
Migrating Server Storage to SSDs: Analysis of Tradeoffs

Dushyanth Narayanan Eno Thereska Austin Donnelly Sameh Elnikety Antony Rowstron
Microsoft Research Cambridge, UK

{dnarayan,etheres,austind,samehe,antr}@microsoft.com

Abstract
Recently, flash-based solid-state drives (SSDs) have become
standard options for laptop and desktop storage, but their im-
pact on enterprise server storage has not been studied. Provi-
sioning server storage is challenging. It requires optimizing
for the performance, capacity, power and reliability needs of
the expected workload, all while minimizing financial costs.

In this paper we analyze a number of workload traces
from servers in both large and small data centers, to de-
cide whether and how SSDs should be used to support each.
We analyze both complete replacement of disks by SSDs, as
well as use of SSDs as an intermediate tier between disks
and DRAM. We describe an automated tool that, given de-
vice models and a block-level trace of a workload, deter-
mines the least-cost storage configuration that will support
the workload’s performance, capacity, and fault-tolerance re-
quirements.

We found that replacing disks by SSDs is not a cost-
effective option for any of our workloads, due to the low
capacity per dollar of SSDs. Depending on the workload, the
capacity per dollar of SSDs needs to increase by a factor of
3–3000 for an SSD-based solution to break even with a disk-
based solution. Thus, without a large increase in SSD ca-
pacity per dollar, only the smallest volumes, such as system
boot volumes, can be cost-effectively migrated to SSDs. The
benefit of using SSDs as an intermediate caching tier is also
limited: fewer than 10% of our workloads can reduce pro-
visioning costs by using an SSD tier at today’s capacity per
dollar, and fewer than 20% can do so at any SSD capacity per
dollar. Although SSDs are much more energy-efficient than
enterprise disks, the energy savings are outweighed by the
hardware costs, and comparable energy savings are achiev-
able with low-power SATA disks.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
EuroSys’09, April 1–3, 2009, Nuremberg, Germany.
Copyright c© 2009 ACM 978-1-60558-482-9/09/04. . . $5.00

1. Introduction
Solid-state drives (SSDs) are rapidly making inroads into
the laptop market and are likely to encroach on the desktop
storage market as well. How should this technology be in-
corporated into enterprise server storage, which is complex,
and different both in scale and requirements from laptop and
desktop storage? A server storage system must meet capac-
ity, performance, and reliability requirements — which vary
widely across workloads — while minimizing cost.

While solid-state storage offers fast random-access reads
and low power consumption, it also has disadvantages such
as high cost per gigabyte. There have been many proposals to
exploit the characteristics of solid-state storage to redesign
storage systems, either replacing disks entirely [Prabhakaran
2008, Woodhouse 2001] or using solid-state storage to aug-
ment disk storage, e.g., to store file system metadata [Miller
2001]. However, there has been no cost-benefit analysis of
these architectures for real workloads.

In this paper we take the point of view of a storage ad-
ministrator who wishes to re-provision or upgrade a set of
storage volumes. This administrator must answer two ques-
tions. First, what are the capacity, performance, and fault-
tolerance requirements of the workload? Second, what is the
least-cost configuration that will satisfy these requirements?
The approach in this paper is to find the least-cost config-
uration that meets known targets for performance (as well
as capacity and fault-tolerance) rather than maximizing per-
formance while keeping within a known cost budget. Since
this paper is focused on the tradeoffs between SSDs and me-
chanical disks, we consider three types of configuration for
each workload: disk-only, SSD-only, and two-tiered (with
the SSD tier above the disk tier).

Intuitively, SSDs are favored by workloads with a high
demand for random-access I/Os, especially reads, and a rel-
atively low capacity requirement. To decide whether a given
workload is better served by SSDs than disks, we first de-
fine and measure the workload’s requirements along several
axes: capacity, random-access I/O rate, sequential transfer
rate, and fault-tolerance. We also characterize the capabili-
ties of each device type using the same metrics, normalized
by dollar cost. Given these two sets of parameters, we com-
pute the total cost of different configurations, and choose the
one that meets workload requirements at the lowest cost.

145

1.1 Contributions
The main contribution of this paper is an analysis of the
SSD/disk tradeoff for a range of workloads. Our workload
traces are taken from a variety of servers in both large and
small data centers. Our analysis is based on matching each
workload with the storage configuration that meets its re-
quirements at the lowest dollar cost. We note that storage
devices such as disks and SSDs are only part of the cost of
supporting enterprise storage; other costs such as network-
ing, enclosures, or cooling are not addressed in this paper.

We find that replacing disks by SSDs is not the optimal
solution for any of our workloads. This is due to the very
low capacity/dollar offered by SSDs, compared to disks. De-
pending on the workload, the capacity/dollar will need to im-
prove by a factor of 3–3000 for SSDs to become competitive
with disks. While the capacity/dollar of SSDs is improving
over time, an improvement of several orders of magnitude
seems unlikely [Hetzler 2008]. Thus replacement of disks by
SSDs does not seem likely for any but the smallest volumes
in our study, such as system boot volumes.

Using SSDs as a caching tier above the disk-based stor-
age also has limited benefits. By absorbing some of the I/O
in the SSD tier, such hybrid configurations could reduce the
load on the disk tier. This load reduction might then allow
reduced provisioning of the disk tier and hence save money
overall. However, for 80% of the workloads in our study,
the SSD tier did not reduce the cost of the disk tier at all.
For a further 10% of the workloads, the SSD tier enabled
some reduction in the cost of the disk tier, but the cost of the
SSD tier outweighed any savings in the disk tier. Only for
10% of the workloads was the hybrid configuration the op-
timal configuration. Similarly we found that using SSDs as
a write-ahead log, while requiring only modest capacity and
bandwidth in the SSD tier and potentially reducing write re-
sponse times, does not reduce provisioning costs. Addition-
ally, current flash-based SSDs wear out after a certain num-
ber of writes per block, and we found this to be a concern
when absorbing an entire volume’s writes on a small SSD.

We also found that although SSD-based solutions con-
sume less power than enterprise disk based solutions, the
resulting dollar savings are 1–3 orders of magnitude lower
than the initial investment required. Hence, power savings
are unlikely to be the main motivation in moving from disks
to SSDs. We found low-speed SATA disks to be compet-
itive with SSDs in terms of performance and capacity per
watt. These disks also offer much higher capacity and perfor-
mance per dollar than either enterprise disks or SSDs. How-
ever, they are generally believed to be less reliable and the
tradeoff between cost and reliability requires further study.

An additional contribution of this paper is our use of a
modeling and optimization approach to answer questions
about SSDs. Optimization and solvers combined with per-
formance models have been used previously to automate
storage provisioning [Anderson 2005, Strunk 2008], but to

our knowledge this is the first work to use them specifically
to examine the use of SSDs. Our contribution lies in the
novelty and the importance of this new application domain,
rather than on our optimization techniques or performance
models, which are simple first-order models.

2. Background and related work
This section provides a brief overview of solid-state drives.
It then describes the workload traces used in our analysis. It
concludes with related work.

2.1 Solid-state drives
Solid-state drives (SSDs) provide durable storage through a
standard block I/O interface such as SCSI or SATA. They
have no mechanical moving parts and hence no positioning
delays. Access latencies are sub-millisecond, compared to
many milliseconds for disks. Commercially available SSDs
today are based on NAND flash memory (henceforth re-
ferred to as “flash”). While other solid-state technologies
have been proposed, such as magnetic RAM (M-RAM) or
phase change memory (PCM) [Intel News Release 2008],
these are not widely used in storage devices today. In this
paper we use device models extracted from flash SSDs; our
approach would apply equally to these other technologies.

