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ABSTRACT 
Successful software maintenance is becoming increasingly critical 
due to the increasing dependence of our society and economy on 
software systems. One key problem of software maintenance is 
the difficulty in understanding the evolving software systems. 
Program workflows can help system operators and administrators 
to understand system behaviors and verify system executions so 
as to greatly facilitate system maintenance. In this paper, we pro-
pose an algorithm to automatically discover program workflows 
from event traces that record system events during system execu-
tion. Different from existing workflow mining algorithms, our 
approach can construct concurrent workflows from traces of inter-
leaved events. Our workflow mining approach is a three-step 
coarse-to-fine algorithm. At first, we mine temporal dependencies 
for each pair of events. Then, based on the mined pair-wise tem-
poral dependencies, we construct a basic workflow model by a 
breadth-first path pruning algorithm. After that, we refine the 
workflow by verifying it with all training event traces. The re-
finement algorithm tries to find out a workflow that can interpret 
all event traces with minimal state transitions and threads. The 
results of both simulation data and real program data show that 
our algorithm is highly effective. 

Categories and Subject Descriptors 
H.2.8 [Database Management]: Database Applications—Data 
Mining; D.2.1 [Software Engineering]: Requirements/ Specifica-
tions –Tools 

General Terms 
Algorithms, Experimentation 

Keywords 
Workflow mining, graphical behavior models, temporal properties 

1 INTRODUCTION  
With the increasing dependence on software at all levels of our 
society and economy, software maintenance is becoming increa-
singly critical. A key technical issue of software maintenance is 
the difficulty in understanding what happens to systems (and 
software) over time [18], e.g. about 50% of the maintenance cost 
is due to comprehending or understanding the code base. Program 
workflow can help operators and developers to understand system 
behaviors, to verify the system execution, and to validate the run-
ning results. For example, Mariani et al. [6] indentify incompati-

bilities and illegal interactions of a reused component by compar-
ing its interaction workflow in the new context with that in the 
original system. Unfortunately, the knowledge of program 
workflow is not always available to hand. This is because soft-
ware documents and specifications are often not complete, accu-
rate and updated due to bad development management and tight 
schedule (e.g. hard product shipping deadlines and “short-time-to-
market”). Therefore, there is a great demand of building automatic 
tools for mining workflows for programs. 

Our motivating application is in the area of program dynamic 
analysis where program event traces are analyzed to mine pro-
gram workflows. There are a set of existing research efforts [1, 2, 
4, 5, 6, 8, 10] on mining program workflows. Most of them are 
variants of the classical k-Tails algorithm [2]. They learn a finite 
state automaton (FSA) from event traces. However, these k-Tails 
based algorithms cannot perform well in a complex system, in 
which multiple independent threads/processes generate traces of 
interleaved events. Because the events can be interleaved in many 
different ways, and a k-Tails based algorithm tries to interpret a 
huge number of event sequencing patterns, the resulting FSA 
model often becomes very complex. Because of this, the k-Tails 
based algorithms assume that the traces contain thread IDs and 
can be analyzed thread by thread [6]. Although most software 
programs produce traces with thread IDs, there are still some ex-
isting systems that do not record thread IDs in their logs or traces 
by default. More important, most advanced software programs are 
designed and implemented based on event driven architecture, in 
which the flow of the program is determined by events [11]. In 
most event driven systems, a task’s workflow is divided into sev-
eral stages or subtasks, and each subtask is related to an event 
which is handled by an event handler. In these systems, a thread 
usually handles many different events from multiple concurrent 
tasks, and these events often interleave with each other. Therefore, 
even given the thread IDs, we still cannot learn a task workflow 
from the traces of such an event driven system by a k-Tails based 
algorithm. 

In this paper, we present an algorithm to discover a program 
workflow model from traces of interleaved events by a three-step 
coarse-to-fine algorithm. At first, we mine temporal dependencies 
for each event pair from event traces. The dependencies that we 
mined are always valid under any event interleaving patterns. 
Rather than directly constructing the workflow from the input 
event traces, we construct a basic workflow model from the mined 
dependencies. Then, based on the different properties between a 
loop/shortcut structure and a thread spawn/sync structure, we 
design an algorithm to refine the basic workflow. The refinement 
algorithm can find the simplest workflow with a minimal number 
of thread types to interpret all event traces. Our approach works 
quite well on traces of interleaved events. To the best of our 
knowledge, the paper is the first work to learn workflows from 
traces of interleaved events produced by concurrent programs. 
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The rest of the paper is organized as follows. In section 2, we 
briefly introduce the previous work that is closely related to ours. 
Section 3 provides the basic ideas and concepts of our approach. 
In section 4, we describe an algorithm to mine temporal depen-
dencies from event traces. The detailed algorithm on constructing 
a workflow model based on mined temporal dependences is pre-
sented in section 5. In section 7, we validate the approach with 
some experimental results on both simulations and real event 
traces. Finally, we conclude the paper in section 8. 

