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ABSTRACT

Horton+ is a graph query processing system that executéardec
ative reachability queries on a partitioned attributed tirgraph.

It employs a query language, query optimizer, and a digtibu
execution engine. The query language expresses dectaratich-
ability queries, and supports closures and predicates da and
edge attributes to match graph paths. We introduce threbaEs
operatorsselect traverse andjoin, and a query is compiled into an
execution plan containing these operators. As reachgbilieries
access the graph elements in a random access pattern, pheigra
therefore maintained in the main memory of a cluster of sert@
reduce query execution time. We develop a distributed e@cu
engine that processes a query plan in parallel on the grapérse
Since the query language is declarative, we build a queliynagr
that uses graph statistics to estimate predicate sekgctiie ex-
perimentally evaluate the system performance on a clu$té6 o
graph servers using synthetic graphs as well as a real graph f
an application that uses reachability queries. The evaluahows
(2) the efficiency of the optimizer in reducing query execntiime,
(2) system scalability with the size of the graph and withrihen-
ber of servers, and (3) the convenience of using declargtieees.

1. INTRODUCTION

Graphs are widely used in many application domains, includ-
ing social networking [31], software collaboration [4],agspatial
road networks [37], interactive gaming [44], among othé&Bs R7].

For example in a social network graph, a node representssarmer
photo, video, location, event, or group. An edge represehisary
relation between two persons such as friendship, familyarkwe-
lations such as “advisor of” and “manager of”. An edge shdves t
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attributes, and users query the modelled entities and tl&r
tionships. Such queries can be expressed as graph paths, and
we call this query classeachability queries over an attributed
multi-graph These applications introduce the following require-
ments: (1)Usability: A query should be declarative, rather than
procedural. (2Low latency As applications are interactive, they
require low query execution time. (Hcalability The employed
graphs may not fit on a single server, motivating a distrithute
system design.

To motivate the need for a new system, we briefly discuss the
existing categories of graph processing systems: (1) iReklt
database systems are not efficient in handling graph regithab
queries because these queries are recursive and may colatain
sures. SQL needs to be extended with recursion to execuke suc
queries. (2) Semi-structured data management systemg36,9
45], provide query languages such as SPARQL [43] to query
RDF data, and XML query languages to query XML documents.
SPARQL-based systems target a different class of queriaphg
pattern matching rather than reachability. XML queryinghte
nigues [45] manage tree-structured data instead of gréph€en-
tralized graph platforms, e.g. Grace [34] and GraphChi,[26¢]
quire the graph to fit on one server. (4) Distributed grapkfq@ims,
such as Pregel [30], Giraph [19], Trinity [39] and PowerGr{g],
accept procedural programs to be computed over the grapth Su
systems focus on graph computations rather than graphiggery
and they assume the users to be expert programmers.

In this paper, we present the design, implementation and eva
uation of Horton+, a distributed system for processing aletive
reachability queries over a partitioned graph. Horton+ leggpa
declarative query language that uses regular languaghaikeitity
to express reachability queries over an attributed muépg. We
introduce three algebraic graph operatsedect traverse andjoin,

a person is tagged in a photo, is attending an event or is membe and use them to execute a query plan.

of a group. Common queries include “finding Alice’s photdsetra
in Singapore”, “finding Bob’s friends of friends”, and “finay all
people advised directly or indirectly by Prof. Carol”.

Several emerging applications, e.g.,

Executing graph reachability queries generates a randessac
pattern to the memory system; Horton+, therefore, manages t
graph in themain memonpof a cluster of servers. We build a dis-

Facebook Graph tributed execution engine that executes the three graptampe in

Search [16], allow users to issue interactive queries over apara||e| and batches messages among the graph servers.

graph. In such applications, graph nodes and edges haveakeve
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Since the query language is declarative, rather than pupakd
there are multiple ways to execute a query. Horton+ is eqapp
with a query optimizer that reduces the query executiomite
The system maintains a set of graph statistics that are ys#teb
optimizer. Among a rich space of possible query plans, the op
mizer employs a cost model and selectivity estimation teghes
to estimate the cost of executing each plan. The optimidectse
the execution plan that minimizes the expected number dkdis
graph nodes and reduces communication among the graphisserve

Horton+ is the first distributed query processor for process



Partition A
************************************** Graph:
Alice is a friend of both Bob and Dan.
Dan's age is 25.
Photo1 is taken in year 2012.
Photo1 tags Alice, Bob, Carol, and Dan.
Alice is the manager of Bob.
Bob is the manager of Carol.

Dan
{Age=25}

Query: 'Alice'-Friend-Person
Answer paths:
Alice-Friend-Bob
Alice-Friend-Dan

Query: 'Alice'(-Manages>-Person)*
Answer paths:

Alice-Manages>-Bob
Alice-Manages>-Bob-Manages>-Carol

nages

Partition B
Figure 1: Small fragment of a social graph.
reachability queries over an attributed multi-graph. Welement

Horton+ and evaluate it experimentally to show its scaighind
efficiency in executing graph reachability queries usinthbeal

NodePr ed

Quer y- EdgePr ed- Query

(Query OR Query)

Query (-EdgePred- Query) ™

(Query- EdgePred-)* Query

Query (-EdgePred-Query) *

(Query- EdgePred-)t Query

Id | NodeType | NodeType{(AttrPred)*}
(NOT NodePr ed)

(NodePred AND NodePr ed)
(NodePred OR NodePr ed)

EdgeType | EdgeType{(AttrPred)*}
(NOT EdgePr ed)

(EdgePred AND EdgePr ed)
(EdgePred OR EdgePr ed)

Oper and Bi naryQper at or Oper and
AttributeNane | AttributeVal ue
Node | Typeld

Edge | Typeld

Query ::

NodePred ::

EdgePred ::

AttrPred ::
Operand ::
NodeType ::
EdgeType ::

Figure 2: Abstract syntax of the graph query language.

graph, each node stores both inbound and outbound edgésvio al
queries to traverse both directions.

and synthetic graphs on a cluster of 16 graph servers. We also2.2 Query Language

compare Horton+ with the Giraph [19] system to highlight éfés
of Horton+ and its declarative query language and optimiZer
early version of the system, called Horton was demonsti@gd
Horton+ introduces major additions, including the graphrapors,
query optimization, and different query plan and executiwdel
with a formal query language.

In summary, the contributions of this paper are the follayin
(1) Horton+ as a full-fledged system for distributed prooes®f
graph reachability queries. (2) A formal graph query langutoat
supports reachability queries over an attributed mukiphr (Sec-
tion 2.2). (3) A distributed query processor that executesry]
plans over multiple graph servers (Section 3). (4) A query op
timizer, equipped with cost and selectivity estimationhtgques
(Section 4), that optimizes the issued query. (5) An expenim
tal evaluation on a cluster of servers using both real anthsyic
graphs and a comparison with Giraph (Section 5).

2. GRAPHMODEL & QUERY LANGUAGE

In this section, we give an overview of the graph model in Sec-
tion 2.1, and describe the query language in Section 2.2.

2.1 Graph Model

We use a general graph model; an attributed multi-gr@pk:
{V, £} has a set of nodeg and a set of edge. A node represents
an entity with a primary key (id), a categorical type (e.grgmn,
photo or event), and a set of arbitrary attributes. An edgedisary
relationship between two nodes, and it has a categoricel (®g.,
friend-of or tagged-in), and a set of arbitrary attributeg(, edge
direction and edge weight). Multiple edges may link two reyde
representing several relationships.

Figure 1 shows a fragment of a social graph as an examplee Ther
are two node types: Person (Alice, Bob, Carol, Dan) and Photo
(Photol), and three edge types: Friend, Tag and Managesdé no
may have attributes, e.g., age of Dan is 25. The figure alsesho
two queries and their answers. The graph is partitioned: esod
Carol and Dan are in partitioA, and nodes Alice, Bob, and Photol
are in partitionB.

The objective of the query language is to express graph reach
ability queries declaratively, rather than in a procedumanner,
making developers more productive and allowing query ogam
tion. The query language specifies relationships betwettiesn
as graph paths. Figure 2 depicts the abstract syntax of the la
guage. The non-termin&uery is the start symbol, and a query
starts with a node predicate and possibly followed by a sezpief
edge and node predicate pairs. Closures specify paths itfaayb
length, and they are supported using Kleene sta(Zero or more)
and Kleene plus™” (one or more).