Flash storage has two unusual limitations, but both can
be mitigated by using layout remapping techniques at the
controller or file system level. The first limitation is that
small, in-place updates are inefficient, due to the need to
erase the flash in relatively large units (64–128 KB) before
it can be rewritten. This results in poor random-access write
performance for the current generation of SSDs. However,
random-access writes can be made sequential by using a log-
structured file system [Rosenblum 1991, Woodhouse 2001]
or transparent block-level remapping [Agrawal 2008, Birrell
2007]. Since SSDs do not have any positioning delays, read
performance is not affected by these layout changes. Some
overhead is added for log cleaning: server workloads in gen-
eral have sufficient idle time, due to diurnal load patterns,
to perform these maintenance tasks without impacting fore-
ground workloads [Golding 1995, Narayanan 2008a].

The second limitation of flash is wear: the reliability
of the flash degrades after many repeated write-erase cy-
cles. Most commercially available flash products are rated
to withstand 10,000–100,000 write-erase cycles. Using one
of a variety of wear-leveling algorithms [Gal 2005], the wear
can be spread evenly across the flash memory to maximize
the lifetime of the device as a whole. These algorithms im-
pose a small amount of additional wear in the form of addi-
tional writes for compaction and defragmentation.

2.2 Workload traces
Our analysis uses real workload traces collected from pro-
duction servers in both large and small data centers. There
are two sets of large data center traces: the first is from an Ex-
change server that serves 5000 corporate users, one of many

146

Data center size Server Function Volumes Spindles Total GB

Large exchange Corporate mail 9 102 6706
msn-befs MSN storage server 4 28 429

Small usr User home dirs 3 16 1367
proj Project dirs 5 44 2094
print Print server 2 6 452
hm H/w monitor 2 6 39
resproj Research projects 3 24 277
proxy Web proxy 2 4 89
src1 Source control 3 12 555
src2 Source control 3 14 355
webstg Web staging 2 6 113
term Terminal server 1 2 22
websql Web/SQL server 4 17 441
media Media server 2 16 509
webdev Test web server 4 12 136

Table 1. Enterprise servers traced.

responsible for Microsoft employee e-mail. The Exchange
traces cover 9 volumes over a 24-hour period, starting from
2:39pm PST on the 12th December 2007. The system boot
volume has 2 disks in a RAID-1 configuration, and the re-
maining volumes each have 6–8 disks in a RAID-10 config-
uration. The Exchange traces contain 61 million requests, of
which 43% are reads.

The second set of large data center traces is from 4 RAID-
10 volumes on an MSN storage back-end file store. These
traces cover a 6-hour period starting from 12:41pm MST on
the 10th March 2008. They contain 29 million requests, of
which 67% are reads. Both the Exchange and MSN storage
traces are described in more detail by Worthington [2008].

The third set of traces was taken from a small data center
with about 100 on-site users [Narayanan 2008a], and covers
a range of servers typical of small to medium enterprises:
file servers, database servers, caching web proxies, etc. Each
server was configured with a 2-disk RAID-1 system boot
volume and one or more RAID-5 data volumes. These traces
cover a period of one week, starting from 5pm GMT on the
22nd February 2007. The number of requests traced was 434
million, of which 70% were reads.

All the traces were collected at the block level, below the
file system buffer cache but above the storage tier. In this pa-
per we consider each per-volume trace as a separate work-
load, and thus a workload corresponds to a single volume:
we use the terms “volume” and “workload” interchangeably
throughout the paper. Table 1 shows the servers traced, with
the number of volumes, total number of spindles, and to-
tal storage capacity used by each. All the traces used in this
paper are or will be available on the Storage Networking In-
dustry Association’s trace repository [SNIA 2009].

2.3 Related work
There has been much research in optimizing solid-state stor-
age systems and also on hybrid systems with both solid-state
and disk storage. For example, there have been proposals for
optimizing B-trees [Nath 2007, Wu 2004] and hash-based
indexes [Zeinalipour-Yazti 2005] for flash-based storage in
embedded systems; to partition databases between flash and
disks [Koltsidas 2008]; to optimize database layout for flash
storage [Lee 2008]; to use flash to replace some of the main
memory buffer cache [Kgil 2006]; to use M-RAM to store
file system metadata [Miller 2001]; and to build persistent
byte-addressable memory [Wu 1994]. These studies aim to
improve storage performance but do not consider the dollar
cost, i.e., when does the SSD-based solution cost less than
adding more disk spindles to achieve the same performance?
In this paper we use performance and capacity normalized
by dollar cost to answer this question.

In the laptop storage space, vendors are manufactur-
ing hybrid disks [Samsung 2006] that incorporate a small
amount of flash storage within the disk. Windows Vista’s
ReadyDrive technology [Panabaker 2006] makes use of
these hybrid drives to speed up boot and application launch,
as well as to save energy by spinning the disk down. How-
ever the use of such hybrid or two-tiered technologies in
the server space depends on the cost-performance-capacity
tradeoff, which is analyzed by this paper.

Hetzler [2008] has recently argued, based on an analy-
sis of the supply-side cost factors behind the two technolo-
gies, that flash-based storage will not achieve capacity/dollar
comparable to that of disks in the foreseeable future. This
is complementary to our “demand-side” work, which shows
the capacity/dollar required for flash to “break even” with
disk-based solutions, for different workloads. When taken

147

Workload

requirements

Device models

Solver

Workload

traces

Benchmarks

Recommended

config

Business

objectives

Vendor

specs

Figure 1. Tool steps

together, the two analyses present a discouraging prognosis
for flash in server storage.

There have also been several cost-benefit analyses of var-
ious storage architectures and hierarchies, including those
that examine the use of non-traditional storage technolo-
gies, i.e., storage not based on mechanical disks. However,
to our knowledge, ours is the first study to specifically ex-
amine the cost-performance-capacity tradeoff for solid-state
devices using real workloads. Here we briefly describe some
of the most related previous work.

Uysal [2003] describes a cost-performance analysis of the
tradeoffs involved in using microelectromechanical storage
(MEMS) in the storage hierarchy. The analysis covers both
replacing NVRAM with MEMS, and replacing some or all
of the disks with MEMS. It shows that for workloads where
performance rather than capacity dominates the provisioning
cost, MEMS can be competitive with disk when it comes
within 10x of the price per gigabyte of disks. However,
MEMS-based storage is not commercially available today
and its cost per gigabyte is unknown.

Baker [1992] explored the use of battery-backed non-
volatile RAM (NVRAM) in the Sprite distributed file system
to reduce disk write traffic. NVRAM is widely adopted in
server storage, especially in high-end disk array controllers,
but due to high costs is usually deployed in small sizes. The
analysis was based on traces collected in 1991 on four file
servers running a log-structured file system serving 40 disk-
less clients in a university research environment. Server stor-
age workloads in 2007, such as those used in this paper,
are substantially different: they include web servers, web
caches, and database back ends for web services, with or-
ders of magnitude more storage than in 1991. Furthermore,
flash memory today is an order of magnitude cheaper than
NVRAM and raises the possibility of replacing disks en-
tirely. This paper explores the new space of workloads and
technologies.

3. Modeling the solution space
This section outlines the modeling and solver framework
that is used to analyze the solution space of having SSDs
in a storage architecture. Figure 1 illustrates the basic steps
taken in coming up with a solution. First, workload require-
ments are collected. Some of them may be easily expressed
in terms of business objectives. For example, availability is
commonly expressed as the number of nines required, where

Capacity GB
Random-access read rate IOPS
Random-access write rate IOPS
Random-access I/O rate IOPS
Sequential read rate MB/s
Sequential write rate MB/s
Availability Nines†

Reliability (MTBF‡) Years
† Nines = − log10(1− FractionOfT imeAvailable)
‡ Mean Time Between Failures.

Table 2. Workload requirements and units.

