
G-SPARQL: A Hybrid Engine for Querying Large Attributed
Graphs

Sherif Sakr
∗

National ICT Australia
UNSW, Sydney, Australia

ssakr@cse.unsw.edu.eu

Sameh Elnikety
Microsoft Research
Redmond, WA, USA

samehe@microsoft.com

Yuxiong He
Microsoft Research
Redmond, WA, USA

yuxhe@microsoft.com

ABSTRACT
We propose a SPARQL-like language, G-SPARQL, for query-
ing attributed graphs. The language expresses types of queries
which of large interest for applications which model their
data as large graphs such as: pattern matching, reacha-
bility and shortest path queries. Each query can combine
both of structural predicates and value-based predicates (on
the attributes of the graph nodes and edges). We describe
an algebraic compilation mechanism for our proposed query
language which is extended from the relational algebra and
based on the basic construct of building SPARQL queries,
the Triple Pattern. We describe a hybrid Memory/Disk rep-
resentation of large attributed graphs where only the topol-
ogy of the graph is maintained in memory while the data of
the graph is stored in a relational database. The execution
engine of our proposed query language splits parts of the
query plan to be pushed inside the relational database while
the execution of other parts of the query plan are processed
using memory-based algorithms, as necessary. Experimen-
tal results on real datasets demonstrate the efficiency and
the scalability of our approach and show that our approach
outperforms native graph databases by several factors.

Categories and Subject Descriptors
E.1 [Data Structures]: Graphs and networks

Keywords
Graphs, Graph Queries, SPARQL

1. INTRODUCTION
Recently, graph query processing has attracted a lot of

attention from the database research community due to the
increasing popularity of modeling the data as large graphs
in various application domains such as social networks, bib-
liographical networks and knowledge bases. In many real
applications of these domains, both the graph topological
structure in addition to the properties of the vertices and

∗This work has been done while the author was visiting Mi-
crosoft Research Laboratories, Redmond, USA

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’12, October 29–November 2, 2012, Maui, HI, USA.
Copyright 2012 ACM 978-1-4503-1156-4/12/10 ...$15.00.

edges are important. For example, in a social network, a
vertex which represents a person object can be described
with a property that represents the age of a person while
the topological structure could represent different types of
relationships (directed edges) with a group of people. Each
of these relations can be described by a start date property.
Each vertex is associated with a basic descriptive attribute
that represents its label while each edge has a label that de-
scribes the type of relationship between the connected ver-
tices. Figure 1 shows a snippet of an example large graph
where a vertex represents an entity instance (e.g., author,
paper, conferences) and an edge represents a structural re-
lationship (e.g., co-author, affiliated, published). In addi-
tion, there are attributes (e.g., age, keyword, location) that
describe the different graph vertices while other attributes
(e.g., order, title, month) describe the graph edges.

In general, there are three common types of queries which
of large interest for applications with large graphs: 1) Pat-
tern match query that tries to find the existence(s) of a pat-
tern graph (e.g., path, star, subgraph) in the large graph [21,
6]. 2) Reachability query that verifies if there exists a path
between any two vertices in the large graph [4, 8]. 3) Short-
est path query which returns the shortest distance (in terms
of number of edges) between any two vertices in the large
graph [1, 18]. In practice, a user may need to pose a query on
the large graph that can involve more than one of the com-
mon graph query types. The problem studied in this paper
is to query a graph associated with attributes for its vertices
and edges (called as attributed graph) based on both struc-
tural and attribute conditions. Unfortunately, this problem
did not receive much attention in the literature and there is
no solid foundation for building query engines that can sup-
port a combination of different types of queries over large
graphs. In particular, examples of motivating queries to our
work include:

1) Find the names of two authors, X and Y, where X and Y are
connected by a path of any length (number of edges), the author
X is affiliated at UNSW, the author Y is affiliated at Microsoft and
each of the authors has published a paper in VLDB’12. This query
involves pattern matching and reachability expressions.

2) Find the names of two authors, X and Y, where X and Y are
connected by a path of any length, the author X is affiliated at
UNSW, the author Y is affiliated at Microsoft, each of the authors
has published a paper in VLDB’12 as a first author and each of
the authors has an age which is more than 35. This query involves
pattern matching expression with conditions on the attributes of
graph nodes and edges in addition to reachability expression.

3) Find the names of two authors, X and Y, and the connecting

path(s) between them where X and Y are connected by a path

with a length which is less than 3 edges, the author X is affiliated

335

Alice JohnSmith

age: 28

office: 518

Age:42

location: Sydney
age:45

Paper 1 Paper 2

UNSW Microsoft

VLDB’12

Keyword: graph
Keyword: XML

type: Demo

location: Istanbul

country: Australia

established: 1949
country: USA

established: 1975

a
ffilia

te
d

affiliated

a
ffilia

te
d

auth
orO

f

auth
orO

f

published

published

citedBy

authorO
f

auth
orO

f

supervises

title: Professor

title: Senior Researcher

order: 1

order: 2
order: 1

order: 2

Month: 1
Month: 3

know

Figure 1: An example attributed graph.

at UNSW, the author Y is affiliated at Microsoft and each of the

authors has published a paper in VLDB’12 as a first author.

This query involves pattern matching expression in addition to

a reachability expression which is constrained by a path filtering

condition. The query returns the information of the connecting

paths(s) as part of the results.

In this paper, we present an approach for querying large
attributed graphs which relies on a hybrid main memory/disk-
based relational representation of the graph database and
devising efficient algebraic-based query processing mecha-
nisms for different types of graph queries. In our approach,
the incoming queries are compiled into algebraic plans where
parts of the query plans are pushed down and executed in-
side the relational database layer while the rest of the query
plan is processed using memory-based algorithms. In prin-
ciple, the main reason behind our decision for relying on a
relational database at the physical storage layer is to lever-
age the decades’ worth of research in the database systems
community. Some optimizations developed during this pe-
riod include the careful layout of data on disk, indexing,
sorting, buffer management and query optimization. By
combining the memory representation of the graph topol-
ogy and memory-based graph algorithms with the storage
layer of the RDBMS, we are able to gain the best features
of both worlds. Our goal is to optimize the performance of
query processing while minimizing the memory consumption
and achieving the scalability goals. In particular, our main
contributions can be summarized as follows:

1) We propose a SPARQL-like language, called G-SPARQL,
for querying attributed graphs. The language enables com-
bining the expression of different types of graph queries
into one request. We show that the language is sufficiently
expressive to describe different types of interesting queries
(Section 3).

2) We present an efficient hybrid Memory/Disk represen-
tation of large attributed graphs where only the topology
of the graph is maintained in memory while the data of the
graph is stored and processed using relational database (Sec-
tion 4).

3) We describe an execution engine for our proposed query
language which applies a split query evaluation mechanism
where the execution of parts of the query plan is pushed

inside the relational database while the execution of other
parts is processed using memory-based algorithms, as nec-
essary, for optimizing the query performance (Section 5).

4) We conduct extensive experiments with real datasets
that demonstrate the efficiency of our approach (Section 6).

