, for example, where layout is either
random or purely based on attributes associated with the rows
of data. A scatterplot is a typical example of an unordered rule.
One aspect of a scatterplot is that it can frequently obscure data
by over plotting. While jittering can help to some extent, other
rules which purposefully avoid over plotting are useful. Ordered
(or packing) rules, as a class, avoid over plotting. They partition
each container into subcontainers using the following criteria: a
primary direction or directions of packing; a decision of whether
they are either space filling, or densely packed; alignment (hori-
zontal or vertical) to the parent container if they’re not space fill-
ing; and a decision whether the sizes are all the same or whether
they are proportional - either directly to an attribute of a single
row of data or based on a calculated statistic of the group of data
associated with the container. Refer to figure 6 to see how differ-
ent layout rules at different hierarchical levels are combined to
produce various common plot types in unit form.

4. Shapes are chosen to represent each unit (Now in the leaf
nodes (cells) of all containers). Fill color, opacity, stroke, shape,
glyph, image, labeltext, and size (relative to bounds of the unit’s
cell) are chosen. These can be set and changed interactively and
either chosen uniformly (e.g. set all the colors to blue) or based
on an attribute for each row (e.g. set color based on cabin class)
or group of rows (e.g. set color based on the count of units in the
parent container).

5. All shapes are drawn on the screen. If a previous representa-
tion is already on the screen, all the objects are animated from
their old positions to their new positions. Animated attributes
include color, opacity, selections, and positions.

6. Interactions can affect the visualization in several different
ways. The data itself can be explicitly sorted or filtered to change
the overall visualization. Filtering can either choose to eliminate
rows from the dataset from the visualization or filtered and un-
filtered data can be laid out in separate areas (the filtered items
might all be moved to a separate area on the screen). Different
attributes or binning criteria can be interactively specified. Thus
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Fig. 7. SandDance Prototype Unit Visualization System. Top left allows chart type selection. Top Left Middle allows filtering of the dataset, Top
Right Middle allows information and searching, and Top Right are settings and load data. Right side are interactive legends for color, size, opacity,
and facet. Axis labels are selectable and allow attribute selection.

we can choose to bin by Cabin Class, Gender or Age; each of
which would produce different visualizations of the same data.
Since age is a continuous variable rather than categorical, we
can also choose how many bins to use. We can choose the layout
type, and what parameters are being mapped in certain layouts
(x and y axis for scatterplots, attribute to sum by in summed col-
umn charts). Shape, color, and other aesthetic attributes can be
assigned to the units themselves. And finally, selection can sup-
ported in a variety of methods - either through direct selection
on the units themselves or through other mechanisms that we
will discuss in the prototype implementation section. Selection
can alter the visual attributes (like changing the color of selected
units to a unique selection color or changing unselected units’
opacities).

4 PROTOTYPE IMPLEMENTATION: SANDDANCE

A prototype was built to explore the benefits of using Unit Visualiza-
tions (figure 4). The prototype was implemented in HTML5 and type-
script, using WebGL to enable animated transitions on datasets with
up to 1 million points. While the browser can render 1 million points
at 30 fps, other considerations make the current maximum dataset size
considerably smaller. Memory usage maxes out in 32 bit browsers
on sets of over 500K with multiple columns of attributes. Sorting and
filtering within javascript, while reasonably quick, can start to take sig-
nificant amounts of time (> 500ms) on datasets with more than 300K
items.

The interface was designed so that most operations could be easily
accessed via touch, though explicit text search capabilities still require
keyboard entry. Conventional mouse based interaction is also fully
supported. We surfaced a number of capabilities in the SandDance
prototype to make it easy to use Unit Visualizations to do analysis and
presentations. Instead of having people construct Unit Visualizations
from combinations of primitives (though a separate tool was built to
explore new combinations of the primitives), we instead focused on
ease of use for exploring and presenting data. Users could pick from
amongst several basic chart types (square; bar charts; column charts;
3D column charts; and Fluctuation Diagrams which are essentially 2D
histograms or heat maps and scatter plots). The axes can be clicked on
to specify columns, and tools at the right permit mapping columns to
facets and visual attributes such as color, shape and size.

Figure 12 show a typical exploratory or explanatory sequence. A

scatterplot of the 2010 census data from the continental United States
is presented. This data was combined with results from the 2010
election. Units represent Census Designated Places (CDPs - approxi-
mately equal to a County). They are first plotted in a Scatter Plot (Lon-
gitude vs. Latitude) and colored by the percentage in the county voting
for Obama (A). We then switch to a Unit Column Chart by Longitude
(B). Relative Latitude is preserved, so the features like the Democrat
leaning counties in southern Texas can be observed, but total counties
per Longitude bin are hard to judge. We can sort the dataset by per-
centage voted for Obama within each CDP (C). Now it is relatively
easy to see the number of CDPs in each longitude band that voted in
a similar fashion. We can then create a summed column chart by the
total population of each CDP (D). It’s easy to see the CDPs with larger
numbers of people tended to vote Democratic. We then bin by percent
voted for Obama (E). And finally, switch to 2 bins to see an indication
why Obama won the 2010 election. Note well then we are not looking
at the distributions within each CDP, we’re considering each CDP as
a unit (essentially we look only at the percentage of votes that Obama
received in each CDP). Also note, that we’re not considering Electoral
Votes, but using population as a proxy for them.

