
Reducing the Human Overhead in Text Categorization

Arnd Christian König
Microsoft Research
One Microsoft Way

Redmond, WA 98052

chrisko@microsoft.com

Eric Brill
Microsoft Research
One Microsoft Way

Redmond, WA 98052

brill@microsoft.com

ABSTRACT
Many applications in text processing require significant human ef-
fort for either labeling large document collections (when learning
statistical models) or extrapolating rules from them (when using
knowledge engineering). In this work, we describe a way to reduce
this effort, while retaining the methods’ accuracy, by constructing
a hybrid classifier that utilizes human reasoning over automatically
discovered text patterns to complement machine learning. Using
a standard sentiment-classification dataset and real customer feed-
back data, we demonstrate that the resulting technique results in
significant reduction of the human effort required to obtain a given
classification accuracy. Moreover, the hybrid text classifier also re-
sults in a significant boost in accuracy over machine-learning based
classifiers when a comparable amount of labeled data is used.

Categories and Subject Descriptors
H.1.2 [Models and Principles]: User/Machine Systems—Human
information processing; H.3.1 [Information Storage and Retrieval]:
Content Analysis and Indexing—Indexing Methods; I.5.4 [Pattern
Recognition]: Applications—Text processing

General Terms
Algorithms, Experimentation

Keywords
active learning, classification, machine learning, supervised learn-
ing, support vector machines, text classification, text mining

1. INTRODUCTION
The automated categorization/classification of natural-language

text into a number of predefined categories is the basis for many
tasks in empirical text processing. The predominant approaches to
this problem have been two-fold: (a) knowledge-engineering tech-
niques, which involve manually building a set of rules encoding
expert knowledge on how to classify documents and (b) machine
learning techniques that use statistical models (such as Support-
Vector Machines [19, 6] or Bayesian Networks [16]) which are

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’06, August 20–23, 2006, Philadelphia, Pennsylvania, USA
Copyright 2006 ACM 1-59593-339-5/06/0008 ...$5.00.

trained using previously classified text corpora. The specific choice
of knowledge-engineering framework or statistical model has been
studied extensively in the research literature; however, from the
perspective of an end-user looking to deploy a system, the true cost
of setting up a specific NLP task does not lie in the overhead of
developing the right classification algorithm, but rather in the over-
head of having a human manually examine significant amounts of
text to either infer classification rules or assign training labels.

This paper studies ways to reduce the amount of human effort
required to build a text classifier. In our approach, we seek to
leverage human input beyond individual labels for text documents,
by exploiting two salient characteristics of text classification tasks:
(1) A key property of text classification is that often knowledge of
only a small subset of a documents’ text is sufficient to make a cor-
rect classification decision. In fact, in some classification scenarios
only a small subset of text is relevant – e.g. consider the example of
sentiment detection in reviews where typically only a small fraction
of a document conveys sentiment information, while the remainder
can be ignored [12]. (2) The other property we leverage is the fact
that humans are typically proficient at reasoning over classification
rules specified in terms of text fragments, i.e. when presented with
a set of possible rules that hold for a small training set of docu-
ments, humans can pick rules that generalize well without knowing
the text corpus itself, by relying on knowledge of the relevant do-
main only. Variations of this property have been leveraged in a
number of scenarios, e.g. [8, 15].

In a classification scenario we now leverage these properties as
follows: initially, we run a pattern discovery algorithm over a small
set of labeled training data to compute text patterns that are highly
correlated with the occurrence of a specific label (i.e. if the pattern
occurs, then – with high probability – so does the label). These pat-
terns are then presented to a human user, who now selects among
them text patterns that carry sufficient information to assign a doc-
ument’s label based on the pattern itself. We refer to such patterns
as discriminating patterns. Here, special care must be taken to en-
sure that the patterns in question are of such type that a human can
reason well over them.

Now, having obtained a set of discriminating patterns, we con-
struct a 2-stage classifier as follows: An unclassified document is
first checked if it matches any of the discriminating patterns. In this
case, the document is assigned a label based on the pattern; if not,
then the label is assigned by a machine-learning based classifier,
that was trained on the same training documents used to discover
the discriminating patterns (Figure 1).