2. RELATED WORK AND LIMITATIONS OF
EXISTING APPROACHES

Several techniques have been proposed in the literature
for querying large graphs. However, in practice, the existing
techniques turn to be inadequate, in many cases, for query-
ing large attributed graphs due to the following limitations:

a) Most of the existing graph querying techniques follow
the approach of building an index for storing information
about the main features of the graph database. The struc-
ture and content of this index is usually optimized for ac-
celerating the evaluation of only one of the common types
of the graph queries but usually they cannot be used for
accelerating the evaluation of other types of queries. For
example, different subgraph query processing techniques ex-
ploit different types of graph features for building their in-
dices (e.g., path [21], tree [20], subgraph [19]) while proposed
techniques for handling reachability queries use different in-
dexing mechanisms such as the 2-hop cover [4] and 3-hop
cover [8]. In practice, answering user requests that can in-
volve more than one of the common graph query types would
require maintaining different type of indices which would be
very expensive in terms of memory consumption. In addi-
tion, given the increasing sizes of the graph database, the
efficiency of such indexing techniques will break down after
a certain limit is reached.

b) The existing graph querying methods that have been
presented in the literature mainly focus on querying the
topological structure of the graphs [15, 19, 21] and very few
of them have considered the use of attributed graphs [17, 5].
In practice, it is more common that the querying require-
ments for the applications of large graph databases (e.g.,
social networks or bibliographical networks) would involve
querying the graph data (attributes of nodes/edges) in ad-
dition to the graph topology. Answering queries that involve
predicates on the attributes of the graphs (vertices or edges)
in addition to the topological structure is more challenging
as it requires extra memory consumption for building in-
dices over the graph attributes in addition to the structural
indices in order to accelerate the query evaluation process.
Furthermore, it makes the query evaluation and optimiza-
tion process more complex (e.g., evaluation and join orders).

c) Several techniques have been proposed for querying
RDF graphs [12, 7]. However, these approaches cannot be
reused for querying general attributed graphs due to the dif-
ferences in the data model and the specifications of the query
requirements. For example, in the RDF data model, graph
edges cannot be described by attributes. The initial spec-
ifications of SPARQL [14] did not provide any facility for
expressing path queries or reachability expressions. In addi-
tion, some query types that are of common interest in the
general domain of large graph such as shortest path queries
might not be of direct interest in the scope of RDF/SPARQL
domain and is thus, so far, not been considered.

d) Recently, some native graph database systems have
been introduced (e.g., Neo4j1, HypergraphDB2). These sys-

1http://neo4j.org/
2http://www.kobrix.com/hgdb.jsp

336

tems are mainly designed to provide efficient graph traver-
sal functions3. However, these systems lack the support of
declarative query interfaces and do not apply any query opti-
mization strategies. In particular, they are language-specific
and have their own APIs and low-level interfaces. Therefore,
the efficiency of any graph query evaluation is programmer-
dependent. Thus, it can turn to be quite inefficient in many
cases especially when the programmer has no or little knowl-
edge about the characteristics of the underlying graph.

In the following sections, we present our approach for
querying large attributed graphs which aims to address the
above mentioned challenges.

3. THE G-SPARQL QUERY LANGUAGE
The SPARQL query language is the official W3C stan-

dard for querying and extracting information from RDF
graphs [14]. It is based on a powerful graph matching fa-
cility that allows the binding of variables to components in
the input RDF graph. In principle, the RDF data model
represents a special kind of the general model of attributed
graph which represents our main focus in this paper. In par-
ticular, the main differences between the two kind of models
(RDF and attributed graph) can be specified as follows:

a) In the RDF data model, graph edges are used for rep-
resenting the structural relationships (graph topology) be-
tween the graph entities (connecting two vertices) in addi-
tion to representing the graph data by connecting the graph
entities to the information of their attribute values (connect-
ing a vertex with a literal value). Such uniform treatment
leads to a significant increase in the size of the graph topol-
ogy as the graph data is considered as a part of the topology
and not as a separate part. The situation is different in the
attributed graph model where the graph data (attributes
of graph nodes/edges) are represented differently from the
structural information of the graph.

b) In attributed graphs, edges are treated as first class
citizens where any edge (similar to any vertex) can be de-
scribed by an arbitrary set of attributes. That is not the
case of the RDF model where there is no support for edges
to be described by any attribute information (only vertices).

We introduce G-SPARQL as a SPARQL-like query lan-
guage that employs the basic graph matching facilities of
the SPARQL language. However, the language introduces
new constructs that handle the above mentioned differences
in the data model in addition to compensating the lack of
some querying requirements that are not supported by the
standard specification of the SPARQL language. In partic-
ular, our language aims to fulfill the following set of large
graph querying requirements:

1) The language supports querying structural graph pat-
terns where filtering conditions can be specified on the at-
tributes of the graph vertices and/or edges which are par-
ticipating in the defined patterns as well.

2) The language supports various forms for querying graph
paths (sequence of edges) of possibly unknown lengths that
connect the graph vertices. In particular, the language en-
ables the expression of reachability queries and shortest path
queries between the graph vertices where filtering conditions
can be applied on the queried path patterns (e.g., constraints
on the path length).

3A traversal refers to visiting the graph vertices sequentially
by following the graph edges in some algorithmic fashion
(e.g., depth-first or breadth-first)

<Query> = SELECT <VarList>
WHERE{ <Triple>+
[FILTER (<Predicate>)]*
[FILTERPATH (<PathPredicate>)]* }

<VarList> = {?var | <PathVar>}
<PathVar> = ??var | ?*var
<Triple> = <Term> (<Term> | <Edge> | <Path>) <Term>

<Term> = literal | ?var
<Edge> = literal | literal+ | @literal | ?var(literal)
<Path> = <PathVar> | <PathVar>(literal)

<Predicate> = BooleanFunction
<PathPredicate> = Length(<PathVar>, Predicate) |

AtLeastNode(<PathVar>, number, Predicate) |
AtMostNode(<PathVar>, number, Predicate) |
ALLNodes(<PathVar>, Predicate) |
AtLeastEdge(<PathVar>, number, Predicate) |
AtMostEdge(<PathVar>, number, Predicate) |
AllEdges(<PathVar>, Predicate)

Figure 2: G-SPARQL grammar.

Figure 2 shows the grammar of the G-SPARQL language
whereas non-terminal Query, defining a G-SPARQL query,
is the start symbol of this grammar. More details about
the syntax and semantics of the G-SPARQL language are
discussed in the following subsections.

3.1 Querying Attributes of Nodes and Edges
According to the standard specifications of the language,

each SPARQL query defines a graph pattern P that is matched
against an RDF graph G where each variable in the query
graph pattern P is replaced by matching elements of G such
that the resulting graphs are contained in G (pattern match-
ing). The basic construct of building these graph patterns is
the so-called a Triple Pattern [13]. A Triple Pattern repre-
sents an RDF triple (subject, predicate, object) where
subject represents an entity (vertex) in the graph and pred-
icate represents a relationship (edge) to an object in the
graph. This object in the triple pattern can represent an-
other entity (vertex) in the graph or a literal value. Each
part of this triple pattern can represent either a constant
value or a variable (?var). Hence, a set of triple patterns
concatenated by AND (.) represents the query graph pat-
tern. The following example shows a simple SPARQL query
that finds all persons who are affiliated at UNSW and are
at least of 42 years old.
SELECT ?X
WHERE {?X affiliatedAt UNSW. ?X age ?age.

FILTER (?age >= 42).}

In our context, we need to differentiate between the rep-
resentation of two types of query predicates. a) Structural
predicates: specify conditions on the structural relationship
between graph vertices. The subject, and object of the triple
pattern refer to vertices and the predicate to an edge. b)
Value-based predicates: specifies a condition on the value of
an attribute of a graph element. The subject is either a ver-
tex (or an edge as we explain below), the predicate is the
attribute name, and the object is the attribute value.

Therefore, the G-SPARQL syntax uses the symbol (@)

at the predicate part of the query triple patterns that repre-
sent value-based predicates and differentiate them from the
standard structural predicates. To illustrate, let us consider
the following example of two query triple patterns:

T1 --> ?Person affiliatedBy UNSW
T2 --> ?Person @age 42.

where T1 represents a structural predicate specifying that
the graph vertices represented by the variable ?Person are
connected by an affiliatedBy edge to a vertex with the la-

337

bel UNSW. In contrast, T2 represents a value-based predicate
that specifies the condition of having the vertices represented
by the variable ?Person described by an age attribute stor-
ing the value 42.