A node predicate specifies a node id, a node type sueheatsto
match nodes of type photo, Niodeto match any node type. A node
predicate may contain predicates on node attributes, ghgtos
that are black and white taken this yeBh6t o{col or = B&W
AND year =2013}). Node predicates can be composed. For ex-
ample, the predicatePhot o OR Vi deo) , which matches nodes
of type photo or video, is composed of two predicates. Simi-
larly, an edge predicate specifies an edge type. For instance
Tag Friend, or Edgematches a tag edge, friend edge, any edge,
respectively. An edge predicate can also specify multipélip
cates on edge attributes, e.g., a friendship relation dasteyear
(Fri end{year=2012}). We use the' <" and" >" symbols to
represent edge directions in a directed graph.

Q1 | “Alice’ -Tag>- Phot o- Tag<- ‘ Bob’

Q2 | Phot o- Tag<- Person-Friend-*Alice’

Qs | ‘Alice’ -Tag>-Phot o- Tag<- Person-Friend-*Alice’
Q4 | “Alice’ (-Advice>- Person) *- Coaut hor - * Bob’

Table 1: Query examples.

Example. Table 1 shows four example querie€); finds all
photos in which both Alice and Bob are taggégh has three node
predicates and two edge predicates: The first node predipate
ifies the node id‘(Al i ce’ ). The second node predicate provides
the node typeRhot o), and the third node predicate specifies the
node id. The two edge predicates specify edge tyjag}. Simi-
larly, Q- retrieves all photos in which a friend of Alice is tagged,

Horton+ manages both directed and undirected graphs in mainand @3 finds all photos in which Alice is tagged with one of her

memory with pointer-based representation. In the case ioéatdd

friends. Q4 finds whether Prof. Alice or her academic descendants



a Query Plan performed first using the select operator to find the startioges,
Nodeld =Bty Edeetype | Nofhowe | Fehape  Nodedd=lcs then a sequence of calls to the traverse operator.
9 9 @ Select Operator. The objective of theelectoperator is to deter-
mine the set of starting nodes efficiently. The operatordakBFA

|

Noge-tipe dse e Nodelype  Edgenype Nodeid=alce and applies the transition predicate from the initial statenodes
2 Q e e e Q @ to select the set of starting nodes. The operator employsreapr
key index if the node primary key (id) is specified, or a hash in
Nodeid=‘Alice Edgetype  Nodetype  Edgetype  Node.type dex on the node type if node type is specified, and seconddexin
@ e “Tee 9 = Photo @ TTee :Pe’“’" structures are exploited to match attribute predicatesio lindex
s is available or predicate selectivity is very low, thelectoperator
Nodeid=‘Alice  Edgetype  Nodetype » applies the predicates on all nodes of the given type.

. . Friend . perso”. ______ » JOIN Traverse Operator. Thetraverseoperator is iterative; it receives
a set of partial paths and the DFA. Initially the set of papiaths

is the set of starting nodes from tiselectoperator. In each iter-

Node.id = ‘Alice’ ation, the traverse operator matches each partial pathoimeoor

Edgetype= | Node.type

Node.id = ‘Bob’

CoAuthor = Person
9 e more longer paths if they satisfy the transition predicatbthe
DFA state. For the graph elements that satisfy the predicéte
traverseoperator appends them to the partial paths, and the par-
) ) tial paths that are not extended in the iteration are droppgmbn
Figure 3: Query execution plan for @1, Q2, @3, and Q4. reaching ammcceptingstate, the partial paths are returned as match-
ing results for the DFA. This processing pattern resultsandrsing
. . ) . the graph in breadth-first manner from each starting node.
have co-authored a paper with BaB, is recursive with a closure The complexity of the traverse operator iterations is upper
((- Advi ce>- Per son) *) over a pair of predicates. bounded by the product of the number of start nodes, lengteof
query, and expected number of edges per node in the graph when
3. DISTRIBUTED QUERY PROCESSOR the query has no closures. We discuss a more accurate dosa-est
The query processor receives an input query and returns thelion using graph statistics in Section4.
matched results. The input query is compiled into a querp,pla The terr_nlnatlon of the traverse operator iterations is goitant
which can be executed directly, or first optimized and subsetly property since the graph may contain cycles, and the DFA raay c
executed. We introduce three algebraic graph operatelsst tra- tain loops (correqundlng to closures). Each partial patintains
verse andjoin. Employing these operators is important: (1) The the DFA state at whlqh e_a_ch node and_edge was matched along the
query processor becomes a composition of a few basic bgildin Path- Before a node is visited, the partial path is checkezhsure
blocks. Each operator has clearly defined functionalityeffidient that the node is not visited again in the same DFA state. Adtigs
implementation. (2) The query optimizer builds a cost mddel terminate since each node is visited at most once in eadh aftat
each operator using graph statistics to explore cost-effiavays the DFA for each constructed path. _
to combine them to answer a query. For clarity of presentatio Join Operator. Thejoin operator receives two sets of matching

we first describe the operators assuming a centralizedeemaint, paths from two query plans, and constructs longer paths iy jo
and we next present the distributed implementation. ing paths from the two sets. After each query plan is evatlate
independently to produce its resulting paths, the join aipen is
3.1 Compilation into an Execution Plan performed based on the ids of the last nodes from the firstqith
An input query is compiled into a plan containing one or more and the ids of the last nodes of the second path set. For egampl

ST the two DFA's of Q3 in Figure 3 are joined based on tRer son
deterministic finite state automata (DFA) and graph opesatbhe . )
query plan has a recursive tree structure: Each tree nodthés a id matched ass of the first DFA and af; of the second DFA.
leaf node containing a DFA, or an intermediate node contgittie

join operator and two trees where each is a query plan. L. . .
Example. Figure 3 shows four execution plans for querigs, 3.3 Distributed Execution Engine

Q2, @3, andQ4. The plan forQ; is a leaf node containing a DFA We use multiple partition servers (a) to query graphs thatato
that has six statesS(, to S5). So is the starting state, arttie set fit in the main memory of a single server, and (b) to evaluatdh ea
of starting nodedor the query are the nodes which satisfy the first query in parallel on the partition servers. In this sective discuss
node predicateNode.id='"Bob) on the transition fromSy to Si. the architecture of the distributed execution engine aedrtiple-
The plan of@Qs includes a join between two query plans, apgds mentation of the algebraic graph operators.
plan contains a loop because the query contains a Kleene star Architecture. The graph is partitioned into disjoint partitions,
. each managed by artition serverthat is responsible for manag-
3.2 Algebraic Graph Operators ing its own subset of graph data and associated indexes. égigeh

To execute the query plan, we introduce the following graph o is represented at both the source and destination nodeandtee
erators: Theselectoperator locates the starting nodes from which edge that connects two nodes in two different partitiongifips
path matching proceeds. Tleaverseoperator traverses a set of  both the id of the remote node and the target partition whHered-
nodes through their edges to a new set of nodes iterativdiyg T mote node exists. A server is designated astiadinator, and is
traversal is conditioned by the DFA transition predicates] par- responsible for query parsing, compilation and optimaatiThe
tial graph paths are accumulated. Tjbim operator joins the result  coordinator uses directory servicghat maintains two mappings:
of two query plans to construct longer paths. The query dpém a mapping from a partition id to a server network address,aamnd
introduces the join operator into the query plan, and it i@sra other mapping from node id to a partition id. The coordinatiso
DFA into one or several more efficient DFAs. DFA matching is maintains the graph statistics used by the optimizer.



Algorithm 1 Distributed query processing

Algorithm 2 Traverse operator

1: Function EVALUATE (QTre§
/* Case 1: The query tree is a Join */
2: if QTreeis JOINthen
L_AnswerPaths— EVALUATE (QTreeLeftSubTree)
R_AnswerPaths— EVALUATE (QTreeRightSubTree)
AnswerPaths— JOINOPERATORL_AnswerPathsR_AnswerPaths
/* Case 2: The query tree is a DFA */
if QTreeis Leaf DFA nodehen
for all PartitionP in AllPartitions do
StartingNodesP] <— P. SELECTOPERATORQTreeDFA)
PartialPath§P] = StartingNodefP]
if StartingNodelsP] # & then
CurrentPartitions+= P
12:  if CurrentPartitions# @& then
13: AnswerPaths— TRAVERSEOPERATORQTreeQuerylD,
QTreeDFA, CurrentPartitiong

e
REO®RND gRrw

14: return AnswerPaths

An effective graph partitioning algorithm assigns nodepddi-
tions to preserve locality in graph accesses, and it redcees
munication overhead among partitions during query prangss
Graph partitioning is not the focus of our work. Horton+ chow-
ever, incorporate any existing graph partitioning schemauding
hashing (which is used by default) or more sophisticatetitjmar-
ing tools [1].