3 nines, for example, means that the data is available 99.9%
of the time. Other requirements, such as performance ex-
pectations, can be automatically extracted by our tool from
workload I/O traces. Next, device models are created for the
hardware under consideration. Such models capture device
characteristics like dollar cost, power consumption, device
reliability (usually reported by the vendor, and then refined
over time as more empirical data is available [Schroeder
2007]), and performance, which our tool automatically ex-
tracts using synthetic micro-benchmarks. Finally, a solver
component finds a configuration that minimizes cost while
meeting the other objectives. The configuration is either a
single-tier configuration — an array of devices of some type
— or a two-tier configuration where the top and bottom tiers
could use different device types (e.g., SSDs and disks).

3.1 Extracting workload requirements
Workload requirements make up the first set of inputs to the
solver. Table 2 lists the requirements used in this paper. Sev-
eral of them, such as capacity, availability and reliability can
be straightforward to specify in a service level objective. Per-
formance, however, can be more difficult. Our tool helps an
administrator understand a workload’s inherent performance
requirements by extracting historical performance metrics.

A workload could be characterized in terms of its mean
and peak request rates; its read/write ratio; and its ratio
of sequential to non-sequential requests. However, just us-
ing these aggregate measures can hide correlations between
these workload attributes, e.g., a workload might have many
random-access reads and streaming writes but few streaming
reads and random-access writes. Hence, we prefer to con-
sider random-access reads, random-access writes, sequen-
tial reads, and sequential writes each as a separate work-
load requirement. In addition we consider the total random-
access I/O rate: for mixed read/write workloads, this could
be higher than the individual read or write I/O rates.

Many workloads, including the ones analyzed in this pa-
per, have time-varying load, e.g., due to diurnal patterns.
Hence, provisioning storage for the mean request rates will
be inadequate. Our models primarily consider percentiles of
offered load rather than means. By default we use the peak

148

Capacity GB
Sequential performance MB/s (read, write)
Random-access performance IOPS (read, write)
Reliability MTBF
Maximum write-wear rate GB/year
Power consumption W (idle and active)
Purchase cost $

Table 3. Device model attributes and units

request rate (the 100th percentile) but other percentiles such
as the 95th can also be used. All the analyses in this paper
use peak I/O rates averaged over 1 min intervals.

Computing the peak read (or write) transfer bandwidth
from a trace is straightforward: it is the maximum read (or
write) rate in MB/s observed over any minute in the trace.
Usually, this corresponds to a period of sequential transfer. If
the workload has no sequential runs this will reflect a lower
rate of transfer, indicating that sequential transfer is not a
limiting factor for this workload.

Random-access performance is measured in IOPS, i.e.,
I/O operations completed per second. When defining this
“IOPS requirement” based on a workload trace, we must
take care to filter out sequential or near-sequential runs.
Since mechanical disks in particular can sustain a much
higher rate of sequential I/Os than random-access ones, se-
quential runs could cause an overestimate of the true IOPS
requirement of the workload. In general, the locality pattern
of a sequence of I/Os could fall anywhere between com-
pletely random and completely sequential. However, to keep
the models simple, we classify each I/O in the workload
trace as either sequential or non-sequential. We use LBN
(logical block number) distance between successively com-
pleted I/Os to classify the I/Os: any I/O that is within 512 KB
of the preceding I/O is classified as sequential. This thresh-
old is chosen to be large enough to correctly detect sequen-
tial readahead, which on Windows file systems results in a
small amount of request re-ordering at the block level. The
read, write, and total IOPS requirements of the workloads
are then based on the non-sequential I/O rates averaged over
a 1 min time scale.

3.2 Device models
Device models make up the second set of inputs to the solver.
Table 3 shows the metrics our tool uses to characterize a de-
vice. The models are empirical rather than analytical. Our
tool runs a sequence of synthetic tests to extract all the per-
formance attributes. Sequential performance is measured us-
ing sequential transfers. For mechanical disks, we measured
both the outermost and innermost tracks — the difference
in bandwidth can be as high as 50%. However, we only re-
port on bandwidth on the outermost tracks in this paper: data
requiring fast streaming performance is typically placed on
these tracks. Random-access performance is based on issu-
ing concurrent 4 KB requests uniformly distributed over the

device, with a queue length of 256 requests maintained in the
OS kernel. The aim is to measure the number of IOPS that
the device can sustain under high load. All synthetic tests
are short in duration, around 20 seconds. We found this suf-
ficient to verify what vendors were reporting.

“Log-structured” SSD Our tool considers read and write
performance as separate metrics. In general, mechanical
disks have equivalent read and write performance. For the
current generation of SSDs, while sequential read and write
performance are equivalent, random-access writes are much
slower than sequential writes unless a log structure is used
(Section 2.1). In our analyses we consider both flavors of
SSD. The default SSD model uses the measured random-
write performance of the device, without assuming any
remapping or log structure. The “log-structured” SSD model
uses a random-write performance equal to the measured se-
quential write performance; it assumes that any cleaning or
compaction activity will be done in the background with no
impact on foreground performance.

Scaling Enterprise storage volumes usually consist of
multiple homogeneous devices in a RAID configuration.
This gives fault-tolerance for a configurable number of disk
failures (usually one) as well as additional capacity and per-
formance. Our device models are based on the assumption
that both capacity and performance will scale linearly with
the number of devices added. This assumption can be vali-
dated in practice using the synthetic tests described above.
The level of fault-tolerance is a separately configurable pa-
rameter, and the model automatically adds in the appropriate
number of additional device(s).

Reliability and fault-tolerance In general, storage device
reliability is hard to predict. Recent work in this area has
shown that traditional reliability metrics need to be extracted
through empirical observation after a number of years in op-
eration [Jiang 2008, Schroeder 2007]. Such empirical num-
bers are still lacking for SSDs.

It is known that NAND flash memories suffer from wear:
the reliability of the memory decreases as it is repeatedly
erased and overwritten. This is measured as the number of
write cycles that the SSD can tolerate before data retention
becomes unreliable, i.e., the number of times that each block
in the SSD can be erased and overwritten. Typical enterprise
SSDs specify a wear tolerance of 10,000–100,000 write cy-
cles. We convert this metric into a maximum write-wear rate
Rwear (expressed in GB/year) as follows: for an SSD with
a capacity C (expressed in GB), a wear tolerance of Nwear

cycles, and a desired MTBF (mean time between failures) of
Tfail (measured in years):

Rwear =
C ·Nwear

Tfail

In this paper we use a default Tfail of 5 years, to match
the typical target lifetime of a storage device before it is
upgraded or replaced.

149

Disk tier

Solid-

state

tier

Write

Write-ahead log Read cache

Cache miss

Flush

Read

Cache hit

Figure 2. Two-tier architecture using SSDs and disks.

Since this paper is focused on solid-state storage, and
wear is a novel, SSD-specific phenomenon, we include it in
our device models. Currently we do not model other failures,
such as mechanical failures in disks. Given the widespread
use of RAID for fault-tolerance, we do not believe that reli-
ability differences are an important factor for provisioning,
however verifying this remains future work.

3.3 Tiered models
The cost and performance characteristics of solid-state mem-
ory are in between those of main memory (DRAM) and tra-
ditional storage (disks). Hence, it also makes sense to con-
sider solid-state devices not just as a replacement for disks,
but also as an intermediate storage tier between main mem-
ory and disks. This tier could cache more data than DRAM
(since it is cheaper per gigabyte) and hence improve read
performance. Unlike DRAM, solid-state memories also of-
fer persistence. Hence, this tier could also be used to im-
prove write performance, by using it as a write-ahead log
which is lazily flushed to the lower tier. Several storage and
file system architectures [Miller 2001, Panabaker 2006] have
been proposed to use solid-state memory as a cache and/or
a write-ahead log. This paper quantifies the benefits of these
approaches for server workloads.

