
Mining Program Workflow from Interleaved Traces
Jian-Guang Lou1 Qiang Fu1 Shengqi Yang2 Jiang Li1 Bin Wu2

1Microsoft Research Asia
Beijing, P. R. China

{jlou, qifu, jiangli}@microsoft.com

2Dept. of Computer Science
Beijing Univ. of Posts and Telecom

wubin@bupt.edu.cn

ABSTRACT
Successful software maintenance is becoming increasingly critical
due to the increasing dependence of our society and economy on
software systems. One key problem of software maintenance is
the difficulty in understanding the evolving software systems.
Program workflows can help system operators and administrators
to understand system behaviors and verify system executions so
as to greatly facilitate system maintenance. In this paper, we pro-
pose an algorithm to automatically discover program workflows
from event traces that record system events during system execu-
tion. Different from existing workflow mining algorithms, our
approach can construct concurrent workflows from traces of inter-
leaved events. Our workflow mining approach is a three-step
coarse-to-fine algorithm. At first, we mine temporal dependencies
for each pair of events. Then, based on the mined pair-wise tem-
poral dependencies, we construct a basic workflow model by a
breadth-first path pruning algorithm. After that, we refine the
workflow by verifying it with all training event traces. The re-
finement algorithm tries to find out a workflow that can interpret
all event traces with minimal state transitions and threads. The
results of both simulation data and real program data show that
our algorithm is highly effective.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—Data
Mining; D.2.1 [Software Engineering]: Requirements/ Specifica-
tions –Tools

General Terms
Algorithms, Experimentation

Keywords
Workflow mining, graphical behavior models, temporal properties

1 INTRODUCTION
With the increasing dependence on software at all levels of our
society and economy, software maintenance is becoming increa-
singly critical. A key technical issue of software maintenance is
the difficulty in understanding what happens to systems (and
software) over time [18], e.g. about 50% of the maintenance cost
is due to comprehending or understanding the code base. Program
workflow can help operators and developers to understand system
behaviors, to verify the system execution, and to validate the run-
ning results. For example, Mariani et al. [6] indentify incompati-

bilities and illegal interactions of a reused component by compar-
ing its interaction workflow in the new context with that in the
original system. Unfortunately, the knowledge of program
workflow is not always available to hand. This is because soft-
ware documents and specifications are often not complete, accu-
rate and updated due to bad development management and tight
schedule (e.g. hard product shipping deadlines and “short-time-to-
market”). Therefore, there is a great demand of building automatic
tools for mining workflows for programs.

Our motivating application is in the area of program dynamic
analysis where program event traces are analyzed to mine pro-
gram workflows. There are a set of existing research efforts [1, 2,
4, 5, 6, 8, 10] on mining program workflows. Most of them are
variants of the classical k-Tails algorithm [2]. They learn a finite
state automaton (FSA) from event traces. However, these k-Tails
based algorithms cannot perform well in a complex system, in
which multiple independent threads/processes generate traces of
interleaved events. Because the events can be interleaved in many
different ways, and a k-Tails based algorithm tries to interpret a
huge number of event sequencing patterns, the resulting FSA
model often becomes very complex. Because of this, the k-Tails
based algorithms assume that the traces contain thread IDs and
can be analyzed thread by thread [6]. Although most software
programs produce traces with thread IDs, there are still some ex-
isting systems that do not record thread IDs in their logs or traces
by default. More important, most advanced software programs are
designed and implemented based on event driven architecture, in
which the flow of the program is determined by events [11]. In
most event driven systems, a task’s workflow is divided into sev-
eral stages or subtasks, and each subtask is related to an event
which is handled by an event handler. In these systems, a thread
usually handles many different events from multiple concurrent
tasks, and these events often interleave with each other. Therefore,
even given the thread IDs, we still cannot learn a task workflow
from the traces of such an event driven system by a k-Tails based
algorithm.

In this paper, we present an algorithm to discover a program
workflow model from traces of interleaved events by a three-step
coarse-to-fine algorithm. At first, we mine temporal dependencies
for each event pair from event traces. The dependencies that we
mined are always valid under any event interleaving patterns.
Rather than directly constructing the workflow from the input
event traces, we construct a basic workflow model from the mined
dependencies. Then, based on the different properties between a
loop/shortcut structure and a thread spawn/sync structure, we
design an algorithm to refine the basic workflow. The refinement
algorithm can find the simplest workflow with a minimal number
of thread types to interpret all event traces. Our approach works
quite well on traces of interleaved events. To the best of our
knowledge, the paper is the first work to learn workflows from
traces of interleaved events produced by concurrent programs.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
KDD’10, July 25-28, 2010, Washington, DC, USA.
Copyright 2010 ACM 978-1-4503-0055-1/10/07 ...$10.00.

The rest of the paper is organized as follows. In section 2, we
briefly introduce the previous work that is closely related to ours.
Section 3 provides the basic ideas and concepts of our approach.
In section 4, we describe an algorithm to mine temporal depen-
dencies from event traces. The detailed algorithm on constructing
a workflow model based on mined temporal dependences is pre-
sented in section 5. In section 7, we validate the approach with
some experimental results on both simulations and real event
traces. Finally, we conclude the paper in section 8.

2 RELATED WORK
There are a set of existing research efforts [1, 2, 4, 5, 6, 8, 10,] on
learning program workflow models from execution traces for
software testing and debugging. In these algorithms, Finite State
Automatons (FSA) are used as workflow models. These algo-
rithms are mostly extended from the popular k-Tails algorithm
proposed by Biermann and Feldman [9]. At first, the algorithm
constructs an initial FSA from input traces, and then it progres-
sively refines the FSA by merging equivalent states until no fur-
ther merge operation is possible. Different algorithms [6, 10] use
different equivalent criteria to derive different FSA depending on
different desired degree of generalization. For example, in the k-
strings algorithm [10], if two states ݏ௔ and ݏ௕ generate the same k-
strings (i.e. symbol sequences of length up to k that can be gener-
ated from the state), they are merged. The learner modifies the k-
Tails algorithm by comparing how likely two states are to gener-
ate the same k-strings. L. Mariani et al [6] also proposed an in-
cremental FSA learner, namely k-Learner, by modifying the k-
Tails with a new merge operation. The algorithm identifies subse-
quences of a new trace in the current FSA, and augments the FSA
to include the new trace. Besides the state equivalence conditions,
some recent algorithms also introduce other pre-conditions for the
merge operation. In [2], two equivalent states ݏ௔ and ݏ௕ can only
be merged when the merged FSA does not break a set of temporal
patterns that are automatically mined from the training traces. A
similar steering idea is also proposed by Walkinshaw et al [8], in
which user defined Linear Temporal Logic (LTL) rules are used
to determine whether two equivalent states can be merged. All
these k-Tails based algorithms assume that the event traces are
sequential traces [6]. However, many workflows exhibit concur-
rent behavior, where a single event trace comprises a set of events
produced by more than one thread of control. The sequential state
machine model cannot capture the concurrent behavior of a sys-
tem, and the k-Tails based algorithms will create a very complex
model as they try to interpret all event sequencing patterns gener-
ated by the interleaved events. Unlike these, our algorithm learns
workflow models from traces of interleaved events. Some re-
searches [26, 27, 28, 29, 30, 31] on mining temporal patterns from
program traces are highly related to our work too. For example,
Javert [28] learns simple generic patterns, such as the alternating
pattern ((ab)כ) and the resource usage pattern ((abכc)כ), and com-
poses them using two simple rules to construct large, complex
specifications. In this paper, we construct a basic workflow model
by composing simple temporal dependency patterns. The similar
concept can also be found in [27].