2 RELATED WORK 
There are a set of existing research efforts [1, 2, 4, 5, 6, 8, 10, ] on 
learning program workflow models from execution traces for 
software testing and debugging. In these algorithms, Finite State 
Automatons (FSA) are used as workflow models. These algo-
rithms are mostly extended from the popular k-Tails algorithm 
proposed by Biermann and Feldman [9]. At first, the algorithm 
constructs an initial FSA from input traces, and then it progres-
sively refines the FSA by merging equivalent states until no fur-
ther merge operation is possible. Different algorithms [6, 10] use 
different equivalent criteria to derive different FSA depending on 
different desired degree of generalization. For example, in the k-
strings algorithm [10], if two states ݏ௔ and ݏ௕ generate the same k-
strings (i.e. symbol sequences of length up to k that can be gener-
ated from the state), they are merged. The learner modifies the k-
Tails algorithm by comparing how likely two states are to gener-
ate the same k-strings. L. Mariani et al [6] also proposed an in-
cremental FSA learner, namely k-Learner, by modifying the k-
Tails with a new merge operation. The algorithm identifies subse-
quences of a new trace in the current FSA, and augments the FSA 
to include the new trace. Besides the state equivalence conditions, 
some recent algorithms also introduce other pre-conditions for the 
merge operation. In [2], two equivalent states ݏ௔ and ݏ௕ can only 
be merged when the merged FSA does not break a set of temporal 
patterns that are automatically mined from the training traces. A 
similar steering idea is also proposed by Walkinshaw et al [8], in 
which user defined Linear Temporal Logic (LTL) rules are used 
to determine whether two equivalent states can be merged. All 
these k-Tails based algorithms assume that the event traces are 
sequential traces [6]. However, many workflows exhibit concur-
rent behavior, where a single event trace comprises a set of events 
produced by more than one thread of control. The sequential state 
machine model cannot capture the concurrent behavior of a sys-
tem, and the k-Tails based algorithms will create a very complex 
model as they try to interpret all event sequencing patterns gener-
ated by the interleaved events. Unlike these, our algorithm learns 
workflow models from traces of interleaved events. Some re-
searches [26, 27, 28, 29, 30, 31] on mining temporal patterns from 
program traces are highly related to our work too. For example, 
Javert [28] learns simple generic patterns, such as the alternating 
pattern ((ab)כ) and the resource usage pattern ((abכc)כ), and com-
poses them using two simple rules to construct large, complex 
specifications. In this paper, we construct a basic workflow model 
by composing simple temporal dependency patterns. The similar 
concept can also be found in [27]. 

Another set of research efforts [3, 7, 12, 13, 14, 15, 16, 17] from 
the area of Business Intelligence [12] are also related to our work. 
Rather than software system traces, they try to mine business 
processes (or workflows) from business activity logs. In business 
workflow mining algorithms, different from FSA models, a 
process is often represented by a graph in which nodes correspond 
to the activities to be performed, and arcs describe the precedence 

