
SALT: A SPOKEN LANGUAGE INTE
MULTIMODAL DIALO

Kuansan Wang

Speech Technology Group, Mic
One Microsoft Way, Redmond,

http://research.microsof

ABSTRACT
This paper describes the Speech Application Language Tags, or
SALT, an emerging spoken language interface standard for
multimodal or speech-only applications. A key premise in
SALT design is speech-enabled user interface shares a lot of the
design principles and computational requirements with the
graphical user interface (GUI). As a result, it is logical to
introduce into speech the object-oriented, event-driven model
that is known to be flexible and powerful enough in meeting the
requirements for realizing sophisticated GUIs. It is hopeful that
reusing this rich infrastructure can enable dialog designers to
focus more on the core user interface design issues than on the
computer and software engineering details. The paper centers
the discussion on the Web-based distributed computing
environment and elaborates how SALT can be used to
implement multimodal dialog systems. How advanced dialog
effects (e.g., cross-modality reference resolution, implicit
confirmation, multimedia synchronization) can be realized in
SALT is also discussed.

1. INTRODUCTION
Multimodal interface allows a human user to interaction with
the computer using more than one input methods. GUI, for
example, is multimodal because a user can interact with the
computer using keyboard, stylus, or pointing devices. GUI is an
immensely successful concept, notably demonstrated by the
World Wide Web. Although the relevant technologies for the
Internet had long existed, it was not until the adoption of GUI
for the Web did we witness a surge on its usage and rapid
improvements in Web applications.

GUI applications have to address the issues commonly
encountered in a goal-oriented dialog system. In other words,
GUI applications can be viewed as conducting a dialog with its
user in an iconic language. For example, it is very common for
an application and its human user to undergo many exchanges
before a task is completed. The application therefore must
manage the interaction history in order to properly infer user’s
intention. The interaction style is mostly system initiative
because the user often has to follow the prescribed interaction
flow where allowable branches are visualized in graphical
icons. Many applications have introduced mixed initiative
features such as type-in help or search box. However, user-
initiated digressions are often recoverable only if they are
anticipated by the application designers. The plan-based dialog
theory [1][2][3] suggests that, in order for the mixed initiative
dialog to function properly, the computer and the user should be

collab
the di
if the
simila
intent
langu
natura
feedb

T
propo
interf
enabl
with
(e.g.,
interf
Appli
langu
embe
langu
Web
of SA
12]) c

2.
With
evolv
servic
softw
disco
be di
task.
softw
Conc
mean
highly
the sa

An e
plann
custo
mana
obser
dialog
desig
usual
Web
RFACE FOR WEB-BASED
G SYSTEMS

rosoft Research
WA 98052 USA
t.com/stg

orating partners that actively assist each other in planning
alog flow. An application will be perceived as hard to use
 flow logic is obscure or unnatural to the user and,
rly, the user will feel frustrated if the methods to express
s are too limited. It is widely believed that spoken
age can improve the user interface as it provides the user a
l and less restrictive way to express intents and receive

acks.
he Speech Application Language Tags (SALT) [4] is a
sed standard for implementing spoken language
aces. The core of SALT is a collection of objects that
e a software program to listen, speak, and communicate
other components residing on the underlying platform
discourse manager, other input modalities, telephone

ace, etc.). Like their predecessors in the Microsoft Speech
cation Interface (SAPI), SALT objects are programming
age independent. As a result, SALT objects can be
dded into a HTML or any XML document as the spoken
age interface [5]. Introducing speech capabilities to the
is not new [6][7][8]. However, it is the utmost design goal
LT that advanced dialog management techniques (e.g., [9-
an be realized in a straightforward manner in SALT.

DIALOG ARCHITECTURE OVERVIEW
the advent of XML Web services, the Web has quickly
ed into a gigantic distributed computer where Web
es, communicating in XML, play the role of reusable
are components. Using the universal description,
very, and integration (UDDI) standard, Web services can
scovered and linked up dynamically to collaborate on a
In other words, Web services can be regarded as the
are agents envisioned in the open agent architecture [12].
eptually, the Web infrastructure provides a straightforward
s to realize the agent-based approach suitable for modeling
 sophisticated dialog [1]. This distributed model shares
me basis as the SALT dialog management architecture.