Another set of research efforts [3, 7, 12, 13, 14, 15, 16, 17] from
the area of Business Intelligence [12] are also related to our work.
Rather than software system traces, they try to mine business
processes (or workflows) from business activity logs. In business
workflow mining algorithms, different from FSA models, a
process is often represented by a graph in which nodes correspond
to the activities to be performed, and arcs describe the precedence

or dependent relationships among the activities. For example, the
authors of [14] use a directed acyclic graph (DAG) to model a
workflow process. In [3] and [7], a constrained DAG, namely an
AND/OR workflow graph (AO graph), is proposed to model a
workflow process. Aalst et al [15] use a special class of Petri-net
model, namely workflow nets (WF-net), to model a workflow
process. Among these models, the WF-net is the most powerful
model that can be simplified to other models by adding some
constraints. Although the business process mining and software
workflow mining algorithms have different application back-
grounds and models, they share the same basic idea, i.e. construct-
ing constrained graphic activity models from traces [13], and they
can leverage each other [17]. For example, we can construct a
DFA to mimic the behaviors of a DAG based model. Almost all
business workflow mining algorithms consider the parallel prop-
erty of different tasks by introducing AND split/join nodes [3, 7,
13, 14], fork/join places [12, 15, 17], or Parallel operators [16]. In
order to handle the concurrent task problem, similar to our ap-
proach, these algorithms reconstruct the workflow graph by utiliz-
ing the dependent or causal relationships mined from workflow
activity logs. For example, in [15], Aalst et al only use the order-
ing relation “൐୵” that describes whether one is directly followed
by the other in a trace, to discover a WF-net. Cook et al [17] use
more information, such as event type counts, event entropy, and
event periodicity, and combine the information into a ranking
score to discover the concurrent behavior in event streams. How-
ever, all of these approaches assume that an input log sequence is
produced by a single case in isolation [15, 17], and they cannot
handle an interleaved log sequence generated by multiple concur-
rent executions of the same workflow (e.g. an event trace is pro-
duced by a WF-net workflow if there are two or more tokens in
the start place of a WF-net). In addition, their models also do not
allow that multiple concurrent threads run the same sub-workflow
[15, 17]. However, in a paralleled program, a job may often be
divided into several concurrent sub-tasks, with each sub-task hav-
ing the same workflow. For example, a MapReduce job is often
split into many Map tasks, and each Map task follows the same
execution logic. Our algorithm handles these problems by a
coarse-to-fine approach.

3 PRELIMINARY
This section introduces the basic concepts and techniques used in
our algorithm including our view of events, our workflow model,
different types of dependency relationships involved in our algo-
rithm, and the assumptions of our mining algorithm.

3.1 EVENT TRACE
Similar to other methods, we view the event logs in a log file as a
trace of events being produced by a black-box system. Here,
events are used to characterize the dynamic behavior of a software
program. Each event trace is generated and collected during a
complete execution of the program on a batch of use cases. Dur-
ing an execution, the program may have simultaneous executing
threads of control, with each of them producing events that form a
resulting event trace. Thus, each event trace may contain inter-
leaved events from all the concurrent threads (namely a trace of
interleaved events). Note here that although the term “thread”
means a sequential execution control path within the workflow, it
may not directly map to a process/thread in the operating system
in an event-driven system. We can collect many event traces by
running the program many times. In software systems, events may
be recorded with attributes, such as timestamp, related resources

and data. Although in some systems, event attributes can help to
distinguish the events from different control threads of the
workflow, in this paper, we present a general approach that only
utilizes the ordering of events.

Formally, let ߑ be a set of distinct events that appear in all event
traces. An event trace is a sequence of events, denoted as ൏
݁ଵ, ݁ଶ, … , ݁௠ ൐, where ݁௜ is an event, i.e. ݁௜ א ߑ for 1 ൑ ݅ ൑ ݉ .
For brevity, we can also write it as ݁ଵ, ݁ଶ, … , ݁௠. Given an event
trace ݈ ൌ ݁ଵ, ݁ଶ, … , ݁௠ , for an event ݁௜, 1 ൑ ݅ ൑ ݉ , we call the
subsequence ݁௜ାଵ, ݁௜ାଶ, … , ݁௠ as the postfix of ݁௜ in ݈, denoted as
,ሺ݁௜ሻ, and subsequence ݁ଵݐݏ݋݌ ݁ଶ, … , ݁௜ିଵ as the prefix of ݁௜ in ݈,
denoted as ݁ݎ݌ሺ݁௜ሻ . If ݅ ൌ 1 , then ݁ݎ݌ሺ݁௜ሻ is a null sequence,
denoted as ׎. Similarly, when ݅ ൌ ݉, we also have ݐݏ݋݌ሺ݁௜ሻ ൌ .׎

Program event traces may contain some noise that is usually
caused by some execution anomalies. For event traces that may
contain noise, we can use the noise filtering method [19] or ano-
maly detection method [20] to filter out the noise before we learn
workflow models. In addition, we assume that the temporal order-
ing patterns of different events can be as diverse as possible. This
is reasonable for event logs produced by independent concurrency.
Some concurrent systems that may not display much randomness
are not the targets of our method. As with most data driven ap-
proaches, we also assume that we have enough event logs to make
our analysis meaningful. Because our method is based on the
temporal orders of events in event traces, enough log data means
that we have enough instances of any possible ordering relation-
ship of every event pair to make the mined dependencies statisti-
cally meaningful.

3.2 WORKFLOW MODEL
In this paper, our algorithm outputs a transition-labeled finite state
machine to represent a workflow. In order to model the concurrent
properties of workflows, we introduce a vector of active states
instead of just a single active state so that the state machine can
have multiple, concurrent threads. To create and destroy these
threads, we define four new types of states to mimic the concur-
rent behavior of a Petri net: split/merge states and fork/join states.
Similar to the AND split/merge nodes in papers [3, 7], a split state
has multiple out transitions (i.e. transitions leaving from the state),
and all these transitions are taken concurrently. A merge state has
multiple entering transitions, and it can transit to another state
only if all its entering transitions have occurred. Informally, split
states represent the points where the system will spawn one thread
for each leaving transition. As a counterpart, merge states are used
to represent points of synchronization. That is, before the merge
state can transit to another state, it has to wait for the completion
of threads from all its entering transitions. Unlike a split state, a
fork state only has one leaving transition. At a fork state, the sys-
tem will fork several threads to execute a sub-workflow starting
from the state. Similar to a merge state, a join state is also a point
of synchronization, and it is specially designed to absorb all
threads created by a fork state. In general, a fork state and a join
state will exist in pairs. To facilitate the description, we call the
ordinary states in a state machine as a switch state. Fig. 1 shows
some sample workflows, where a square box “□” is used to
represent a split/merge state node, a diamond box “◊” is used to
represent a fork/join state node, and a circle “○” is used to
represent a switch state node. By introducing the split/merge and
fork/join nodes, we can model the concurrent properties in a
workflow. For example, a single run of the workflow of Fig.1(a)
can generate event traces of “ABCD” or “ACBD” because B and

C are two concurrent events. Furthermore, two concurrent runs of
the workflow can generate many kinds of traces, such as “AB-
ACDCBD”, “AACCBBDD”, and so on. The fork node in Fig.1(c)
can also generate concurrent events, because the sub-workflow
from the fork node to the join node will be run with multiple
threads. Formally, a workflow model is defined as:

Definition 3.1 A workflow model is a tuple W ൌ ሺߑ, ܵ, ,଴ݏ ,ߜ ݂ሻ,
where:

 ߑ is the set of event types.
 ܵ is a finite and non-empty set of states including switch

states, split/merge states and fork/join states. ݏ଴ is the
initial state. ݂ is the end state.