Our tool supports hybrid configurations where solid-state
devices are used as a transparent block-level intermediate
tier. Caching and write-ahead logging could also be done at a
higher level, e.g., at the file system, which would allow poli-
cies based on semantic knowledge, such as putting meta-data
in the cache. Such policies however would require changes
to the file system, and our block-level workload traces do not
include such semantic information. We compute the benefits
of transparent block-level caching and logging without as-
suming any changes in the file system or application layer.

Figure 2 shows the architecture we assume. The solid-
state tier is divided into a write-ahead log and a larger read
cache area. In practice, the write-ahead log is smaller than
the read cache; also, the location of the write log would
be periodically moved to level the wear across the flash
storage device. The write-ahead log could also be replicated
over multiple SSDs depending on workload fault-tolerance
requirements. The read cache, by contrast, has only clean

blocks and does not need such fault tolerance. Note that
this is an inclusive caching model, where blocks stored in
the SSD cache tier are also stored in the disk tier. Our tool
also supports an exclusive, or “partitioning” model where
each block is stored on either SSD or disk. However, given
the huge disparity in capacities between SSDs and disk, a
partitioning model provides negligible capacity savings. In
this paper, we only use the more common (and simpler)
inclusive model.

Our models use the caching and write-ahead logging poli-
cies described below, which are based on our experiences
with the traced workloads as well as key first-order proper-
ties of SSDs and disks. They can easily be extended to cover
other policies.

3.3.1 Read caching
Our workloads are server I/O workloads and hence have
already been filtered through large main-memory buffer
caches. Hence, there is little short-term temporal locality
in the access patterns, and cache replacement policies such
as LRU (least recently used). that aim to exploit this locality
are unlikely to do well. However, there could be benefit in
caching blocks based on long-term access frequency. Also,
the benefit of caching is highest for random-access reads:
disk subsystems are already efficient for streaming reads.

We have implemented two different caching policies in
our models. The first is LRU. The second is a “long-term
random-access” (LTR) policy that caches blocks based on
their long-term random-access frequency. To do this, we
rank the logical blocks in each trace according to the num-
ber of random accesses to each; accesses are classified as
random or sequential as described previously in Section 3.1.
The total number of reads to each block is used as a sec-
ondary ranking metric. Note that this policy acts like an “or-
acle” by computing the most frequently accessed blocks be-
fore they are accessed: hence while LRU gives an achievable
lower bound on the cache performance, the LTR policy de-
scribed here gives an upper bound.

For a given cache size of H blocks, the tool splits the
workload trace into two, such that accesses to cached blocks
go to the top tier, and the remainder to the bottom tier. It
then computes the best configuration independently for each
tier. In theory, each tier could be provisioned with any device
type; in practice, the only solutions generated are those with
a solid-state tier on top of a disk tier. The solver then iterates
over values of H to find the least-cost configuration.

3.3.2 Write-ahead log
It is straightforward to absorb writes to a storage volume
on a much smaller solid-state device; the written data can
then be flushed in the background to the underlying volume.
For low response times and high throughput, the solid-state
device should be laid out using a log structure, for example
by using a block-level versioned circular log [Narayanan
2008b]. Writes can be acknowledged as soon as they are

150

persistent in the log. The log space can be reused when the
writes become persistent on the underlying volume.

Write-ahead logging can be combined with read caching
as shown in Figure 2. In this case all writes, and all reads
of cached blocks, are redirected to the solid-state tier. To
guarantee sequential performance for the writes, they are
sent to a separately allocated log area on the solid-state
device. They are then lazily flushed to the disk tier, and
updated in the read cache if required. In theory, this could
cause double-buffering of blocks in the write-ahead log and
in the read cache; however, as we will see in Section 4, the
size of the write-ahead log required for our workloads is very
small and hence this is not a concern.

Background flushes can take advantage of batching, co-
alescing, overwriting of blocks, and low-priority I/O to re-
duce the I/O load on the lower tier. The efficacy of these
optimizations depends on the workload, the flushing policy,
and the log size. We evaluate both extremes of this spectrum:
a “write-through log” where writes are sent simultaneously
to the disk tier and to the log, and a “write-back” log where
the lazy flushes to the disk tier are assumed to be free. The
performance requirements for the write-ahead log and the
disk tier are then derived by splitting the original workload
trace according to the logging policy: writes are duplicated
on the log and the disk tier for the “write-through” policy,
and sent only to the log for the “write-back” policy (the even-
tual flushes to disk are assumed to be free).

To find the cost of adding a write-ahead log (with or with-
out read caching) the tool must estimate both the capacity as
well as the performance required from the log. The log ca-
pacity is measured as the size of the largest write burst ob-
served in the workload trace: the maximum amount of write
data that was ever in flight at one time. This gives us the
amount of log space required to absorb all writes when us-
ing the “write-through” logging policy. In theory, a larger log
could give us better performance when using “write-back”,
by making background flushing more efficient. However, in
practice, we found that “write-back” did not reduce the load
on the disk tier sufficiently to have an impact on provision-
ing: hence we did not explore this tradeoff further, but only
considered the log capacity required for “write-through”.

3.4 Solver
Given workload requirements, and per-device capabilities as
well as costs, the solver finds the least-cost configuration
that will satisfy the requirements. Any cost metric can be
used: in this paper we use purchase cost in dollars and power
consumption in watts. These could be combined into a single
dollar value based on the anticipated device lifetime and
the cost per watt of powering the device, if known; in our
analyses we show the two costs separately. The number of
devices required N(d, w) of any particular device type d to
satisfy the requirements of workload w is:

N(d, w) = max
m

⌈
rm(w)
sm(d)

⌉
+ F (w) (1)

where m ranges over the different metrics of the workload
requirement: capacity, random-access read rate, etc. rm(w)
is the workload’s requirement for the metric m (measured
in GB, MB/s, IOPS, etc.) and sm(d) is the device’s score
on that metric measured in the same units as rm(w). In
other words, the number of devices is determined by the
most costly metric to satisfy. The workload’s fault-tolerance
requirement F (w) is specified separately as the number
of redundant devices required. In this case we are assum-
ing “parity-based” fault-tolerance such as RAID-5, where
each additional device provides tolerance against one ad-
ditional device failure. The model can also be extended to
replication-based fault-tolerance such as mirroring.

The minimum cost for satisfying the workload require-
ments is then

Cmin(w) = min
d

N(d, w) · C(d) (2)

where C(d) is the cost per device of device type d.
For two-tiered solutions, the workload trace is split into

two traces wtop(w, H) and wbot(w, H), where H is the size
of the top tier. The performance metrics for the two work-
loads are extracted from the two derived traces. The lower
tier has the same capacity and fault-tolerance requirements
as the original workload. For the top tier the capacity re-
quirement is simply H; the fault-tolerance is set to 0 for the
read cache and to F (w) for the write-ahead log. The cost
Cmin/tiered(w) of the optimal tiered configuration is then
given by:

Ctiered(w, H) = Cmin(wtop(w, H)) + Cmin(wbot(w, H))
(3)

Cmin/tiered(w) = min
H

Ctiered(w, H) (4)

In theory, H is a continuously varying parameter. How-
ever, in practice, solid-state memories are sold in discrete
sizes, and very large solid-state memories are too expensive
to be part of a least-cost tiered solution. Additionally, each
value of H requires us to reprocess the input traces: the most
expensive step in the tool chain. Hence, our tool restricts the
values of H to powers of 2 ranging from 4–128 GB.