2.1. Page-based Dialog Management

xamination on human to human conversation on trip
ing shows that experienced agents often guide the
mers in dividing the trip planning into a series of more
geable and relatively untangled subtasks [10]. Not only the
vation contributes to the formation of the plan-based
 theory, but the same principle is also widely adopted in

ning GUI-based transactions where the subtasks are
ly encapsulated in visual pages. Take a travel planning
site for example. The first page usually gathers some basic

information of the trip, such as the traveling dates and the
originating and destination cities, etc. All the possible travel
plans are typically shown in another page, in which the user can
negotiate on items such as the price, departure and arrival times,
etc. To some extent, the user can alter the flow of interaction. If
the user is more flexible for the flight than the hotel reservation,
a well designed site will allow the user to digress and settle the
hotel reservation before booking the flight. Necessary
confirmations are usually conducted in separate pages before
the transaction is executed.

The designers of SALT believe that spoken dialog can be
modeled by the page-based interaction as well, with each page
designed to achieve a sub-goal of the task. There seems no
reason why the planning of the dialog cannot utilize the same
mechanism that dynamically synthesizes the Web pages today.

2.2. Separation of Data and Presentation

SALT preserves the tremendous amount of flexibility of a
page-based dialog system in dynamically adapting the style and
presentation of a dialog [5]. A SALT page is composed of three
portions: (1) a data section corresponding to the information
the system needs to acquire from the user in order to achieve
the sub-goal of the page; (2) a presentation section that, in
addition to GUI objects, contains the templates to generate
speech prompts and the rules to recognize and parse user’s
utterances; (3) a script section that includes inference logic for
deriving the dialog flow in achieving the goal of the page. The
script section also implements the necessary procedures to
manipulate the presentation sections.

This document structure is motivated by the following
considerations. First, the separation of the presentation from
the resst localizes the natural language dependencies. An
application can be ported to another language by changing only
the presentation section without affecting other sections. Also,
a good dialog must dynamically strike a balance between
system initiative and user initiative styles. However, the needs
to switch the interaction style do not necessitate changes in the
dialog planning. The SALT document structure maintains this
type of independence by separating the data section from the
rest of the document, so that when there are needs to change
the interaction style, the script and the presentation sections can
be modified without affecting the data section. The same
mechanism also enables the app to switch among various UI
modes, such as in the mobile environments where the
interactions must be able to seamlessly switching between a
GUI and speech-only modes for hand-eye busy situations. The
presentation section may vary significantly among the UI
modes, but the rest of the document can remain largely intact.

2.3. Semantic Driven Multimodal Integration

SALT follows the common GUI practice and employs an
object-oriented, event-driven model to integrate multiple input
methods. The technique tracks user’s actions and reports them
as events. An object is instantiated for each event to describe
the causes. For example, when a user clicks on a graphical icon,
a mouse click event is fired. The mouse-click event object
contains information such as coordinates where the click takes
place. SALT extends the mechanism for speech input, in which
the notion of semantic objects [5][13] is introduced to capture
the meaning of spoken language. When the user says
something, speech events, furnished with the corresponding

seman
struct
mail
“John
uttera
enabl
type c
a mu
where
Here
resolv
mous
seman
identi
objec

B
dialog
multi
appro

3.
SALT
resem
the s
intero
mann
moda
insula
entere
pointi

The “
objec
the la
task.
collec
If the
(PCF
outco
templ
any d
parse

A
when
exam

<listen
 <gr
</liste

The o
unive
const
invok
the re
succe
event
HTM
reject
tic objects, are reported. The semantic objects are
ured and categorized. For example, an utterance “Send
to John” is composed of two nested semantic objects:
” representing the semantic type “Person” and the whole
nce the semantic type “Email command.” SALT therefore
es a multimodal integration algorithm based on semantic
ompatibility [14]. The same command can be manifest in
ltimodal expression, as in “Send email to him [click]”
 the email recipient is given by a point-and-click gesture.
the semantic type provides a straightforward way to
e the cross modality reference: the handler for the GUI

e click event can be programmed into producing a
tic object of the type “Person” which can subsequently be

fied as a constituent of the “email command” semantic
t.
ecause the notion of semantic objects is quite generic,
 designers should find little difficulty employing other

modal integration algorithms, such as the unification based
ach described in [15], in SALT.

