Horton: Online Query Execution Engine For Large
Distributed Graphs

Mohamed Sarwat
Dept. of Computer Science and Engineering
University of Minnesota, Twin Cities
sarwat@cs.umn.edu

Abstract—Large graphs are used in many applications, such
as social networking. The management of these graphs poses
new challenges because such graphs are too large to fit on a
single server. Current distributed techniques such as map-reduce
and Pregel are not well-suited for processing interactive ad-
hoc queries against large graphs. In this paper we demonstrate
Horton, a distributed interactive query execution engine for large
graphs. Horton defines a query language that allows expressing
regular language reachability queries and provides a query
execution engine with a query optimizer that allows interactive
execution of queries on large distributed graphs in parallel. In
the demo, we show the functionality of Horton managing a large
graph for a social networking application called Codebook, in
which a graph models data on software components, developers,
development artifacts (such as bug reports), and their interactions
in large software projects.

I. INTRODUCTION

Graphs are widely used in many application domains,
including social networking, interactive gaming, online knowl-
edge discovery, computer networks, and the world-wide web.
For example, online social networks (OSN) employ large
social graphs as used in popular sites such as Facebook [7],
and Linkedin [8]. In the simplest form, a social graph contains
nodes that represent people and edges that represent friend-
ships. Social graphs today are much richer, maintaining data on
photos, news, and groups. For instance, a node can represent a
person or a photo, and an edge between a person and a photo
means that the person is tagged (appears) in the photo.

The popularity and size of social networks pose new chal-
lenges. For example, Facebook [7] reports that the number
of its users increased five times in a short period, from 100
million in 2008 to 500 million in 2010. Another example
is Codebook [1], [2], which is a social network application
that maintains information about software engineers, software
components, and their interactions in large software projects.
Generating the Codebook graph for a large project, such as the
Windows or Linux operating systems, results in a very large
graph with billions of nodes and edges.

Such a large network cannot be managed on a single server.
In addition, current distributed techniques are not well-suited
for interactive online querying of large graphs. In particular,
the relational model is ill suited for graph query processing [9]
making reachability queries hard to express, and therefore
distributed database clusters becomes a non-viable option
to manage large graphs. The map-reduce [6] framework is

Sameh Elnikety Yuxiong He Gabriel Kliot
Microsoft Research
Redmond, WA

{samehe, yuxhe, gkliot}@microsoft.com

designed to process large datasets over a distributed infrastruc-
ture, but it is designed for batch processing rather than online
query processing. Recently introduced systems for processing
large graphs focus on offline batch processing. Systems like
Pregel [9] and Surfer [5], [4] support batch processing on
graphs with high throughput rather than interactive queries
with low latency. We also point out that systems that manage
a large number of small graphs, as used in bioinformatics and
chemoinformatics, do not meet the requirements for querying
large graphs.

With the increased popularity of interactive services such as
social network applications, it becomes important to manage
large graphs online, supporting querying with small latency.
Online processing also allows answering a rich set of ad-
hoc queries. In an interactive system, a user may request,
for example, to see her friends and their status updates.
The user may search for photos in which she is tagged
with a specific friend. The database research community has
paid little attention to building distributed systems to manage
and query large graphs interactively, which is an emerging
important application need.

We claim that such challenges require building new systems,
specifically designed to handle large graphs. In this paper,
we demonstrate Horton: an online distributed query execution
engine for large graphs. Horton provides a query language
that expresses regular language reachability queries on graphs.
Horton consists of a graph query execution engine and a query
optimizer that is able to efficiently process online queries on
large graphs. As a key design decision for online processing,
Horton partitions the graph among several servers, and stores
the graph partitions in main memory to offer fast query
response time. This is motivated by the availability of many
machines in data centers allowing horizontal scaling.

The remainder of the paper is structured as follows. Sec-
tion II show the graph data model and the query language used
in Horton. Section III describes the architecture and design of
Horton and the query execution steps, and Section IV presents
our demonstration scenario.

II. HORTON DATA MODEL AND QUERY LANGUAGE

In this section we highlight the data model and query
language used by Horton.

1

1
1
1

= = = = Tagged

FriendOf

Fig. 1. Example of a small social graph with persons and photos.

