
Systems for Big-Graphs

Arijit Khan∗ Sameh Elnikety†

∗Systems Group, ETH Zurich, Switzerland †Microsoft Research, Redmond, WA, USA
arijit.khan@inf.ethz.ch samehe@microsoft.com

ABSTRACT
Graphs have become increasingly important to represent highly-
interconnected structures and schema-less data includingthe World
Wide Web, social networks, knowledge graphs, genome and sci-
entific databases, medical and government records. The massive
scale of graph data easily overwhelms the main memory and com-
putation resources on commodity servers. In these cases, achiev-
ing low latency and high throughput requires partitioning the graph
and processing the graph data in parallel across a cluster ofservers.
However, the software and and hardware advances that have worked
well for developing parallel databases and scientific applications
are not necessarily effective for big-graph problems. Graph pro-
cessing poses interesting system challenges: graphs represent rela-
tionships which are usually irregular and unstructured; and there-
fore, the computation and data access patterns have poor locality.
Hence, the last few years has seen an unprecedented interestin
building systems for big-graphs by various communities including
databases, systems, semantic web, machine learning, and opera-
tions research. In this tutorial, we discuss the design of the emerg-
ing systems for processing of big-graphs, key features of distributed
graph algorithms, as well as graph partitioning and workload bal-
ancing techniques. We emphasize the current challenges andhigh-
light some future research directions.

1. INTRODUCTION
Querying and mining of graph data are essential for a wide range

of emerging applications [4]. As graph problems grow largerin
input size and complexity, they easily overwhelm the computation
and memory capacities of a single commodity server. However,
graph processing also generates a unique workload [8] as follows:

• Poor Locality. Graphs represent relationships which can be
irregular and unstructured; and therefore, graph algorithms
often exhibit poor locality of memory access.

• I/O Intensive Operations. Graph algorithms usually have
high data-access-to-computation ratio — the runtime could
be dominated by waits for memory fetches.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license.Contact
copyright holder by emailing info@vldb.org. Articles fromthis volume
were invited to present their results at the 40th International Conference on
Very Large Data Bases, September 1st - 5th 2014, Hangzhou, China.
Proceedings of the VLDB Endowment, Vol. 7, No. 13
Copyright 2014 VLDB Endowment 2150-8097/14/08.

• Difficult to Parallelize. Due to the interconnected nature of
graph data, graph computations are irregular: It is difficult
to extract parallelism by partitioning. Unbalanced compu-
tational workload resulting from poor partitioning and syn-
chronization overheads reduces scalability.

• Large Intermediate Results.While executing a graph com-
putation such as parallel graph isomorphism, the intermedi-
ate results could be large, with a memory footprint larger
than the underlying graph.

In this three hour tutorial, we first illustrate why state-of-the-art
distributed frameworks do not perform well with big-graph compu-
tations. For example,MapReduce performs well when the algo-
rithm isembarrassingly parallel [7]. Due to the linked structure of
graph datasets and the iterative nature of many graph algorithms, it
is difficult to represent graph algorithms using theMapReduce ab-
straction. Several graph-indexing methods were also proposed for
specific graph operations. Unfortunately, these indices cannot pro-
vide the level of efficient random access required by graph compu-
tation and general graph exploration during query processing. For
graph operations, keeping data in the main memory is critical as it
enables fast random access and the reuse of intermediate results for
iterative graph algorithms [17].

In this tutorial, we discuss distributed/shared in-memorybig-
graph processing systems as well as a few disk-based single-server
systems that provide comparable performance. We classify these
systems into two broad categories based on their application sup-
port: (1) systems for offline graph analytic and (2) systems for on-
line graph querying. We teach the key features of these two types
of query workloads, and why we need different systems for them.
Finally, we conclude by highlighting major open problems such as
dynamic graph partitioning and workload balancing.