or dependent relationships among the activities. For example, the 
authors of [14] use a directed acyclic graph (DAG) to model a 
workflow process. In [3] and [7], a constrained DAG, namely an 
AND/OR workflow graph (AO graph), is proposed to model a 
workflow process. Aalst et al [15] use a special class of Petri-net 
model, namely workflow nets (WF-net), to model a workflow 
process. Among these models, the WF-net is the most powerful 
model that can be simplified to other models by adding some 
constraints. Although the business process mining and software 
workflow mining algorithms have different application back-
grounds and models, they share the same basic idea, i.e. construct-
ing constrained graphic activity models from traces [13], and they 
can leverage each other [17]. For example, we can construct a 
DFA to mimic the behaviors of a DAG based model. Almost all 
business workflow mining algorithms consider the parallel prop-
erty of different tasks by introducing AND split/join nodes [3, 7, 
13, 14], fork/join places [12, 15, 17], or Parallel operators [16]. In 
order to handle the concurrent task problem, similar to our ap-
proach, these algorithms reconstruct the workflow graph by utiliz-
ing the dependent or causal relationships mined from workflow 
activity logs. For example, in [15], Aalst et al only use the order-
ing relation “൐୵” that describes whether one is directly followed 
by the other in a trace, to discover a WF-net. Cook et al [17] use 
more information, such as event type counts, event entropy, and 
event periodicity, and combine the information into a ranking 
score to discover the concurrent behavior in event streams. How-
ever, all of these approaches assume that an input log sequence is 
produced by a single case in isolation [15, 17], and they cannot 
handle an interleaved log sequence generated by multiple concur-
rent executions of the same workflow (e.g. an event trace is pro-
duced by a WF-net workflow if there are two or more tokens in 
the start place of a WF-net). In addition, their models also do not 
allow that multiple concurrent threads run the same sub-workflow 
[15, 17]. However, in a paralleled program, a job may often be 
divided into several concurrent sub-tasks, with each sub-task hav-
ing the same workflow. For example, a MapReduce job is often 
split into many Map tasks, and each Map task follows the same 
execution logic. Our algorithm handles these problems by a 
coarse-to-fine approach. 

3 PRELIMINARY 
This section introduces the basic concepts and techniques used in 
our algorithm including our view of events, our workflow model, 
different types of dependency relationships involved in our algo-
rithm, and the assumptions of our mining algorithm. 

3.1 EVENT TRACE 
Similar to other methods, we view the event logs in a log file as a 
trace of events being produced by a black-box system. Here, 
events are used to characterize the dynamic behavior of a software 
program. Each event trace is generated and collected during a 
complete execution of the program on a batch of use cases. Dur-
ing an execution, the program may have simultaneous executing 
threads of control, with each of them producing events that form a 
resulting event trace. Thus, each event trace may contain inter-
leaved events from all the concurrent threads (namely a trace of 
interleaved events). Note here that although the term “thread” 
means a sequential execution control path within the workflow, it 
may not directly map to a process/thread in the operating system 
in an event-driven system. We can collect many event traces by 
running the program many times. In software systems, events may 
be recorded with attributes, such as timestamp, related resources 



and data. Although in some systems, event attributes can help to 
distinguish the events from different control threads of the 
workflow, in this paper, we present a general approach that only 
utilizes the ordering of events. 

Formally, let ߑ be a set of distinct events that appear in all event 
traces. An event trace is a sequence of events, denoted as ൏
݁ଵ, ݁ଶ, … , ݁௠ ൐, where ݁௜  is an event, i.e. ݁௜ א ߑ  for 1 ൑ ݅ ൑ ݉ . 
For brevity, we can also write it as ݁ଵ, ݁ଶ, … , ݁௠. Given an event 
trace ݈ ൌ ݁ଵ, ݁ଶ, … , ݁௠ , for an event ݁௜, 1 ൑ ݅ ൑ ݉ , we call the 
subsequence ݁௜ାଵ, ݁௜ାଶ, … , ݁௠ as the postfix of ݁௜ in ݈, denoted as 
,ሺ݁௜ሻ, and subsequence ݁ଵݐݏ݋݌ ݁ଶ, … , ݁௜ିଵ as the prefix of ݁௜ in ݈, 
denoted as ݁ݎ݌ሺ݁௜ሻ . If ݅ ൌ 1 , then ݁ݎ݌ሺ݁௜ሻ  is a null sequence, 
denoted as ׎. Similarly, when ݅ ൌ ݉, we also have ݐݏ݋݌ሺ݁௜ሻ ൌ  .׎

Program event traces may contain some noise that is usually 
caused by some execution anomalies. For event traces that may 
contain noise, we can use the noise filtering method [19] or ano-
maly detection method [20] to filter out the noise before we learn 
workflow models. In addition, we assume that the temporal order-
ing patterns of different events can be as diverse as possible. This 
is reasonable for event logs produced by independent concurrency. 
Some concurrent systems that may not display much randomness 
are not the targets of our method. As with most data driven ap-
proaches, we also assume that we have enough event logs to make 
our analysis meaningful. Because our method is based on the 
temporal orders of events in event traces, enough log data means 
that we have enough instances of any possible ordering relation-
ship of every event pair to make the mined dependencies statisti-
cally meaningful. 