A. Data Model

Horton supports rich graph data. Nodes represent entities
and have types as well as a set of key value pairs representing
the data associated with this entity. Edges represent relation-
ships between entities and have type and data as well. There
is no restriction on the kind or amount of data associated with
nodes and edges.

Horton manages both directed and undirected graphs. If the
graph is directed, each node stores both inbound and outbound
edges, to allow queries to traverse both directions. We show
examples for undirected graphs as they are simpler, but both
are supported in Horton.

B. Query Language

Queries are in the form of regular language expressions. A
query is a sequence of node predicates and edge predicates.
Each predicate can contain conjunctions and disjunctions on
node and edge attributes (including type) as well as closures
such as regular operators “*” (zero or more), and “+” (one or
more).

Figure 1 shows an example of a social graph that has two
node types, Person and Photo. In the figure, a solid line edge
represents a friendship relationship (i.e., between two Person
nodes) and a dotted line edge represents a tagging relationship
(i.e., between a Person and a Photo nodes). As a specific query,
to retrieve the list of all the photos in which John is tagged,
the query is expressed as follows:

Photo—Tagged—John

To retrieve the photos in which Tim is tagged and at least one
of his friends is tagged too, the query is as follows:

Tim—Tagged—Photo—Tagged—Person—FriendOf—Tim

The query execution engine returns all paths in the graph
that satisfy the regular expression. If the user is interested in
only a specific part of the path, e.g., a specific node, a SELECT
statement is used. For instance, in the last query if the user is
interested in photos, the query is expressed as follows:

Graph Client Library

Results Graph Partition 1

Asynchronous
Communication

Query Execution
Engine

Graph Partition 2

Query Validation/Parsing
Graph Query Optimizer
Query to Finite State
Automaton

Asynchronous
Communication

Query Execution
Engine

Asynchronous
Communication

Graph Partition N
Graph Partitioner
Asynchronous
Communication
Graph Monitor

Query Execution
Engine

System

Administrator Graph Loader

1

Fig. 2. Horton system architecture.

SELECT Photo FROM

Tim—Tagged—Photo—Tagged—Person—FriendOf—Tim

III. HORTON ARCHITECTURE

Figure 2 shows an overview of the Horton system. The
system comprises four components: the graph client library,
graph coordinator, graph partitions, and graph manager. The
graph client library sends queries to the graph coordinator and
uses an asynchronous messaging system to receive the results.
The graph coordinator prepares an execution plan for the
query, transforms it into a finite state machine, and initializes
the query processing on the appropriate graph partitions. Each
partition runs the query executor and sends the query results
back to the client. The graph manager transfers the graph
between main memory and persistent storage, and partitions
the graph.

A. Graph Client library

The graph client library sends queries to the graph coor-
dinator in the form of regular expressions, and receives the
query results directly from the graph partitions.

B. Graph Coordinator

The graph coordinator provides the query interface for
Horton. The coordinator receives the query from the client
library, validates and parses the query. Then, the coordinator
optimizes the query plan and translates the query into a finite
state machine, which is sent to the partitions for parallel
execution. The details are illustrated below:

Query Parsing and Validation. When the graph coordinator
receives a query from the graph client, it first parses the query
and checks the syntax and the validity of node and edge
predicates.

Graph Query Optimizer. The graph query optimizer accepts
the query in a parsed regular expression form, enumerates
various execution plans, and finds a plan with lowest cost.
Cost includes both expected total query execution time on
graph partitions and communication cost among them. The
Horton graph query optimizer employs a set of optimization
strategies and integrates them using a dynamic programming
framework to quickly estimate the cost of execution plans.
An example optimization strategy is predicate ordering. This
optimization strategy evaluates the cost of executing the query
with different predicate orders and finds the plan with the
lowest cost. Finding a good predicate order to evaluate a query
is important because different predicate orders give the same
query results but may have orders-of-magnitudes differences
in cost due to the sizes of the intermediate results. We use
dynamic programming to find the predicate order with the
minimum expected cost in time complexity of O(n?) where
n is the number of predicates in the query.