To give an example of discriminating and non-discriminating
patterns, consider the task of classifying user-feedback emails sent
to a large company into mail expressing positive (+) and negative
(-) sentiment. In this context, a frequent text pattern that has high

Pattern-based
Classifier

Learning-based
Classifier

assign label

Pattern matched

not
matchedUnlabeled

document

Research, we have an insatiable curiosity and the desireResearch, we have an insatiable curiosity and the desire

to create new technology that will help define the to create new technology that will help define the

computing experience. Whether inspired by a computing experience. Whether inspired by a

suggestion from a customer or simply the search for a suggestion from a customer or simply the search for a

better way, webetter way, we’’re driven to innovate and push the state re driven to innovate and push the state

of the art in computer science as far as our imaginations of the art in computer science as far as our imaginations

can reach. To that end, we collaborate with universities, can reach. To that end, we collaborate with universities,

submit papers for peer review, and partner with product submit papers for peer review, and partner with product

groups to bring our research to you. Read on to discover groups to bring our research to you. Read on to discover

products in the next two to ten years. products in the next two to ten years.

assign label

Figure 1: A hybrid classifier

correlation to the label (-) might be “I will . . . switch to . . . XYZCorp”,
where XYZCorp is the name of a competitor and the symbol ’. . . ’
accounts for gaps between the matching words in the sentence. A
human annotator may now conclude that this pattern is discrim-
inating and sufficient to identify negative customer feedback. In
contrast, the text pattern “XYZCorp” may be as highly correlated
and even more frequent in the training corpus, however, it does
not convey sufficient information to make a classification decision
based on the pattern itself, and hence is not discriminating.

This framework has two advantages over pure machine-learning:
(1) Using a pattern-based classifier enables us to capture more com-
plex and specific patterns than we would typically be able to learn
(due to sparsity of the training data) using machine-learning based
approaches alone. (2) We do get some of the benefits associated
with knowledge-engineering approaches (transparency of the dis-
criminating text patterns, ability to leverage domain knowledge)
without having a human read through and abstract from a large col-
lection of documents manually.

The main advantage over pure knowledge engineering is effi-
ciency: coming up with discriminating rules manually requires sig-
nificant human effort for examining the document collection for
variations of and counterexamples to each rule. Moreover, the rules
a human designer intuitively comes up with may not correspond to
the most frequent discriminating patterns in the text collection; thus
additional human cycles are required to search the document col-
lection for additional patterns.

Our work makes the following contributions: (1) A framework
that combines text mining with manual annotation of text patterns
to construct a hybrid classifier that significantly increases the clas-
sifier accuracy relative to the amount of human effort. (2) Scalable
algorithms to discover the most frequent text patterns satisfying
a threshold on their correlation to a specific label. (3) A pattern
matching framework that is sensitive to the contexts in which the
meaning of a pattern may be changed (e.g. if the pattern is in the
scope of a negation); as we will show later, this component is cru-
cial in enabling our approach of having humans reason over text
patterns without knowing all contextual information, which is the
basis for our scheme’s efficiency.

The remainder of this paper is organized as follows. In Sec-
tion 2, we will briefly review related work. In Section 3, we define
the class of text patterns used in our approach and describe scalable
algorithms to extract such patterns from text corpora. In Section 4
we describe scenarios in which human reasoning is unreliable and
augment our pattern-matching scheme to address this. In Section 5
we evaluate the efficiency of the proposed framework using multi-
ple real-life datasets. We conclude in Section 6.

2. RELATED WORK
The value of human feedback for feature selection was recently

studied in [15]. Here, the authors show that feature selection solely
based on the labeled training corpus only has little effect, whereas
human feedback on feature relevance can identify a large fraction
of the most relevant features. Similar to our findings, this work
shows that by leveraging the fact that features can be annotated

much more rapidly than training documents, one can significantly
reduce the overall overhead in classifier construction. Our work
differs from this paper in that we use significantly more complex
patterns and consider the patterns’ context when making match-
ing decisions. Also, we use text patterns in isolation of the actual
machine-learned text classifier itself, allowing us to be agnostic to
the specific classification technique and feature set.

On the surface, our method has some similarity with active learn-
ing techniques (e.g., [17, 18]). While both methods can be used to
ultimately reduce the human effort in categorization, their approach
is different: active learning is concerned with using humans to max-
imize the efficiency of labeling additional documents, whereas our
approach leverages text mining to come up with what amounts to
complementary rules among which humans are then asked to se-
lect. Recent results [15] indicate that these approaches may be
combined effectively and can complement each other.

In the context of machine learning, a large number of differ-
ent approaches exist that leverage bootstrapping (or co-learning,
transduction. . .) schemes to construct a machine-learning classi-
fier using little initial training data combined with human feedback
and/or large amounts of unlabeled data (e.g. [4, 8, 11]). Because
our approach isolates the text patterns from the machine learning
classifier, all of these approaches can be combined with our work,
potentially reducing the human overhead even further.