3.2 WORKFLOW MODEL 
In this paper, our algorithm outputs a transition-labeled finite state 
machine to represent a workflow. In order to model the concurrent 
properties of workflows, we introduce a vector of active states 
instead of just a single active state so that the state machine can 
have multiple, concurrent threads. To create and destroy these 
threads, we define four new types of states to mimic the concur-
rent behavior of a Petri net: split/merge states and fork/join states. 
Similar to the AND split/merge nodes in papers [3, 7], a split state 
has multiple out transitions (i.e. transitions leaving from the state), 
and all these transitions are taken concurrently. A merge state has 
multiple entering transitions, and it can transit to another state 
only if all its entering transitions have occurred. Informally, split 
states represent the points where the system will spawn one thread 
for each leaving transition. As a counterpart, merge states are used 
to represent points of synchronization. That is, before the merge 
state can transit to another state, it has to wait for the completion 
of threads from all its entering transitions. Unlike a split state, a 
fork state only has one leaving transition. At a fork state, the sys-
tem will fork several threads to execute a sub-workflow starting 
from the state. Similar to a merge state, a join state is also a point 
of synchronization, and it is specially designed to absorb all 
threads created by a fork state. In general, a fork state and a join 
state will exist in pairs. To facilitate the description, we call the 
ordinary states in a state machine as a switch state. Fig. 1 shows 
some sample workflows, where a square box “□” is used to 
represent a split/merge state node, a diamond box “◊” is used to 
represent a fork/join state node, and a circle “○” is used to 
represent a switch state node. By introducing the split/merge and 
fork/join nodes, we can model the concurrent properties in a 
workflow. For example, a single run of the workflow of Fig.1(a) 
can generate event traces of “ABCD” or “ACBD” because B and 

C are two concurrent events. Furthermore, two concurrent runs of 
the workflow can generate many kinds of traces, such as “AB-
ACDCBD”, “AACCBBDD”, and so on. The fork node in Fig.1(c) 
can also generate concurrent events, because the sub-workflow 
from the fork node to the join node will be run with multiple 
threads. Formally, a workflow model is defined as: 

Definition 3.1 A workflow model is a tuple W ൌ ሺߑ, ܵ, ,଴ݏ ,ߜ ݂ሻ, 
where: 

 ߑ is the set of event types. 
 ܵ is a finite and non-empty set of states including switch 

states, split/merge states and fork/join states. ݏ଴  is the 
initial state. ݂ is the end state. 

 ߜ is the state-transition function that represents the tran-
sition from one state to other states, ߜ: ܵ ൈ ߑ ՜ ܵ. Each 
transition is labeled by an event type, which means the 
transition can generate an event of that type, and a tran-
sition can be uniquely determined by its event label. In 
this paper, we use these two terms interchangeably. 

 We also define a special symbol ߳ א  which means an ,ߑ
empty event. ߜሺݍଵ, ߳ሻ ൌ ଶݍ  means that the transition 
from state ݍଵ  to state ݍଶ  does not generate any event. 
We call such a transition a shortcut. 

Definition 3.2 Given a transition from ݍଵ to ݍଶ, we call ݍଵ and ݍଶ 
as the starting state and the ending state of the transition respec-
tively. If one transition’s ending state is the starting state of anoth-
er transition, we call the two transitions as neighboring transitions. 
Given a state ݍ, we define all transitions that start from ݍ as ݍ’s 
out transitions (denoted as ܱݐ݁ܵݐݑሺݍሻ), and the transitions that 
ending at ݍ as ݍ’s in transitions (denoted as ݐ݁ܵ݊ܫሺݍሻ). 

For a realistic workflow, all states and transitions should be 
reachable from the initial state. It means that, for every state ݏ, 
there is at least one transition path from the initial state to ݏ. At 
the same time, each state also has a path to the end state. 

 
Figure 1. Some simple workflows. 

3.3 EVENT DEPENDENCIES 
In the context of workflow traces, the occurrence of an event may 
be dependent on the occurrence of another event in the trace. Our 
workflow model reconstruction depends on mining the temporal 
dependencies among events. Dependence means that the occur-
rence of one event type depends on the occurrence of another 
event type. In this paper, we define four types of temporal depen-
dencies. Forward dependency (FD) describes that “Whenever an 
event A occurs, another event B must eventually occurs after A’s 
occurrence”. Forward dependency is denoted as ܣ ՜௙ -Back .ܤ
ward dependency (BD) describes that “Whenever an event B oc-
curs, another event A must have occurred before B’s occurrence”. 