The solver is currently implemented as 1580 unoptimized
lines of C and Python. The run time is dominated by the
time to split each workload trace for each value of H , and to
extract the workload requirements: this is linear in the size of
the trace file, which uses a text format. The traces used in this
paper vary in size from 40 KB–10 GB; a typical trace of size
255 MB took 712 s to process on a 2 GHz AMD Opteron.

3.5 Limitations
Our analyses are based on simple first-order models of de-
vice performance. These can estimate workload require-
ments and device throughput in terms of random or sequen-
tial I/O rates, but not per-request response times. We believe

151

Price Capacity Power Read Write Read Write Maximum write-wear rate
US$ GB W MB/s MB/s IOPS IOPS GB/year

Memoright MR 25.2 SSD 739 32 1.0 121 126 6450 351 182500
Seagate Cheetah 10K 339 300 10.1 85 84 277 256 n/a
Seagate Cheetah 15K 172 146 12.5 88 85 384 269 n/a
Seagate Momentus 7200∗ 150 200 0.8 64 54 102 118 n/a

Table 4. Storage device characteristics. ∗All devices except the Momentus are enterprise-class.

these first-order estimates of throughput are adequate for
coarse-grained decisions such as provisioning. For more de-
tailed characterization of I/O performance, or for workloads
with specific response time requirements, more sophisticated
performance models [Bucy 2008, Popovici 2003] can be
substituted for the simple first-order models used here.

Our analyses are also limited by the workload traces
available to us, which are block-level, open-loop traces.
Thus, while they present a realistic picture of the offered
load to the storage layer, this is only a lower bound on the
potential I/O rate of the application: if the storage system
were the bottleneck for the application, then a faster stor-
age system would result in a higher I/O rate. The storage
systems that we traced are well-provisioned and we do not
believe that they were a performance bottleneck, and hence
the measured storage load is a good approximation of the
workload’s “inherent” storage I/O requirement.

Since our traces are taken at the block level, we only ana-
lyze system changes below the block level. For example, we
do not model the effect of changing the main memory buffer
caches, or of using file system specific layout strategies, e.g.,
putting only metadata on the SSDs.

4. Results
This section has four parts. First, it presents the device char-
acteristics extracted by the tool from a number of representa-
tive storage devices, and compares them in terms of capabili-
ties per dollar of purchase cost. Second, it examines for each
workload whether disks can be fully replaced by SSDs at a
lower dollar cost, while satisfying workload requirements.
The third part is a similar analysis for SSDs as an interme-
diate storage tier used as a cache or write-ahead log. The
final part is an analysis and discussion of power considera-
tions, including a comparison of the enterprise-class SSDs
and disks with a low-power SATA disk.

4.1 Analysis of device characteristics
Table 4 shows the four representative devices used in this pa-
per. The Memoright MR 25.2 was chosen to represent SSDs
since it was the fastest available mid-range (US$1000–5000
per device) SSD at the time of the analysis. The Seagate
Cheetah is a widely used high-end enterprise class disk avail-
able in two speeds, 10,000 rpm and 15,000 rpm. The Sea-
gate Momentus is a low-power, low-speed drive that is not

GB/$

Memoright MR-25.2

Seagate Cheetah 10K

Seagate Cheetah 15K

MB/s/$IOPS/$

Figure 3. Device capabilities normalized by dollar cost.

currently used for enterprise storage; it is included as an in-
teresting additional data point. We defer discussion of the
Momentus until Section 4.4.

For each device we considered multiple versions which
differed in per-device capacity, since this leads to different
cost-performance-capacity-power tradeoffs. One representa-
tive device (shown in Table 4) was chosen to extract the
performance characteristics using the micro-benchmarks de-
scribed in Section 3: we assumed that all versions of a given
model would have similar performance. The dollar costs are
US on-line retail prices as of June 2008 and the power con-
sumptions are based on vendor documentation.

Thus each device is characterized by multiple dimen-
sions: capacity, sequential read bandwidth, etc. Our tool con-
siders all these dimensions as well as all the variants of
each device (different capacities, log-structured SSDs, etc.).
However, to understand the tradeoffs between the devices
it helps to visualize the most important features. Figure 3
shows the three most important axes for this paper, normal-
ized by dollar cost: capacity (measured in GB/$), sequential
read performance (MB/s/$), and random-access read perfor-
mance (IOPS/$). For each device type, we chose the version
having the highest value along each axis.

Several observations can be made at this stage, even with-
out considering workload requirements. SSDs provide more
random-access IOPS per dollar whereas the enterprise disks
win on capacity and sequential performance. It seems likely
that the main factor in choosing SSDs versus disks is the
trade-off between the capacity requirement and the IOPS re-

152

100

1000

10000

a
cc

e
ss

 r
e

a
d

s
(I

O
P

S
)

SSD

1

10

1 10 100 1000

R
a

n
d

o
m

-a
cc

e
ss

 r
e

a
d

s
(I

O
P

S
)

Capacity (GB)

Enterprise disk

Figure 4. IOPS/capacity trade-off (log-log scale)

quirement of the workload. Sequential bandwidth also fa-
vors disks, but the difference is smaller than the order-of-
magnitude differences on the other two axes. Interestingly,
the faster-rotating 15K disk has no performance advantage
over the 10K disk when performance is normalized by dollar
cost. This suggests that there could be room for even slower-
rotating disks in the enterprise market.

4.2 Replacing disks with SSDs
A natural question this section seeks to answer is “what does
it take to replace disks with SSDs?” Whole-disk replacement
has the appeal of requiring no architectural changes to the
storage subsystem. This section answers the question by
using the provisioning tool to find the least-cost device for
each of our traced volumes, for a single-tiered configuration.

Of the three enterprise-class devices shown Table 4, the
Cheetah 10K disk was the best choice for all 49 volumes.
In all cases the provisioning cost was determined by either
the capacity or the random-read IOPS requirement. In other
words, the sequential transfer and random-access write re-
quirements are never high enough to dominate the provi-
sioning cost. This was the case even for the default (non
log-structured) SSD model, where random-access writes are
more expensive than when using a log structure.

For workloads where capacity dominates the provision-
ing cost, clearly disks are a more cost-effective solution.
However, while IOPS dominated the cost for some disk-
based solutions, capacity always dominated the cost when
using SSDs, due to the low capacity/dollar of SSDs. Thus
when both capacity and performance requirements are con-
sidered, disks always provided the cheapest solution. Fig-
ure 4 shows the different workloads’ requirements as points
plotted on the two axes of random-read IOPS and capacity.
The line separates the two regions where SSDs and disks
respectively would be the optimal choice; none of our work-
loads fall in the “SSD” region.

At today’s prices SSDs cannot replace enterprise disks for
any of our workloads: the high per-gigabyte price of SSDs
today makes them too expensive even for the workloads
with the highest IOPS/GB ratio. At what capacity/dollar

will SSDs become competitive with enterprise disks? We
can expect that disks will continue to provide a higher ca-
pacity/dollar than SSDs, even as the latter improve over
time. However (keeping the other device parameters fixed)
at some point the capacity/dollar will be high enough so that
IOPS rather than capacity will dominate the cost, and SSDs
will become a better choice than disks.

We define the break-even point SSDGB/$ as the point
at which the cost of an SSD-based volume (dominated by
capacity) will equal that of a disk-based volume (dominated
by IOPS). This gives us:

WGB

SSDGB/$
=

WIOPS

DiskIOPS/$
(5)

and hence

SSDGB/$ =
WGB

WIOPS
DiskIOPS/$ (6)

where WGB and WIOPS are the workload’s capacity and
IOPS requirements respectively, and DiskIOPS/$ is the
IOPS/$ of the Cheetah 10K disk. In other words, SSDs
will become competitive with disks when the capacity cost
of the SSD equals the IOPS cost of the disk, for a given
workload. Figure 5 shows this break-even point for each
volume, on a log scale. For reference, it also shows the cur-
rent capacity/dollar for the SSD and the Cheetah 10K disk.