 ߜ is the state-transition function that represents the tran-
sition from one state to other states, ߜ: ܵ ൈ ߑ ՜ ܵ. Each
transition is labeled by an event type, which means the
transition can generate an event of that type, and a tran-
sition can be uniquely determined by its event label. In
this paper, we use these two terms interchangeably.

 We also define a special symbol ߳ א which means an ,ߑ
empty event. ߜሺݍଵ, ߳ሻ ൌ ଶݍ means that the transition
from state ݍଵ to state ݍଶ does not generate any event.
We call such a transition a shortcut.

Definition 3.2 Given a transition from ݍଵ to ݍଶ, we call ݍଵ and ݍଶ
as the starting state and the ending state of the transition respec-
tively. If one transition’s ending state is the starting state of anoth-
er transition, we call the two transitions as neighboring transitions.
Given a state ݍ, we define all transitions that start from ݍ as ݍ’s
out transitions (denoted as ܱݐ݁ܵݐݑሺݍሻ), and the transitions that
ending at ݍ as ݍ’s in transitions (denoted as ݐ݁ܵ݊ܫሺݍሻ).

For a realistic workflow, all states and transitions should be
reachable from the initial state. It means that, for every state ݏ,
there is at least one transition path from the initial state to ݏ. At
the same time, each state also has a path to the end state.

Figure 1. Some simple workflows.

3.3 EVENT DEPENDENCIES
In the context of workflow traces, the occurrence of an event may
be dependent on the occurrence of another event in the trace. Our
workflow model reconstruction depends on mining the temporal
dependencies among events. Dependence means that the occur-
rence of one event type depends on the occurrence of another
event type. In this paper, we define four types of temporal depen-
dencies. Forward dependency (FD) describes that “Whenever an
event A occurs, another event B must eventually occurs after A’s
occurrence”. Forward dependency is denoted as ܣ ՜௙ -Back .ܤ
ward dependency (BD) describes that “Whenever an event B oc-
curs, another event A must have occurred before B’s occurrence”.

Backward dependency is denoted as ܣ ՜௕ -The third dependen .ܤ
cy we defined is strict forward dependency (SFD), which means
“For each occurrence of event A, there must be at least one occur-
rence of event B after A’s occurrence.” We denote it as ܣ ՜௦௙ .ܤ
Different from ܣ ՜௙ which means one or more occurrences of ,ܤ
event A will eventually cause the occurrence of event B, ܣ ՜௦௙ ܤ
means that each occurrence of event A will cause at least one oc-
currence of event B. Similarly, we also define strict backward
dependency (SBD) with “For each occurrence of event B, there
must be at least one occurrence of event A before B’s occurrence.”,
which is denoted as ܣ ՜௦௕ Unlike the dependencies defined in .ܤ
[15, 17], our dependencies do not require that one event is directly
followed by another event in an event trace, and they are not in-
fluenced by various interleaving patterns. We use ܣ צ to denote ܤ
two events A and B without any defined temporal dependencies,.

Among these four types of dependencies, FD and BD focus on the
global temporal relationship between two event types, and SFD
and SBD not only look at the temporal relationship but also take
the event count information into account. It is obvious that:
ܣ ՜௦௙ ܤ ֜ ܣ ՜௙ ܣ and ,ܤ ՜௦௕ ܤ ֜ ܣ ՜௕ -Thus, for simplic .ܤ
ity, if two events have a strict dependency relationship, we will
not list the corresponding non-strict dependency.

For each pair of events, the temporal dependency is determined by
the structure of the workflow. For example, for event A and B in
Fig.1(a), we have ܣ ՜௦௙ ܤ and ܣ ՜௦௕ ܤ because these two de-
pendencies are always true in the traces with any potential event
interleaving pattern. For the workflow in Fig.1(e), we always have
ܣ ՜௦௙ ܣ and ܤ ՜௕ For all simple workflows in Fig.1, we list .ܤ
all the dependencies between event type A and B in Table 1. Such
dependencies are always true no matter how event logs interleave
together. We can see that different local logical structures in a
workflow often have different types of dependencies.

Table 1. Temporal dependencies of workflows in Fig.1
Workflow Valid Temporal Dependencies between A and B
Fig. 1(a) ܣ ՜௦௙ ܣ ,ܤ ՜௦௕ ܤ
Fig. 1(b) ܣ ՜௦௕ ܤ
Fig. 1(c) ܣ ՜௦௙ ܣ ,ܤ ՜௕ ܤ
Fig. 1(d) ܣ ՜௦௙ ܣ ,ܤ ՜௦௕ ܤ
Fig. 1(e) ܣ ՜௦௙ ܣ ,ܤ ՜௕ ܤ
Fig. 1(f) ܣ ՜௦௙ ܣ ,ܤ ՜௕ ܤ

Pair-wise temporal dependencies describe the causal relationships
of each event pair. They can provide information for workflow
reconstruction. Our basic workflow model constructing algorithm
is based on the properties of the mined temporal dependencies.
Obviously, the dependencies have the following property:

Property 3.1 Let W ൌ ሺߑ, ܵ, ,଴ݏ ,ߜ ݂ሻ be a workflow. For any
,ܣ ܤ א ܣ if ,ߑ ՜௙ ܣ or ܤ ՜௕ there must be a transition path ,ܤ
from A to B (denoted as ܣ ՜ .in the workflow (ܤ

4 MINING TEMPORAL DEPENDENCY
In this section, we provide the details about the method of mining
temporal dependencies. As with most classical algorithms of se-
quence pattern mining, we measure the significance of a temporal
dependency between two events by computing the statistical me-
trics of support and confidence. For event types A and B, when we
mine the relationships of ܣ ՜௦௙ ܤ , the support of ܣ ՜௦௙ ܤ is

defined as the number of times that event A appears in the traces
that satisfy |ሼ݁|݁ ൌ ,ܣ ݁ א |ሺ݁௜ሻሽݐݏ݋݌ ൏ |ሼ݁|݁ ൌ ,ܤ ݁ א |ሺ݁௜ሻሽݐݏ݋݌
(see the numerator of equation (3)). In contrast to the support of
ܣ ՜௦௙ ܣ the support of ,ܤ ՜௙ is computed as the number of ܤ
traces that contain event A and B and ܤ א -ሻ. As a counterܣሺݐݏ݋݌
part, the support of ܣ ՜௦௕ ܣ and ܤ ՜௕ can also be calculated ܤ
similarly. The confidence values of the dependencies are defined
by the corresponding conditional probabilities. For example, the
confidence of ܣ ՜௙ is calculated by ܤ

conf൫ܣ ՜௙ ൯ܤ ൌ
No. of traces that have ܤ after the last ܣ

No. of traces that contain ܣ
 ሺ1ሻ

Note, according to the definition of ܣ ՜௙ ܤ , we only have to
compute the confidence by investigating the events for traces after
their last appearance of event A. As the size of traces scales up,
this trick can significantly reduce the computational cost. Similar-
ly, the confidence of ܣ ՜௕ can also be calculated by ܤ