Regarding the data structures used to obtain the text patterns
from the labeled documents themselves, our work is closely related
to other approaches in text mining via suffix arrays [2, 3]. The key
difference in our approach is that we seek to maximize a very dif-
ferent objective function, enabling pruning of the search space ([2,
3] require exhaustive traversal).

3. SCALABLE PATTERN DISCOVERY

3.1 Pattern Definition
Given a vocabulary V over words, we define a text pattern as

an ordered sequence of elements from V ∪ {. . .}, where the sym-
bol ’. . . ’ denotes gaps in the text. We say that a sentence matches
a pattern if it contains the symbols of the pattern in identical order
while gaps may be filled with arbitrary sequences of words within a
sentence (including the empty sequence) i.e. the pattern “a . . . good
product” would match both “This is a good product.” and “a cer-
tainly very good product.”. Patterns do not match across sentence
boundaries. A document d matches a pattern p, if a sentence in d
matches p. For a set of documents D, we define the frequency of a
pattern p as the number of distinct documents in D that match p.

We refer to a pattern p as maximal for a document collection if
no pattern p′ exists for which it holds that (a) p is a subsequence of
p′ and (b) every sentence in D that matches p also matches p′. We
refer to a pattern as simple if it doesn’t contain the gap symbol.
Notation: In the remainder of this paper, we will use the following
notation: given a set of documents D = {d1, . . . dn}, and a set
of labels L = {l1, . . . , lh}, we will denote the label of a document
d ∈ D by Label(d) ∈ L. For a given document set D and a pattern
p, we use the term freq(p) to denote the number of documents
from D that match p. Similarly, we use the term freq(l, p) to
denote the the number of documents from D that match p and are
labeled with the label l ∈ L. We use the symbol ◦ to denote the
concatination of strings, i.e. “A ” ◦ “string” = “A string”.

3.2 Pattern Discovery
Given this pattern definition, we want to discover patterns that

are highly indicative of one label; to measure this, we simply use

the probability of a label l given a pattern p in the training data:

Pr(l, p) :=
freq(l, p)

freq(p)
.

We also can use any other type of impurity function here without
changing the resulting algorithm. For a pattern to be displayed to
the human annotator, we require a value of Pr(l, p) greater than a
threshold α, chosen to be larger than the desired classification accu-
racy. Among all patterns satisfying this condition, we now want to
display the ones which occur in the largest number of documents,
as they are assumed to occur more frequently in the unlabeled data
as well. Thus, the search problem becomes:
Problem Statement: Given a set of documents D = {d1, . . . dn}
and a threshold α on the required minimum probability induced by
a pattern, compute the k most frequent patterns p1, . . . , pk, such
that for each pi it holds that

max
l∈L

Pr(l, pi) > α. (1)

For very unbalanced corpora, we may want to extract the most
frequent patterns indicative of each label separately; our overall
algorithm remains the same in either case.

This text mining problem differs from many data-mining scenar-
ios studied over in the context of itemset data in two respects: first,
the text data itself (when using a dictionary-based encoding of each
word as an integer) typically fits into main memory – given that vo-
cabulary sizes for natural language text typically are in the range
of 100K-200K, one billion words can be represented in 3GB of
memory. Second, mining approaches that explore the search-space
bottom-up by computing the number of occurrences and Pr(l, p)-
values for short word-combinations (e.g. bi- or trigrams) do not
scale due to the large vocabulary size and the fact that the patterns
allow gaps; e.g. a vocabulary of |V| = 25K words can yield up
to |V|2 = 625 · 106 different bigrams. While the actual num-
bers encountered are smaller, they still grow fast enough to rule out
bottom-up pruning. Therefore, we use an algorithm that is based
on multiple suffix arrays [9] to compute these patterns.

3.2.1 Suffix Arrays
Given a vocabulary V and a text corpus T (of words from V)

made up of D documents, we represent T by encoding each word
as an integer in {1, . . . , |V|}, marking the end of each sentence by
a special symbol ’#’ . We denote the string resulting from concati-
nating all symbols in the corpus by T , using the notation T [j] to
denote the j-th symbol in T , and N to denote the length of T .