 BASIC SPEECH OBJECTS IN SALT
 speech objects encapsulate speech functionality. They
ble to the GUI objects in many ways. Because they share
ame high level abstraction, SALT speech objects
perate with GUI objects in a seamless and consistent
er. Multimodal dialog designers can elect to ignore the
lity of communication, much the same way as they are
ted from having to distinguish whether a text string is
d to a field through a keyboard or cut and pasted with a
ng device.

3.1. The Listen Object

listen” object in SALT is the speech input object. The
t must be initialized with a speech grammar that defines
nguage model and the lexicon relevant to the recognition
The object has a start method that, upon invocation,
ts the acoustic samples and performs speech recognition.
 language model is a probabilistic context free grammar
G), the object can return the parse tree of the recognized
me. Optionally, dialog designers can embed XSLT
ates or scripts in the grammar to shape the parse tree into
esired format. The most common usage is to transform the
 tree into a semantic tree composed of semantic objects.
 SALT object is instantiated in an XML document
ever a tag bearing the object name is encountered. For
ple, a listen object can be instantiated as follows:

 id=”foo” onreco=”f()” onnoreco=”g()” mode=”automatic”>
ammar name=”main” src=”../meeting.xml”/>
n>

bject, named “foo,” is given a speech grammar whose
rsal resource indicator (URI) is specified via a <grammar>
ituent. As in the case of HTML, methods of an object are
ed via the object name. For example, the command to start
cognition is foo.start() in the ECMAScript syntax. Upon a
ssful recognition and parsing, the listen object raises the
 “onreco.” The event handler, f(), is associated in the
L syntax as shown above. If the recognition result is
ed, the listen object raises the “onnoreco” event, which, in

the above example, invokes function g(). As mentioned in Sec.
2.2, these event handlers reside in the script section of a SALT
page that manages the within-page dialog flow. Note that SALT
is designed to be agnostic to the syntax of the eventing
mechanism. Although the examples through out this article use
HTML syntax, SALT can operate with other eventing
standards, such as World Wide Web Consortium (W3C) XML
Document Object Model (DOM) Level 2, ECMA Common
Language Infrastructure (CLI), or the upcoming W3C proposal
called XML Events.

The SALT listen object can operate in one of the three
modes designed to meet different UI requirements. The
automatic mode, shown above, automatically detects the end of
utterance and cut off the audio stream. The mode is most
suitable for push-to-talk UI or telephony based systems.
Reciprocal to the start method, the listen object also has a stop
method for forcing the recognizer to stop listening. The
designer can explicitly invoke the stop method and not rely on
the recognizer’s default behavior. Invoking the stop method
becomes necessary when the listen object operates under the
single mode, where the recognizer is mandated to continue
listening until the stop method is called. Under the single mode,
the recognizer is required to evaluate and return hypotheses
based on the full length of the audio, even though some search
paths may have reached a legitimate end of sentence token in
the middle of the audio stream. In contrast, the third multiple
mode allows the listen object to report hypotheses as soon as it
sees fit. The single mode is designed for push-hold-and-talk
type of UI, while the multiple mode is for real-time or dictation
type of applications.

The listen object also has methods to modify the PCFG it
contains. Rules can be dynamically activated and deactivated to
control the perplexity of the language model. The semantic
parsing templates in the grammar can be manipulated to
perform simple reference resolution. For example, the grammar
below (in SAPI format) demonstrates how a deictic reference
can be resolved inside the SALT listen object:

<rule propname=”drink” …>
 <option> the </option>
 <list> <phrase propvalue=”coffee”> left </phrase>
 <phrase propvalue=”juice”> right </phrase> </list>
 <option> one </option>
</rule>
In this example, the propname and propvalue attributes are used
to generate the semantic objects. If the user says “the left one,”
the above grammar directs the listen object to return the
semantic object as <drink text=”the left one”>coffee</drink>.
This mechanism for composing semantic objects is particularly
useful for processing expressions closely tied to how data are
presented. The grammar above may be used when the computer
asks the user for choice of the drink by displaying the pictures
of the choices side by side. However, if the display is tiny, the
choices may be rendered as a list, to which a user may say “the
first one” or “the bottom one.” SALT allows dialog designers to
approach this problem by dynamically adjusting the speech
grammar.