4.1 Selections

There is extensive support for the powerful selections that Unit Visu-
alizations make possible. In the most direct form, units can be selected
by directly clicking on a unit, or dragging a rectangle around a number
of units to select them all. All the units within a group can be selected
by clicking on a label that represents that aggregate (for instance, if in
the titanic data, a unit column chart is showing the number of passen-
gers in each class, the class name under each bar can be clicked on to
select all passengers in that class).

Interactive Legends (figure 8) are used for 3 purposes: reflecting
which columns are currently being mapped to color, size, and shape
of a unit; changing what is being mapped to the color, size and shape;
and selecting all units with a particular mapping: (eg clicking on the
blue color automatically selects all the units that were currently being
displayed in blue).

Textual search can be used to find any records that match a particu-
lar text (either anywhere in its contents, within a specified column, or
only at the beginning of a specified column). Matching units aare se-
lected. In addition, a conventional histogram along that attribute was
brought up to allow quick selection by bins.



Fig. 8. Interactive legends for mapping and selecting based on at-
tributes. Color (left), Size (middle), Search (right)

Fig. 9. Information on each item can be selected and similar items can
be selected along any attribute (left). Selection behavior can be modi-
fied to achieve boolean selection combinations (right)

Fig. 10. Brushing and linking between multiple views (potentially in mul-
tiple browser sessions across multiple users) is supported.

Fig. 11. Units represented as cards or images allow direct visual feed-
back as well as unit visualization layouts.

Item details can be brought up for the selected items (figure 9).
Similar items can be selected by clicking on an attribute (categori-
cal attributes are directly selected while numerical categories allows a
range to be interactively selected).

While keyboard modifiers could be used to modify how selections
were adjusted in conventional ways, we also support selection modes
to facilitate touch only interaction. When in a mode, new selections
are combined with old selections using the specified Boolean operator.
Using the available selection methods, it’s very easy to select, for in-
stance, all the people that survived the sinking of the titanic who paid
less than a certain amount for their fare.

4.1.1 Filtering of Selections
Once a selection has been made, the associated units can either be ex-
cluded or isolated (everything else filtered out of the view). We use a
staged transition [15] so that items are first filtered from the view and
subsequently rearranged to make maximum use of the available space.
We chose to eliminate units from the screen in our first implementa-
tions, though they can also be moved to a separate area on the screen
for units that have been removed from the overall layout.

4.1.2 Brushing and Linking Selections
The prototype supports multiple, linked views. Selections in one view
are reflected in another view. See figure 10. Since the prototype is
implemented as a web app, a lightweight, state-synchronization ser-
vice has been implemented so that anybody can join a sharing session
by opening up the appropriate URL. Sessions can be linked to update
all changes including views, color mappings, filters, and selections; or
just selections so that different views of the data can be explored in
multiple windows by multiple participants.

4.2 Animation
When a new view is displayed, every item is animated between its
original position and a new position and between the previous unit’s
attributes like color and opacity and its new ones. As mentioned above,
we use staged animations when filtering out items. We also maintain
selections so that users can track items and see whether they move to-
gether or to different parts of the resultant diagram. In order to help the
animations be more coherent, the interface is designed to allow only
one dimension of the data to be changed at a time. So, for instance,
when moving from a Scatter Plot to a Column Chart, the x axis for
the column chart is chosen to be the same axis as is currently being
displayed in Scatter Plot. In addition, the data is sorted by the Y axis
attribute of the scatterplot so that the order of items in the columns
best matches the layout in the scatterplot. Figure 12 shows a typical
exploratory sequence within SandDance on a census/voting dataset.

Animations can also be staggered to assist users in understanding
where different groups end up going. While animations help users
understand the overall structure of changes, there is no way that users
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Fig. 12. A sequence exploring the 2010 election. A: Scatter Plot Colored by Voting Percent, B: Binned by Longitude, C: Sorted by Voting Percent,
D: Summed by Total Population, E: Binned by Voting Percent, F: Changed to 2 Bins.

can track the movements of all units as they move. However the transi-
tions reinforce that the different views are just different ways of laying
out all the units and that each representation is related because the
units are always associated with the same row. Anecdotally, we’ve ob-
served that users have more difficulty in understanding the meaning of
sequences of visualizations when without animated transitions.