Unlike the RDF data model, the model of attributed graphs
enables describing each graph edge with an arbitrary set of
attributes. Therefore, our query language enables represent-
ing two types of value-based predicates: 1) Vertex predicates
which enables specifying conditions on the attributes of the
graph vertices. 2) Edge Predicates which enables specifying
conditions on the attributes of graph edges. In particular, we
rely on the standard query triple pattern to represent both
types of predicates. However, we use the round brackets ()

for the subject part of the query triple pattern to differen-
tiate edge predicates. In these predicates, the subject parts
refers to graph edges and not for graph vertices. Let us
consider the following example of query triple patterns:

T3 --> ?Person ?E(affiliatedBy) UNSW
T4 --> ?E @Role "Professor"

T5 --> ?Person @officeNumber 518

where T3 represents a structural predicate that specifies
the condition that the vertices represented by the variable
?Person is connected to a vertex with the label UNSW with an
affiliatedBy relationship. T4 represents an edge predicate
that determines that the Role attribute of the affiliatedBy
relationship (where the edge representing the relationship is
bound to the variable E) should store the value Professor.
T5 represents a vertex predicate that specifies the condition
that Person is described by an officeNumber attribute that
stores the value 518.

3.2 Querying Path Patterns
G-SPARQL supports expressing paths of arbitrary length

and querying path patterns in two main ways. First, using
explicit relationships, in compatible with the recent recom-
mendation of the SPARQL 1.1 language4, as described in
the following triple patterns.

T5 --> ?Person knows+ John.
T6 --> ?Person knows+ ?X.

where T5 represents a structural predicate that describes
a reachability test verifying that the vertices assigned to
?Person are connected to a vertex with label John by any
path of knows edges. On the other hand, T6 assigns to the
variable X all vertices that can be reached from the vertices
that are represented by the variable ?Person through any
path of knows edges. The symbol (+) indicates that the
path can be of any length where each edge in the path needs
to represent the relationship knows.

Second, G-SPARQL allows path variables in the predicate
position of a triple pattern. In particular, it supports the
following options for binding path variables in the path pat-
terns.

T7 --> subject ??P object.
T8 --> subject ?*P object.

T9 --> subject ??P(predicate) object.
T10 --> subject ?*P(predicate) object.

where T7 binds the path variable P to the connecting
paths between the two vertices of the subject and object.
The symbol (??) indicates that the matching paths between
the subject and object can be of any arbitrary length. In
T8, the symbol (?*) indicates that the variable P will be
matched with the shortest path between the two vertices
of subject and object. T9 ensures that each edge in the

4http://www.w3.org/TR/sparql11-query/

Microsoft4

UNSW7

Paper 16

VLDB’125

Smith8

Alice3

Paper 22

John1

ValueID

288

423

451

ValueID

5188

ValueID

Istanbul5

Sydney3

ValueID

graph6

XML2

ValueID

Demo2

ValueID

Australia7

USA4

ValueID

19497

19754

ValueID

8

3

3

1

sID

611

66

25

21

dIDeID

Node Label age office location keyword

keyword

type established

country

authorOf

8

3

1

sID

712

78

43

dIDeID

affiliated

6

2

sID

510

54

dIDeID

published

6

sID

29

dIDeID

citedBy

3

sID

87

dIDeID

supervise

1

sID

32

dIDeID

know

Professor8

Senior Researcher3

ValueID

title

111

26

15

21

ValueID

order

110

34

ValueID

month

Figure 3: Relational Representation of Attributed Graph.

matching paths represents the specified relationship predi-

cate. Similarly, T10 ensures that each edge in the matched
shortest path represents the relationship predicate.

In general, any two vertices can be connected with mul-
tiple paths. Therefore, G-SPARQL enables expressing fil-
tering conditions that can specify boolean predicates on the
nodes and the edges of the matching paths which are bound
to the path variable. In particular, G-SPARQL supports the
following filtering conditions over the matched paths.

a) Length(PV, P): verifies that the length (number of edges)
of each matching path which is bound to the variable PV sat-
isfies the predicate P and filters out those paths which do not
satisfy the predicate P. For example, the following path fil-
tering condition FilterPath (Length(??X, < 4)) ensures
that the length of each path which is assigned to the path
variable (X) is less than 4 edges.

b) At[Least|Most][Node|Edge](PV, N, P): verifies if at
least (most) N number of nodes (edges) on each path which is
bound to the variable PV satisfies the predicate P and filters
out those paths which do not satisfy the predicate P.

c) All[Nodes|Edges](PV, P): ensures that every node (edge)
of each path which is bound to the variable PV satisfies the
predicate P.

4. HYBRID GRAPH REPRESENTATION
Relational database systems are efficient in executing queries

that benefit from indexing (e.g., B-tree) and query optimiza-
tion techniques (e.g., selectivity estimation and join order-
ing). Relational systems are, however, inefficient in evaluat-
ing queries that require looping or recursive access to a large
number of records by executing multiple expensive join op-
erations which may yield a large intermediate result. There-
fore, we rely on algorithms that execute on main memory
data structures to answer graph queries that require exten-
sive traversal operations on the graph topology. In partic-
ular, we use a hybrid representation for attributed graphs
where the entire graph information (topology + data) is
stored in a relational database, and only the graph topol-
ogy information needs to be loaded to the main memory.

There are multiple approaches to store an attributed graph
in a relational database. We adopt the fully decomposed
storage model (DSM) [3] which is agnostic to the graph
schema and therefore can be applied to any attributed graph.
In addition, it permits efficient attribute retrieval during
query processing. Figure 3 illustrates an example of our re-
lational representation for the attributed graph in Figure 1.
In particular, we start by assigning identifiers (IDs) to each
vertex and edge in the graph. Vertex attributes are stored
in M two-column tables, where M is the number of unique
attributes of the graph vertices. Similarly, edge attributes

338

Operator Description Relational
NgetAttValid,(attName):id,value returns the values of an attribute for a set of nodes. Yes
EgetAttValid,(attName):id,value returns the values of an attribute for a set of edges. Yes
getEdgeNodessID,[(eLabel)]:sID,eID,dID returns adjacent nodes, optionally through a specific relation, Yes

for a set of graph nodes.
strucPredsID,(eLabel),(dNLabel):sID,[eID] returns a set of vertices that are adjacent to other vertices with Yes

a specific relationship and optionally returns the connecting edges.
edgeJoinsID,dID,[(eLabel)]:sID,dID,[eID] returns pairs of vertices that are connected with an edge, optionally of a Yes

specified relationship, and optionally returns the connecting edges.
pathJoinsID,dID,[(eLabel)]:sID,dID,[pID,pRel] returns pairs of vertices which are connected by a sequence of edges of any length, No

optionally with a specified relationship, and optionally returns connecting paths.
sPathJoinsID,dID,[(eLabel)]:sID,dID,pID,pRel returns pairs of vertices which are connected by a sequence of edges of any length, No

optionally with a specified relationship, and returns the shortest connecting path.
filterPathpID,pRel,(cond):pID,pRel returns paths that satisfy a condition. No

Table 1: G-SPARQL algebraic operators.

are stored in N two-column tables where N is the number
of unique attributes of the graph edges. The first column
(ID) of a two-column attribute table stores the identifiers
of those vertices/edges that are described by the associated
attribute, and the second column (V alue) stores the literal
values for those attributes. For example, the vertex with
label Alice is assigned (ID = 3) in table nodeLabel and the
age attribute is stored in table age in row (3, 42). Each
table is sorted as clustered index on the ID column in order
to enable a fast merge join when multiple attributes of the
same vertex/edge are retrieved. In addition, a secondary in-
dex on the V alue column is created for each table to reduce
access costs for value-based predicates on the attributes.

The graph edges are stored in P three-column tables,
where P is the number of unique relationships that exist
between the graph vertices. These P three-column tables
capture the graph topology. Each of these tables groups the
information of all graph edges that represent a particular re-
lationship. Each edge is described by (1) the edge identifier
(eID), (2) the identifier of the source vertex (sID), and (3)
the identifier of the destination vertex (dID).