confሺܣ ՜௕ ሻܤ ൌ
No. of traces that have ܣ before the first ܤ

No. of traces that contain ܤ
ሺ2ሻ

The computing of ܣ ՜௦௙ ܣ and ܤ ՜௦௕ s confidence values is a’ܤ
little bit complex. We take ܣ ՜௦௙ as an example to describe the ܤ
computing procedure. For each event trace ݈, we find all occur-
rences of event ݁௜ that satisfy ݁௜ ൌ ܣ and |ሼ݁|݁ ൌ ,ܣ ݁ א
|ሺ݁௜ሻሽݐݏ݋݌ ൏ |ሼ݁|݁ ൌ ,ܤ ݁ א |ሺ݁௜ሻሽݐݏ݋݌ (i.e. the number of B is
larger than the number of A in ݐݏ݋݌ሺ݁௜ሻ). Denoting the total num-
ber of such events ݁௜ in all traces as |൛݁ห݁ א ሺܣ ՜௦௙ ሻൟ|, we canܤ
calculate the confidence by

conf൫ܣ ՜௦௙ ൯ܤ ൌ
|൛݁ห݁ א ሺܣ ՜௦௙ |ሻൟܤ

No. of ݏ݁ܿܽݎݐ ݈݈ܽ ݊݅ ܣ
 ሺ3ሻ

As a counterpart, the dependency of ܣ ՜௦௕ is ܤ

confሺܣ ՜௦௕ ሻܤ ൌ
|ሼ݁|݁ א ሺܣ ՜௦௕ |ሻሽܤ

No. of ݏ݁ܿܽݎݐ ݈݈ܽ ݊݅ ܣ
 ሺ4ሻ

where |ሼ݁|݁ א ሺܣ ՜௦௕ ሻሽ| is the number of events that satisfyܤ
݁௜ ൌ ܤ and |ሼ݁|݁ ൌ ,ܤ ݁ א |ሺ݁௜ሻሽ݁ݎ݌ ൏ |ሼ݁|݁ ൌ ,ܣ ݁ א |ሺ݁௜ሻሽ݁ݎ݌
(i.e. the number of B is larger than the number of A in ݁ݎ݌ሺ݁௜ሻ).

By scanning the event traces, we can obtain the support numbers
and confidence values of these dependencies for each pair of
event (the pseudo code can be found in [25]). The time complexi-
ty of the algorithm is ܱሺܰ݀ሻ, where ܰ is the cumulative length of
all event traces. Generally, ݀ ൌ |ߑ| (i.e. the number of distinct
event types) is constant for a program, and is always significantly
smaller than ܰ. Thus, the algorithm possesses linear complexity
with respect to N.

Unlike the scenarios of traditional sequence (or frequent item set)
mining, where some meaningless patterns can happen by chance,
in our context any occurrence of an event ordering in event traces
is meaningful and reflects an aspect of the execution behavior of
the software system. In this paper, we set the support threshold as
5 (The number of observations should be at least five to make the
analysis results statistically meaningful [17]), and all our events in
our experiments can meet this requirement. In addition, a depen-
dency relationship is valid only if it has a perfect confidence
 .(%100=݂݊݋ܿ)

5 WORKFLOW RECONSTRUCTION
In this section, we provide our main algorithm of constructing

workflow from mined temporal dependencies. We first construct
an initial workflow by recovering all connections (defined in sec-
tion 5.1) based on the mined temporal dependencies. The learned
basic workflow does not contain some workflow structures. In
order to recover these missing structures, we refine the workflow
by verifying with event traces. The aim of refinement is to con-
struct the simplest workflow based on the basic workflow to in-
terpret all training event traces.

5.1 CONSTRUCT A BASIC MODEL
From section 3, we can see that, given dependencies ܣ ՜௙ or ܤ
ܣ ՜௕ we can conclude that there is a path from event A to ,ܤ
event B (denoted as ܣ ՜ ܤ). In addition, for two neighboring
events A and B, if ܣ ՜ we can determine a connection between ,ܤ
A and B in the original workflow, i.e. the ending state of A is the
starting state of B. In this paper, we call the dependency between
two neighboring events as a direct dependency. Furthermore,
supposing that we have a pair-wise dependency for each pair of
neighboring events, we can recover all connection relationships.

Although a mined temporal dependency from event traces shows
that there is a path between two events, we cannot directly estab-
lish a connection between them because many dependencies are
not direct dependencies (i.e. they are indirect dependencies). An
indirect dependence does not correspond to a connection between
two events. For example, in Fig.1 (d), we have a temporal depen-
dency of ܣ ՜௙ However, there is no connection between A and .ܥ
C. Here, the path from A to C is composed by a path from A to B
and a path from B to C. In order to handle such problems, we try
to construct a compact basic workflow in which there is at most
one transition path between every two events. We use a pruning
strategy to remove indirect dependencies during the basic
workflow construction. For each event pair ሺߙ, ሻ that satisfiesߚ
ߙ ՜௙ ߙ or ߚ ՜௕ ߚ , we denote ߚ as ߙ’s successor, and ߙ as ߚ’s
predecessor. For the simplicity of implementation, we first use a
graph data structure to store the obtained paths, in which each
event has a predecessor list and a successor list. The algorithm
starts from the events that do not have any preceding event. Then,
we add events into the graph and construct preceding/succeeding
relations according to the mined dependencies. For any pair of
events A and C where A is a predecessor of C, if a successor event
of A (e.g. B) is also a predecessor of C, we remove C from A’s
successor list. In the resulting graph, all indirect dependencies are
removed. By converting the remaining preceding/succeeding rela-
tions to event connections, we can construct a transition-labeled
workflow, namely basic workflow. The algorithm is shown in
Algorithm 1. In the algorithm, the function ݐ݋݋ܴ_݀݊݅ܨሺܸܰሻ re-
turns a set of events in which each event does not have any prede-
cessor in the set ܸܰ.

The following theorem shows that the remaining transitional paths
obtained by the above algorithm must exist in the original
workflow under a certain condition. In other words, our algorithm
can obtain a basic workflow skeleton. The proof of the theorem
[25] is straightforward, and we ignore it in this paper.

Theorem 5.1. Let W ൌ ሺߑ, ܵ, ,଴ݏ ,ߜ ݂ሻ be a workflow, with at least
one temporal dependence between every two neighboring events.
For any ܣ, ܤ א ܣ thatߑ ՜௙ ܣ orܤ ՜௕ ܣ|if ሼC ,ܤ ՜ ܥ ר ܥ ՜ ሽܤ ൌ
׎ , there must be a connection from A to B in the original
workflow.

The above algorithm does not consider a special case where two

events have dependencies with different directions. For example,
from the event traces generated by the workflow in Fig.1(f), we
can learn both dependencies of ܤ ՜௕ ܥ and ܥ ՜௙ at the same ܤ
time. We call it a bidirectional dependence, denoted as ܥ ՞ If .ܤ
we directly run the basic workflow construction algorithm on such
dependencies, the algorithm will run into an endless loop. In order
to overcome this problem, we first check whether there are bidi-
rectional dependencies in the mined dependencies. If there is a
bidirectional dependence, e.g. ܥ ՞ ܤ , we create a new virtual
event type ܤ’ to replace the events of type B in all forward depen-
dencies. Then, we run our basic construction algorithm to recon-
struct the basic workflow. After that, we merge the virtual events
(e.g. ܤ’ሻ with their corresponding events (e.g. B) in the basic
workflow.