3.3.1 Operators

Select Operator. Theselectoperator determines the set of start-
ing nodes by evaluating the first transition predicate of Bifé.

In the distributed environment, the coordinator invokes gblect
operator on all partitions in parallel. A partition repliegh a mes-
sage to the coordinator indicating whether it finds matciiodes
or not. The coordinator registers the partitions with meschs par-
ticipants in the DFA execution. An important special casetien
the DFA transition predicate is a primary key equality, pdavwg
the node id. The coordinator invokes the select operatdreatar-
get partition, determined by the directory service.

Traverse Operator. The traverseoperator starts at each parti-
tion with one or more starting nodes as determined bystiect
operator. It then initiates a bulk synchronous breadth $iestrch
(BFS) [46] among the participant partitions, synchronibgdthe
coordinator, to transition from one DFA state to the nextlevhi
matching graph elements. The traverse operator iteratesgh a
sequence of BFS levels that represent the DFA states. Atlziagh
state (BFS level), thraverseoperator performs three main steps:
(1) Local computatioris the step in which each participant partition
runs its own local query execution engine to check on thetgedyp
ements that satisfy the current DFA state. If an accepting iate
is reached, signaling a matching path, the partition conicates
the path to the coordinator. (8lobal communicatioris the step
where graph partitions send messages to each other to erepar
the next DFA state (which could point to a node in a differeantip
tion). (3) Bulk Synchronizatiors the coordination/synchronization
step needed to advance to the next DFA state. The coordimator
plements a barrier, waiting for synchronization messagas fll
participant partition servers in order to advance the DF&&onext
breadth first search level. When a partition cannot advarizEfa

1: Function TRAVERSEOPERATORQuerylID, DFA, CurrentPartitiong

2: AnswerPaths-@  DFACUrsor—0

3: /* Sequence of Breadth First Search (BFS) levels (DFA syates

4: while CurrentPartitions# @ do

/* STEPS 1 & 2: Local Computation & Global Communication */

for all Partition’? in CurrentPartitionsdo
PARTITIONEXECUTIONENGINE(P, QuerylD, DFA, DFACursor)

CurrentPartitions«— &

/* STEP 3: Bulk Synchronization/Coordination */
PartitionsMsgs= WAIT FORPARTITIONS(QuerylD, DFA)
for all PartitionP in PartitionsMsgsdo

AnswerPathg-= P .FullPaths
CurrentPartitions+= P.NextPartitions
DFACursor<+— ADVANCECURSORDFA, DFACursoi
15: return AnswerPaths

PRRRE
RONEQ® PN

is performed using sort-merge join, which tak@$R log(R) +
Slog(S) + R + S) time to run at the coordinator whete and
S denote the number of paths from the two plans to join.

3.3.2 Algorithm and Communication Patterns

Algorithm 1 shows the workflow of the distributed query execu
tion using the operators. The algorithm takes the queryugi@t
plan QT'ree as input, and returns the set of matching paths. The
algorithm handles two cases:

Case 1:QT'ree is a join: The algorithm recursively executes the
left and right trees of)T'ree representing two query plans. It then
joins their results using theoINOPERATOR

The communication pattern ofjain operator is as follows: (1)
The coordinator starts the execution by sending the quenysgio
the partition servers; it also decides where to runjtiire operator
and informs the partition servers. (2) After the evaluatidrthe
two trees completes, the partition servers send their rmajgiaths
to the designated server that performs the join operation.

In summary, for goin operator, the coordinator senfscontrol
messages to start the execution, and the partitions seindebelts
back to the designated server with at mBstlata messages, where
P is the number of graph partitions.

Case 2: QT'ree is a leaf DFA node The algorithm runs an ini-
tialization step (lines 6 to 11) where the coordinator bozestls the
query DFA to all partitions to invoke the select operatoeLSc-
TOPERATOR to find the starting nodes at each partition. Next,
TRAVERSEOPERATOR(Algorithm 2) is invoked to find the match-
ing paths. Finally, the matched paths are returned as answer

Algorithm 2 gives the pseudo code of th&®@AVERSEOPERA-
TOR. The algorithm takes the following inputs: (QuerylD: rep-
resents the ID of issued query, @FA: denotes the query DFA, and
(3) CurrentPartitionsrepresents the set of participant graph parti-
tions. TRAVERSEOPERATORInitializes the DFA cursor to the first
DFA state DFACursok—0). The algorithm iterates over a sequence
of breadth first search (BFS) levels (lines 4 to 14).

STEP 1 & 2: Local Computation & Global Communication
(lines 4 to 8): At each BFS level, the coordinator signals all parti-
tionsP € CurrentPartitionsto advance th®FACursorto the next
DFA state. Each partition receives the partial path matéroen
other partitions with the ending nodes belonging to theifiamt

as no match is found, it sends a no-more-matches message to thand it combines them with its local partial matches. Thechécks

coordinator. The distributed evaluation terminates whendoor-
dinator receives all matching paths and no-more-matchesages
from all participating partitions.

Join Operator. The coordinator either runs thjein operator
locally or assigns it to one of the partition servers with chéig
results. We apply a heuristic that selects the least-lopdetition
server to process the paths matching the two query plansjoirhe

for local graph elements to match the current DFA state. When
next DFA state points to a remote node (located in a diffepart-
tion), the partition server buffers all the partial matctmsards the
same remote partition into a message, and sends the messhge t
remote partition. As each partition server sends at mostoee
sage to all other partitions, the total number of these dassages
at each level of BFS is bounded B(P — 1).



[ Q | Alternative query execution plans |

Planl: ‘Alice’ Tag Photo Tag ‘ Bob’
1 | Plan2: ‘Bob’ Tag Photo Tag ‘Alice’
Plan3: (‘Alice’ Tag Photo)X(‘Bob’ Tag Photo)
Planl: Photo Tag Person Friend ‘Alice’
2 | Plan2: ‘Alice’ Friend Person Tag Photo
Plan3: ('Alice’ Friend Person)X(Photo Tag Person)
Planl: ‘Alice’ Tag Photo Tag Person Friend ‘Alice’
Plan2: ‘Alice’ Friend Person Tag Photo Tag ‘Alice’
3 Plan3: ('Alice’ Tag Photo) X
(*Alice’ Friend Person Tag Photo)
Plan4 : (‘Alice’ Tag Photo Tag Person) X
(“Alice’ Friend Person)
4 Planl: ‘Alice (Advise Person)* Coauthor ‘Bob’
Plan2: ‘Bob’ Coauthor (Person Advise)* ‘Alice’

Table 2: Examples of alternative query plans.

STEP 3: Bulk Synchronization (lines 9 to 14Jhe coordina-
tor waits for messages from participant partiti@wgrentPartitions
signalling the end of local computation and global commanic
tion steps. The received messagestitionsMsgsnay contain two
pieces of information: (1fullPaths represent a set of full match-
ing graph paths if found. (2NextPartitions represent the set of
partitions that will participate in the next BFS level. Tharial
matches are communicated only among partition servergabe
dinator does not send or receive any intermediate resuét. TRA-
VERSEOPERATORterminates when there is no participant partition
at the next levelCurrentPartitions2).

In summary, each level of theaverseoperator incurs (1) at most
2P control messages between the coordinator and the pastition
signal the start and end of the level, and (2) at mB§P — 1)
data messages among the partitions to exchange intermediat
sults. The size of the control messages is small, and therefe
workload of the coordinator is light without requiring anytén-
sive computation or communication. The size of the data agess
depends on each query, and it depends on the size of intaateedi
results that are distributed among the partition servetse otal
levels of BFS is bounded by the length of the DFA if it does not
contain a loop.

4. QUERY OPTIMIZATION

The declarative language of Horton+ makes query optinumati
possible and important. A declarative language only exg®ethe
logic of a computation without describing its control flowhet
query optimizer of Horton+ can choose to run a query amongyman
implementations (or execution plans), preferably the oith the
lowest cost. However, finding such an execution plan is net tr
ial, which requires an accurate cost model that estimatsdht
of execution plans by taking into account of graph stasstind
a computationally-efficient enumeration algorithm thadéirthe
lowest-cost solution in a short amount of time. This sectien
scribes query optimizer of Horton+, which efficiently finds @p-
timal query execution plan (visiting the fewest number cdgr
nodes) for queries without closure operators. Moreoverdee
velop a heuristic algorithm to perform optimization for ges with
closure operators, and we discuss how the optimizer takesce
nication cost into consideration for distributed graphs.