3.2. The prompt object

The SALT “prompt” object is the speech output object. Like the
listen object, the prompt object has a start method to begin the

audio
synth
proso
up the

B
partic
a bar
durin
interf
behav
wheth
as soo
barge
users
waitin
let the
outpu
using
progr
this c
recog

T
bears
exam
user
introd
The t
as suc

<prom
 Tra
 The
</prom

When
the o
invok
determ
inspe

M
bookm
exam
mech

T
simpl
words
coded
dynam
appea

<input
<input
<input
…
<prom
 <va
 <va
 <va
</prom

 playback. The prompt object can perform text to speech
esis (TTS) or play pre-recorded audio. For TTS, the
dy and other dialog effects can be controlled by marking
 text with synthesis directives.
arge-in and bookmark are two events of the prompt object
ularly useful for dialog designs. The prompt object raises
ge-in event when the computer detects user utterance
g a prompt playback. SALT provides a rich program
ace for the dialog designers to specify the appropriate
iors when the barge-in occurs. Designers can choose
er to delegate SALT to cut off the outgoing audio stream
n as speech is detected. Delegated cut-off minimizes the

-in response time, and is close to the expected behavior for
who wish to expedite the progress of the dialog without
g for the prompt to end. Similarly, non-delegated barge-in
 user change playback parameters without interrupting the
t. For example, the user can adjust the speed and volume
 speech commands while the audio playback is in
ess. SALT will automatically turn on echo cancellation for
ase so that the playback has minimal impacts on the
nition.
he timing of certain user action or the lack thereof often
 semantic implications. Implicit confirmation is a good
ple, where the absence of an explicit correction from the
is considered as a confirmation. The prompt object
uces an event for reporting the landmarks of the playback.

ypical way of catching the playback landmarks in SALT is
h:

pt id=”bar” onbookmark=”f()” …>
veling to New York? <bookmark name=”imp_confirm”/>
re are <emph> 3 </emph> available flights …
pt>

 the synthesizer reaches the TTS markup <bookmark>,
nbookmark event is raised and the event hander f() is
ed. When a barge-in is detected, the dialog designer can
ine if the barge-in occurs before or after the bookmark by

cting whether the function f() has been called or not.
ultimedia synchronization is another main usage for TTS
arks. When the speech output is accompanied with, for

ple, graphical animations, TTS bookmarks are an effective
anism to synchronize these parallel outputs.
o include dynamic content in the prompt, SALT adopts a
e template-based approach for prompt generation. In other
, the carrier phrases can be either pre-recorded or hard-
, while the key phrases can be inserted and synthesized
ically. The prompt object that confirms a travel plan may

r as the following in HTML:

 name=”origin” type=”text” />
 name=”destination” type=”text” />
 name=”date” type=”text” />

pt …> Do you want to fly from
lue targetElement=”origin”/> to
lue targetElement=”destination”/> on
lue targetElement=”date”/>?
pt>

As shown above, SALT uses a <value> tag inside a prompt
object to refer to the data contained in other parts of the SALT
page. In this example, the prompt object will insert the values in
the HTML input objects in synthesizing the prompt.

3.3. Declarative Rule-based Programming

Although the examples use procedural programming in
managing the dialog flow control, SALT designers can practice
inference programming in a declarative rule-based fashion in
which rules are attached to the SALT objects capturing user’s
actions, e.g., the listen object. Instead of authoring procedural
event handlers, designers can declare inside the listen object
rules that will be evaluated and invoked when the semantic
objects are returned. This is achieved through a SALT <bind>
element as demonstrated below:

<listen …> <grammar …/>
 <bind test=”/@confidence lt 50”
 targetElement=”prompt_confirm” targetMethod=”start”
 targetElement=”listen_confirm” targetMethod=”start” />
 <bind test=”/@confidence ge 50”
 targetElement=”origin” value=”/city/origin”
 targetElement=”destination” value=”/city/destination”
 targetElement=”date” value=”/date” /> …
</listen>

The predicate of each rule is applied in turns against the result
of the listen object. They are expressed in the standard XML
Pattern language in the “test” clause of the <bind> element. In
this example, the first rule checks if the confidence level is
above the threshold. If not, the rule activates a prompt object
(prompt_confirm) for explicit confirmation, followed by a listen
object listen_confirm to capture the user’s response. The speech
objects are activated via the start method of the respective
object. Object activations are specified in the targetElement and
the targetMethod clauses of the <bind> element. Similarly, the
second rule applies when the confidence score exceeds the
prescribed level. The rule extracts the relevant semantic objects
from the parsed outcome and assigns them to the respective
elements in the SALT page. As shown above, SALT reuses the
W3C XPATH language for extracting partial semantic objects
from the parsed outcome.