2. TUTORIAL OUTLINE
Our tutorial consists of five parts, which are given below:

1. Introduction: We introduce the unique workload character-
istics of big-graphs processing, and why state-of-the-artdistributed
frameworks do not perform well with big-graph computations.

2. Systems for Offline Graph Analytic: Offline graph analytic
systems perform an iterative, batch processing over the entire graph
dataset until the computation satisfies a fixed-point or stopping cri-
terion. In this section, we first introduce graph algorithmswhich
require iterative, batch processing, e.g.,PageRank computation,
recursive relational queries, clustering, social networkanalysis, and
machine learning/ data mining algorithms (e.g., belief propagation,
gaussian non-negative matrix factorization).



We discuss in details how two offline analytic algorithms, namely
PageRank computation and belief propagation can be efficiently
implemented inPregel [9], which is a vertex-centric computation
model and follows the original Bulk Synchronous Parallel (BSP)
model. Next, we show how the same two algorithms can be im-
plemented even more efficiently inGraphLab [7], which follows
asynchronous vertex-centric computation, and thereby significantly
accelerates the convergence of iterative machine-learning and graph
algorithms. We conclude this section by discussingGraphChi [6]
andX-Stream [12], which store the graph data in the disk on a sin-
gle server, yet they provide comparable performance to the existing
distributed/ shared in-memory big-graph systems for offline graph
analytic algorithms.

3. Systems for Online Graph Querying:Online graph queries,
e.g., reachability query, finding the shortest path, sub-graph match-
ing, andSPARQL queries require very fast response time, and
these queries often explore only a small fraction of the entire graph
dataset, as opposed to the iterative, batch processing overthe entire
graph dataset. We discuss one domain-specific language (DSL) for
online graph querying:Horton [14], and two systems that sup-
port online graph traversal:G-SPARQL [13] andTrinity [17]. We
further demonstrate why in-memory graph-traversal-basedoper-
ations are often more effective in answeringSPARQL and sub-
graph matching queries as compared to performing multiple join
operations using the traditional database management systems.

4. Dynamic Graph Partitioning: In order to reduce the inter-
machine communication, it is important to partition the underly-
ing graph data effectively across multiple servers. However, real-
world graphs often exhibit a skewedpower-law degree distribution;
and hence, it is difficult to partition and represent such graphs in
a distributed environment. We first show howPowerGraph [2]
solves this problem by performing a balanced vertex-cut of the in-
put graph and by keeping mirrors of cut-vertices at multipleservers.
We also discussSEDGE [16] — a complementary partitioning
scheme for reducing the inter-machine communication. Dynamic
graph partitioning, on the other hand, is critical for online graph
queries, since workloads on the vertices change frequentlyfor on-
line queries. We illustrate dynamic graph partitioning strategies
in Mizan [5] and SEDGE [16], and the overlapping partitioning
scheme in [10], which updates its partitions dynamically based on
the past read/write patterns.

5. Major Open Problems: We conclude by discussing the cur-
rent challenges and some interesting future research directions.

a. Which one is a better design choice for queries on big-graphs
— “scaling out” on cheap, commodity clusters (distributed mem-
ory) vs. “scaling up” with more cores and more memory (shared
memory)? Perhaps, for online graph queries, scaling up is a better
option due to their lower communication cost.

b. Do we need to vary the partitioning and re-partioning strategy
based on the graph data, algorithms, and systems?

c. Should we decouple query processors from graph storage so
that we can scale up both the layers independently?

d. What will be the roles of modern hardware in accelerating
big-graphs processing?

e. Do we need stand-alone systems only for graph processing,
such asTrinity andGraphLab; or can they be integrated with the
existing big-data and dataflow systems, e.g.,GraphX [15], Naidad
[11], andepiC [3]?

What we shall not cover in this tutorial. We shall not discuss ex-
isting graph databases, such asNeo4j andHyperGraphDB, as they
usually cannot manage graphs that are distributed among multiple
servers. We do not focus onSPARQL engines and RDF data-stores
as they are covered in other tutorials [1]. Finally, we do notdiscuss
specialty hardware systems for big-graphs processing, e.g., Eldo-
rado (shared-memory) andBlueGene/L (distributed-memory), as
we focus on software techniques.