Algorithm 1. Pseudo Code of Basic Workflow Construction
Inputs:

 the set of all event traces :ܮ
 the set of dependencies :ܦ

Output:
ܶ: learned basic workflow

1. ܰ = ܸܰ = the set of all log keys;
2. ܳ = an empty FIFO queue;
3. while ܸܰ is not empty
4. ܵ ൌ ;ሺܸܰሻݐ݋݋ܴ_݀݊݅ܨ
5. Add ܵ into ܶ;
,ሺܾܳ݇ܿܽ_݄ݏݑܲ .6 ܵሻ;
7. while ܳ is not empty:
8. ݅ ൌ ;ሺܳሻݐ݊݋ݎ݂_݌݋ܲ
9. if ݅ is not in ܸܰ
10. continue;
11. for each ݆ in ܰ that satisfies ݅ ՜௙ ݆ or ݅ ՜௕ ݆
12. if ݆ has predecessor in ܶ
13. flag = false;
14. for each ݇ in ݆’s predecessors:
15. if ሺ݅ צ ݇ሻ
16. add ݆ to ݅’s successor list;
17. else if ݇ ՜௙ ݅ or ݇ ՜௕ ݅
18. remove ݆ from the successor list of ݇
19. add ݆ to ݅’s successor list;
20. else
21. flag = true;
22. if (flag)
23. remove ݆ from the successor list of ݅
24. else
25. add ݆ to ݅’s successor list;
26. if ݆ is in ܸܰ
,ሺܾܳ݇ܿܽ_݄ݏݑܲ .27 ݆ሻ;
28. remove ݅ from ܸܰ;
29. Covert T to a transition-labeled workflow;
30. return ܶ

Adding the initial&end state: Each workflow contains an initial
state and an end state. Thus, we need to add an initial state and an
end state into the basic workflow. Obviously, the first event and
the last event of each event trace are potentially an initial event
and an end event of the workflow respectively. In this paper, we
find out all events that have appeared as the first event in event
traces. If the support number of an event appearing as the first
event in event traces is larger than a certain level (we use 5% in

experiments because we assume the noise level is less than 5%),
we add a shortcut transition from the initial state of the workflow
to the starting state of the event. Similarly, if the support number
of an event appearing as the last event in event traces is larger
than a certain level, we add a shortcut from the ending state of the
event to the end state of the workflow.

Determining the state types: According to the definition of the
workflow model in section 3.2, there are five types of states. In
the above basic workflow construction algorithm, we do not iden-
tify the type of each state. Given an event type that has several
event types following it, we have to make a decision on whether
the program behavior at this point is a sequential selection (i.e. a
switch state) or a concurrent splitting (i.e. a split/fork state). In
this subsection, we determine the state types by utilizing the in-
formation of event type counts. As studied in our previous work
[20], the linear relationships between the occurrence times of
different event types can also provide cues for the workflow struc-
ture. For example, for a switch state ݍ, it is always true in every
event trace that:

∑ ூ௡ௌ௘௧ሺ௤ሻאሻ஺ܣሺݎݑܱܿܿ ൌ ∑ ை௨௧ௌ௘௧ሺ௤ሻאሻ஻ܤሺݎݑܱܿܿ (5)

On the other hand, if ݍ is a split state, then for any ܣ א
ܤ ሻ andݍሺݐ݁ܵݐݑܱ א ,ሻݍሺݐ݁ܵݐݑܱ

ሻܣሺݎݑܱܿܿ ൌ ሻ (6)ܤሺݎݑܱܿܿ

Similarly, a merge state also has a property that ܱܿܿݎݑሺܣሻ ൌ
ሻܤሺݎݑܱܿܿ for any ܣ א ሻݍሺݐ݁ܵ݊ܫ and ܤ א ሻݍሺݐ݁ܵ݊ܫ . Here,
 ሻ denote the occurrence numbers of eventܤሺݎݑܱܿܿ ሻ andܣሺݎݑܱܿܿ
A and event B in a trace respectively. However, fork and join
states do not have such regular properties on the counts of event
types. If a state satisfies equation (5), it must be a switch state. In
this subsection, we first find out the split/merge states by verify-
ing whether a state satisfies equation (6), and then find out the
switch states that can be identified by equation (5). Because our
model allows shortcut transitions, some switch states cannot be
easily identified by equation (5). For all remaining states with
their state types undetermined, we will determine their state types
in the next sub-section. The default state type is switch.

5.2 REFINE THE WORKFLOW MODEL
The basic workflow obtained by Algorithm 1 does not contain any
shortcut transitions or loop structures, because we only keep one
transition path between every two dependent events. However, in
a real workflow, there may be some shortcut transitions and loop
structures. In addition, Algorithm 1 also cannot identify the
fork/join state types. Therefore, the basic workflow only contains
a part of the real workflow, and it often cannot interpret all train-
ing event traces. In fact, a meaningful mined workflow should be
able to interpret the traces. In this subsection, based on the learned
basic workflow, we build a workflow to interpret all event traces
by identifying fork/join states and recovering loop structures and
shortcut transitions.

We recover loop structures or shortcut transitions based on the
statistical properties of these structures. Here, we use a simple
example to describe the basic idea behind our algorithm. Fig.2(a)
presents a simple program workflow containing a loop structure.
We generated event traces by running a concurrent program with
different interleaving patterns in which each thread runs along the
workflow in Fig.2(a). Two typical sample event traces are shown
in Fig. 2(b). Our basic workflow construction algorithm can only

construct a basic workflow without a loop (see Fig.2(c)). When
we use the basic workflow in Fig.2(c) to interpret the first event
trace in Fig. 2(b), we find that the first five events of the event
trace are generated by two threads (denoted as ଵܶ and ଶܶ) running
along the basic workflow. When the 6th event of the trace (i.e. B)
is being verified, the active states of ଵܶ and ଶܶ are ݏଷ and ݏଶ re-
spectively, and both threads cannot produce event B from their
active states (i.e. this event B is an un-interpretable event by the
basic workflow.). The reason why some events cannot be inter-
preted is that some transitions are missing in the basic workflow.
Specifically, event B is a part of the recurrence of the missing
loop in Fig.2(a). However, we do not have knowledge about the
loop structure and the original workflow. In order to interpret the
first event trace, we now have two possible solutions: the event is
either generated by ଵܶ or generated by ଶܶ. If it is generated by ଵܶ,
then there is a loop from ݏଷ to ݏଵ in the workflow, which is the
workflow in Fig.2(a). If the event is generated by ଶܶ, then there is
a loop from ݏଶ to ݏଵ in the workflow, which is the workflow in
Fig.2(d). Similarly, when we try to interpret the 8th event of the
second event trace in Fig.2(b), the active states of the threads are
 ସ. One can interpret the second event trace either by theݏ ଷ andݏ
workflow in Fig.2(a) or by that in Fig.2(e). Here, we observe that,
for both event traces, when we try to interpret an event B that is a
part of the recurrence of the loop, there is a thread at state ݏଷ. In
general, for any training event trace with a different interleaving
pattern, when we verify an un-interpretable event of type B, which
is a part of the recurrence of the loop, there is always at least one
thread whose active state is ݏଷ. On the contrary, there is a thread
with active states of ݏଶ or ݏସ only by chance. Therefore, if we vote
for threads’ active states over all event traces once we encounter
an un-interpretable event B, we will find that ݏଷ has the highest
vote value. This property can help us to detect the loop structures,
a loopback transition from ݏଷ to ݏଵ. Although the example in Fig.2
is a simple case, this statistical property is widely valid for
workflows with loop or shortcut structures. For example, Fig.3
shows the vote value histogram that is counted for the un-
interpretable events of B2 in WS(b) during the experiment. In the
figure, there is a high peak value at s2, which indicates a loopback
transition from s2 to s1. Our algorithm utilizes this statistical prop-
erty to detect and recover loop structures and shortcuts.