Backward dependency is denoted as ܣ ՜௕ -The third dependen .ܤ
cy we defined is strict forward dependency (SFD), which means 
“For each occurrence of event A, there must be at least one occur-
rence of event B after A’s occurrence.” We denote it as ܣ ՜௦௙  .ܤ
Different from ܣ ՜௙  which means one or more occurrences of ,ܤ
event A will eventually cause the occurrence of event B, ܣ ՜௦௙  ܤ
means that each occurrence of event A will cause at least one oc-
currence of event B. Similarly, we also define strict backward 
dependency (SBD) with “For each occurrence of event B, there 
must be at least one occurrence of event A before B’s occurrence.”, 
which is denoted as ܣ ՜௦௕  Unlike the dependencies defined in .ܤ
[15, 17], our dependencies do not require that one event is directly 
followed by another event in an event trace, and they are not in-
fluenced by various interleaving patterns. We use ܣ צ  to denote ܤ
two events A and B without any defined temporal dependencies,. 

Among these four types of dependencies, FD and BD focus on the 
global temporal relationship between two event types, and SFD 
and SBD not only look at the temporal relationship but also take 
the event count information into account. It is obvious that: 
ܣ ՜௦௙ ܤ ֜ ܣ  ՜௙ ܣ and ,ܤ ՜௦௕ ܤ ֜ ܣ  ՜௕ -Thus, for simplic .ܤ
ity, if two events have a strict dependency relationship, we will 
not list the corresponding non-strict dependency.  

For each pair of events, the temporal dependency is determined by 
the structure of the workflow. For example, for event A and B in 
Fig.1(a), we have ܣ ՜௦௙ ܤ  and ܣ ՜௦௕ ܤ  because these two de-
pendencies are always true in the traces with any potential event 
interleaving pattern. For the workflow in Fig.1(e), we always have 
ܣ ՜௦௙ ܣ and ܤ ՜௕  For all simple workflows in Fig.1, we list .ܤ
all the dependencies between event type A and B in Table 1. Such 
dependencies are always true no matter how event logs interleave 
together. We can see that different local logical structures in a 
workflow often have different types of dependencies.  

Table 1. Temporal dependencies of workflows in Fig.1 
Workflow Valid Temporal Dependencies between A and B 
Fig. 1(a) ܣ ՜௦௙ ܣ ,ܤ ՜௦௕  ܤ
Fig. 1(b) ܣ ՜௦௕  ܤ
Fig. 1(c) ܣ ՜௦௙ ܣ ,ܤ ՜௕  ܤ
Fig. 1(d) ܣ ՜௦௙ ܣ ,ܤ ՜௦௕  ܤ
Fig. 1(e) ܣ ՜௦௙ ܣ ,ܤ ՜௕  ܤ
Fig. 1(f) ܣ ՜௦௙ ܣ ,ܤ ՜௕  ܤ

 

Pair-wise temporal dependencies describe the causal relationships 
of each event pair. They can provide information for workflow 
reconstruction. Our basic workflow model constructing algorithm 
is based on the properties of the mined temporal dependencies. 
Obviously, the dependencies have the following property: 

Property 3.1 Let W ൌ ሺߑ, ܵ, ,଴ݏ ,ߜ ݂ሻ  be a workflow. For any 
,ܣ ܤ א ܣ if ,ߑ ՜௙ ܣ or ܤ ՜௕  there must be a transition path ,ܤ
from A to B (denoted as ܣ ՜  .in the workflow (ܤ