4.3 Unit Representations
Units can be represented as shapes, text, glyphs, or even as tiles of
images (see figure 11). Improved performance for images is accom-
plished by computing mip-maps for the images [34] and using the ap-
propriate texture as needed.

4.4 Deployment and Initial Testing
The prototype was deployed both internally to our company via the
web and externally to partners focused beta-testing new ideas. Ex-
ternal partners used a plug-in to Excel so that SandDance could be
opened directly within Excel and have direct access to the sheet, thus
allowing the data to be manipulated in Excel. Selections and filters
were communicated back to Excel so that state could be resumed be-
tween sessions. The plugin was made available to over 50 people who
used the SandDance system after watching some introductory videos.
In order to prompt more complete feedback, we challenged 20 users
with progressively harder questions over the course of a week. We
designed our questions to cover a wide array of typical analytic tasks
(shown below) that were outlined in Amar & Stasko [2].

Table 1. Visual Analytic Task Categories

Filter Characterize Distribution Cluster
Determine Range Computer Derived Value Correlate
Find Extremum Sort Find Anomalies

Sampling of Questions asked:

1. Using the Adventure Works Sales data set, how many total bikes
were sold? (Compute Derived Value)

2. Using the Adventure Works Sales data set, which month had the
most total items sold? (Find extremum)

3. Using the Census data set, how many CDPs are in Washington
State? Florida State? (Determine Range)

4. In the US, how many CDPs contain ”King” in their county
name?(Find)

5. A common expression for disasters is ’women and children first’.
Was this followed on the titanic? (Characterize Distribution)

6. In what cabin class were most of the younger children located?
How many survived and how many died in that class? (Cluster)

7. What is the relationship between income and education in the
Census data set? (Correlate)

All 20 people attempting the task were successful (though since
they did the work on the own time, outside of a lab, we did not log task
completion times). People liked the quiz both as a gentle introduction
to the tool, as well as revealing the power of SandDance as an analysis
tool. It was interesting to note the different strategies that people used
to find answers including general search, search based on a single unit,
sorting, changing visualization representation, visualization, and filter
out the results and change the visualization type again, etc.

Overall, feedback from the deployment, as well as over 200 hours of
one-on-one demonstrations has been extremely encouraging. In par-
ticular, teachers have requested the use of SandDance in classrooms
both to help illustrate data stories as well as to give a better under-
standing of the elements of data exploration. Many people comment
that they like the way that every row of the data is represented and how
the movements (like grains of sand) help indicate overall structure in
the data. They liked how the the particles show the users a visual sense
(evidence) of the actual numbers behind the aggregate values’ and how
engaging and even playful it became to explore the data.

Many improvements were suggested; several of these are discussed
in the future work section.

5 FUTURE WORK

There is a great deal of future work in this space. While unit visu-
alizations themselves have been shown to be useful, there are many
instances where additional information, or layers of representations
would be helpful. This includes an underlying map for geographic vi-
sualizations, or underlying annotations such as median lines, labels,
counts, quartiles, or annotations.

A hybrid model that moves between conventional aggregations and
unit visualization could help a system scale to deal with larger datasets
and be better suited to client-server communication. Once the data
has been filtered to an appropriate level, the unit representations can



replace the aggregates. Appropriate UI metaphors for dealing with
hybrid representations will be interesting to explore.

Fig. 13. Framework can be extended to 3D for unit visualizations.

We currently record the entire history of actions and allow users to
step forwards or backwards through their interaction history. The text
file of these interactions can be manually edited to produce a tour, but
a more useful tour interface would be desirable since it has been found
that telling stories with the data is one of the more compelling aspects
of unit visualizations.

The framework can easily be generalized to more dimensions. Con-
tainers can be rectangular prisms instead of rectangles and units can in
turn be 3D objects 13. While the utility of 3D itself is often hotly
debated, it will be interesting to explore how the addition of another
dimension will change the overall usefulness of the system.

Transitions right now are fairly straightforward, but more seman-
tically meaningful transitions, such as bundling trajectories [10], or
ScatterDice [11] like transitions between representations could be
helpful.

Finally, all the data from deployment to over 50 people has been
logged, and it will be interesting to see what common patterns of be-
havior were used, especially when addressing some of the questions
asked in the initial deployment testing.

We intend to release SandDance to a wider audience to collect more
feedback on patterns of use in visual analysis and storytelling

6 CONCLUSION

Unit Visualizations are not only historically interesting artifacts, but
also useful representations for current interactive exploratory and pre-
sentation systems with data. We have discussed a framework that
helps define the space of unit visualizations and demonstrated a sys-
tem that uses unit visualizations at its core. It excels as ways of slicing
and dicing the data through a wide number of selection types as well
as comprehensible transformations between different views of multi-
dimensional data.
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