4.1 Space of Query Plans

The query optimizer takes a compiled query plan as input and
outputs an efficient query execution plan. The output plaapse-
sented as a tree with DFAs in the leave nodes and join operasor

the intermediate nodes. To produce an efficient plan, thenagr
enumerates various execution plans, estimates their aositse-
turns the lowest-cost plan. Here we define the cost of an &recu
plan by estimating the total number of nodes it visits. Theeie
the number of visited nodes, the more efficient the execuytian.

Foragraph query) = ( N1, Eq, -+, Ni, Es, Nig1, -+, Ex_1,
Ny, ), with k£ node predicates ankd— 1 edge predicates, Horton+
query optimizer first conside#spossible plans as follows: (1) One
plan is to execute the query starting fram to Ni. (2) Another
plan is to execute the query in the reverse order, flfgmto N;.
(3) k — 2 plans as dividingp at nodeN;, 1 < i < k, into two sub-
queries as follows: (a) a subquery that starts fiinand ends at
N;, and (b) a subquery that starts fraw; and ends aiV,.. The re-
sults from the two subqueries are joined to produce the firakar.
Each of the two subqueries can be recursively optimized loy co
sidering its execution in the forward and reverse order, el ag
further splitting into shorter subqueries. However, fongiicity il-
lustration, we first describe a simple version of the quetynager
where the first subquery is executed in the forward order f/ém
to N; while the second subquery is executed in the reverse order,
from Ny to N;. We present the complete recursive query optimizer
in Section 4.6. A query can be executed in the forward or ssver
order because each edge (whether directed or not) can b&sadce
from the its two nodes.

Example. Table 2 gives all non-recursive query plans that the
query optimizer considers for queri€g; to Q4. For example,
Qs has four node predicates, and hence four possible plans-as fo
lows: (1) The forward order fronV; to N4, which finds the graph
node forAl i ce, then finds photos in whict\ i ce is tagged.
From these photos, we find all persons tagged in any of these
photos. Among these persons, we find the ones who are friends
with Al i ce. (2) The reverse order, frolV, to N1, which finds
the graph node foAl i ce, then all friends ofAl i ce. For these
friends, we find all photos in which they are tagged. Among¢he
photos, we find the ones in whidk i ce is tagged. (3) A join at
N>, where we have two subqueries. The first subquery finds all
photos in whichAl i ce is tagged (the forward order frodv; to
N>), while the second subquery finds Alli ce friends, and then
finds all photos in whichAl i ce friends are tagged (the reverse
order, fromN, to N2). The outputs of the two subqueries (set of
photos) are joined to get the intersection. (4) A joimM\at, where
we have two subqueries. The first subquery goes ffbince to
all photos she is tagged in, and then all persons who aredagge
these photos (the forward order froéy to N3), and the second
subquery goes froml i ce to all her friends (the reverse order,
from N4 to N3). The outputs of the two subqueries are joined.

4.2 Graph Statistics

This section outlines four maistatistics functions, S(N;),
T(N;), F(Ni, E;, Ny), andG(N;, Ej;, Np,) that are used to es-
timate the cost of each considered query plan.

S(N;) and T(N;). Given a node predicat¥;, S(V;) estimates the
number of nodes that satisfy predicdte while T'(NV;) estimates
the number of nodes that need to be visited to find the onesfysati
ing N;. HereS(V;) represents the selectivity of a node predicate
indicating the number of successful matches wh{ls;) represents
the cost to find the successful matches. We use rules similar t
those used in the query optimizer of relational databasess If
the node predicate is an id equality, indexed as a primarytken
S(N;) = T(N;) = 1. If the predicate is on a non-indexed field
and one tenth of the nodes in this node type satisfying thaiqate,
thenS(N;) = 0.1m andT'(N;) = m wherem is the total number

of nodes of this node type. If a histogram is maintained, weget



a better accuracy on estimatisgN;), yetT'(N;) depends on the
index availability.

F(Ni, Ej, N) and G(N;, E;, N,,). Given two node predicates
N; and N, and an edge predicatg;, F'(N;, E;, N) estimates
the number of nodes that are reachable fidithrough the edge
predicateE; and satisfy the predicat®, while G(N;, E;, Ni,)
estimates the number of nodes that need to be visited to fasth
nodes, i.e., the number of reachable nodes ftgmo the node
type of N using the edge predicat®;. Again, F'(N;, E;, Np,)

is a measure of selectivity indicating the number of sudoéss
matches whileG(N;, E;, N,) measures the cost to find the suc-
cessful matches.G(N;, E;, Ny,) is computed by utilizing few
statistics maintained for the number of edges of each type co
nected to each node type. This number is then divided by the-se
tivity of the predicate at nodé/;, to computeF'(N;, E;, Ny,). For
example, ifN; is of id Al i ce, then, we know that there is only one
node satisfying predicat®;. Then, if E; is of typeTag, and we
know from our statistics thadl i ce is tagged in 20 photos, then,
we say that we will visit 20 nodes matchidg, so F'(N;, E;, Ny)
=G(N;, Ej, Ny) =20. However, if the predicat®’, includes only
black & white photos, and we know that only 10% of the photos
are black & white, therF'(V;, E;, Ni,)=2 while the total number
of visited nodes i$7(N;, E;, N3, )=20 as we have to visit all of the
20 photos in order to find the black & white ones.

Collecting Statistics.Since the underlying graph is partitioned and
distributed among multiple graph partition servers, atitey the
aforementioned statistics is performed as follows: (1) Greph
directory service (DS) sends a statistics collection retjte all
graph partition servers. (2) Each graph partition serveparal-
lel, calculates the graph statistiS$N;), 7'(N;), F'(N;, E;j, N&),
and G(N;, E;, Ny) for all graph nodes and edges stored locally
on that partition. (3) Then, each partition sends back a agess
to the graph directory service reporting its own local graftis-
tics. (4) Finally, the graph directory service aggregatesstatistics
from the partitions to generate the global graph statistics

4.3 Objective Function and Cost Model

Given the space of query plans for any quer§) with k£ node
predicates, it is the objective of the query optimizer to fimel plan
with the lowest estimated cost in terms of the number of etkit
nodes. Formally, Horton+ aims to minimize the objectivechion
Cost(Q[1, k]), represented as:

Cost(Q[L, k]) = min (Cost(Q[L, ) + Cost(Q[k, 1]) + Join(Q, 1))
where Cost(Q]1,1]) is the cost of executing a subquery @fin

the forward order fromV; to NN;, Cost(Q|k, 1)) is the cost of ex-
ecuting a subquery ap in the reverse order, fronv, to N;, and

Join(Q, 1) is the cost of joining the results of these two subqueries.

The trivial cases of = k and: = 1 correspond to the query plans
with forward and reverse orders, respectively, where nogpera-
tion is involved, i.e.,Join(Q, i) = 0.

Given the functionsS(N;), T'(N:), F(Ni, E;,Ny), and
G(N;, E;,N;,) (described in Section 4.2),Cost(Q[1,1]),
Cost(Qlk, 1)), andJoin(Q, ) can be calculated as follows:
Cost(Q[1,i]). For the case whetrl, whereCost(QI1,1]) is set
to zero, corresponding to the execution @fin the reverse or-
der, from N, to N;. For the case when > 1, we first need
to visit T'(N1) nodes to find theS(N1) nodes that satisfy the
first node predicatéV;. Then, for the second nod¥;, the cost
is S(N1) x G(N1, Eq, N2), which corresponds to the number
of qualified nodes fromV; multiplied by the number of nodes
we visit to satisfy the predicat&v,.. Then, for the third node

N3, we visit a total number of nodeS(N1) x F(Ni, E1, N2)
x G(N2, E2, N3), which corresponds to the number of qualified
nodes fromNs, which isS(N1) x F (N1, E1, N2), multiplied by
the number of nodes we need to visit to satisfy the predidate
which is G(N2, E2, N3). The total number of visited nodes for
Q|1, ] is the sum of the number of visited nodes at each predicate
Nj, which is formally presented as:
Cost(QI1,1]) =
T(N1) 4+ S(N1) x G(N1, E1, Na) +

Jj—1

S(Nl)z G(Nj,Ej,Nj+1)HF(Nh,Eh,Nh+1)> 7> 1
Jj=2 h=1
0 =1

Cost(Q[k,i]). Similar to Cost(Q[1,i], but Cost(Q[k,i]) estimates
the cost execution in the reverse order. For the non-triséele

of i < k, we start by getting the number of visited nodes of
type N asT'(Nx). Then, we follow the nodes in the reverse or-
der, e.g., for nodeVy_1, we visit S(Ny) X G(Ng, Ex—1, Nx—1)
nodes. For nod&/;,_s, we Visit S(Ni) X F(Ng, Ex—1, Ng—1) X
G(Ng—1, Ex—2, Nx_2), and so on. Formally:

Cost(Q[k,1]) =
T(Ng) + S(Ng) x G(Ni, Ex—1, Ni—1) +
k—2 k—1
SN DT | GWNj11, B Ny T] F(Nngr, En,Nyp) | i<k
j=i h=j+1
i=k

Join(Q,i). A trivial case is when=1 ori=k, whereJoin(Q,1) is
set to zero, indicating that the query plan correspondstheethe
reverse or forward order, respectively. For the non-trisgse ( <
1 < k), Join(Q, i) is computed as the Cartesian product of the two
sets involved in the join. The first set includes the estichatenber
of nodes satisfying all the predicates in the forward ordemfV,
to N, which is: S(N1) T]\Z} F(N;, Ej, Nj+1). Similarly, the
second set includes the estimated number of nodes sagsijlin
the predicates in the reverse order frdfn to N;, which isS(Ny)
H?:i+1 F’(,Nj7 EJ‘717 Nj71). Formally:

Join(Q,1) =

i—1

S(N1)S(Nw) [] F(N;, Ej, Njy1)
j=1

k
I Fv;, B 1, Nj 1)
j=it1
1<i<k
0 i=10Ri=k

4.4 Numerical Example

Figure 4-a gives examples of some collected statisticsateat
enough for the query optimizer to decide on the best exatplan
for Q1, Q2, andQs of Table 1. For simplicity and ease of illus-
tration, we assume th&t(NV;) andG(NN;, E;, Ni,) are equivalent
to their counterpart$'(N;) and F(N;, E;, Ny). In our example,
S(‘Alice’)is set to one where there is only one node witAlid ce.
S(Photo)is set to one million, indicating the number of nodes of
type Phot o in the whole graphF(‘Alice’, Friend, Person)is set
to 10 asAl i ce has only 10 friends of typBer son. Statistics are
bi-directional ag-(Person, Friend, ‘Alice’)s set to 150 as thaver-
agenumber of friends for each persoR(Person, Tag, Photaand
F(Photo, Tag, Persorgre set to 20 and 3 as thgeragenumber of
“photos per persons” and “persons tagged in a photo”, reéispéc

Figure 4-b gives the cost of each query plan @1, Q2, Qs
based on the statistics of Figure 4-a. As an example, weitlescr
the optimal plan of3 as follows:
Qs. Plan 4 (Join at the third nodé&/s) has the lowest cost,
computed as the sum of three parts: (a) The cost of going



T(Alice) = S(Alice) 1
T(Bob) = S(Bob) 1
T(Photo) = S(Photo)
G,F(Alice, Friend, Person)
G,F(Alice, Tag, Photo)

P Cost
1
2
2
1
G,F(Bob, Tag, Photo) 2 2|2
3
1
2
g

1+ 1x50 + 1x50x2=151

1+ 1x2 + 1x2x50=103
(1+1x50) +(1+1x2)+1x1x50x2=154
1+ 1x10 + 1x10x20=311

G,F(Person, Friend, Alice)

G,F(Person, Tag, Photo)
G,F(Photo, Tag, Alice)

G,F(Photo, Tag, Bob) 2
G,F(Photo, Tag, Person) 3 4

1+1x50+1x50x3+1x50%x3x150=22701
1+1x10+1x10x20+1x10x20x50=10211
(1+1x50)+(1+1x10+1x10x20)+1x 1x50x10x20=10262
(1+1x50+1x50%3)+(1+1x10)+1x1x50x3x10=1712

(a) Statistics (b) Query Plan Cost for Q;, Q,, Q3 (optimal plans are shaded)

Figure 4: Example of statistics and cost of query plans.

in the forward order fromN; to N3 as Cost(1,3)= T'(Ny) +
S(N1) GY(]\h7 E1, NQ) + S(N1) F(Nl, El, Nz) G(Nz, Ez, Ng),
which is equivalent toT(‘Alice’) + S(‘Alice’) G(‘Alice’, Tag,Photo)
+ S(‘Alice’) F(‘Alice’,Tag,Photo) G(Photo,Tag,Persory 201.
(b) The cost of going in the reverse order, fraNy to N3, as
Cost(4,3)= T'(N4) + S(N4) G(N4, E3, N3), which is equivalent
to: T(‘Alice’) + S(‘Alice’) G(‘Alice’,Friend,Person)} 11. (c) The
cost of joining the results from the two previous partslas(3)
= S(N1) S(N3) F(N1, E1, N2) F(N2, E2, N3) F(Ny, E3, N3),
which is equivalent to:S(‘Alice’) S(‘Alice’) F(‘Alice’, Tag,Photo)
F(Photo,Tag,Person) F(‘Alice’,Friend,Persom 1500. Finally,

the total cost of this plan is the sum of these three costs as

201+11+1500 = 1712.
4.5 Query Optimization Algorithm

Algorithm 3 gives the pseudo code of the query optimizer. The
input to the algorithm is a quex with k node predicates arig— 1
edge predicates. The output igoen pointeron where to split the
query to achieve the best performance in terms of the number o
visited nodes. Aoin pointervalue ofk or 1 indicates that the best
query plan is the forward or reverse order, respectivelthovit any
join. A basic algorithm to find the lowest cost would compute t
cost ofk different execution plans individually where each plan can
cost up to0(k?) number of addition and multiplication operations,
which gives a total cost @d(k*), wherek is the number of nodes in
the input path query. Here, we present an algorithm withad taist
of only O(k), which exploits common subcomputations to reduce
computational complexity.

The algorithm has three main parts: The first part (Lines 2to 8
incrementally fills four arraysCostF, JoinF, CostR and JoinR
each of sizé:. Anitems > 1 in any of the two arraysCostF[i],
JoinF[i], maintains the cost of query evaluation in the forward or-
der fromN; to N; asCostF[i]l= T'(N1) + S(N1) G(N1, E1, N2)

+ S(N1) 3, (G(Nj, Ej, Njt1) [T, F(Nu, En, Nnt1)),
and if there is a join at node, the additional cost isloinF(i]
S(N1) [T—1 F(Nu, En, Npy1). Similarly, an itemi < k

in any of the two arraysCostR([i], JoinR([i], maintains the cost of
query evaluation in the reverse order, frgw to V;, and part of
the join cost should we decide to join at nodeThe second part
of the algorithm (Lines 9 to 14) computes the cost of forwand a
reverse execution order ¢f. As the costs are computed incremen-
tally, the forward and reverse order costs are computed tingd
two terms: (1) The cost encountered to reach to ndde; and
N, which is CostF[k-1] and CostR[2] respectively, and (2) The
number of nodes to visit to reach 1§, and Ni, which is com-
puted as the number of paths we have, i.e., join costiill ; and
N> (JoinF[k-1] andJoinR[2]) multiplied by the number of output
nodes of each path to readh), and N1 (G(Nk—1, Ex—1, Ni) and

G (N2, E1, N1)), respectively. The minimum of the forward and

Algorithm 3 Query optimizer

1: Function QUERYOPTIMIZER(Q = ( N1, E1, -+, Ex,_1, Nk ))
2: JoinF[1] < S(N1); CostF[1] + T'(N1);

3: JoinR[K] <~ S(Ny); CostR[K]< T'(Ny);

4: fori=2tok — 1do

5. JOlnF[I] < JOlnF[I-l] X F(Ni,fl, Ei_1, N»L)

6:  CostF[i] < CostF[i-1] + JoinF[i-1] x G(N;_1, Ei—1, N;)

7: JoinR[k-i+1]«—JoINR[k-i+2] X F(Ny—;+2,Fk—i+1,Nk—it+1)

8.  CostR[k-i+1] “— CostR[k-i+2] + JoinR[k-i+2]

XG(Nk7i+2,Ek7i+1yNk—i+l)
9: ForwardCost— CostF[k-1]+ JoinF[k-1] x G(Ny_1, Ex_1, Ni)
10: ReverseCost- CostR[2]+ JoinR[2] X G (N2, E1, N1)

11: if ForwardCost< ReverseCogshen

12:  MinCost« ForwardCost JoinPointer< k;

13: else

14:  MinCost« ReverseCosfoinPointer« 1;

15: fori =2tok — 1do

16:  TotalCost« CostF[i] + CostR][i] + JoinF[i] x JoinR[il;
17:  if TotalCost< MinCostthen

18: MinCost«— TotalCost JoinPointer<— ;
19: Return JoinPointeg

reverse order costs is set as the current optimal plan wétfoth
pointerset ask and 1, respectively. The third part of the algorithm
(Lines 15 to 18) iterates over all nodes to compute the tatst of
joining at each nodé as CostF[i]+CostR[i]+JoinF[i] xJoinR{i].
The value ofi that corresponds to the minimum total cost is re-
turned as goin pointer.