In our hybrid graph representation, we rely on a native
pointer-based data structure for representing the graph topol-
ogy information in main memory. In particular, this memory
representation of the graph topology encodes the informa-
tion of the P relationship tables that store the structural in-
formation of the graph edges. In principle, this information
is needed for executing the index-free and memory-based
algorithms that involve heavy traversal operations on the
graph topology and for recursive algorithms. Example al-
gorithms include Dijkstra’s algorithm to obtain the short-
est path between two vertices or performing a breath-first
search (BFS) to answer reachability queries [2]. Therefore,
our hybrid representation achieves a clear reduction in main
memory data structures as we show in Table 2 in Section 6.

5. QUERY EXECUTION ENGINE
This section presents the query compilation and optimiza-

tion process that effectively translates a G-SPARQL query
into a physical execution plan on our hybrid graph represen-
tation. In general, one of the key effective query optimiza-
tion techniques for any query language is the availability of
a powerful algebraic compilation and rewriting framework
of logical query plans. In our approach, we rely on a di-
alect of tuple algebra for compiling G-SPARQL queries. In
particular, our algebra considers tuples as the basic unit
of information where each algebraic operator manipulates
collections of tuples [11, 10]. Hence, we can leverage the

Physical
execution

plan

Algebriac
Query Plan

Physical
Query Plan

Graph Engine :
Main Memory

Representation of
Graph Topology

Relational Database:
Relational

Representation of
Attributed Graph

SQL

Graph
APIs

G-SPARQL
Query

Main memory
representation of

graph topology

Relational DBMS:
relational

representation of
attributed graph

G-SPARQL
query

Algebriac
query plan

Front-end
compilation

Step 2

Back-end
compilation

Step 1

Figure 4: Execution Steps of a G-SPARQL query.

well-established relational query planning and optimization
techniques in several venues before further translating our
query plans (or parts of them) into SQL queries. However,
our logical algebra extends the set of traditional relational
algebraic operators (e.g., selection, projection, join) with a
set of logical operators that are capable of expressing com-
plex G-SPARQL operations that can not be matched with
the semantics of the traditional relational operators.

As shown in Figure 4, the compilation process consists
of two main steps : (1) Front-end compilation which trans-
lates the input G-SPARQL query into an algebraic query
plan expressed using the intermediate language. (2) Back-
end compilation which translates the algebraic query plan to
the physical execution plan on the hybrid engine. We first
present the algebraic operators which are used in describing
our algebraic query plans, and then we describe the steps of
the query compilation process.

5.1 Algebraic Operators
In general, the design of our logical operators are inde-

pendent of any specific disk or memory representation of
the attributed graph. In addition, they are independent of
the underlying query evaluation engine. The descriptions of
our algebraic operators are listed in Table 1. For example,
the NgetAttVal is a unary operator which is used for re-
trieving the values of a specific attribute for a set of graph
nodes. The operator receives a set of tuples where the col-
umn (id) of the input relation identifies the graph nodes and
the name of the attribute to be accessed (attName). The
schema of the output tuples extends the schema of the in-
put tuples with the (value) column that represent the values
of the accessed attribute. Similarly, the EgetAttVal oper-
ator retrieves the values of a specific attribute for a set of
graph edges. The traditional relational Selection operator
(σp) is used for representing value-based predicates over the
values of the attributes of graph nodes or edges. It selects
only those tuples of an input relation for which a value-

339

based predicate (p) over a specific column holds. Hence, it
represents the right match for reflecting the expressivity of
the SPARQL FILTER expressions. Based on the attributed
graph of Figure 1 and its relational representation in Fig-
ure 3, Figure 5(a) illustrates an example for the behavior of
the EgetAttVal operator where it retrieves the values of the
title attribute for an input relation with the (id) of two
graph edges. The schema of the output relation extends the
schema of the input relation with an attribute that stores
the value of the accessed attribute.

The getEdgeNodes is a unary operator which is used for
retrieving a set of adjacent nodes. The operator receives
a set of tuples where the column (id) of the input relation
identifies the graph nodes and optionally a specified relation
for accessing the adjacent nodes (eLabel). The schema of the
output tuples extends the schema of the input tuples with
the two columns that represent the identifiers of the con-
necting edges (eID) and the adjacent nodes (dID). If the
operator receives the (eLabel) parameter then it filters out
the nodes that do not have adjacent nodes connected with
the specified relationship. The strucPred is another unary
operator which is used for filtering a set of nodes based on
a specified structural predicate. It receives a set of tuples
where the column (sID) of the input relation identifies the
graph nodes and a structural predicate which is described by
the label of the connecting relation (eLabel) and the label for
the adjacent node that should be accessed through this re-
lation (dNLabel). Figure 5(b) illustrates an example of the
strucPred operator where it applies a structural predicate
which filters out the graph vertices that are not connected
to an adjacent vertex with the label Smith through the know

relationship and projects the information of the connecting
edges that represent the structural predicate.

The edgeJoin is a binary join operator which receives two
relations (S and D) where the two columns (sID) and (dID)
identify the graph nodes of S and D, respectively. The op-
erator checks for each pair of nodes whether it is connected
with any graph edge, filters out the not connected pairs and
returns the tuples of the connected pairs as a result. The
output of the operator is a single relation where the schema
of the output tuples concatenates the columns of (S and
D). The operator can receive an optional parameter which
imposes a condition on the connecting edge between each
pair of nodes to be representing a specified relationship la-
bel (eLabel). Figure 5(c) illustrates another example of the
edgeJoin operator where it receives two sets of graph ver-
tices - ("John","Alice","Smith") and ("Microsoft") - and
returns pairs of graph vertices that are connected through
an affiliated relationship. Moreover, the edgeJoin opera-
tor can optionally project the information of the connecting
edge(s) where it extends the schema of the output relation
by an additional column (eID) that represents the identifiers
of the connecting edges between each pair of nodes.

The pathJoin operator is another binary join operator
which receives two relations (S andD) where the two columns
(sID) and (dID) identify the graph nodes of S and D,
respectively. The operator checks for each pair of nodes
whether it is connected by a sequence of edges (of any length),
filters out the not connected pairs and returns the tuples of
the connected pairs as a result. The operator can receive an
optional parameter which imposes a condition on the edges
of each connecting path between each pair of nodes to be
representing a specified relationship (eLabel). Moreover, the

8

3

1

ID

Sydney8

ValueID
NgetAttValid,location:value

8

3

ID

Senior Researcher3

Professor8

ValueIDEgetAttValid,title:value

8

3

ID

Senior Researcher3

Professor8

ValueIDEgetAttValid,title:value

Senior Researcher3

Professor8

ValueIDσvalue=‘Professor’

(a) EgetAttVal operator: returns the title at-
tribute.

3

1

sID

2

eID

31

dIDsID
getEdgeNodessID,know:eID;dID

3

1

sID

783

663

211

321

431

253

7

eID

83

dIDsID

getNeighNodessID:eID,dID

8

1

SID

1

sID
strucPredsID,know,Smith

8

1

SID

1

sID

2

eID
strucPredsID,know,Smith:eID

(b) strucPred operator: returns vertices hav-
ing know edge to vertex Smith.

4

dID

4

dID

1

sIDedgeJoinsID,dID,affiliated
3

8

1

sID

4

dID

4

dID

3

eID

1

sIDedgeJoinsID,dID,affiliated:eID3

8

1

sID

2

6

dID 21

23

63

6

dID

8

sID

edgeJoinsID,dID3

8

1

sID

2

6

dID

6

6

2

2

dID

11

6

5

1

eID

1

3

3

8

sID

edgeJoinsID,dID:eID3

8

1

sID

(c) edgeJoin operator: returns vertex pairs
connected by affiliated edge.