4 MINING TEMPORAL DEPENDENCY 
In this section, we provide the details about the method of mining 
temporal dependencies. As with most classical algorithms of se-
quence pattern mining, we measure the significance of a temporal 
dependency between two events by computing the statistical me-
trics of support and confidence. For event types A and B, when we 
mine the relationships of ܣ ՜௦௙ ܤ , the support of ܣ ՜௦௙ ܤ  is 

defined as the number of times that event A appears in the traces 
that satisfy |ሼ݁|݁ ൌ ,ܣ ݁ א |ሺ݁௜ሻሽݐݏ݋݌ ൏ |ሼ݁|݁ ൌ ,ܤ ݁ א  |ሺ݁௜ሻሽݐݏ݋݌
(see the numerator of equation (3)). In contrast to the support of 
ܣ ՜௦௙ ܣ the support of ,ܤ ՜௙  is computed as the number of ܤ
traces that contain event A and B and ܤ א -ሻ. As a counterܣሺݐݏ݋݌
part, the support of ܣ ՜௦௕ ܣ and ܤ ՜௕  can also be calculated ܤ
similarly. The confidence values of the dependencies are defined 
by the corresponding conditional probabilities. For example, the 
confidence of ܣ ՜௙  is calculated by ܤ

conf൫ܣ ՜௙ ൯ܤ ൌ
No. of traces that have ܤ after the last ܣ

No. of traces that contain ܣ
 ሺ1ሻ 

Note, according to the definition of ܣ ՜௙ ܤ , we only have to 
compute the confidence by investigating the events for traces after 
their last appearance of event A. As the size of traces scales up, 
this trick can significantly reduce the computational cost. Similar-
ly, the confidence of ܣ ՜௕  can also be calculated by ܤ

confሺܣ ՜௕ ሻܤ ൌ
No. of traces that have ܣ before the first ܤ

No. of traces that contain ܤ
ሺ2ሻ 

The computing of ܣ ՜௦௙ ܣ and ܤ ՜௦௕  s confidence values is a’ܤ
little bit complex. We take ܣ ՜௦௙  as an example to describe the ܤ
computing procedure. For each event trace ݈, we find all occur-
rences of event ݁௜  that satisfy ݁௜ ൌ ܣ  and |ሼ݁|݁ ൌ ,ܣ ݁ א
|ሺ݁௜ሻሽݐݏ݋݌ ൏ |ሼ݁|݁ ൌ ,ܤ ݁ א |ሺ݁௜ሻሽݐݏ݋݌  (i.e. the number of B is 
larger than the number of A in ݐݏ݋݌ሺ݁௜ሻ). Denoting the total num-
ber of such events ݁௜ in all traces as |൛݁ห݁ א ሺܣ ՜௦௙  ሻൟ|, we canܤ
calculate the confidence by  

conf൫ܣ ՜௦௙ ൯ܤ ൌ
|൛݁ห݁ א ሺܣ ՜௦௙ |ሻൟܤ

No. of ݏ݁ܿܽݎݐ ݈݈ܽ ݊݅ ܣ
              ሺ3ሻ 

As a counterpart, the dependency of ܣ ՜௦௕  is ܤ

confሺܣ ՜௦௕ ሻܤ ൌ
|ሼ݁|݁ א ሺܣ ՜௦௕ |ሻሽܤ

No. of ݏ݁ܿܽݎݐ ݈݈ܽ ݊݅ ܣ
              ሺ4ሻ 

where |ሼ݁|݁ א ሺܣ ՜௦௕   ሻሽ| is the number of events that satisfyܤ
݁௜ ൌ ܤ  and |ሼ݁|݁ ൌ ,ܤ ݁ א |ሺ݁௜ሻሽ݁ݎ݌ ൏ |ሼ݁|݁ ൌ ,ܣ ݁ א  |ሺ݁௜ሻሽ݁ݎ݌
(i.e. the number of B is larger than the number of A in ݁ݎ݌ሺ݁௜ሻ). 

By scanning the event traces, we can obtain the support numbers 
and confidence values of these dependencies for each pair of 
event (the pseudo code can be found in [25]). The time complexi-
ty of the algorithm is ܱሺܰ݀ሻ, where ܰ is the cumulative length of 
all event traces. Generally, ݀ ൌ |ߑ|  (i.e. the number of distinct 
event types) is constant for a program, and is always significantly 
smaller than ܰ. Thus, the algorithm possesses linear complexity 
with respect to N. 

Unlike the scenarios of traditional sequence (or frequent item set) 
mining, where some meaningless patterns can happen by chance, 
in our context any occurrence of an event ordering in event traces 
is meaningful and reflects an aspect of the execution behavior of 
the software system. In this paper, we set the support threshold as 
5 (The number of observations should be at least five to make the 
analysis results statistically meaningful [17]), and all our events in 
our experiments can meet this requirement. In addition, a depen-
dency relationship is valid only if it has a perfect confidence 
 .(%100=݂݊݋ܿ)

5 WORKFLOW RECONSTRUCTION 
In this section, we provide our main algorithm of constructing 



workflow from mined temporal dependencies. We first construct 
an initial workflow by recovering all connections (defined in sec-
tion 5.1) based on the mined temporal dependencies. The learned 
basic workflow does not contain some workflow structures. In 
order to recover these missing structures, we refine the workflow 
by verifying with event traces. The aim of refinement is to con-
struct the simplest workflow based on the basic workflow to in-
terpret all training event traces. 