Now, a suffix array is a compact representation of a suffix tree [10]
over T . The key advantage of suffix arrays over suffix trees is that
their space requirements do not grow proportional to the product of
the vocabulary size and N , but only proportional to N . Concep-
tually, a suffix array SA is an array of all N suffixes in T , sorted
lexicographically. Each suffix is represented as a pointer into the
corpus only, i.e. if SA[j] = i then the j-th (in lexicographical or-
der) suffix contained in T is the word sequence T [i] . . . T [N]. We
will refer to this number j as the rank of a the suffix starting at T [i].

In addition to the suffix-array, we maintain an auxiliary array
for storing LCPs (longest common prefixes), where each element,
LCP [j], indicates the length of the common prefix between the
suffixes denotes by SA[j] and SA[j − 1]. Finally, we also main-
tain an inverted suffix array SA−1 defined via SA−1[i] = j ⇔
SA[j] = i. Given that all of these arrays have N fields, the total
structure requires O(N) space, which in practice means less than
3 times the space required to store T , as all pointers and members
of V are stored using 4 bytes, and the LCP array typically only

requires single-byte counters (for natural text, patterns longer than
256 words are typically irrelevant). Construction of Suffix Arrays
and the LCP array requires overhead linear in N (e.g. [7]).

3.2.2 Discovering Patterns without gaps
Once a suffix array over T has been constructed, we can compute

the Pr(l, p) for all maximal patterns that do not contain the gap
symbol ’. . . ’ using a modification of the algorithm proposed in [21]
to compute the term frequency (= total number of occurrences) and
document frequency (= freq(p)) of text patterns. This algorithm
computes the document frequency for any maximal n-gram occur-
ring in the text (and therefore any maximal pattern without gaps),
with n ∈ {1, . . . N} in O(N logN) time; the modification we
make is that we keep track of the |L| different document frequen-
cies – corresponding to the sets of documents of each label. This
modification is trivial, so we omit a detailed description.

The algorithm traverses all maximal patterns contained in T and
also outputs for each pattern p the lowest and largest rank of suf-
fixes starting with p (which means that all suffixes with ranks be-
tween these boundaries must also start with p), and the length of
each pattern. In the following, we will denote the set of ranks for a
pattern p as rank(p) and its length by length(p). Note that for our
purposes it suffices to consider only the maximal patterns, as any
non-maximal patterns have identical correlation, but contain less
information for the human annotator.

3.2.3 Discovering Patterns with gaps
In the following, we will describe how to compute – for a given

pattern p – all patterns of the form p ◦ ’. . . ’ ◦ p1 ◦ . . . ◦ pm in
T , with each pi being a maximal simple pattern, as well as the
corresponding suffix-ranks and Pr(l, p ◦ ’. . . ’ ◦ . . . ◦ pm). We will
refer to this as expanding the pattern.

First, consider the case of p being a simple pattern. Now, us-
ing the algorithm described above, we compute rank(p); conse-
quently, we can compute the starting positions of all suffixes after
occurrences of p as {SA[r] + length(p)|r ∈ rank(p)}. Now,
given that patterns cannot cross sentence-boundaries, we can com-
pute the set of all positions pos(p) in T that can potentially contain
patterns of the form p◦’. . . ’◦p′ using the set of suffixes of the occur-
rences of p in T . If we define the next sentence boundary after a po-
sition k in T as bound(k) := min{l ∈ N|l > k and T [l] = ’#’},
then we can compute the set of positions as

pos(p) :=
�

r∈rank(p)
{SA[r] + length(p), . . . , bound(SA[r])}.

Now define the subset Tp as the subset of the text corpus T con-
sisting of the items T [i] where i ∈ pos(p). We compute a suffix
array SAp on Tp by sorting the ranks corresponding to members of
pos(p) (which is typically much more efficient than building it by
comparing the corresponding suffixes), including the correspond-
ing LCP information and inverse suffix array SA−1

p . Now, we can
run the algorithm of [21] on this suffix array. Any patterns p′ found
in Tp correspond to occurrences of p◦ ’. . . ’◦p′ in T , with the value
of Pr(l, p′) with respect to Tp being the value of Pr(l, p◦’. . . ’◦p′)
with respect to T .

The construction for cases where p is not a simple pattern is al-
most identical. Let p be of the form p1 ◦ . . . ◦ pm, where each pi is
a simple pattern. Then we compute the positions in pos(p) as

pos(p) :=
�

r∈rank(p)
{SAp[r] + length(pm), . . . , bound(SAp[r])}.