For @, in Table 1,JoinF={1,50,4, CostF={1,51,}, JoinR={-
,2,1}, CostR={-,3,1}, which results inForwardCost= 51 + 50x2
= 151 andReverseCosB + 2x50 = 103. The cost of joining at
nodeN; =51 + 3 + 50«2 = 154. Hencejoin pointeris set to 1.

4.6 Query Plans with Recursive Joins

We have described a simple version of Horton+ query optimize
that only considers splitting a given query into two subigser
However, the full version of Horton+ query optimizer coresigire-
cursive splits of subqueries and producesptimalexecution plan
based on the graph statistics. More specifically, it taket sab-
query and recursively considers it for optimization, isesubquery
can be evaluated in the forward or reverse order, or can lie spl
again to another two subqueries. The output of the recucgieey
optimization is a query execution plan represented as a faeh
leaf node is a DFA representing a traversal of a subquerygaod
intermediate node is a join operator that joins the resultsvo
subqueries. DenotingCost(Q(p, q)) as the cost of a query (or
subquery) using recursive optimization where< ¢, we present
the recursive formulation of the query optimizer:

RCost(Q(p, q)) =
min{SCost(Q(p, q)), SCost(Q(q; p)),
Jmin {RCost(Q(p, i) + RCost(Q(S, @) + Join(Q(p, 1), Q(i, 9)}}

Here,SCost(Q(p, q)) andSCost(Q(q,p)) are the cost of eval-
uating the query)(p, ¢) in the forward and reverse orders respec-
tively, and Join(Q(p, 1), Q(4,q)) is the cost of joining the sub-
queriesQ(p, i) andQ(i, q). We present their formulation as fol-
lows.

S5Cost(Q[p,i]) =

T(Np) + S(Np) x G(Np, Ep, Npt1) +

k3 Jj—1

S(Np) > | GWN; By Njw1) T F(Nws Bny Noga) | p<i
j=p+1 h=1

0 p=7i



Join(Q(p, 1), Qi, q)) =
i—1
S(Np)S(Ng) ] F(N;, By, Njya)
Ji=p

q
IT PNy, EBya, Nj1)
i+1

j=

1<i<k
0 i=10Ri=k
The cost of solvingkRCost(Q(1, k)) naively isQ(k!), wherek

is the number of query node predicates. We ushyamic pro-
grammingframework to solve the problem efficiently: it computes
and stores the optimal solutions for subqueries and usee ttwo
construct the optimal solution for a bigger problem. Dynaprio-
gramming effectively reduces the computational cost o&iniirig

an optimal execution plan t@(k*), which is rather affordable as
query length is often not that large (even long queries hength
under20 in most cases). Recursive splits can be mostly beneficial
when there are many selective nodes within a long query.

4.7 Closure Operators

Estimating the cost of a query with closure operators is derp
because a query optimizer does not know the number of reeursi
steps a query would take to complete without actually rugmire
query. Thus, we develop a heuristic algorithm: (1) it opties the
non-closure part of a query by exploring different travessgers
and join sequences using the technigues we presented eanlie
(2) it further exploits the closure part of the query withfeient
number of recursive steps. This algorithm includes thresses.
While illustrating the phases, we use an example qéry- Es —

N2 — (E3— N3)* — E4 — Ny — E5 — N5, and we assume that we
considerk number of recursive steps whete= 0, 1,2, 3.

(1) For each recursive levéd, we remove the closure operator
and expand the query according to the valug:ofFor example,
with £ = 2, our example query has a form @f(k = 2) = N; —
EQ—N2—(Eg—Ng—Eé—N;;)—E4—N4—E5—N5. For
the expanded query instance, we compute a good plan, deasted
plan,. The plan is computed similarly as in Section 4.6, however,
we exclude those plans that would perform a join operatisida
the recursive block, e.gks — N3 — E5 — Nj is the recursive
block for Q(k=2). In other words, we treat the recursive klas an
atomic unit: we can execute it in the forward or reverse obdéwve
do not perform any join inside it. For the other parts of thergu
we still consider the join operator based on the cost estisnat

(2) If all the plans, plap for &k = 0, 1, 2, 3, have equivalent ex-
ecution sequence, we use this sequence to execute theivecurs
query. Here we define two plans have equivalent execution se-
quence if they have join on the same node predicates and have t
same evaluation order for the same subqueries.

(3) However, if for differentk values, their optimized plans have
different execution sequences, we estimate the cost ofj &sinh
“local optimal” execution sequence in the recursive quemnyd
we call this cost TotalCost(plap for a given plan. Among all
plan, wherek = 0,1,2,3, we find the plan with the minimum

TotalCost(plap), and use planfor the recursive query.

Example.  We give an example on how to compute
TotalCost(plap). Suppose that = 1 and plan is to execute the
query from left to right. The total cost of applying plato the
recursive query is as follows:

TotalCost(plany) SCost(Q(k =0)) + SCost(Q(k =1))
+SCost(Q(k = 2))
725005t(N1 — FEy — Nz) .

We remove the additional sequential cost of processing ube s
query Q(V1 — E5 — N2) because this cost is incurred only once in
the recursive execution.

4.8 Optimization for Distributed Execution

Horton+ takes into account the communication cost when opti
mizing the input query. It distinguishes between: (1) loedge:
two nodes of a local edge reside on the same graph partitich, a
(2) remote edge: two nodes of a remote edge are stored on-diffe
ent graph partitions. Horton+ can assign higher cost foessc
ing remote edges and lower cost for local edges. We achieve it
by incorporating the local/remote information into graphtistics
thus influencing our cost estimation and final decision. Ber e
ample, as described in Section 4@(N;, E;, Ny ) estimates the
number of nodes that need to be visited through the edge pred-
icate E; to satisfy the predicatéV,. We can revise its cost to
reflect the cost difference of remote and local edge accesites
additional statistics P(N E;, N,) that defines the probability of
remote edges for edge predicates ESupposing that the cost of
remote and local accessds 1, the revised cost aff (N, E;, Ny,)
is G,(NZ‘,EJ',N}L) = c X G(Ni,Ej,Nh) X P(Ni,Ej,Nh) +
G(Ni, E;, Np,) x (1 — P(N;, Ej, Ny,)). By using the new statis-
ticsG'(N;, E;, N,), we apply the same optimization procedure as
described earlier to decide efficient query plan considetommu-
nication costs.

5. EXPERIMENTAL EVALUATION

This section presents an experimental evaluation of Hor-
ton+ [38]. Our objective is to assess three aspects: system e
ficiency (query optimization), scalability (distributedezution),
and usability (declarative querying). We also provide a pari
son with Giraph [19]; a graph processing system built on tbp o
Hadoop. Horton+ is implemented in C# in 30K lines of code.
The implementation includes the client interfaces, quangliage
parser and compiler, query optimizer, and distributed gjpeoces-
sor. We use two graph types:

(1) We use aeal graphfrom a software collaboration system,
called Codebook [4], which models software engineers aed th
software artifacts, including source code, bug reportgjgpts, and
their relationships. The graph has 2,910,535 nodes, 131662
edges, 8 node types, and 11 edge types. It is generated bl craw
ing multiple data sources including source code reposi$orand
employee directory and document databases. Each node gad ed
is associated with a large number of attributes. The grapd ida
represented natively in main memory as C# objects. The memor
footprint of the graph is around 12 GB, including object dvesads
and the intermediate results while evaluating queries.

(2) We generatesynthetic graphsith different sizes using the
RMAT graph generator [5] that produces scale-free graphse T
graph schema including the types and attributes of nodesdges
are set to mimic the real graph schema. The node and edge types
and attributes are generated using the Zipf distributioitivimod-
els the popularity of attribute values, and we set the nunafer
edges to five times the number of nodes.