3. BIOGRAPHICAL SKETCHES
Arijit Khan is a post-doctorate researcher in the Systems group at
ETH Zurich. His research interests span in the area of big-data, big-
graphs, and graph systems. He received his PhD from University of
California, Santa Barbara. Arijit is the recipient of the prestigious
IBM PhD Fellowship in 2012-13. He co-presented a tutorial on
emerging queries over linked data at ICDE 2012.
Sameh Elnikety is a researcher at Microsoft Research in Red-
mond, Washington. He received his Ph.D. from the Swiss Fed-
eral Institute of Technology (EPFL) in Lausanne, Switzerland , and
M.S. from Rice University in Houston, Texas. His research in-
terests include distributed server systems, and database systems.
Sameh’s work on database replication received the best paper award
at Eurosys 2007.

4. REFERENCES
[1] P. Cudr-Mauroux and S. Elnikety. Graph Data Management Systems

for New Application Domains. InVLDB, 2011.
[2] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin.

PowerGraph: Distributed Graph-parallel Computation on Natural
Graphs. InOSDI, 2012.

[3] D. Jiang, G. Chen, B. C. Ooi, K.-L. Tan, and S. Wu. epiC: an
Extensible and Scalable System for Processing Big Data. InVLDB,
2014.

[4] A. Khan, Y. Wu, and X. Yan. Emerging Graph Queries in Linked
Data. InICDE, 2012.

[5] Z. Khayyat, K. Awara, A. Alonazi, H. Jamjoom, D. Williams, and
P. Kalnis. Mizan: A System for Dynamic Load Balancing in
Large-scale Graph Processing. InEuroSys, 2013.

[6] A. Kyrola, G. Blelloch, and C. Guestrin. GraphChi: Large-scale
Graph Computation on Just a PC. InOSDI, 2012.

[7] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M.
Hellerstein. Distributed GraphLab: A Framework for Machine
Learning and Data Mining in the Cloud. InVLDB, 2012.

[8] A. Lumsdaine, D. Gregor, B. Hendrickson, and J. W. Berry.
Challenges in Parallel Graph Processing.Parallel Processing Letters,
17(1):5–20, 2007.

[9] G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski. Pregel: A System for Large-scale
Graph Processing. InSIGMOD, 2010.

[10] J. Mondal and A. Deshpande. Managing Large Dynamic Graphs
Efficiently. In SIGMOD, 2012.

[11] D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham, and
M. Abadi. Naiad: a Timely Dataflow System. InSOSP, 2013.

[12] A. Roy, I. Mihailovic, and W. Zwaenepoel. X-Stream: Edge-centric
Graph Processing Using Streaming Partitions. InSOSP, 2013.

[13] S. Sakr, S. Elnikety, and Y. He. G-SPARQL: a Hybrid Engine for
Querying Large Attributed Graphs. InCIKM, 2012.

[14] M. Sarwat, S. Elnikety, Y. He, and M. F. Mokbel. Horton+:A
Distributed System for Processing Declarative Reachability Queries
over Partitioned Graphs. InVLDB, 2013.

[15] R. S. Xin, D. Crankshaw, A. Dave, J. E. Gonzalez, M. J. Franklin,
and I. Stoica. GraphX: Unifying Data-Parallel and Graph-Parallel
Analytics.CoRR, abs/1402.2394, 2014.

[16] S. Yang, X. Yan, B. Zong, and A. Khan. Towards Effective Partition
Management for Large Graphs. InSIGMOD, 2012.

[17] K. Zeng, J. Yang, H. Wang, B. Shao, and Z. Wang. A Distributed
Graph Engine for Web Scale RDF Data. InVLDB, 2013.