3

dID

1

sIDpathJoinsID,dID,know
3

8

1

sID

3

8

1

dID

31

81

8

dID

3

sID

pathJoinsID,dID
3

8

1

sID

3

8

1

dID

3

dID

p1

pID

1

sIDpathJoinsID,dID,know:pID
3

8

1

sID

3

8

1

dID

1

order

2

ID

‘E’

type

know

label

p1

pID

(d) pathJoin operator: returns vertex pairs
connected by path of know edges.

Figure 5: Examples of the G-SPARQL Operators.

pathJoin operator can optionally project the information of
the connecting path(s) as follows:

1) It extends the schema of the input relation by an ad-
ditional column (pID) that represents an assigned identifier
for each connecting edge between each pair of nodes. It
should be noted that each pair of nodes can be connected
with multiple paths. Therefore, each input pair of nodes
can have multiple representing tuples that describes the in-
formation of the bound paths.

2) It returns another output relation (pRel) which de-
scribes the information of the resulting paths where each
path is described by a sequence of tuples that represent the
nodes and edges constituting the path in an orderly man-
ner. The value of a path variable in the query output is
represented by a serialization of the (Label) information of
its associated tuples in this relation according to their as-
cending (order).

Figure 5(d) illustrates an example of the pathJoin op-
erator where it receives two sets of graph vertices, ("John",
"Alice", "Smith") and ("John", "Alice", "Smith"), returns
pairs of graph vertices that are connected through a sequence
of any length of know relationships and projects the infor-
mation of the resulting connecting paths. The sPathJoin

operator works in the same way as the pathJoin operator
with only one difference being that it returns a single path
that represents the shortest connection between each pair of
nodes (if exist a connection). The filterPath is a binary
operator which receives two relations (R and pRel) where
the column (pID) of the relation (R) represents the path
identifiers that have their associated description information
represented by the relation (pRel). The operator returns the
relation (R) where the tuples which have paths (pID) with
information (pRel) that do not fulfill the condition (cond)
are filtered out. The (cond) parameter represents one of
the path filtering conditions which was previously described
in Section 3.2. For more examples of the behavior of our
algebraic operators, we refer to our technical report [16].

340

NgetAttValnodeID,(attName):value ⇒ πR.∗,attName.value(R 1R.nodeID=attName.ID attName)
EgetAttValedgeID,(attName):value ⇒ πR.∗,attName.value(R 1R.edgeID=attName.ID attName)
getEdgeNodessID,(eLabel):eID,dID ⇒ πR.∗,eLabel.eID,eLabel.dID(R 1R.sID=eLabel.sID eLabel)
strucPredsID,(eL),(dNL):eID ⇒ πR.∗,eL.eID(σnodeLabel.V alue=dNL((R 1R.sID=eL.SID eL) 1eL.dID=nodeLabel.ID nodeLabel))
edgeJoinR.sID,S.dID:eID ⇒ πR.∗,S.∗,allEdges.eID((R 1R.sID=allEdges.SID allEdges) 1allEdges.dID=S.dID S)
edgeJoinR.sID,S.dID,(eLabel):eID ⇒ πR.∗,S.∗,eLabel.eID((R 1R.sID=eLabel.SID eLabel) 1eLabel.dID=S.dID S)

Figure 6: Relational Representation of G-SPARQL Algebraic Operators.

As shown in Table 1, not all of our algebraic operators can
be represented by the standard relational operators. Based
on our relational representation of the attributed graphs,
Figure 6 depicts the mappings for those operators that can
be translated into a pattern of standard relational opera-
tors. Since the semantics of the operators getEdgeNodes and
edgeJoin can be not restricted by a specified relationship
(eLabel), compiling these operators using the standard re-
lational operators requires joining the input relation(s) with
each of the relation tables, separately, and then union all
the results. To simplify, we have created a materialized
view (allEdges) that represents such union of all relation
tables. For the SQL translation templates of our algebraic
operators, we refer to our technical report [16].

5.2 Query Compilation
Front-end Compilation. In this step of our compi-

lation process, we start by assigning for each query triple
pattern, a mapping onto algebraic operators. Figures 7 il-
lustrates examples of the inference rules for mapping the
G-SPARQL query triple patterns into our algebraic oper-
ators. (the full list of the inference rules are available in
our technical report [16]). A sample interpretation of the
inference rule OpMap-1 is that it maps a query triple pat-
tern (?var, @attName, ?var2) of query q into the algebraic
operator (NgetAttValID,(attName):value) where the variable
?var2 is bound to the column value (Col(?var2) ≡ value)
of the output relation from applying the NgetAttVal opera-
tor given that the mapping of the variable ?var (Map(?var))
is bound to the column ID as a part of the input relation
R. Figure 8 illustrates an example algebraic compilation for
the following G-SPARQL query:
SELECT ?L1 ?L2
WHERE {?X @label ?L1. ?Y @label ?L2.

?X @age ?age1. ?Y @age ?age2.
?X affiliated UNSW. ?X livesIn Sydney.
?Y ?E(affiliated) Microsoft. ?E @title "Researcher".
?X ??P ?Y.
FILTER(?age1 >= 40). FILTER(?age2 >= 40)}

During this compilation step, a set of query rewriting rules is
applied in order to optimize the execution time of the query
evaluation. In addition, this compilation step uses three
main heuristics to reorder the query triple patterns accord-
ing to their restrictiveness (the more restrictive pattern has
higher precedence) in order to optimize the join order for
the generated SQL statments based on the following rules.
Let t1, t2 ∈ Triple(q) be two triple patterns of query q.

1) t1 is defined as less restrictive than t2 (t1 � t2) if t1
contains more number of path variables (?? or ?*) than t2.

2) t1 is defined as more restrictive than t2 (t1 � t2) if
t1 contains less number of variables than t2.

3) t1 is defined as more restrictive than t2 (t1� t2) if t1
has the same number of variables than t2 and the number
of filter expressions over the variables of t1 is more than the
number of filter expressions over the variables of t2.
Back-end Compilation. The second compilation step

is specific to our hybrid memory/disk representation of at-

Map(?var) ∈ R Col(?var) ≡ ID

(?var, @attName, ?var2) ⇒ NgetAttValID,(attName):value(R)

Col(?var2) ≡ value

(OpMap-1)

Map(?var) ∈ R Col(?var) ≡ sID

(?var, eLabel, dNLabel) ⇒ strucPredsID,(eLabel),(dNLabel)(R)
(OpMap-2)

(?E, predicate, object) ∈ Triple(q)

Map(?var) ∈ R Col(?var) ≡ sID

Map(?var2) ∈ S Col(?var2) ≡ dID

(?var, ?E(eLabel), ?var2) ⇒ (R) edgeJoinsID,dID,(eLabel):eID (S)

Col(?E) ≡ eID

(OpMap-3)

Map(?var) ∈ R Col(?var) ≡ sID

Map(?var2) ∈ S Col(?var2) ≡ dID

(?var, ??P, ?var2) ⇒ (R) pathJoinsID,dID (S)
(OpMap-4)

Figure 7: Example of G-SPARQL Operator Mapping Rules.

tributed graphs where we start by mapping the operators of
the plan to their relational representation, when applicable
(Figure 6), then we start optimizing the algebraic plans us-
ing a set of rules. These rules includes the traditional rules
for relational algebraic optimization (e.g., pushing the se-
lection operators down the plan) in addition to some rules
that are specific to the context of our algebraic plans. In
particular, the main strategy of our rules is to push the
non-standard algebraic operators (with memory-based pro-
cessing) above all the standard relational operators (that can
be pushed inside the relational engine) in order to delay their
execution (which is the most expensive due to its recursive
nature) to be performed after executing all data access and
filtering operations that are represented by the standard re-
lational operators. At the execution level, the basic strategy
of our query processing mechanism is to push those parts of
query processing that can be performed independently into
the underlying RDBMS by issuing SQL statements [9]. In
particular, our execution split mechanism makes use of the
following two main heuristics:

1) Relational databases are very efficient for executing
queries that represent structural predicates or value-based
predicates on the graph attributes (vertices or edges) due
to its powerful indexing mechanisms and its sophisticated
query optimizers. In addition, relational databases are very
efficient on finding the most efficient physical execution plan
including considering different possible variants such as dif-
ferent join implementations and different join orderings.