Workload. There is no standard benchmark for reachability
queries. We, therefore, characterize the queries from (Qmle
and classify them into four categories. For each categagyshow
one of most frequent queries in Table 3. @hort queriehave a
small number of predicates as in quépy. Since the query length

is short, the query optimizer searches a small spaceSéRctive
querieshave one or more selective predicates. For example query
Q- contains two id predicateésDave’ and‘ Ti ni . Due to the
high selectivity, selective queries traverse a small numob@aths

to compute the final answer. (Report querieseturn a large result
set, such as quei®s. Report queries are the most expensive to ex-
ecute. (4)Closure queriesequire recursive graph traversal. Query



Query [ Query in Plain English [

Query in Horton+

Short Q1) Find the person who committed checkin 400 and the WorkltemR&er son- Conmi t t er - Checki n{i d=400}- Modi fi es- Wor kl t enRevi si on
visions it modifies
Selective Q2) | Find Dave’s checkins that modified a Workltem create by Tim | Per son{i d=" Dave’ }- Conmi tt er - Checki n - Modi fi es-Workltem
-CreatedBy-*‘Tim
Report (3) For each checkin, find the person (along with his manager) WHeer son- Manages- Per son- Conmi t t er - Checki n- Modi fi es
committer it as well as all the work items (along with their We - Wor k1 t enRevi si on- Modi fi es- Wor kl t em - Li nks- WebURL
bURLSs that are modified by that checkin)
Closure (04) Retrieve all checkins that any employee in Dave organimatiq Per son{i d="Dave’ } (- Manages- Person) *- Checkin
chart (working under him) committed.
Table 3: The graph queries used in the experiments.
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(a) Short Query.
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(b) Selective Query.
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Figure 5: Impact of query optimization on the query executim

Qa4 is a closure query and it retrieves the management hierafchy

a person using Kleene star.

Performance Metrics. Our main performance metric is the query
execution time. We also examine the computation and communi
cation costs to process the queries.

Experimental Environment. All experiments are run on a cluster
of 16 graph partition servers plus two servers as the coatolirand
client. Each server has an Intel QuadCore 2.9 GHz CPU, 16 GB

RAM, and runs Windows Server 2008. The servers are connected

by a Gigabit Ethernet switch.

5.1 Efficiency (Query Optimization)

In this section, we study the benefits of the query optimizer o
reducing query execution time for a graph deployed first oma s
gle server, and then on multiple servers. We run two versifns
Horton+: Hor t on- opt is the full version of Horton+ including
its query optimizer. Hor t on- non represents Horton+ with the
optimizer turned off, i.e., queries are executed in the &vdwrder.
The experimental results demonstrate that optimizatidoces the
latency of many queries by a factor of 5 — 15 times. Moreove, t
larger the graph size, the higher the optimization benefits.

5.1.1 Deploymenton a Single Graph Server

Short query Q1. Figure 5(a) shows the performance of executing
query Q1 on synthetic graphs. The X-axis is the size of the syn-
thetic graph (0.5, 1, 2, and 4 million nodes), and the Y-ax&xiecu-
tion time. Hor t on- opt outperformsHor t on- non for all graph
sizes becauddor t on- opt splits@; at the middle selective node
predicateChecki n{i d=400} and processes two subqueries. The
query execution time in botkor t on- non and Hor t on- opt
becomes higher with increasing graph size because the guery
cution engine visits more graph nodes when the graph sizees
larger. The benefits of optimization become more signifieatt

the increase in graph size.

Selective queryQ-. Figure 5(b) shows the results of running query
Q2. Hor t on- non andHor t on- opt give the same performance,
as they both execute the forward execution plan. The realdts
show that the overhead of running the query optimizer is atmo

05 1 2
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(d) Report Query (recursive).
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(c) Report Query.
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Figure 6: Impact of optimization on execution time (using tre
real graph), number of servers varies from 1 to 10.

negligible, compared with the total query execution timae Dp-
timized and non-optimized plans fap, are the same with equal
execution time. We omif)4 as it is similar to Figure 5(b).

Report query Q3. Figure 5(c) shows the performance of query
Q3. The optimizer provides lower execution time, and the bénefi
increase with the graph size.

Recursive split for query Q5. Figure 5(d) shows in-
teresting results: We change&)s into Q3 by adding
two predicates to the third Checkl n{i d=390}) and
fourth (Wor kit enRevi si on{i d=610}) node predicates.
Hor t on- opt exploits these predicates to reduce the execution
time by a factor of 13. Hort on- opt chooses a query plan
that includes recursive splits at two nodes. Fikdyt on- opt
splits the query at the third nodeCi{eckl n{i d=390}) into
two subqueries. Next for the second subquetyy t on- opt
performs a recursive split, where this second subquery lis sp
at the fourth node ér ki t enRevi si on{i d=610}). The
recursive split is the main reason behind the impressive per
formance ofHorton-opt for Q5. To measure the benefits
of recursive splits, we run a third version of Horton+, tedme
Hor t on- opt - nor ec, which uses the same optimizer but
without recursive splits; thus the optimized query plantaors

at most one split. Hor t on- opt - nor ec produces a plan for
Q% with a single split at the third node. Figure 5(d) shows that
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Figure 7: Query execution time (using the real graph) while arying number of partition servers from 1 to 10.

Hor t on- opt yields up to 7 times better performance than that of
Hor t on- opt - nor ec, which shows the benefits of employing
recursive splits in the query optimizer.

5.1.2 Deployment on Multiple Graph Servers

Figures 6(a) and 6(b) depict the query execution time of
Hor t on- opt andHor t on- non for queries: and@ s executed
over the real graph, while varying the number of servers fiotm
10 over the X-axis. We omit the results & and Q4 since the
optimized query plans are the same as the non-optimized.plan

For query@:, Hor t on- opt consistently achieves from 12 to
14 times better performance compared wibrt on- non be-
cause irfHor t on- opt the optimizer split€); at the middle node
predicateCheckl n{i d=400} and executes the two subqueries.
The optimized plan is substantially more efficient than tvevard
execution ofQ;.

For query @Qs, Horton-opt consistently outperforms
Hor t on- non by a factor of 8 to 10 times ddor t on- Opt uses
an optimized plan that splits the query at the middle noddipate
Checkl n. These results show that query optimizer produces good
plans, suitable for deployments both on a single server and o
multiple servers.

5.2 Scalability (Distributed Processing)

We study the performance of distributed query processitgan
cases. First, we use the real graph which fits in a single serve
and study the distributed execution overhead with the nurobe
servers. Second, we use a large synthetic graph that doésinot
a single server to show query processing times.

(1) Real Graph. Since the real graph fits in the main mem-
ory of single server, this constitutes a challenging emriment for
evaluating a distributed system: (1) There is no benefit filtoerag-
gregated main memories of the servers, and (2) the comntigrica
and synchronization inefficiencies are emphasized. A sisgtver
could be more efficient as it incurs no messaging overhead.

We vary the number of partition servers fromto 10. Fig-
ures 7(a) to 7(d) show the execution time of queribs Q2, Qs,
andQs. The query execution time has two components: computa-
tion time and communication time. The computation time rigeti
used for local computations at the servers, and the comatimic
time is the time spent in message passing among the servees. T
performance o€)1, Q2, @3, andQ4 improves with increasing the

| Query Total execution | Communication | Computation
Short Query(Q1) 47.588 sec 0.723 sec 46.865 sec
Selective Query(Q2) 6.294 sec 0.693 sec 5.601 sec

Table 4: Execution time for 1024 million nodes, 5120 million
edges synthetic graph deployed on 16 partition servers.

it increases as more servers are added because more messages

are exchanged among the graph servers during query executio
The communication cost is dominated by the messages exetiang
among the graph servers during the global communicatignpse
formed by theraverseoperator. These results show that the system
is efficient, and query execution time improves with the nemndf
servers even if the graph fits in the memory of one server.

(2) Synthetic Graph. We use a synthetic graph with 1024 mil-
lion nodes and 5120 million edges with an aggregate mematy fo
print of 145 GB, partitioned on a cluster of 16 servers. Tkisegi-
ment shows that Horton+ processes queries over graphsaimat d
fit on a single server, and it exploits multiple servers toceke a
single query in parallel.

Table 4 shows the execution time of querigsandQ-. The ex-
ecution time of; is approximatelyl8 seconds(; execution plan
splits the query into two subqueries at ti@éckl n{i d=400})
node predicate. Both subqueries are executed separattlithan
their outputs are joined to form the final answer. Even thoihgh
graph is partitioned on 16 servers, oml$% of the query execution
time is spent in communication and the remain® % is spent
for local computation. This is in contrast to the findings veserve
in Figures 7(a) and 7(c), where the communication cost isidant
for only 10 servers. The reason is that with larger graptssizarti-
tioning the graph among 16 servers provides enough workafth e
server to parallelize query processing.

Query Q2 shows similar benefits t@:, as the majority of the
time is spent in computations rather than in communicatibine
computation cost comes mainly from traversing the grapmeies
at the graph partition servers during the local computasiteps
performed by theraverseoperator. These results show that Hor-
ton+ efficiently parallelizes execution over a cluster af/ses.