5.1 CONSTRUCT A BASIC MODEL 
From section 3, we can see that, given dependencies ܣ ՜௙  or ܤ
ܣ ՜௕  we can conclude that there is a path from event A to ,ܤ
event B (denoted as ܣ ՜ ܤ ). In addition, for two neighboring 
events A and B, if ܣ ՜  we can determine a connection between ,ܤ
A and B in the original workflow, i.e. the ending state of A is the 
starting state of B. In this paper, we call the dependency between 
two neighboring events as a direct dependency. Furthermore, 
supposing that we have a pair-wise dependency for each pair of 
neighboring events, we can recover all connection relationships. 

Although a mined temporal dependency from event traces shows 
that there is a path between two events, we cannot directly estab-
lish a connection between them because many dependencies are 
not direct dependencies (i.e. they are indirect dependencies). An 
indirect dependence does not correspond to a connection between 
two events. For example, in Fig.1 (d), we have a temporal depen-
dency of ܣ ՜௙  However, there is no connection between A and .ܥ
C. Here, the path from A to C is composed by a path from A to B 
and a path from B to C. In order to handle such problems, we try 
to construct a compact basic workflow in which there is at most 
one transition path between every two events. We use a pruning 
strategy to remove indirect dependencies during the basic 
workflow construction. For each event pair ሺߙ,  ሻ that satisfiesߚ
ߙ ՜௙ ߙ or ߚ ՜௕ ߚ , we denote ߚ as ߙ’s successor, and ߙ as ߚ’s 
predecessor. For the simplicity of implementation, we first use a 
graph data structure to store the obtained paths, in which each 
event has a predecessor list and a successor list. The algorithm 
starts from the events that do not have any preceding event. Then, 
we add events into the graph and construct preceding/succeeding 
relations according to the mined dependencies. For any pair of 
events A and C where A is a predecessor of C, if a successor event 
of A (e.g. B) is also a predecessor of C, we remove C from A’s 
successor list. In the resulting graph, all indirect dependencies are 
removed. By converting the remaining preceding/succeeding rela-
tions to event connections, we can construct a transition-labeled 
workflow, namely basic workflow. The algorithm is shown in 
Algorithm 1. In the algorithm, the function ݐ݋݋ܴ_݀݊݅ܨሺܸܰሻ re-
turns a set of events in which each event does not have any prede-
cessor in the set ܸܰ. 

The following theorem shows that the remaining transitional paths 
obtained by the above algorithm must exist in the original 
workflow under a certain condition. In other words, our algorithm 
can obtain a basic workflow skeleton. The proof of the theorem 
[25] is straightforward, and we ignore it in this paper. 

Theorem 5.1. Let W ൌ ሺߑ, ܵ, ,଴ݏ ,ߜ ݂ሻ be a workflow, with at least 
one temporal dependence between every two neighboring events. 
For any ܣ, ܤ א ܣ thatߑ ՜௙ ܣ orܤ ՜௕ ܣ|if ሼC ,ܤ ՜ ܥ ר ܥ ՜ ሽܤ ൌ
׎ , there must be a connection from A to B in the original 
workflow.  

The above algorithm does not consider a special case where two 

events have dependencies with different directions. For example, 
from the event traces generated by the workflow in Fig.1(f), we 
can learn both dependencies of ܤ ՜௕ ܥ and ܥ ՜௙  at the same ܤ
time. We call it a bidirectional dependence, denoted as ܥ ՞  If .ܤ
we directly run the basic workflow construction algorithm on such 
dependencies, the algorithm will run into an endless loop. In order 
to overcome this problem, we first check whether there are bidi-
rectional dependencies in the mined dependencies. If there is a 
bidirectional dependence, e.g. ܥ ՞ ܤ , we create a new virtual 
event type ܤ’ to replace the events of type B in all forward depen-
dencies. Then, we run our basic construction algorithm to recon-
struct the basic workflow. After that, we merge the virtual events 
(e.g. ܤ’ሻ  with their corresponding events (e.g. B) in the basic 
workflow. 