The break-even point varies from 3–3000 times the ca-
pacity/dollar of today’s SSDs. Some smaller volumes, es-
pecially system volumes (numbered 0 in the figure) require
only a 2–4x increase in SSD capacity/dollar to consider re-
placement of disks by SSDs. However, most volumes will re-
quire an improvement of 1–3 orders of magnitude. For 21 of
45 volumes, the break-even point lies beyond the current ca-
pacity/dollar of the Cheetah 10K disk: this is because capac-
ity dominates the provisioning cost of these volumes today
even when using disks. If we assume that disks will retain a
capacity/dollar advantage over SSDs in the future, for these
workloads the capacity/dollar must first increase to the point
where capacity is no longer the dominant cost for disks; be-
yond this point SSDs will become competitive since they
cost less per IOPS.

4.3 Two-tiered configurations
This section answers the question “what are the bene-
fits/costs of augmenting the existing storage hierarchy with
SSDs?” Specifically, we consider the two-tiered configura-
tion described in Section 3.3, where the SSD tier functions
as a write-ahead log as well as a read cache for frequently
read, randomly-accessed blocks. Our analysis shows that the
amount of storage required for the write-ahead log is small
compared to SSD sizes available today. Thus, it is reason-
able to allocate a small part of the solid-state memory for
use as a write-ahead log and use the rest as a read cache. We
first present the analysis for the write-ahead log, and then
for a combined write-ahead log/read cache tier.

153

e
v

e
n

 p
o

in
t

(G
B

/$
) Break-even point

0.01

0.1

1

10

100

0 1 2 3 4 5 6 7 8 0 1 4 5 0 1 2 0 1 2 3 4 0 1 0 1 0 1 2 0 1 0 1 2 0 1 2 0 1 0 0 1 2 3 0 1 0 1 2 3

exchange msn-befs usr proj prn hm rsrch prxy src1 src2 stg ts web mds wdev

B
re

a
k

-e
v

e
n

 p
o

in
t

(G
B

/$
)

Server/volume

Break-even point

Cheetah 10K (2008)

SSD (2008)

Figure 5. Break-even point at which SSDs can replace disks, on a log scale. For comparison we show the current capac-
ity/dollar for enterprise SSDs and disks. Volumes numbered 0 are system boot volumes.

4.3.1 Write-ahead log
Across all workloads, the maximum write burst size, and
hence the maximum space required for the write-ahead log,
was less than 96 MB per volume. The peak write bandwidth
required was less than 55 MB/s per volume: less than half the
sequential write bandwidth of the Memoright SSD. Thus, a
single SSD can easily host the write-ahead log for a vol-
ume using only a fraction of its capacity. Even with fault
tolerance added, the capacity and bandwidth requirement is
low. We repeated the analysis, but this time sharing a sin-
gle write-ahead log across all volumes on the same server.
The peak capacity requirement increased to 230 MB and the
peak bandwidth requirement remained under 55 MB/s. The
peak bandwidth requirement did not increase significantly
because across volumes peaks are not correlated.

This analysis is based on a “write-through” log, which
does not reduce the write traffic to the disk tier. We also re-
analyzed all the workloads assuming a “write-back” log that
absorbs all write traffic, i.e., assuming that the background
flushes are entirely free. We found that this reduction in write
traffic did not reduce the provisioning requirement for the
disk tier for any of the workloads; this was expected since
the limiting factor for the workloads was always capacity or
read performance. Thus, while a larger log with a lazy write-
back flush policy can reduce load on the disk tier, the load
reduction is not enough to reduce the provisioning cost.

Given the small amount of log space required, it seems
clear that if there is any solid-state memory in the system, a
small partition should be set aside as a write-ahead log for
the disk tier. This can improve write response times but will
not reduce the cost of provisioning the disk tier.

4.3.2 Write-ahead log with read cache
Capacity is clearly an obstacle to replacing disks entirely
with SSDs. However, if a small solid-state cache can absorb
a large fraction of a volume’s load, especially the random-
read load, then we could potentially provision fewer spindles

for the volume. This would be cheaper than using (more)
DRAM for caching, since flash is significantly cheaper per
gigabyte than DRAM. It is important to note we are not
advocating replacing main memory buffer caches with solid-
state memory. Our workload traces are taken below the main
memory buffer cache: hence we do not know how effective
these caches are, or the effect of removing them.

The blocks to store in the read cache are selected accord-
ing to one of the two policies described in Section 3.3.1:
least-recently-used (LRU) and long-term-random (LTR).
Reads of these blocks are sent to the top (SSD) tier, and other
reads to the disk tier. All writes are sent simultaneously to
both tiers, in line with the “write-through” log policy.

We used the solver to test several tiered configurations
for each workload, with the capacity of the solid-state tier
set to 4, 8, 16, 32, 64 and 128 GB. For each workload we
compared the best two-tiered configuration with the single-
tiered disk-based configuration. Only for 4 out of 49 volumes
was the two-tiered configuration the better choice at today’s
SSD capacity/dollar. For each workload, we also calculated
the break-even capacity/dollar at which the best two-tier
solution would equal the cost of a disk-based solution. For
40 out of 49 volumes, this break-even point was the same as
the break-even point for replacing all the disks with SSDs.
In other words, the cache tier does not absorb enough I/Os
for these 40 volumes to enable any reduction of spindles
in the disk tier. In some cases, this is because the volume’s
provisioning is determined by capacity requirements, which
are not reduced by caching. In other cases, the cache hit rates
are too low to significantly reduce the peak load on the disk
tier: we speculate that this is because main-memory buffer
caches have already removed much of the access locality.

For the 9 workloads where caching has some benefit, Fig-
ure 6 shows the break-even point: the SSD capacity/dollar
required for the two-tiered solution to become competitive.
The last 4 workloads in the figure have a break-even point
below today’s SSDs capacity/dollar, i.e., they can already

154

0.01

0.1

1
e

v
e

n
 p

o
in

t
(G

B
/$

)

LTR LRU SSD (2008)

0.001

0.01

B
re

a
k

-e
v

e
n

 p
o

in
t

(G
B

/$
)

Server/volume

Figure 6. Break-even points for workloads to become
cacheable (log scale). Only the LTR policy is shown for the
Exchange volumes; with LRU there is no benefit and hence
no break-even point for these volumes.

benefit from an SSD cache tier. The first 5 workloads appear
to be cacheable with a break-even point not far from today’s
SSD capacity/dollar, but only with the LTR policy. Since the
LTR policy is used in “oracle” mode, it is not clear that its
benefits are achievable in practice. With LRU these work-
loads show no benefit from caching. However, we only have
24-hour traces for the Exchange workloads; longer traces are
needed to decide if the workloads contain longer-term local-
ity patterns that LRU could exploit.

4.4 Power
The previous sections used purchase cost as the metric to
minimize while satisfying workload requirements. Here we
look at the implications of minimizing power consumption
instead. We made the conscious choice to analyze, in addi-
tion to the enterprise disks and SSDs, a non-enterprise SATA
disk in this section: the Seagate Momentus 7200. We are
aware that SATA and SCSI disks are different, especially
in terms of their reliability [Anderson 2003]. However, we
chose not to ignore a SATA-based solution for two reasons.
First, there is much work on storage clusters of commod-
ity cheap hardware, where reliability is handled at a higher
level. Second, recent empirical research on the reliability
of disk drives has shown inconclusive results [Jiang 2008,
Schroeder 2007]. However, we caution that the analyses here
are based primarily on performance, capacity and power
metrics. More empirical evidence is required to make any
strong claim about reliability.