4. SUMMARY
This paper describes how SALT can be employed to realize
multimodal dialog systems using the Web architecture. With
the observation that Web based applications generally practice
the same UI principles necessary to design spoken dialog,
SALT is designed to empower dialog designers to leverage the
rich infrastructure of the Web. Accordingly, SALT embraces
the object-oriented, event-driven programming techniques that
are already familiar to the Web programmers.

The basic speech objects in SALT are the listen and prompt
objects for speech input and output, respectively. We elaborate
how advanced dialog effects can be achieved by using these two
objects. For the listen object, we show how to resolve cross-
modality anaphoric and deictic references, and how to adapt
reference resolution dynamically to the UI presentation. We
also show how implicit confirmation and multimedia
synchronization can be achieved using the SALT prompt object.

S
obvio
langu
can i
SALT
to do
comp
today

[1] S
d
1

[2] A
B

[3] C
C

[4] S
h

[5] W
u
B

[6] A
h

[7] L
a
9

[8] L
I
P

[9] S
“
s
1

[10] R
m
P

[11] L
a
c
K

[12] B
C

[13] W
P

[14] W
p
T

[15] J
P
i

ALT undoubtedly needs further improvement. The most
us omission in its current form is the lack of natural
age generation and pragmatic programming. Although one
ntroduce the notion of speech acts and pragmatics into
 documents, there is no native support and standard way

 so. These are the areas where relevant advancements in
utational linguistics can be used to improve SALT as it is
.

5. References
adek, M.D., Bretier, P., Panaget F., “ARTIMIS: Natural
ialog meets rational agency,” Proc. IJCAI-97, Japan,
997.
llen, J.F., Natural Language Understanding, 2nd Ed.,
enjamin-Cummings, Redwood City, CA, 1995.
ohen, P.R, Morgan, J., Pollack, M.E., Intentions in
ommunications, MIT Press, Cambridge MA, 1990.
peech and Language Tags (SALT) Forum,
ttp://www.saltforum.org.
ang, K., “Implementation of a multimodal dialog system

sing extensible markup language,” Proc. ICSLP-2000,
eijing, China, 2000.
ron, B., “Hyperspeech: Navigating in speech-only
ypermedia,” Proc. Hypertext 91, San Antonio, TX, 1991.
y, E., Schmandt, C., Arons, B., “Speech recognition
rchitectures for multimedia environments,” Proc. AVIOS-
3, San Jose, CA., 1993.
au, R., Flammia, G., Pao, C., Zue, V., “Webgalaxy:

ntegrating spoken language and hyptertext navigation,”
roc. Eurospeech-97, Rhodes, Greece, 1997.
neff, S., Hurley, E., Lau, R., Pao, C., Schmid, P., Zue, V.,
Galaxy-II: A reference architecture for conversational
ystem development,” Proc. ICSLP-98, Sydney, Australia,
998.
udnicky, A., Xu, W., “An agenda-based dialog
anagement architecture for spoken language systems,”
roc. ASRU-99, Keystone, Co., 1999.
in, B.-S, Wang, H.-M, Lee, L.-S., “A distributed
rchitecture for cooperative spoken dialog agents with
oherent dialog state and history,” Proc. ASRU-99,
eystone, Co., 1999.
radshaw, J.M. (Ed), Software Agents, AAAI/MIT Press,
ambridge, MA, 1996.
ang, K., “An event driven model for dialog systems,”

roc. ICSLP-98, Sydney, Australia, 1998.
ang, K., “Semantic modeling for dialog systems in a

attern recognition framework,” Proc. ASRU-2001,
rento, Italy, 2001.
ohnston, M., Cohen, P.R., McGee, D., Oviatt, S.L.,
ittman, J.A., Smith, I., “Unification based multimodal

ntegration,” Proc. 35th ACL, Madrid, Spain, 1997.

	Welcome Page
	Hub Page
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Abstracts Book
	Abstracts Card for this Manuscript

	Next Manuscript
	Preceding Manuscript

	Previous View

	New Search
	Next Search Hit
	Previous Search Hit
	Search Results

	No Other Papers by the Author

	pagenumber1: 2241
	pagenumber2: 2242
	pagenumber3: 2243
	pagenumber4: 2244