5.3 Usability (Declarative Queries)

Writing a procedural program takes more effort comparedh wit
expressing an equivalent declarative query, particul@rdyovice

number of servers. The improvement comes from executing the users. The procedural program is harder to write, debugrein-

query in parallel on more servers, reducing the parallel pgar
tion time component as the number of servers increases adatep
in the figures. More graph partitions lead to a reduction érthm-
ber nodes and edges per partition, further reducing the atraju
local computation per server.

However, the performance gain shows diminishing returns be

tain. Moreover, expressing a query directly into a procebpro-
gram may not lead to an efficient execution, and it is wellsno
that procedural programs are hard to optimize automayicall

We support this argument with anecdotal evidence: Figure 9
depicts queryQs (from Table 3) in a procedural language (i.e.,
Java) in Giraph. We make two observations: (1) The procedu-

cause the communication time increases with the number of ral program is longer and more complex. (2) Comparable graph

servers. The communication time is zero for a single seased,

systems such as Giraph [19], Pregel [30], and Trinity [3@juise
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Figure 8: Impact of optimization on execution time in Giraph (using the pseudorandom synthetic graph) on a 10 servers dter.

public void conpute(lterable<Text> m throws | OException{
Text nessage = mnext().get(); int st = getSuperstep();
if (st == 0 && getValue().get() == "Person") {
for (Edge<LongWitable, Text> edge : getEdges())
if (edge.getVal ue().get() "Manages")
sendMessage( edge. get Target Vertexl d(), format Msg(n));
} elseif (st == 1 && getVal ue(). get ( "Person") {
for (Edge<LongWitable, Text> edge : getEdges())
if (edge.getValue().get() == "Conmitter")
sendMessage( edge. get Target Vertexl d(), format Msg(n));
} elseif (st == 2 && getValue().get() == "Checkin") {
for (Edge<LongWitable, Text> edge : getEdges())
if (edge.getValue().get() == "Mdifies")
sendMessage( edge. get Tar get Vertex!l d(), f ormat Msg(m ) ;
} elseif (st ==3
&& get Val ue(). get () "Wor kl t enRevi sion") {
for (Edge<LongWitable, Text> edge : getEdges())
if (edge.getValue().get() == "Mdifies")
sendMessage( edge. get Tar get Vertex!l d(), f ormat Msg(m) ) ;
} elseif (st == 4 && getValue().get() == "Workltent) {
for (Edge<LongWitable, Text> edge : getEdges())
if (edge.getValue().get() == "Links")
sendMessage( edge. get Tar get Vertex!l d(), f ormat Msg(m ) ;
} elseif (st == 5 && getValue().get() == "WebURL") {

}
voteToHal t ();

Figure 9: Giraph Program (Java pseudo code) for Queng@s.

programmers to write procedural programs with explicit oaumi-
cation messages for queries likk;. The procedural program for
Qs is likely to have a high execution time, similar to the timetloé
non-optimized execution plan in Figure 5(c), which is altnas
order of magnitude higher than the optimized plan. Furttoeen
writing an efficient program requires the user to be closainif
iar with both the underlying graph and the execution engfoe;
example it is challenging for the programmer to split a quetyg
multiple subqueries at the right node predicates and tewote
to join the outputs in the right order. Horton+, on the othandh,
allows users to declaratively express queries, and opsrttzem.

5.4 Comparing Horton+ with Giraph

This section compares Horton+ with Apache Giraph, which is a
large-scale graph processing system built on-top of Had8aph
Horton+ and Giraph store the graph in the main memory of aelus
of servers. Also, both employ the bulk synchronous parabtel
cution paradigm to process queries in parallel over theidiged
graph. By default, Giraph loads the graph from the Hadoop SDF
file system, and then deploys it to the cluster for each subchit
graph processing job. Giraph users write queries as progedu
Java programs which are executed directly without optitrona
whereas Horton+ maintains graph statistics to optimizetezies.

We write a procedural program for each query in Table 3. For ex
ample, Figure 9 shows part of the Java code equivale@toThe
actual code is longer, and it contains additional lines &ading
graph data from and writing the results to Hadoop HDFS. Iri-add

tion, we use the Horton+ optimizer to generate an optimizesty)
plan and we write an optimized program in Giraph emulatirey th
optimized plan.

We study the execution time of these procedural programs on
Giraph. Our objective is not to compare the performance odi3i
with Horton+ directly because they use different softwasaelss of
managed and unmanaged components (such as JVM and CLR/.Net
framework) and different communication primitives and-dibes.
Instead, our objective is to (1) put Horton+ performancedrspec-
tive, and (2) show that Horton+ optimization strategies also be
used to guide writing better procedural programs for Giraph

We deploy graphs of sizeS00K, 1M, 2M, and 4M nodes
(number of edges is five times the number of nodes) gener-
ated using the the pseudorandom synthetic graph benchmark p
vided by Giraph, overl0 servers in a Hadoop cluster running
hadoop- 0. 20. 203. 0 with 30 mappers. Figures 8(a) to 8(d)
show the performance of the procedural programs. We compare
the plain Giraph Java programs (labelldain- Opt i m zed) with
the Java programs written following the Horton+ optimizéans
(labelledOpt i m zed). Horton+ produces optimized plans dif-
ferent from prior plans because the graph statistics of geip
dorandom synthetic graph are quite different from the stiat of
the prior real and synthetic graphs. T@pt i ni zed programs
outperforms théNon- Qpt i m zed for Q1, Q2, Qs because the
Opt i m zed programs traverse fewer graph nodes and edges, in-
curring less computation and communication overheads.(or
both Opt i m zed andNon- opti m zed achieve the same per-
formance as the optimized plan is equivalent to the forwéad.p
These results show that the Horton+ optimization techricare
general, and its optimizer can provide guidance in writingren
efficient procedural programs for Giraph.

6. RELATED WORK

Graph Query Languages. Graph query languages are based on
either regular expressions [10, 11, 22], SQL-like langsd@e 36,
40], or a procedural languages [23]. Horton+ uses a formahde
ative query language to express reachability queries, are im-
portantly it provides an efficient distributed executiogiee to ex-
ecute its declarative queries.

Graph Processing Algorithms. In-memory graph processing al-
gorithms include computationally-intensive algorithragy., graph
mining [32, 42], dense subgraphs [18, 35], and pattern match
ing [14], where the emphasis is on having reasonable latéarcy
problems that are likely to be NP-complete. Online graplo-alg
rithms support simple graph queries, e.g., shortest pattiep[17,
47], reachability queries [8, 15, 24], smaller versions afmplex
queries, e.g., pattern matching queries [15, 50], or apprate
queries on a streaming environment [2, 49]. Horton+ focuses
processing reachability queries over a partitioned grapl, pro-
vides a query language, optimizer and distributed execetigine.



Distributed Graph Query Processing. Research in distributed

graph query processing has focused on either leveraging the

MapReduce paradigm [12] to support graph operations [75]D, 2
or building distributed computation models for graph gesrie.g.,
Pregel [30], Trinity [39], GraphChi [20], and PowerGrapt9]2
Horton+ is different because (1) it supports a declaratiwryglan-
guage and (2) it optimizes query execution. In contrasttesys
like Pregel provide an API for developers to write procetipra-
grams, which are harder to write, debug, maintain and opémi
Graph Query Optimization. Existing graph query optimization
techniques focus on either building index structures [48, & on
developing selectivity estimation modules for certaimpirgueries
[33, 49]. These techniques are complementary to Hortongitan
can employ such techniques. Several optimization teclesiaun
tree structures, such as for XML documents, are not appédab
graphs, which contain cycles.

Graph Libraries. Graph libraries provide various graph algo-
rithms within a single framework [6, 21, 26, 28, 41]. Horton+
provides a query language rather than a set of graph algwith
It consists of multiple components including compiler, inpter,
and distributed query processor.

7. CONCLUSION

This paper presents the design, implementation and ei@huzit
Horton+, a distributed system for processing reachabijitgries
on a partitioned attributed multi-graph. The system hascade
ative query language, distributed query processor, andycppi-
mizer. The query language expresses reachability quanzksug-
ports closures and predicates on the attributes of nodesdgws.
The distributed query processor executes a query plan tisiag
algebraic graph operatorselect traverseandjoin to find paths that
match the user query. The query optimizer employs a cost mode
and selectivity estimation techniques to rewrite the quuayp. Ex-
periments on real and synthetic graphs on a cluster of sestew
system the scalability and efficiency.
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