Unlike loop and shortcut structures, fork/join states do not expose
any unique statistical property. We cannot use the above statistical
method to identify a fork/join structure. If we perform the above
method forcibly on the event traces generated by a fork/join struc-
ture, then the resulting workflow is often very complex, which is
caused by various event interleaving patterns. On the other hand,
all event traces generated by a loop structure can always be inter-
preted by a fork/join structure. For example, all event traces pro-
duced by the workflow in Fig.2(a) can always be interpreted by
the workflow in Fig.2(f). Formally, the observation is described as:

Property 5.1 Event traces that can be interpreted by a workflow
ଵܹ with loop structures can also be interpreted by a workflow ଶܹ

which is created based on ଵܹ by replacing the loop structures with
fork/join structures, and ܿ݌ሺ ଶܹሻ ൑ ሺ݌ܿ ଵܹሻ, but not vice versa.

Here, ܿ݌ሺܹሻ is the complexity of a workflow ܹ , which is de-
fined as the sum of transition number and the number of thread
types. Each thread type is defined as a pair of thread starting and
ending points. Given the constant states of the basic workflow (we
only add transitions or mark thread spawn/sync states in the re-
finement algorithm), ܿ݌ሺܹሻ is a good description of a workflow

model’s complexity. Based on property 5.1, we introduce a loop
favorite rule in our algorithm. For two workflows that can interp-
ret the event traces, we prefer the workflow with less complexity.
If event traces can be interpreted by either a workflow with a loop
structure or a workflow with a fork/join structure, and both of
them have the same complexity, we prefer the former. In sum-
mary, starting from the learned basic workflow, we try to con-
struct the simplest workflow with a minimal number of threads to
interpret all event traces.

(a). A simple workflow with a loop.

(b). Sample event traces of a two-thread program (a)

(c). The result workflow of Algorithm 2.

(d). A possible workflow of the first trace in (b).

(e). A possible workflow of the second trace in (b).

(f). A possible solution with fork/join states.

Figure 2. An example for the depiction of our refinement idea.

Figure 3. The distribution of vote values counted when we
encounter the un-interpretable events of B2 in WS(b).

Because we have no information about when a new thread starts,
an un-interpretable event can be interpreted as an event log pro-
duced by either a missing workflow structure component (i.e.
shortcut or loop) or a newly started thread (i.e. fork/join states). In
the algorithm, we have to make a decision to select one structure
between them (i.e. loop decision or fork decision) whenever a new
un-interpretable event is encountered. A workflow has a Markov
property that states that the current state is what determines the
next step in its behavior. Thus, an early decision will influence the
later decisions, but the converse is not true. At each decision point,

we first create two temporary workflows. One (denoted as ࢃ૚ in
the algorithm) is constructed by a procedure in which we make a
loop decision at the current decision point and make fork decision
at all following decision points. The other (denoted as ࢃ૛ in the
algorithm) is constructed through a procedure with all fork deci-
sions. Then, we select a decision at the current decision point
based on the loop favorite rule. Similarly, we also make the next
decision with the same procedure. Note: here, the temporary
workflows are only constructed for decision making, and they are
not output as the results of the algorithm. The detailed algorithm
is presented in APPENDIX A. In the algorithm, we do not count
the active states with their neighboring events having strict for-
ward dependencies, because such a state neither has an out-
shortcut transition nor is a join state. For example, we do not have
ܤ ՜௦௙ in Fig. 1(c) and (f). The following theorem shows that ܥ
the workflow learned by our refinement algorithm is optimal in
the sense of complexity defined above. The proof of the theorem
can be found in [25].

Theorem 5.2. The refinement algorithm finds out the workflow
with a minimal complexity to interpret all event traces.

6 EMPIRICAL EVALUATION
To validate and evaluate our proposed workflow algorithm, we
performed a set of experiments on simulated event traces and case
studies on real event traces generated by some open source pro-
grams (Hadoop and JBoss). We use open source programs be-
cause they are publicly available for download. The results on
them are easy to be verified and reproduced by third parties. The
results demonstrate the usefulness of our workflow mining tech-
nique in recovering underlying workflows from event traces. Due
to space limitation, the results on JBoss are available at [25]. The
code of the simulator and our algorithm will also be available
soon (after the legal review according to the code release policy of
Microsoft) at http://research.microsoft.com/apps/pubs/default.asp
x? id=118640.

(a) The release of expired allocations.

(b) The processing of backorders.

Figure 4. WebSphere® Commerce Processes.

0

200

400

600

800

1000

s1 s2 s3 s4 s5 s6 s7

Figure 5. A workflow of reviewing a conference paper.

6.1 SIMULATION
To construct a controlled experimental environment, we designed
a simulator that can generate synthetic program event traces ac-
cording to a software workflow model. The design of the simula-
tor follows the principles proposed in QUARK [21] including the
guarantee of “code and branch coverage” and locality of reference,
and so on. Unlike QUARK, our simulator can generate traces of
interleaved events based on a concurrent workflow model. In this
experiment, we measure the performance of our workflow miner
by discovering workflows from the synthetic program event traces.

Simulation Models: In our simulation experiments, several real
application models are used to generate the event traces. In [23],
Zou et al. present two workflows in the form of automata: the
releases of expired allocations (Fig.4(a)) and the processing of
backorders (Fig.4(b)). In [17], the authors use a paper reviewing
process (Fig.5) to demonstrate their workflow mining algorithm.
The models are shown in Fig.4 and Fig.5, and are referred to as
WS(a), WS(b), and Rev respectively. By using these models, users
can evaluate and compare our algorithm with other algorithms in
[17] [23]. In addition, these typical real application workflows are
complex enough to demonstrate the capability of our algorithm:
the models in Fig.4 contain several nested loops and many short-
cut transitions, and the model in Fig.5 has a loop embraced by a
fork/join structure.

Evaluation Metric: In order to carry out a quantitative evaluation
of the workflow miner, we adopt two metrics to measure the simi-
larity from the mined workflow X and the simulator model Y in
terms of their generated traces. The first metric is known as recall,
the percentage of event traces generated by workflow Y that can
be interpreted by workflow X. The second metric is precision, the
percentage of event traces produced by workflow X that can be
interpreted by workflow Y.

Results: We run these models with several threads (we randomly
start 1-3 threads) in our simulator to generate traces of interleaved
events. From the generated traces (2000 event traces for each), we
learn workflow models through the algorithm provided in the
above sections. We compare the effectiveness of the k-Learner
algorithm [6] and our algorithm by measuring the precision and
recall of the resulting state machines. We repeat each experiment
10 times with 10 different set of traces, and computing the aver-
age that shown in Table 2. Here, we round the results to keep
three numbers after the decimal point. For these three workflows,
our algorithm can exactly rediscover the original workflow model,
thus, both the recall and precision are 100%. However, the preci-
sions of the models produced with k-Learner are very poor (2
models with a precision less than 0.1). This indicates that k-
Learner cannot perform well when events are interleaved.

Computational cost: Our algorithm is efficient, which only uses
9.9, 22.3 and 72.0 seconds (with a CPU of 2.33GHz, the code is

not fully optimized) to learn the models of WS(a), WS(b), and Rev
from 2000 event traces respectively. Table 3 shows that the com-
puting time of each model grows almost linearly as the number of
input event traces increases.