Query to Finite State Machine Translator. After the query
is optimized, the query plan is translated into a finite state
machine. The finite state machine expresses the query in a
form that is efficiently executed by the query execution engine.
The state machine is sent to the graph partitions and executed
by their local execution engine.

Asynchronous Communication Subsystem. The communi-
cation between the graph coordinator and the various graph
partitions and among the partitions themselves is done through
asynchronous communication protocols that have mechanisms
for remote method invocation and for allowing direct stream-
ing of results from a graph partition machine to the client
without involving the graph coordinator.

C. Graph Partition

Every graph partition manages a set of graph nodes and
edges. Partitions are the main scale-out mechanism for Horton.
Each partition resides on a separate server and maintains graph
data in main memory. When a graph partition receives the
finite state machine of a query from the graph coordinator, it
executes the query using a local execution engine. The graph
partition may need to communicate with other graph partitions
because the execution of a single query may involve distributed
processing among several partitions.

Query Execution Engine. Each partition has an execution
engine that takes the finite state machine of the query as input
and runs a bulk synchronous [10] breadth first graph traversal
constrained by the finite state machine. The execution engine
checks whether the nodes which are local to the partition
satisfy the finite state machine. Next, for all the nodes that
satisfy the finite state machine, the execution engine checks if
their outgoing edges also satisfy the state machine, and decides
whether to continue traversing along the path. When the query
execution engine finds a graph node that matches an accepting
state in the finite state machine (and therefore satisfies the
original query), the execution engine sends this result to the
client.

()

Node_Type = Node_Type = Person
Code Node_ID = Dave

© O,

Edge_Type = Edge_Type =
Modifies Commits

® ®

Node_Type = Node_Type =
FileRevision ChangeSet

Node_Type =
Person

Edge_Type = o ;;
Manages %%

“Tipe -

Edge
Createy

Edge_Type = Modifics Node_Type = Person

(a) FSM for query 1

(b) FSM for query 3

Fig. 3. Finite state machine for queries 1 and 3.

D. Graph Manager

The graph manager provides an administrative interface
to manage the graph, to perform tasks such as loading a
partitioned graph, and adding or removing servers. Graph
manager also supports updates to the graph, such as adding
and removing nodes and edges, as well as updating the data
associated with nodes and edges.

Horton supports the output of any partitioning algorithm,
assigning partitions to servers, and placing nodes in the right
partitions. Horton is not equipped with a specific graph parti-
tioning algorithm because this is an expensive offline opera-
tion. The simplest form of graph partitioning is hashing based
on node or edge attributes. Large graphs are usually scale-free
and partitioning algorithms for large scale-free graphs can be
used to assign nodes to partitions while preserving locality in
graph accesses.

E. Implementation

Horton is written in C# in the .NET framework. Asyn-
chronous communication is implemented using sockets and
.NET TPL (task parallel library). Horton is built on top of
Orleans [3] which is a distributed runtime for cloud applica-
tions.

IV. DEMONSTRATION SCENARIO
A. Demonstration Setup

In the demonstration we show the processing of ad-hoc
online queries over Codebook graphs, as we choose to use
realistic graphs and queries, rather than synthetic data. Code-
book [1], [2] is a social network application that represents
software engineers, software components, and their interac-
tions in a large software project. In particular, Codebook
manages information about source code with its revisions,
documentation, and the organizational structure of developers
to answer queries such as “Who wrote this function?”, “What
libraries depend on this library?”, and “Whom should 1
contact to fix this bug?”. An example of a Codebook graph is
presented in Figure 4.

Modifies

Person
Dave the Developer

% | Changeset
| #45

Person
Pam the Program Manager

Modifies

Assigned To

= Work ltem
@ Bug #673

S

Work Item Mentions

- FileRevision
$/FoolBar.cs#4

¢ File Contains
$/Foo/Bar.cs Folder
$/Foo

Contains

@ Folder
$
Contains
SourceCode
Namespace Foo

FileRevision
$/Foo/Moo.cs#6

» SourceCode
Class Art

i

» Feature: Rectangles

/

Person

SourceCode

Modifies

LexicallyEnclosed LexicallyEnclosed

Superclass

SourceCode
Class Drawing

SourceCode
“* Method Canvas

SourceCode
Field Penmeter

Lexically
Enclosed

/

-’:

LexicallyEnclosed

'*

Mentions

SourceCode

Fn) (P)

<
Tessa the Tester “ Identifier SquareJ n

A%\ Identifier Canvas

- SourceCode
Method Square

Fig. 4. Example of a Codebook graph [2].