2) Relational databases are inefficient for executing queries
with operators of a recursive nature (e.g., path patterns).
Main memory algorithms are much faster for evaluating such
types of operators which require heavy traversal operations
over the graph topology.

As shown in Figure 8, our algebraic plans come in a DAG
shape. Therefore, we perform the translation of these plans
into SQL queries by traversing the algebraic plan in a bottom-
up fashion (starting from the leaves and then climb the dif-
ferent paths back to the root) using a set of defined pattern-
based translation rules [9]. This climbing process for each
path stops if it hits one of the operators that does not have

341

Nodes Table Nodes Table

πid:sID,value:L1 πid:dID,value:L2

NgetAttValsID,age:Age1 NgetAttValdID,age:Age2

σAge1≥40 σAge2≥40

strucPredsID,affiliated,UNSW

strucPredsID,livesIn,Sydney

strucPreddID,affiliated,Microsoft:eID

EgetAttValeID,value:title

σtitle=′Researcher′

pathJoinsID,dID

πL1,L2

SQL1

SQL2

Figure 7: An exmple DAG plan for G-SPARQL query.

In ICDE, 1997.

[34] E. Prud’hommeaux and A. Seaborne. SPARQL Query
Language for RDF, W3C Recommendation, January 2008.
http://www.w3.org/TR/rdf-sparql-query/.

[35] S. Sakr. GraphREL: A Decomposition-Based and
Selectivity-Aware Relational Framework for Processing
Sub-graph Queries. In DASFAA, 2009.

[36] S. Sakr and G. Al-Naymat. Relational processing of RDF
queries: a survey. SIGMOD Record, 38(4), 2009.

[37] S. Sakr and A. Awad. A Framework for Querying Graph-Based
Business Process Models. In WWW, 2010.

[38] M. Sarwat, S. Elnikety, Y. He, and G. Kliot. Horton: Online
Query Execution Engine For Large Distributed Graphs . In
ICDE, 2011.

[39] F. Suchanek, G. Kasneci, and G. Weikum. Yago: a core of
semantic knowledge. In WWW, 2007.

[40] H. Tong, C. Faloutsos, B. Gallagher, and T. Eliassi-Rad. Fast
best-effort pattern matching in large attributed graphs. In
KDD, 2007.

[41] S. Trißl and U. Leser. Fast and practical indexing and querying
of very large graphs. In SIGMOD, 2007.

[42] C. Wang, J. Han, Y. Jia, J. Tang, D. Zhang, Y. Yu, and
J. Guo. Mining advisor-advisee relationships from research
publication networks. In KDD, 2010.

[43] F. Wei. TEDI: efficient shortest path query answering on
graphs. In SIGMOD, 2010.

[44] X. Yan, P. Yu, and J. Han. Graph indexing: a frequent
structure-based approach. In SIGMOD, 2004.

[45] S. Zhang, M. Hu, and J. Yang. TreePi: A Novel Graph
Indexing Method. In ICDE, 2007.

[46] S. Zhang, J. Li, H. Gao, and Z. Zou. A novel approach for
efficient supergraph query processing on graph databases. In
EDBT, 2009.

[47] S. Zhang, S. Li, and J. Yang. GADDI: distance index based
subgraph matching in biological networks. In EDBT, 2009.

[48] P. Zhao and J. Han. On Graph Query Optimization in Large
Networks. PVLDB, 3(1), 2010.

[49] L. Zou, L. Chen, M. Özsu, and D. Zhao. Answering pattern
match queries in large graph databases via graph embedding.
VLDB J., 32(5), 2011.

[50] L. Zou, J. Mo, L. Chen, M. Özsu, and D. Zhao. gStore:
Answering SPARQL Queries via Subgraph Matching. PVLDB,
4(8), 2011.

12

Figure 8: Front-end compilation of a G-SPARQL
query into an algebraic plan.

a standard relational representation for its semantics or if it
reaches the root. Each generated SQL query is tempting to
simply then rely on the underlying relational backends for
the physical optimization and processing. For example, in
Figure 8, all operators can be translated into standard rela-
tional operators except of the pathJoin operator (filled with
gray color). In this example, as indicated by dashed rectan-
gles in the figure, two SQL queries are generated (SQL1 and
SQL2) where the results of these queries are then passed for
further memory-based processing using the pathJoin oper-
ator and the following operators in the plan.

The main implementation of our query evaluation engine
relies on index-free main memory algorithms for evaluat-
ing reachability and shortest path operators [2]. However,
our algebraic compilation approach remains agnostic to the
physical execution of its logical operator and can make use of
any available indexing information for accelerating the query
evaluation process of the different types of queries taking
into consideration the trade-off of building and maintaining
their indices in addition to their main memory consumption.

6. EXPERIMENTAL EVALUATION
Implementation: We implemented a native pointer-based

memory representation of the graph topology in addition to
the Dijkstra and BFS algorithms using C++. We used IBM
DB2 RDBMS for storage, indexing and performing all SQL
queries. In order to measure the relative effectiveness of
our query split execution mechanism, we compared the per-
formance results of our approach with the performance of
the native graph database system, Neo4j (version 1.5 GA).
Neo4j is an open source project which is recognized as one
of the foremost graph database systems. According to the
Neo4j website, “Neo4j is a disk-based, native storage man-
ager completely optimized for storing graph structures for
maximum performance and scalability”. It has an API that
is easy to use and provides powerful traversal framework
that can implement all queries which can be expressed by G-
SPARQL. Neo4j uses Apache Lucene for indexing the graph
attributes. We conducted our experiments on a PC with 3.2
GHz Intel Xeon processors, 8 GB of main memory storage
and 500 GB of SCSI secondary storage. It should be noted

Vertices Edges Attribute Topology
Values Information

Small 126,137 297,960 610,302 9%
Medium 242,074 761,558 1,687,465 11%
Large 825,433 3,680,156 7,336,899 12%

Table 2: Characteristics of real datasets.

that because of the expressiveness of our language, we were
unable to consider either the traditional RDF query proces-
sors [12, 7] (they do not support path patterns, reachability
or shortest path queries) or traditional structural graph in-
dexing and querying techniques [4, 8, 20, 19, 21] (each of
them supports only one specific type of graph queries and
do not consider querying the attributes of the graph vertices
or edges) as options for our performance comparison.

Dataset: We used the ACM digital library dataset (which
includes the information of all ACM publications till Septem-
ber 2011) to construct the attributed graph. The graph ver-
tices represent 8 different types of entities (e.g., author, arti-
cle, conference), 12 different types of relationships between
the graph entities (e.g., authorOf, citedBy, partOfIsuue), and
a total of 76 unique attributes, of which 62 attributes are de-
scribing the graph vertices and 14 attributes are describing
the graph edges. In our experiments, we used 3 scaling sizes
of graph subsets (small, medium and large) in order to test
the scalability of our approach. Table 2 lists the character-
istics of the three sets. For more experiments on synthetic
graphs, we refer to our technical report [16].