Table 2. Empirical Results: Precision and Recall

Simulation Models

WS(a) WS(b) Rev
Precs. Recall Precs. Recall Precs. Recall

k-Learner (k=1) 0.511 1.000 0.069 1.000 0.000 1.000
k-Learner (k=2) 0.255 1.000 0.080 1.000 0.001 1.000
Our Algorithm 1.000 1.000 1.000 1.000 1.000 1.000

Table 3. Computing Time (in seconds) vs. Event Trace Number

Trace No.
Simulation Models

WS(a) WS(b) Rev
2000 9.9 22.3 72.0
4000 19.3 41.1 154.4
6000 29.4 62.5 228.6

6.2 CASE STUDY: HADOOP
Hadoop [22] (our version: 0.19) is a well-known open-source
implementation of Google’s Map-Reduce computing framework
and distributed file system (HDFS). It enables distributed compu-
ting of large scale, data-intensive and stage-based parallel applica-
tions. The logs produced by Hadoop are not sequential log mes-
sage sequences. Even in the log messages of the same Map task,
some messages (e.g. messages about data shuffling) are also inter-
leaving.

Figure 6. Learned workflow of Hadoop MapTask

Trace collection and preprocessing: We run different Hadoop
jobs of some sample applications, such as WordCount and Sort,
and collect log data after each job is finished (Note: we enable the
logging tool at the info level). At first, we use the log preprocess-
ing method presented in [20, 24] to parse event log messages and
to group log messages according to log parameters. For example,
all log messages that contain a parameter called MapTask ID are
grouped into an event trace. Because several MapTasks are run-
ning simultaneously, these events are highly interleaved with each
other. Then, we use the error detection algorithm in [20] to filter
out event traces that contain errors. Finally, we obtain 1767 event
traces. Each trace contains about 15 concurrent map tasks and
about 234 events in average.

Results: After that, we learn workflow from event traces with our
proposed algorithm. Fig.6 is an example of the resulting workflow
that is learned from the event traces related to the parameter
MapTask ID. By carefully checking with Hadoop source code and

documents, we find that the workflow can reflect the real process
of MapTask with a high precision. A task is launched and then it
processes the input data read from HDFS. After the task is done, it
sends the resulting data to many Reducers concurrently (This is
represented by a fork/join structure in the workflow), and finally
cleans up the resources by removing temporary files. Hadoop has
a scheduling strategy to run a small number of speculative tasks.
Therefore, there may be two running instances of the same task at
the same time. If one task instance finishes, the other task instance
will be killed no matter which stage the task instance is running at.
Some killed tasks can also report their status due to thread race
conditions, therefore, events of H13, H14 and H15 are triggered.

6.3 DISCUSSION
As with the results of all other workflow mining algorithms
[2][17][21], some resulting workflow models of our algorithm are
over-generalized (i.e. having more possible routes than the real
workflow). For example, in the case in section 6.2, there is a path
from ݏଵ଴ to ݏଵସ, which does not exist in the real program. There
are two main reasons for the over-generalization problem. At first,
we only consider the first-order of event dependencies (i.e. the
dependencies between neighboring events) in our current algo-
rithm. In some real programs, there are some high-order depen-
dencies, e.g. the occurrences of H13, H14 and H15 depend on the
occurrence of H7 in Fig.6. Second, our approach assumes that
there is at most one transition referring to an event type in a
workflow model. In some real systems, one event type may ap-
pear at multiple positions in a workflow. For example, from the
event traces generated by the workflow in Fig.7(a) (This is the
workflow of X11 [19]), a workflow in Fig.7(b) is learned through
our algorithm which is more general than the original one. The
workflow in Fig.7(b) can generate event traces such as <B,E,…,E>
and <A,D,E,…,E> that cannot be generated by the original
workflow Fig.7(a). We will leave it for future work to deal with
these problems.

 (a) Original workflow (b) Mined workflow

Figure 7. An example of the over-generalization problem

The proposed method only finds out the workflow that minimizes
the defined complexity metric, and it does not provide any means
to tune the precision and recall of the learned workflow. In addi-
tion, the workflow with minimal complexity may not be exactly
the same as the real workflow or the one a human operator wants
to see.

7 CONCLUSION
Most existing techniques for mining program workflow models
can only learn models from sequential event traces. They cannot
be applied to traces of interleaved events which are prevalent in
distributed or parallel programs (or some event driven programs).
In this paper, we proposed an approach to automatically discover
program execution workflows from traces of interleaved events.

We extend the traditional state machine to support concurrency by
introducing split/merge states and fork/join states. Our mining
approach is based on the statistical inference of temporal depen-
dency relations from event traces. We then use such dependency
relations to construct a basic workflow by building the connec-
tions among neighboring events. After that, we further refine the
workflow by validating it with event traces. During the validation
procedure, we add the shortcut transitions, loop structure, and
fork/join states into the workflow model to make sure that all
event traces can be interpreted by the workflow model. The expe-
rimental results on both simulated event traces and real program
traces demonstrate that our approach can learn the workflow with
a high precision.

Although our work is motivated by the purpose of software com-
prehension, workflow mining is a basic research topic that has a
wide range of application fields other than software engineering.
We believe our approach can be widely applied in many applica-
tions, such as business intelligence. Future research directions
include integrating high order temporal dependencies, incorporat-
ing domain or existing knowledge about a program, allowing for a
workflow model having an event type at multiple points.

8 REFERENCES
[1]. G. Ammons, R. Bodik, and J. R. Larus, “Mining Specifica-

tions”, in Proc. of POPL’02, Jan. 2002, Portland, USA.
[2]. David Lo, L. Mariani, and M. Pezzè, “Automatic Steering of

Behavioral Model Inference”, in Proc. of the 7th ESEC&FSE,
Aug. 2009, The Netherlands.

[3]. R. Silva, J. Zhang, and J. G. Shanahan, “Probabilistic
Workflow Mining”, in Proc. of ACM SIGKDD’05, Aug.
2005, Chicago, USA.

[4]. D. Cotroneo, R. Pietrantuono, L. Mariani, and F. Pastore.
“Investigation of Failure Causes in Work-load Driven Relia-
bility Testing”, In Proc. of the 4th SOQA, Sep. 2007.

[5]. D. Lorenzoli, L. Mariani, and M. Pezzè. “Automatic Genera-
tion of Software Behavioral Models”, In Proc. of ICSE, 2008.

[6]. L. Mariani, M. Pezzè. “Dynamic Detection of COTS Com-
ponents Incompatibility”, IEEE Software, 24(5):76–85,
Sep./Oct. 2007.

[7]. G. Greco, A. Guzzo, L. Pontieri, and D. Sacca. “Mining Ex-
pressive Process Models by Clustering Workflow Traces”, in
Proc. of PAKDD, 2004.

[8]. N. Walkinshaw, K. Bogdanov, “Inferring Finite-state Models
with Temporal Constraints”, In Proc. of the 23rd ASE, 2008.

[9]. A. Biermann, J. Feldman, “On the Synthesis of Finite-state
Machines from Samples of Their Behavior”, IEEE Transac-
tions on Computers, 21:591–597, 1972.

[10]. Anand V. Raman, Jon D. Patrick, “The SK-strings Method
for Inferring PFSA”, In Proc. of the workshop on automata
induction, grammatical inference and language acquisition,
1997.

[11]. S. Ferg, “Event-Driven Programming: Introduction, Tutorial,
History”, http://eventdrivenpgm.sourceforge. net/, Jan. 2006.