By repeating this construction, we can find patterns with arbitrary
numbers of gaps. Overall, this construction results in a search tree

P1, P2, … Pn’

“can be”

SA (all suffixes of “your product … can be”)

“your product”

SA (suffixes of “your product… is wonderful”)

SuffixArray (over all documents)

SA (all suffixes of “your product”)

P1, P2, P3 … Pn

P1, P2, … Pn’’

“a problem”

“is wonderful”

……

Figure 2: Exploration of the search tree

over suffix arrays containing smaller and smaller subsets of the cor-
pus, corresponding to the suffixes of the patterns found along the
paths in the tree. We illustrate this in Figure 2.

One crucial aspect of this search scheme is that – when memory
is sparse – we can traverse the search space in a depth-first man-
ner, which in turn requires very little memory. This is due to the
large vocabulary size (and the short length of the patterns we use),
which results in the suffix-arrays further down the search tree only
requiring a small fraction of the size of the initial suffix array.

3.2.4 Exploration of the Search Tree
The approach we describe above is very similar to the one taken

in [3], with the key difference being the objective function used to
evaluate patterns. While we search for the most frequent patterns
satisfying a minimum level of correlation, the work of [3] tries to
find the pattern p that (in the case of two labels {0, 1}) optimizes
an evaluation function of the form:

G
ψ
D,L(p):=ψ(

freq(l,p)
freq(p))·freq(p)+ψ(

|D|−freq(l,p)
|D|−freq(p))·(|D|−freq(p)),

with ψ denoting any convex impurity function, such as information
entropy or the gini index. The key difference between these formu-
lations is that the latter function does not lend itself easily to prun-
ing of the search space when exploring the search tree over suffix
arrays described above. Instead, the algorithm of [3] traverses the
entire search space.

In contrast, we are only interested in the k most frequent pat-
terns, allowing us to abort any search path that cannot produce pat-
terns of sufficiently high frequency. Due to this, the issue of the
order in which we explore the search tree becomes important, since
the faster we obtain high-frequency patterns, the smaller the sub-
sequent search space. To implement this pruning functionality, we
maintain a list P found of the k most frequent patterns found thus
far that satisfy the condition (1) given in the problem statement.
Now, we only need to expand a pattern p if

∃l ∈ L :
1

α
· freq(l, p) > min

pf∈P found
freq(pf), (2)

for otherwise the expanded pattern cannot satisfy condition (1) and
be among the top kmost frequent patterns. Due to space-constraints,
we omit a further description of the search algorithm.

4. ENABLING ACCURATE REASONING
OVER TEXT PATTERNS

When presenting the resulting candidate patterns to a human an-
notator, one key to the efficiency of this approach is that the anno-
tator is presented with patterns only, but not their sentential context
(which would take orders of magnitude longer to review). How-
ever, this can be problematic in cases in which the context of a

pattern invalidates the way the pattern is interpreted in isolation:
consider the the text pattern “I like your product”. In our sentiment-
classifier example this phrase may induce the user to assign a (+)
label to the feedback mail; however, if the phrase is in the scope of
a negation, such as “It’s not true that I like your product.”, this con-
clusion would be invalid, even though the negation does not show
up as part of the pattern itself. Natural language contains a number
of constructs that have this type of effect:
Negation – these may occur either as external negations that occur
outside a pattern and invalidate an entire pattern (such as in the ex-
ample above), or as internal negations where the word triggering
the negation is “hidden” in gap within the pattern itself (e.g. “this
is not great at all” matching the pattern “this is . . . great”).
Conditionals – If a pattern occurs as part of a conditional, then
the statement implied by the pattern typically does not hold. For
example, consider the pattern “this is . . . a good product” and the
sentence “If this is such a good product, then why does it crash?”.
Subjunctive – These affect patterns similar to conditionals. Exam-
ple: the phrase “were it the case that” preceding a pattern.
Factives and Speech – These affect patterns similar to condition-
als. Example: the phrase “He claims that” preceding a pattern.

We refer to the four types of constructs above as invalidating
constructs. Fortunately, in English the words associated with these
types of constructs are known and are independent of a specific
training corpus. Thus by using a simple keyword (or key-phrase)
matching algorithm, we can identify most sentences containing such
constructs, if we are willing to allow false positives.

So, in order to deal with invalidating constructs, we constructed
sets of words that can trigger such a construct (e.g. not, never, can-
not, etc. in case of negation) and use a simple keyword-matching
algorithm to identify sentences that potentially may contain an in-
validating construct. Now, we extend the definition of matching a
pattern as follows: a sentence containing an invalidating construct
matches a text pattern only if the invalidating construct is part of the
pattern itself. For example, the sentence “don’t buy this product.”
matches the pattern “don’t buy this”, but not “buy this product”.