Query Workload: Our query workload consists of 12
query templates (Figure 9) where we used random literal
values to generate different query instances. The queries are
designed to cover the different types of the triple patterns
that are supported by G-SPARQL. We refer to our technical
report [16] for detailed descriptions and the algebraic plans
of our query templates. As we have previously described,
the efficiency of execution for any graph query using Neo4j
is programmer-dependent and each query template can have
different ways of implementations using Neo4j APIs. In our
experiments, for each query template, we created two asso-
ciated Neo4j implementations. The first implementation is
an optimized version that considers a pre-known knowledge
about the result size of each query step (triple pattern) while
the second version is a non-optimized one that does not con-
sider this knowledge. Each query template is instantiated 20
times where the data values are generated randomly.

Query Evaluation Times: The average query evalua-
tion times for the 20 instances of each of the 12 query tem-
plates are shown in Figure 10 for the small (Figure 10(a)),
medium (Figure 10(b)) and large (Figure 10(c)) graphs. As
has been well recognized in conventional query processing,
a good query plan is a crucial factor in improving the query
performance by orders of magnitude. The results of the
experiments show that our approach is on average 3 times
faster than the Neo4j non-optimized implementations of the
query workload on the small subset, 4 times faster on the
medium subset and 5 times faster on the large subset of
the experimental graph. In particular, our approach out-
performs the Neo4j non-optimized implementations in each
of the defined query templates. The results of the experi-
ments also show that the average query evaluation times of
our approach is 17% faster than the Neo4j optimized imple-
mentations on the small subset, 22% faster on the medium
subset and 28% faster on the large experimental graph. The

342

Q1
SELECT ?Name1 ?Name2 WHERE {?X @name ?Name1. ?Y @name ?Name2. ?X @prolific "High". ?Y @prolific "High".
?X @affilation "%affiliation1%". ?Y @affilation "%affiliation2%". ?X ?E(co-author) ?Y. ?E @noPapers ?NO.
FILTER (?NO >= 2).}

Q2
SELECT ?Name1 ?Name2 WHERE {?X @name ?Name1. ?Y @name ?Name2. ?X @prolific "High". ?Y @prolific "High".
?X @affilation "%affiliation1%". ?Y @affilation "%affiliation2%". ?X co-author+ ?Y.}

Q3
SELECT ?Name1 ?Name2 ??P WHERE {?X @name ?Name1. ?Y @name ?Name2. ?X @prolific "High". ?Y @prolific "High".
?X @affilation "%affiliation1%". ?Y @affilation "%affiliation2%". ?X ??P(co-author) ?Y.}

Q4
SELECT ?Name1 ?Name2 ?*P WHERE {X @name ?Name1. Y @name ?Name2. ?X @prolific "High". ?Y @prolific "High".
X @affilation "%affiliation1%". Y @affilation "%affiliation2%". ?X ?*P(co-author) ?Y.}

Q5
SELECT ?Name1 ?Name2 ??P WHERE {X @name ?Name1. Y @name ?Name2. ?X @prolific "High". ?Y @prolific "High".
X @affilation "%affiliation1%". Y @affilation "%affiliation2%". ?X ??P ?Y.}

Q6
SELECT ?Name1 ?Name2 ??P WHERE {?X @name ?Name1. ?Y @name ?Name2. ?X @prolific "High". ?Y @prolific "High".
?X @affilation "%affiliation1%". ?Y @affilation "%affiliation2%". ?X ??P(co-author) ?Y.
FilterPath(Length(??P, <= 3)).}

Q7
SELECT ?Name1 ?Name2 ??P WHERE {?X @name ?Name1. ?Y @name ?Name2. ?X @prolific "High". ?Y @prolific "High".
?X @affilation "%affiliation1%". ?Y @affilation "%affiliation2%". ?X ??P(co-author) ?Y.
FilterPath(AllNodes(??P, @prolific "High")).}

Q8
SELECT ?Name ?Title ?Year WHERE {?X @name ?Name. ?X @prolific "High". ?X ?E(authorOf) ?Paper. ?E @seqNo 1.
?Paper @title ?Title. ?Paper @keyword "%keyword%". ?Paper partOf ?Issue. ?Issue @year ?Year.
?Issue issueOf ?Journal. ?Journal @code "%code%".}

Q9
SELECT ?Title ?Name1 ?Name2 ?Name3 WHERE {?P @title Title. ?P @keyword "%keyword%". ?P citedBy ?P1. ?P citedBy ?P2.
?P citedBy ?P3. Au1 authorOf ?P1. ?Au2 authorOf ?P2. ?Au3 authorOf ?P3. ?AU1 @prolific "High". ?AU2 @prolific "High".
?AU3 @prolific "High". ?Au1 @name ?Name1. ?Au2 @name ?Name2. ?Au3 @name ?Name3.}

Q10
SELECT ?T1 ?T2 WHERE {?X @name ="%name%". ?X authorOf ?Paper1. ?Paper1 @Title ?T1. ?Paper2 @Title ?T2.
?Paper1 @Keyword "%keyword%". ?Paper2 @Keyword "%keyword%". ?Paper1 ??P(citedBy) ?Paper2. FilterPath(Length(??P, <= 2)).}

Q11
SELECT ?T1 ?T2 WHERE {?X @name ="%name%". ?X authorOf ?Paper1. ?Paper1 @Title ?T1. ?Paper2 @Title ?T2.
?Paper1 @Keyword "%keyword%". ?Paper2 @Keyword "%keyword%". ?Paper1 ??P(citedBy) ?Paper2. FilterPath(Length(??P, <= 4)).
FilterPath(AllEdges(??P, @source "Ext")).}

Q12
SELECT ?Name WHERE {?X @name ?Name. ?Y @name "%name1%". ?Z @name "%name2%". ?X ??E1(co-author) ?Y. ?X ??E2(co-author) ?Z.
FilterPath(Length(??E1, <= 2)). FilterPath(Length(??E2, <= 2)). FilterPath(AllEdges(??E1, @noPapers >2)).}

Figure 9: Query templates of our experimental workload.

Neo4j optimized implementations outperforms our approach
in 2 of the 12 query templates (Q11 and Q12) while our ap-
proach performs better in the rest of the queries.

In general, the well-known maturity of the indexing and
built-in optimization techniques of physical query evaluation
(e.g., join algorithms) provided by the underlying RDBMs
play the main role of outperforming Neo4j optimized imple-
mentations. For example, the performance of relational par-
titioned B-tree indices outperforms the performance of the
indexing service of Neo4j that uses Lucene which is more
optimized for full-text indexing rather than traditional data
retrieval queries. To better understand the reasons for the
differences in performance between our approach and opti-
mized Neo4j implementations, we look at the performance
differences for each query. Q1, Q8 and Q9 are pattern match-
ing queries that involve structural predicates in addition to
value-based predicates on the attributes of the graph nodes
and edges. In our approach, the whole executions of these
queries can be pushed inside the underlying RDBMS. Rela-
tional engine has shown to be more efficient than Neo4j as
a native graph engine in performing such pattern matching
queries that purely relies on the efficiency of the underlying
physical execution properties of the engine, mainly physical
indices and join algorithms, and do not involve any recursive
operations. The scalability feature of the relational database
engine is also shown by the increasing percentage of improve-
ment for these queries over Neo4j with the increasing size of
the underlying graph size. For example, for Q8, the relational
execution is 3.3 times faster than the optimized Neo4j exe-
cution for the small subset of the experimental graph graph
while it is 4.2 times faster on the large subset of the experi-
mental graph.
Q2, Q3, Q4, Q5, Q6 and Q7 are queries that involve recur-

sive join operations between two filtered set of vertices. In
particular, all of these queries are seeking for two sets of
authors where each set is filtered based on the prolific

and affiliation attributes. Q2 verifies for each pair of
vertices (one from each filtered set) whether they are con-
nected by a sequence of edges of any length where all edges
of the connecting path represent the co-author relation-
ship. Assuming the numbers of vertices in the first and sec-
ond sets are equal to M and N respectively, then the num-
ber of verification operations (represented by the pathJoin