Figure 7 shows the four devices compared by capacity,
sequential bandwidth, and random-read IOPS, all normal-
ized by the device’s power consumption. We use idle power
numbers (device ready/disks spinning, but no I/O), since our
workloads have considerable idleness over their duration.
Using active power does not make much difference in our
calculations. The main takeaway is that, when scaled per
watt, SSDs have much better performance and comparable
capacity to the enterprise disks. However, the low-power,

GB/WSeagate Momentus 7200

Memoright MR-25.2

Seagate Cheetah 10K

Seagate Cheetah 15K

MB/s/WIOPS/W

Figure 7. Device capabilities normalized by power con-
sumption.

100

1000

10000

a
cc

e
ss

 r
e

a
d

s
(I

O
P

S
)

SSD

1

10

1 10 100 1000R
a

n
d

o
m

-a
cc

e
ss

 r
e

a
d

s
(I

O
P

S
)

Capacity (GB)

Low-power SATA disk

Figure 8. IOPS/capacity trade-off when optimizing for
power (log-log scale)

low-speed Momentus does far better than the SSD in terms
of gigabytes per watt, and better than the enterprise disk on
all three power-normalized metric. We also found that the
Momentus significantly outperformed the Cheetahs on ca-
pacity and performance per dollar; however, the price ad-
vantage might only reflect market forces, whereas power is
more a property of the underlying technology.

For our workloads, the SSD was the lowest-power single-
tiered solution for 11 out of 49 workloads, and chooses the
Momentus for the remaining 38. Again, random-read IOPS
and capacity were the limiting factors for all workloads.
Figure 8 shows the workloads as points on these two axes:
the graph is divided according to the device providing the
lowest-power solution.

The analysis so far has been independent of energy prices.
In general however, the cost of power consumption must
be balanced against that of provisioning the hardware, by
computing the overall cost over the device lifetime or up-
grade period (typically 3–5 years). Figure 9 shows the “5-
year break-even energy price” (in $/kWh). This is the energy
price at which the power savings over 5 years of an SSD-
based solution will equal the additional purchase cost. We
show the break-even price for the SSD against the Cheetah
for all 49 volumes, and for the SSD against the Momentus

155

20

25

30

35

40

45

50
N

u
m

b
e

r
o

f
w

o
rk

lo
a

d
s

US energy price (2008)

Break-even vs. Cheetah

Break-even vs. Momentus

0

5

10

15

20

0.01 0.1 1 10

N
u

m
b

e
r

o
f

w
o

rk
lo

a
d

s

Energy price ($/kWh)

Figure 9. CDF of 5-year break-even energy price point for
SSDs (log scale)

for the 11 volumes where the SSD was more power-efficient
than the Momentus. For reference we show the commercial
US energy price as of March 2008 [US Department of En-
ergy 2008].

Note that that the break-even points are 1–3 orders of
magnitude above the current energy prices: even if we allow
a 100% overhead in energy costs for cooling and power sup-
ply equipment, we need energy prices to increase by factor
of 5 for the power savings of SSDs to justify the initial cost
for even the smallest volumes. Thus, perhaps surprisingly,
power consumption alone is not a compelling argument for
SSDs. However, a combination of falling SSD per-gigabyte
prices rising energy prices could motivate the replacement
of disks by SSDs in a few of the smaller volumes.

4.5 Reliability and wear
In this paper so far we have considered performance, capac-
ity, dollar cost and power consumption as the metrics of in-
terest for provisioning storage. While reliability is also an
important metric, we believe that the pervasive use of RAID
for fault-tolerance makes it a less important factor. More-
over, the factors that determine disk reliability are still not
conclusively known, and are largely estimated from empir-
ical studies [Jiang 2008, Schroeder 2007]. Such empirical
evidence is lacking for SSDs. Flash-based SSD vendors do
provide a wear-out metric for their devices, as the number
of times any portion of the flash memory can be erased and
rewritten before the reliability begins to degrade. Here we
show the results of an analysis based on the wear metric: our
purpose is to judge whether SSDs deployed in any particular
configuration are likely to fail before their nominal lifetime,
i.e., before the next hardware upgrade.

Based on the long-term write rate of each workload, we
computed the time after which the wear-out limit would be
reached for each volume. Figure 10 shows the CDF of this
wear-out time in years on a log scale. Note that this assumes
that in the long term, the wear is evenly distributed over
the flash memory. This relies on using wear-leveling tech-
niques [Birrell 2007, Gal 2005] that avoid in-place updates

20

25

30

35

40

45

50

N
u

m
b

e
r

o
f

w
o

rk
lo

a
d

s

1 GB write-ahead log

Entire volume

0

5

10

15

20

0.1 1 10 100

N
u

m
b

e
r

o
f

w
o

rk
lo

a
d

s

Wear-out time (years)

Figure 10. CDF of wear-out times (log scale)

and hence require some additional background writes for de-
fragmentation. However, even if we conservatively assume a
high overhead of 50% (one background write for every two
foreground writes), the majority of volumes have wear-out
times exceeding 100 years. All volumes with the exception
of one small 10 GB volume have wear-out times of 5 years
or more. Hence, we do not expect that wear will be a major
contributor to the total cost of SSD-based storage.

Wear can be a concern, however, for flash used as a write-
ahead log. Here a relatively small flash device absorbs all
the writes sent to a volume. The dotted line in Figure 10
shows the CDF of estimated wear-out time for a 1 GB flash
used as a write-ahead log for each of our workloads. Here we
assume no overhead, since a circular log used for short-term
persistence does not need to be defragmented. However, due
to the relatively small size of the log, each block in the
log gets overwritten frequently, and 28 out of 49 workloads
have a wear-out time of less than 5 years. Thus, while flash-
based SSDs can easily provide the performance and capacity
required for a write-ahead log, wear is a significant concern
and will be need to be addressed. If a large flash memory
is being used as a combined read cache and write log, one
potential solution is to periodically rotate the location of the
(small) write log on the flash.

5. Conclusion
Flash-based solid-state drives (SSDs) are a new storage tech-
nology for the laptop and desktop markets. Recently “enter-
prise SSDs” have been targeted at the server storage market,
raising the question of whether, and how, SSDs should be
used in servers. This paper answers the above question by
doing a cost-benefit analysis for a range of workloads. An
additional contribution of the paper is a modeling and opti-
mization approach which could be extended to cover other
solid-state technologies.

We show that, across a range of different server work-
loads, replacing disks by SSDs is not a cost-effective option
at today’s prices. Depending on the workload, the capac-
ity/dollar of SSDs needs to improve by a factor of 3–3000
for SSDs to be able to replace disks. The benefits of SSDs as

156

an intermediate caching tier are also limited, and the cost of
provisioning such a tier was justified for fewer than 10% of
the examined workloads.

Acknowledgments
We thank Bruce Worthington, Swaroop Kavalanekar, Chris
Mitchell and Kushagra Vaid for the Exchange and MSN stor-
age traces used in this paper. We also thank the anonymous
reviewers and our shepherd John Wilkes for their feedback.

References
[Agrawal 2008] Nitin Agrawal, Vijayan Prabhakaran, Ted Wobber,

John D. Davis, Mark Manasse, and Rina Panigrahy. Design
tradeoffs for SSD performance. In USENIX Annual Technical
Conference, pages 57–70, Boston, MA, June 2008.

[Anderson 2003] Dave Anderson, Jim Dykes, and Erik Riedel.
More than an interface - SCSI vs. ATA. In Proc. USENIX
Conference on File and Storage Technologies (FAST), pages
245–257, San Francisco, CA, March 2003.

[Anderson 2005] Eric Anderson, Susan Spence, Ram Swami-
nathan, Mahesh Kallahalla, and Qian Wang. Quickly finding
near-optimal storage designs. ACM Trans. Comput. Syst., 23(4):
337–374, 2005.