[12]. W. van der Aalst, A. Wejters, “Process mining: a research
agenda”, Computers and Industry, vol. 53, pp.231–244, 2004.

[13]. G. Greco, A. Guzzo, G. Manco, L. Pontieri, and D.
Saccà,”Mining Constrained Graphs: The Case of Workflow
Systems”, European Workshop on Inductive Database and
Constraint Based Mining 2004.

[14]. R. Agrawal, D. Gunopulos, and F. Leymann, “Mining
Process Models from Workflow Logs”, in Proc. of the 6th
EDBT, pp. 469–483, 1998.

[15]. W. van der Aalst, A. J. M. M. Weijters and L. Maruster,
“Workflow Mining: Discovering Process Models from Event
Logs”, IEEE Trans. on KDE, vol. 16, 2004.

[16]. G. Schimm, “Mining Exact Models of Concurrent
Workflows”, Computers and Industry, vol. 53, pp.265–281,
2004.

[17]. J. E. Cook, Z. Du, C. Liu, and A. L. Wolf, “Discovering
Models of Behavior for Concurrent Workflows”, Computers
and Industry, vol. 53, pp.297–319, 2004.

[18]. P. Grubb, A. Takang, “Software Maintenance”, World
Scientific Publishing, 2003, ISBN 9789812384256.

[19]. David Lo, S. C. Khoo, “SMArTIC: Towards Building an
Accurate, Robust and Scalable Specification Miner”, in Proc.
of FSE, Nov. 2006.

[20]. J.-G. Lou, Q. Fu, S. Yang, Y. Xu, and J. Li, “Mining Inva-
riants from Console Logs for System Problem Detection”, In
proc. of USENIX Annual Technical Conference, Boston, Jun.
2010.

[21]. David Lo, S. C. Khoo, “QUARK: Empirical Assessment of
Automaton-based Specification Miners”, In Proc. WCRE,
2006.

[22]. Hadoop. http://hadoop.apache.org/core. 2009.
[23]. Y. Zhou, T. Lau, K. Kontogiannis, T. Tong, and R. McKeg-

ney, “Model-driven Business Processes Recovery”, in Proc.
WCRE, 2004.

[24]. Q. Fu, J.-G. Lou, Y. Wang, and J. LI, “Execution Anomaly
Detection in Distributed Systems through Unstructured Log
Analysis”, In Proc. of ICDM, Florida, Dec. 2009.

[25]. J.-G. Lou, Q. Fu, S. Yang, and J. Li, “Mining Program
Workflow from Interleaved Logs”, Technical Report of Mi-
crosoft Research, MSR-TR-2010-6, 2010.

[26]. M. Pradel, T. R. Gross, “Automatic Generation of Object
Usage Specifications from Large Method Traces”, In Proc.
of ASE, pp. 371-382, 2009.

[27]. M. Acharya, T. Xie, J. Pei, and J. Xu, “Mining API Patterns
as Partial Orders from Source Code: from Usage Scenarios to
Specifications”, In Proc. of SIGSOFT FSE, pp. 25-34, 2007.

[28]. M. Gabel, Z. Su, “Javert: Fully Automatic Mining of General
Temporal Properties from Dynamic Traces”, In Proc. of
SIGSOFT FSE, pp.339-349, 2008.

[29]. J. YANG, D. Evans, D. Bhardwaj, T. Bhat, and M. Das,
“Perracotta: Mining Temporal API Rules from Imperfect
Traces”, In Proc. of ICSE, pp.282-291, 2006.

[30]. David Lo, G. Ramalingam, V. P. Ranganath, and K. Vaswani,
“Mining Quantified Temporal Rules: Formalism, Algorithm,
and Evaluation”, In Proc. of WCRE, pp. 62-71, 2009.

[31]. A. Wasylkowski, A. Zeller, “Mining Temporal Specifica-
tions from Object Usage”, In Proc. of ASE, pp. 295-306,
2009.

9 APPENDIX A
In this appendix, we present the detail of our refinement algorithm.
For every event type ܽ, and state ݍ, we define two integer values
ܰሾܽሿ and ܥሾܽ, ሿ. Here, ܰሾܽሿ denotes the number of times thatݍ
event type ܽ in the training event traces cannot be inferred by the
workflow during refinement. ܥሾܽ, ሿݍ records the number of
workflow threads whose current state is ݍ when an un-
interpretable event of type ܽ is encountered. ଵ݂ and ଶ݂ are two
flags used to indicate whether current workflow model ࢃ should
be refined by a loop decision or a fork decision. Their initial val-
ues are both false. ࢃ૚ and ࢃ૛ are two temporary workflow mod-
els (refer to section 5.2). The whole refinement process contains
the following steps.

Step 0. Let ܥሾܽ, ሿݍ ൌ ሿݍሾܭ ,0 ൌ and ܰሾܽሿ ,ݐ݁ݏ ݕݐ݌݉݁ ݊ܽ ൌ 0 for
any ܽ א ሺߑ\ѳሻ and ݍ א ୟୱୱ݌ ;ܵ ൌ true;

Step 1. For an input training event trace ܮ, we use the method
presented in [25] to interpret the trace. Once there is an event ݈ in
L that cannot interpreted, we increase ܰሾ݈ሿ by 1, and set ݌ୟୱୱ ൌ
false. At the same time, for each workflow thread ௞ܹ, we increase
,ሾ݈ܥ ௞ݍ ௞ሿ by 1 whereݍ is the active state of ௞ܹ and ݍ௞ is not a
connection between two events having a strict forward depen-
dence.

Step 2. For each event trace in the training set, we carry out the
process of Step 1.

Step 3. For each event ܽ with a non-zero value of ܰሾܽሿ, we find
out a state ݍ௧ that satisfies ܥሾܽ, ௧ሿݍ ൌ ,ሾܽܥௌሺא௤೔ݔܽ݉ ௜ሿሻ, and addݍ
ܽ to ܭሾݍ௧ሿ.

Step 4. If ݌ୟୱୱ ൌ false , we find an arbitrary element ݍ א
݌ |݌ሺሼݐ݋݋ܴ_݀݊݅ܨ א ܵ ת ሿ݌ሾܭ ് ሽሻ׎ (refer to section 5.1), and
find event ܽ that does not have any predecessor in ܭሾݍሿ, then goto
Step 5. Otherwise, goto Step 6.

Step 5. We denote ݍᇱ as the preceding state of ܽ in the current
workflow model ࢃ. If ଵ݂ ൌ false, we set ࢃ =’ࢃ, ଵ݂ ൌ true, and
update ࢃ by adding a shortcut transition from ݍ to ݍᇱ, else update
 .ᇱ as a fork state. After that, back to Step 0ݍ by setting ࢃ

Step 6. If ݌ୟୱୱ ൌ True and ଵ݂ ൌ false, we mark all join states and
terminate the execution of the algorithm. Otherwise, if ଶ݂ ൌ false,
we set ࢃ૚= ࢃ and goto Step 7; else ࢃ૛=ࢃ and go to Step 8.

Step 7. Set ࢃ =ࢃ’, ଶ݂ ൌ true, and then back to Step 0.

Step 8. Set ଵ݂ ൌ ଶ݂ ൌ false and ࢃ= ’ࢃ . If ܿ݌ሺࢃ૚ሻ ൑ ૛ሻࢃሺ݌ܿ ,
we update ࢃ by adding a shortcut transition from ݍ to ݍᇱ ; else
update ࢃ by setting ݍᇱ as a fork state. After that, back to Step 0.