operator) equals M ∗ N . Q3 is similar to Q2 but it re-
turns additional information about the connecting paths be-
tween each pair of vertices (pathJoinsID,dID,co−author:eID).
That is why Q3 is slightly more expensive than Q2. Q4 is
again similar to Q3. However, it only returns the infor-
mation of the shortest path between each pair of vertices
(sPathJoinsID,dID,co−author:eID). Evaluating the shortest
path over the graph topology is also slightly more expen-
sive than the general reachability verification (Q2 and Q3).
Q5 represents a more expensive variant of Q2 that general-
izes the reachability verification test for each pair of vertices
so that they can be connected by a sequence of edges of
any length where each edge in the connecting path can rep-
resent any relationship (pathJoinsID,dID:eID). Q6 and Q7

extend Q3 by adding filtering conditions on the connecting
paths between each pair of vertices (the filterPath opera-
tor). In particular, Q6 filters out the paths with more than
3 edges. Q7 verifies that the author vertices for each of
the resulting paths between each pair of vertices are highly
prolific. Our hybrid approach outperforms the optimized
Neo4j implementations for all of these queries by splitting
the execution of the query plans between the underlying re-
lational engine and the available topology information in the
main memory. In particular, it leverages the efficiency of the
relational engine for retrieving each set of vertices, utilizes
memory topology information for fast execution of the re-
quired traversal operations and avoids loading unnecessary
information that are not involved in evaluated queries.

In our approach, the execution of the path filtering condi-

343

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12

1

10

100

1000

10000

100000

Q
u

er
y

E
xe

cu
ti

o
n

 T
im

e
(m

s)

 Hybrid

 Neo4jOptimized

 Neo4j

(a) Small Graph Size

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12

10

100

1000

10000

100000

1000000

Q
u

er
y

E
xe

cu
ti

o
n

 T
im

e
(m

s)

 Hybrid

 Neo4jOptimized

 Neo4j

(b) Medium Graph Size

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12

10

100

1000

10000

100000

1000000

Q
ue

ry
 E

xe
cu

tio
n

Ti
m

e
(m

s)

 Hybrid

 Neo4jOptimized

 Neo4j

(c) Large Graph Size

Figure 10: Average query evaluation times of real datasets.

tion of Q7 is an expensive operation as it can only be applied
in a post-processing step after determining all the connect-
ing paths between each pair of vertices. This post-processing
step needs to issue an SQL statement that retrieves the val-
ues of the prolific attributes for all nodes of the connecting
paths as they are not available in the topology information
which are loaded onto the main memory and then filters out
all paths that contains any node that does not satisfy the fil-
tering condition over the retrieved attribute values. On the
contrary, the post-processing execution of the path filtering
condition of Q6 (based on path length) is rather cheap as
it does not need to retrieve any data from the underlying
database during the memory-based processing.
Q10 and Q11 are another two queries that involve recursive

join operations between two filtered set of vertices. In par-
ticular, Q10 is seeking for two sets of papers where both sets
are filtered based on the same value-based predicate on the
keyword attribute and one of the sets is further filtered to
only those papers that are authored by a specific author. Q10
verifies for each pair of vertices whether they are connected
by a path with a length that is less than or equal to 4 edges
where all edges represent the citedBy relationship. Q11 ex-
tends Q10 by further filtering the connecting paths to only
those paths where all of their edges are described as exter-
nal on their source attribute. While our approach is faster
on evaluating Q10, Neo4j is faster for evaluating Q11. The
main reason behind this is the expensive cost of retrieving
the external attribute of the edges of the connecting paths
for further filtering them. Optimized Neo4j implementation
outperforms our approach in Q12 as well where it needs to
ensure that all edges of the connecting paths are described
by noPapers greater than 2. One approach to overcome this
limitation in our approach is to load onto the main memory,
the frequently used attributes in path filtering conditions in
addition to the graph topology. For example, for our query
workload by loading the edge attributes source and noPa-

pers, the performance of our approach for queries Q11 and
Q12 is improved by an average of 31% and thus we can out-
perform the Neo4j optimized implementation. Obviously,
there is a trade-off between the memory consumption and
the performance that can be gained on evaluating the path
filtering conditions by loading more attributes of the graph
nodes/edges. However, determining which attributes should
be loaded onto the memory would require pre-known knowl-
edge about the characteristics of the query workloads.

7. CONCLUSIONS
We presented G-SPARQL, a novel language for querying

large attributed graphs. The language supports querying
structural graph patterns where filtering conditions can be

specified on the attributes of the graph vertices/edges. In
addition, it supports various forms for querying and condi-
tionally filtering path patterns. We presented an efficient
hybrid Memory/Disk graph representation where only the
topology of the graph is maintained in memory while the
data of the graph are stored in a relational database. We
developed an algebraic compilation technique for our exe-
cution engine with a split of execution mechanism for the
generated query plans. Experimental studies on real graphs
validated the efficiency and scalability of our approach.

8. REFERENCES
[1] J. Cheng and J. Yu. On-line exact shortest distance query

processing. In EDBT, 2009.

[2] T. Cormen, R. Rivest, C. Leiserson, and C. Stein. Introduction
to Algorithms. The MIT Press, third edition, 2009.

[3] D. Abadi et al. Scalable Semantic Web Data Management
Using Vertical Partitioning. In VLDB, 2007.

[4] E. Cohen et al. Reachability and Distance Queries via 2-Hop
Labels. SIAM J. Comput., 32(5), 2003.

[5] H. Tong et al. Fast best-effort pattern matching in large
attributed graphs. In KDD, 2007.

[6] L. Zou et al. Answering pattern match queries in large graph
databases via graph embedding. VLDB J., 32(5), 2011.

[7] L. Zou et al. gStore: Answering SPARQL Queries via Subgraph
Matching. PVLDB, 4(8), 2011.

[8] R. Jin et al. 3-HOP: a high-compression indexing scheme for
reachability query. In SIGMOD, 2009.

[9] T. Grust, M. Mayr, J. Rittinger, S. Sakr, and J. Teubner. A
SQL: 1999 code generator for the pathfinder XQuery compiler.
In SIGMOD, 2007.

[10] T. Grust, M. Mayr, J. Rittinger, and T. Schreiber. FERRY:
database-supported program execution. In SIGMOD, 2009.

[11] T. Grust, S. Sakr, and J. Teubner. XQuery on SQL Hosts. In
VLDB, 2004.

[12] T. Neumann and G. Weikum. RDF-3X: a RISC-style engine for
RDF. PVLDB, 1(1), 2008.

[13] J. Pérez, M. Arenas, and C. Gutierrez. Semantics and
complexity of SPARQL. TODS, 34(3), 2009.

[14] E. Prud’hommeaux and A. Seaborne. SPARQL Query
Language for RDF, W3C Recommendation.

[15] S. Sakr. GraphREL: A Decomposition-Based and
Selectivity-Aware Relational Framework for Processing
Sub-graph Queries. In DASFAA, 2009.

[16] S. Sakr, S. Elnikety, and Y. He. G-SPARQL: A Hybrid Query
Engine for Querying Large Attributed Graphs. Technical
Report MSR-TR-2011-138, Microsoft Research.
http://research.microsoft.com/apps/pubs/?id=157417.

[17] M. Sarwat, S. Elnikety, Y. He, and G. Kliot. Horton: Online
Query Execution Engine For Large Distributed Graphs . In
ICDE, 2011.

[18] F. Wei. TEDI: efficient shortest path query answering on
graphs. In SIGMOD, 2010.

[19] X. Yan, P. Yu, and J. Han. Graph indexing: a frequent
structure-based approach. In SIGMOD, 2004.

[20] S. Zhang, M. Hu, and J. Yang. TreePi: A Novel Graph
Indexing Method. In ICDE, 2007.

[21] P. Zhao and J. Han. On Graph Query Optimization in Large
Networks. PVLDB, 3(1), 2010.

344