[Baker 1992] Mary Baker, Satoshi Asami, Etienne Deprit, John
Ousterhout, and Margo Seltzer. Non-volatile memory for fast,
reliable file systems. In Proc. International Conference on Ar-
chitectural Support for Programming Languages and Operating
Systems (ASPLOS), pages 10–22, Boston, MA, October 1992.

[Birrell 2007] Andrew Birrell, Michael Isard, Chuck Thacker, and
Ted Wobber. A design for high-performance flash disks. Oper-
ating Systems Review, 41(2):88–93, 2007.

[Bucy 2008] John S. Bucy, Jiri Schindler, Steven W. Schlosser,
and Gregory R. Ganger. The DiskSim simulation environment
version 4.0 reference manual. Technical Report CMU-PDL-08-
101, Carnegie Mellon University, May 2008.

[Gal 2005] Eran Gal and Sivan Toledo. Algorithms and data
structures for flash memories. ACM Computing Surveys, 37(2):
138–163, 2005.

[Golding 1995] Richard Golding, Peter Bosch, Carl Staelin, Tim
Sullivan, and John Wilkes. Idleness is not sloth. In Proc.
USENIX Annual Technical Conference, pages 201–212, New
Orleans, LA, January 1995.

[Hetzler 2008] Steven R. Hetzler. The storage chasm: Implications
for the future of HDD and solid state storage. http://www.
idema.org/, December 2008.

[Intel News Release 2008] Intel News Release. Intel, STMi-
croelectronics deliver industry’s first phase change memory
prototypes. http://www.intel.com/pressroom/
archive/releases/20080206corp.htm, February
2008.

[Jiang 2008] Weihang Jiang, Chongfeng Hu, Yuanyuan Zhou, and
Arkady Kanevsky. Are disks the dominant contributor for stor-
age failures? A comprehensive study of storage subsystem fail-
ure characteristics. In USENIX Conference on File and Storage

Technologies (FAST), pages 111–125, San Jose, CA, February
2008.

[Kgil 2006] Taeho Kgil and Trevor N. Mudge. Flashcache: a
NAND flash memory file cache for low power web servers.
In Proc. International Conference on Compilers, Architecture,
and Synthesis for Embedded Systems (CASES), pages 103–112,
Seoul, Korea, October 2006.

[Koltsidas 2008] Ioannis Koltsidas and Stratis Viglas. Flashing
up the storage layer. In Proc. International Conference on
Very Large Data Bases (VLDB), pages 514–525, Auckland, New
Zealand, August 2008.

[Lee 2008] Sang-Won Lee, Bongki Moon, Chanik Park, Jae-
Myung Kim, and Sang-Woo Kim. A case for flash memory SSD
in enterprise database applications. In Proc. ACM SIGMOD
International Conference on Management of Data (SIGMOD),
pages 1075–1086, Vancouver, BC, June 2008.

[Miller 2001] Ethan Miller, Scott Brandt, and Darrell Long. HeR-
MES: High-performance reliable MRAM-enabled storage. In
Proc. IEEE Workshop on Hot Topics in Operating Systems (Ho-
tOS), pages 95–99, Elmau/Oberbayern, Germany, May 2001.

[Narayanan 2008a] Dushyanth Narayanan, Austin Donnelly, and
Antony Rowstron. Write off-loading: Practical power manage-
ment for enterprise storage. In Proc. USENIX Conference on
File and Storage Technologies (FAST), pages 256–267, San Jose,
CA, February 2008.

[Narayanan 2008b] Dushyanth Narayanan, Austin Donnelly, Eno
Thereska, Sameh Elnikety, and Antony Rowstron. Everest:
Scaling down peak loads through I/O off-loading. In Proc.
Symposium on Operating Systems Design and Implementation
(OSDI), pages 15–28, San Diego, CA, December 2008.

[Nath 2007] Suman Nath and Aman Kansal. FlashDB: Dynamic
self tuning database for NAND flash. In Proc. Intnl. Conf. on
Information Processing in Sensor Networks (IPSN), pages 410–
419, Cambridge, MA, April 2007.

[Panabaker 2006] Ruston Panabaker. Hybrid hard disk and Ready-
Drive technology: Improving performance and power for Win-
dows Vista mobile PCs. http://www.microsoft.com/
whdc/winhec/pres06.mspx, May 2006.

[Popovici 2003] Florentina I. Popovici, Andrea C. Arpaci-Dusseau,
and Remzi H. Arpaci-Dusseau. Robust, portable I/O scheduling
with the Disk Mimic. In Proc. USENIX Annual Technical Con-
ference, pages 297–310, San Antonio, TX, June 2003.

[Prabhakaran 2008] Vijayan Prabhakaran, Thomas L. Rodeheffer,
and Lidong Zhou. Transactional flash. In Proc. Symposium on
Operating Systems Design and Implementation (OSDI), pages
147–160, San Diego, CA, December 2008.

[Rosenblum 1991] Mendel Rosenblum and John Ousterhout. The
design and implementation of a log-structured file system.
In Proc. ACM Symposium on Operating Systems Principles
(SOSP), pages 1–15, Pacific Grove, CA, October 1991.

[Samsung 2006] Samsung. MH80 SATA product data sheet, June
2006.

[Schroeder 2007] Bianca Schroeder and Garth A. Gibson. Disk
failures in the real world: What does an MTTF of 1,000,000
hours mean to you? In Proc. USENIX Conference on File

157

and Storage Technologies (FAST), pages 1–16, San Jose, CA,
February 2007.

[SNIA 2009] SNIA. IOTTA repository. http://iotta.snia.
org/, January 2009.

[Strunk 2008] John Strunk, Eno Thereska, Christos Faloutsos, and
Gregory Ganger. Using utility to provision storage systems.
In Proc. USENIX Conference on File and Storage Technologies
(FAST), pages 313–328, San Jose, CA, February 2008.

[US Department of Energy 2008] US Department of En-
ergy. Average retail price of electricity to ultimate cus-
tomers by end-use sector, by state, April 2008 and 2007.
http://www.eia.doe.gov/cneaf/electricity/
epm/table5_6_a.html, August 2008.

[Uysal 2003] Mustafa Uysal, Arif Merchant, and Guillermo Al-
varez. Using MEMS-based storage in disk arrays. In Proc.
USENIX Conference on File and Storage Technologies (FAST),
pages 89–102, San Francisco, CA, March 2003.

[Woodhouse 2001] David Woodhouse. JFFS: The journalling flash
file system. http://sources.redhat.com/jffs2/
jffs2.pdf, July 2001.

[Worthington 2008] Bruce Worthington, Swaroop Kavalanekar,
Qi Zhang, and Vishal Sharda. Characterization of storage work-
load traces from production Windows servers. In Proc. IEEE In-
ternational Symposium on Workload Characterization (IISWC),
pages 119–128, Austin, TX, October 2008.

[Wu 2004] Chin-Hsien Wu, Li-Pin Chang, and Tei-Wei Kuo. An
efficient B-tree layer for flash-memory storage systems. In Proc.
Real-Time and Embedded Computing Systems and Applications
(RTCSA), pages 409–430, Gothenburg, Sweden, August 2004.

[Wu 1994] Michael Wu and Willy Zwaenepoel. eNVy: A non-
volatile main memory storage system. In Proc. Internatinoal
Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS), pages 86–97, San
Jose, CA, October 1994.

[Zeinalipour-Yazti 2005] Demetrios Zeinalipour-Yazti, Song Lin,
Vana Kalogeraki, Dimitrios Gunopulos, and Walid A. Najjar.
Microhash: An efficient index structure for flash-based sensor
devices. In Proc. USENIX Conference on File and Storage Tech-
nologies (FAST), pages 31–44, San Francisco, CA, December
2005.

158