This may result in false positives (i.e. we might flag an invalidat-
ing construct either where none exists, or when it does not affect the
pattern in question), but since the pattern-based classifier is backed
by a machine-learning one, we can afford to be overly conservative.

5. EXPERIMENTAL EVALUATION
In this section we describe experiments which evaluate both the

overall efficiency of the hybrid classifiers as well as the reduction
of human effort required to obtain a target accuracy.
Datasets: We used two different datasets in our experiments: the
first is the polarity dataset V2.0 available from [1], which consists
of 2000 movie-reviews from rec.arts.movies.reviews, with
1000 reviews being positive and 1000 negative. This dataset has be-
come the de facto standard dataset for sentiment-classification and
has been used in over 15 research papers. The second dataset we
used is real customer feedback data that is internal to Microsoft.
The data set contains more than 1.8 million pieces of individual
customer feedback and 118MB of raw text data. The individual
messages contain comments on web help documents and are on
average significantly shorter and vary more in content than the re-
views in the first dataset. Each feedback item is tagged with one of
the labels (’useful’, ’not useful’, ’maybe’), reflecting the customer
assessment of the help document in question.

5.1 Classification Experiments
In these experiments we compare the accuracy of the hybrid clas-

sifier to a machine-learning based one given the required amount

of human effort (i.e. the number of labeled training documents and
text patterns examined by a human). The machine learning method
we use is a Support Vector Machine (SVM) [19]. SVMs have con-
sistently been shown to outperform other classification algorithms
for text classification in general [6, 5], and for sentiment classi-
fication in particular [13, 12]. The training algorithm we used is
Sequential Minimal Optimization [14]. When training the SVMs,
each document is represented as a feature vector, where we varied
the feature sets to include (a) all unigrams, or (b) all unigrams, bi-
grams and trigrams found in the training document set. All features
were binary, i.e. only the absence or presence of a feature in a doc-
ument is indicated, but not its frequency, which is consistent with
results in research literature in which binary features outperform
frequency features for text classification (e.g. [6, 12]).

5.1.1 Experiments on the Movie Review Dataset
Setup of the Text-Pattern based Classifier: To construct the text-
pattern based classifier we first used the algorithm of Section 3.2
to discover the most frequent text patterns satisfying condition (1)
(for α = 0.99) in the full training data. The 300 most frequent pat-
terns1 were then presented to 15 different human annotators. Each
annotator was given only the patterns, but no information about
their frequency or examples of sentences containing the patterns,
as we were interested in validating our hypothesis that humans can
reason sufficiently well about the patterns themselves. Depending
on the annotator, identifying discriminating patterns required 20-40
minutes, with the average being about 30.

Obviously, the quality of the resulting pattern-based classifier
varies with the annotator – consequently, all experiments on classi-
fication accuracy using such classifiers are plotted with error-bars,
with the high/low bar corresponding to the best/worst annotator and
the plotted point corresponding to the average over all annotators.
Classification Results: The classification accuracy of the result-
ing machine-learning based and hybrid classifiers is shown in Fig-
ure 3 for varying sizes of the training data. Note that the accura-
cies of the SVM-baseline compares nicely with other results pub-
lished on this dataset. For example, [12] reports 87.15% accu-
racy for a SVM trained on unigrams when using the full reviews
as training data, which matches our results almost exactly. How-
ever, in addition to the unigram-experiments we also use bi- and
trigrams, which increases the classification accuracy significantly,
so our baseline without text patterns already outperforms the results
given in other papers. All experimental results are based on 5-fold
cross-validation.

All experiments show clearly that the hybrid classifier results
in a significant boost of the overall classification accuracy when
compared to the machine-learning one. This holds true for all 15
annotators, indicating that humans can reason accurately over the
patterns we provide.

Moreover, in nearly all cases the hybrid classifier also outper-
formed the machine-learning one using an additional 10% (or – in
many cases – even more) training data. Given that 10% of the train-
ing data corresponds to 120 documents (of 600-700 words, as op-
posed to patterns which are about two orders of magnitude shorter),
whose annotation almost certainly requires more time than the 30
minutes used for discriminating pattern selection on average, these
results also show that using our framework can yield significant
reduction in the amount of human effort required.

In addition, we ran some initial experiments where we used the
discriminating patterns themselves as binary features in the SVM
classifier. Unfortunately, when simply adding these to the feature

1We used a minimal amount of pruning here, excluding all patterns that
consist to more than 50% of stop-words such as ’and’, the’, ’in’. . .