B. Demonstration Scenario

We demonstrate the query processing phases. We issue ad-
hoc queries using command line interface. Query examples
and their corresponding commands in Horton are given below:

1) Which pieces of source code are modified by Dave?
C:/> Horton -query " (Person Dave) Committer ChangeSet

Modifies FileRevision Modifies SoureCode"

2) Who wrote the specification for the MethodSquare
code?
C:/> Horton -query " (Code MethodSquare) MentionedBy

WordDocument AuthoredBy Person"

3) Who is the manager of the person who closed or
created work item bug #6737
C:/> Horton -query "Person Manages Person (Closed |

Created) (WorkItemRevision #673)"

The finite state machine for query 1 is shown in Figure 3(a).
The start state is SO, then the transition from a state to another
is conditioned by a node predicate (e.g., Node_Type = Change-
Set) or an edge predicate (e.g., Edge_Type = Committer).
The accepting state is S7. Figure 3(b) shows the finite state
machine for query 3, which contains a disjunction (i.e., Closed
OR Created). Optimizations are enabled by flag, -optimize, as
in the following example:

C:/> Horton -optimize -query " (Person Dave) Commits

ChangeSet Modifies FileRevision Modifies Code"

The system reports the execution time of each query. The
query result is in the form of graph paths (a sequence of graph
nodes). For example, the result for query 1 issued on the graph
shown in Figure 4 is as follows:

Answer Pathl:

(Dave) (ChangeSet #45) (FileRevision $Foo/Moo.cs#6)

(SourceCode MethodSquare)

We also demonstrate other ad-hoc queries, showing the
flexibility of the query language and the effectiveness of the
execution engine.

V. ACKNOWLEDGEMENT

We thank Alan Geller and Jim Larus for their feedback. We
also thank Sergey Bykov, Ravi Pandya, Jorgen Thelin, Andrew
Begel, Timothy Cook, and Ron Estrin for their part in building
the infrastructure and for many fruitful discussions.

REFERENCES

[1] Andrew Begel and Robert DeLine. Codebook: Social networking over
code. In Proceedings of the International Conference on Software
Engineering, ICSE, 2009.

Andrew Begel, Khoo Yit Phang, and Thomas Zimmermann. Codebook:
Discovering and Exploiting Relationships in Software Repositories. In
Proceedings of the International Conference on Software Engineering,
ICSE, 2010.

Sergey Bykov, Alan Geller, Gabriel Kliot, James Larus, Ravi Pandya,
and Jorgen Thelin. Orleans: Cloud Computing for Everyone. In
Proceedings of the ACM Symposium on Cloud Computing, SOCC, 2011.
Rishan Chen, Xuetian Weng, Bingsheng He, and Mao Yang. Large
Graph Processing in the Cloud. In Proceedings of the ACM International
Conference on Management of Data, SIGMOD, 2010.

Rishan Chen, Xuetian Weng, Bingsheng He, Mao Yang, Byron Choi,
and Xiaoming Li. On the Efficiency and Programmability of Large
Graph Processing in the Cloud. Technical Report MSR-TR-2010-44,
Microsoft Research, 2010.

Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data
Processing on Large Clusters. In Proceedings of the USENIX Symposium
on Operating System Design and Implementation, OSDI, 2004.
Facebook. http://www.facebook.com/.

Linkedin. http://www.linkedin.com.

Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C.
Dehnert, Ilan Horn, Naty Leiser, and Grzegorz Czajkowski. Pregel: a
System for Large-Scale Graph Processing. In Proceedings of the ACM
International Conference on Management of Data, SIGMOD, 2010.
Leslie G. Valiant. A bridging Model for Paralle] Computation. Commun.
ACM, 33(8):103-111, 1990.

[2]

[3]

[4]

[5]

[6]

[7]
[8]
[9]

[10]