Classification Accuracy for Trigram Features

77

79

81

83

85

87

89

91

93

95

60% 70% 80% 90% 100%

Percentage of Training data used

C
la

ss
if

ic
at

io
n

A
cc

ur
ac

y
(i

n
%

)

Text Patterns + SVM

SVM only

Classification Accuracy for Unigram Features

77

79

81

83

85

87

89

91

93

60% 70% 80% 90% 100%

Percentage of Training data used

C
la

ss
if

ic
at

io
n

A
cc

ur
ac

y
(i

n
%

)

Text Patterns + SVM

SVM only

Figure 3: Classification accuracy for the Movie Dataset

set, they are “drowned out” by the other features, since the number
of such patterns is extremely small in comparison to the number of
n-grams. The alternative of using only the discriminating patterns
as features is also not practical, as these only cover a fraction of
the data set, i.e. many documents do not contain a single discrim-
inating pattern. None of these findings rule out the use of discrim-
inating patterns as classifier features, or as input to the classifier-
construction. For example, techniques such as [20] which incorpo-
rate prior knowledge into weighted margin SVMs could potentially
leverage discriminating patterns to come up with a better classifier,
and we will investigate their use in the future.

5.1.2 Comparison with active learning
Given that our experiments require human interaction beyond

labeling, a natural comparison was to active learning techniques.
Here, we use an active learning approach specifically aimed at SVM-
based classification of text documents, using the Simple Margin
method described in [18] to chose additional documents to label. In
order to achieve an apples-to-apples comparison we need to com-
pare techniques that require the same amount of human effort; how-
ever, we can only guess at the time required at labeling a movie
review. Hence, we conducted multiple experiments, one assuming
that a human annotator would require 1 minute to label a review
(the reviews average 600-700 words) and another one under the
optimistic assumption that the annotator only requires 30 seconds
per document. Since labeling the discriminating patterns required
30 minutes of time on average, we thus compare our approach to a
machine-learning classifier which uses active learning to add 30 or
60 documents to its training data. The results are shown in Figure 4
– here the x-axis corresponds to the amount of training data used
before the active learning sets in. Active learning performs com-
parably to the hybrid classifier for small training data sizes (out-
performing SVM-classifiers without active learning using signifi-
cantly more training data), but does not achieve the performance of
the hybrid classifier for larger training sets.

Classification Accuracy for Trigram Features

77

79

81

83

85

87

89

91

93

60% 70% 80% 90%

Percentage of Training data used

C
la

ss
if

ic
at

io
n

A
cc

ur
ac

y
(i

n
%

)

Text Patterns + SVM

SVM only

SVM + Active Learning (30)

SVM + Active Learning (60)

Figure 4: Classification accuracy for the Movie Dataset

5.1.3 Experiments on the User Feedback Dataset
To study the effects of text patterns in scenarios where training

data is more abundant, we ran similar experiments on the user feed-
back dataset, with the classification task being to assign the labels
’useful’ and ’not useful’ to the comments. Here, we used between
23K and 32K comments as training data and a test-set of 10K com-
ments. Note that this data is much more heterogeneous than the
movie data, and individual items also much shorter, making this
classification task somewhat more difficult.

To construct the machine-learning classifier, we again used an
SVM model, trained on all uni-, bi- and trigrams occurring in the
training data. To construct the hybrid classifier, we presented a hu-
man annotator with the 300 most frequent patterns, using a thresh-
old of α = 0.95; we only used a single annotator in this experi-
ment. Finally, we also ran active-learning experiments similar to
the above, allowing active learning to select 300 comments, to ac-
count for these being much shorter than the movie reviews.

The experimental results are shown in Figure 5. Again, invest-
ing a short amount of time into pattern annotation gives a boost to
classification accuracy, which would have required a large number
of additional labeled training data otherwise. Here, the overall im-
provement (and the classifier accuracy) is lower, as the comments
vary more (many of them express specific issues relevant to only a
subset of the help pages). As before, the hybrid classifier performs
better in relation to active learning as the size of the initial training
data becomes larger.

Classification Accuracy for Trigram Features

63

64

65

66

67

68

69

70

71

72

73

23K 26K 29K 32K

Number of training documents

C
la

ss
if

ic
at

io
n

A
cc

ur
ac

y
(i

n
%

)

Text Patterns + SVM

SVM only

SVM+Active Learning (300)

Figure 5: Accuracy for the User Feedback Dataset

6. CONCLUSIONS AND OUTLOOK
In this paper we describe a novel framework to extracts text pat-

terns that are highly correlated to a specific label from an annotated
text corpus, among which discriminating patterns are then selected

by a human annotator, resulting in text patterns that are highly pre-
dictive and hence very valuable in classifier construction.

Our experiments suggest that these text patterns result in sig-
nificant improvements in accuracy over pure machine-learning ap-
proaches. This is in part due to the fact that the text patterns we use
are often more complex than the individual features used in text
classification (due to the sparseness of text data) and in part due
to our combination of text mining and human domain knowledge
being able to pick up highly predictive patterns/features, which are
hard to properly weigh by machine-learning approaches (if the pat-
terns are part of the feature space), as they are statistically indistin-
guishable from other, less predictive features in the training data.

7. REFERENCES
[1] Polarity dataset v2.0.

http://www.cs.cornell.edu/people/pabo/movie-review-data/.
[2] H. Arimura, H. Asaka, H. Sakamoto, and S. Arikawa. Efficient

Discovery of Proximity Patterns with Suffix Arrays. In Proceedings
of Combinatorial Pattern Matching: 12th Annual Symposium, 2001.

[3] H. Arimura, H. Sakamoto, and S. Arikawa. Efficient Data Mining
from Large Text Databases. In Progress in Discovery Science, 2002.

[4] P. Beineke, T. Hastie, and S. Vaithyanathan. The Sentimental Factor:
Improving Review Classification via Human-Provided Information.
In Proceedings of the 42nd ACL Conference, 2004.

[5] S. Dumais, J. Platt, D. Heckerman, and M. Sahami. Inductive
Learning Algorithms and Representations for Text Categorization. In
Proceedings of CIKM, 1998.

[6] T. Joachims. Text Categorization with Support Vector Machines:
Learning with many Relevant Features. In Proceedings of the
EMNLP Conference, 1998.

[7] J. Kärkkäinen and P. Sanders. Simple Linear Work Suffix Array
Construction. In Proceedings of 13th International Conference on
Automata, Languages and Programming, 2003.

[8] B. Lui, X. Li, W. S. Lee, and P. S. Yu. Text Classification by
Labeling Words. In Proceedings of the 19th National Conference on
Artificial Intelligence, 2004.

[9] U. Manber and G. Myers. Suffix Arrays: A new Method for On-Line
String Searches. In Proceedings of the First Annual ACM-SIAM
Symposion on Discrete Algorithms, 1990.

[10] E. M. McCreight. A Space-Economical Suffix Tree Construction
Algorithm. In Journal of the ACM, 23, pages 262–272, 1976.

[11] K. Nigam, A. McCallum, S. Thrun, and T. Mitchell. Learning to
Classify Text from Labeled and Unlabeled Documents. In
Proceedings of AAAI, 1998.

[12] B. Pang and L. Lee. A Sentimental Education: Sentiment Analysis
Using Subjectivity Summarization Based on Minimum Cuts. In
Proceedings of the 42nd ACL Conference, 2004.

[13] B. Pang, L. Lee, and S. Vaithyanathan. Thumbs Up? Sentiment
Classification using Machine Learning Techniques. In Proceedings
of EMNLP, pages 79–86, 2002.

[14] J. Platt. Fast Training of SVM’s Using Sequential Minimal
Optimization. In Advances in Kernel Methods: Support Vector
Machine Learning, pages 185–209. MIT Press, 1999.

[15] H. Raghavan, O. Madani, and R. Jones. InterActive Feature
Selection. In Proceedings of IJCAI-05, pages 841–846, 2005.

[16] M. Sahami. Using Machine Learning to Improve Information Access.
PhD thesis, Stanford University, 1998.

[17] H. Seung, M. Opper, and H. Sompolinsky. Query by Committee. In
Proceedings of Computational Learning Theory, 1992.

[18] S. Tong and D. Koller. Support Vector Machine Active Learning with
Applications to Text Classification. Journal of Machine Learning
Research, 2001.

[19] V. Vapnik. Statistical Learning Theory. Whiley, 2000.
[20] X. Wu and R. Srihari. Incorporating Prior Knowledge with Weighted

Margin Support Vector Machines. In Proceedings of KDD’04, pages
326–333, 2004.

[21] M. Yamamoto and K. W. Church. Using Suffix Arrays to Compute
Term Frequency and Document Frequency for All Substrings in a
Corpus. In Computational Linguistics, volume 27 (1), 2001.