Algorithm 1. Pseudo Code of Basic Workflow Construction 
Inputs: 

 the set of all event traces :ܮ
 the set of dependencies :ܦ

Output:  
ܶ: learned basic workflow 
 

1. ܰ = ܸܰ = the set of all log keys;  
2. ܳ =  an empty FIFO queue; 
3. while ܸܰ is not empty 
4.  ܵ  ൌ   ;ሺܸܰሻݐ݋݋ܴ_݀݊݅ܨ 
5.  Add ܵ into ܶ; 
,ሺܾܳ݇ܿܽ_݄ݏݑܲ  .6 ܵሻ; 
7.  while ܳ is not empty: 
8.   ݅ ൌ  ;ሺܳሻݐ݊݋ݎ݂_݌݋ܲ 
9.   if ݅ is not in ܸܰ 
10.    continue; 
11.   for each ݆ in ܰ that satisfies ݅ ՜௙ ݆ or ݅ ՜௕ ݆  
12.    if ݆ has predecessor in ܶ 
13.     flag = false; 
14.     for each ݇ in ݆’s predecessors: 
15.      if  ሺ݅ צ ݇ሻ 
16.       add ݆ to ݅’s successor list; 
17.      else if ݇ ՜௙ ݅ or ݇ ՜௕ ݅ 
18.       remove ݆ from the successor list of ݇ 
19.       add ݆ to ݅’s successor list; 
20.      else 
21.       flag = true; 
22.     if (flag) 
23.      remove ݆ from the successor list of ݅ 
24.    else 
25.     add ݆ to ݅’s successor list; 
26.    if ݆ is in ܸܰ 
,ሺܾܳ݇ܿܽ_݄ݏݑܲ     .27 ݆ሻ; 
28.   remove ݅ from ܸܰ; 
29. Covert T to a transition-labeled workflow; 
30. return ܶ

 

Adding the initial&end state: Each workflow contains an initial 
state and an end state. Thus, we need to add an initial state and an 
end state into the basic workflow. Obviously, the first event and 
the last event of each event trace are potentially an initial event 
and an end event of the workflow respectively. In this paper, we 
find out all events that have appeared as the first event in event 
traces. If the support number of an event appearing as the first 
event in event traces is larger than a certain level (we use 5% in 



experiments because we assume the noise level is less than 5%), 
we add a shortcut transition from the initial state of the workflow 
to the starting state of the event. Similarly, if the support number 
of an event appearing as the last event in event traces is larger 
than a certain level, we add a shortcut from the ending state of the 
event to the end state of the workflow. 

Determining the state types: According to the definition of the 
workflow model in section 3.2, there are five types of states. In 
the above basic workflow construction algorithm, we do not iden-
tify the type of each state. Given an event type that has several 
event types following it, we have to make a decision on whether 
the program behavior at this point is a sequential selection (i.e. a 
switch state) or a concurrent splitting (i.e. a split/fork state). In 
this subsection, we determine the state types by utilizing the in-
formation of event type counts. As studied in our previous work 
[20], the linear relationships between the occurrence times of 
different event types can also provide cues for the workflow struc-
ture. For example, for a switch state ݍ, it is always true in every 
event trace that: 

∑ ூ௡ௌ௘௧ሺ௤ሻאሻ஺ܣሺݎݑܱܿܿ ൌ ∑ ை௨௧ௌ௘௧ሺ௤ሻאሻ஻ܤሺݎݑܱܿܿ  (5) 

On the other hand, if ݍ  is a split state, then for any ܣ א
ܤ ሻ andݍሺݐ݁ܵݐݑܱ א  ,ሻݍሺݐ݁ܵݐݑܱ

ሻܣሺݎݑܱܿܿ ൌ  ሻ    (6)ܤሺݎݑܱܿܿ

Similarly, a merge state also has a property that ܱܿܿݎݑሺܣሻ ൌ
ሻܤሺݎݑܱܿܿ  for any ܣ א ሻݍሺݐ݁ܵ݊ܫ  and ܤ א ሻݍሺݐ݁ܵ݊ܫ . Here, 
 ሻ denote the occurrence numbers of eventܤሺݎݑܱܿܿ ሻ andܣሺݎݑܱܿܿ
A and event B in a trace respectively. However, fork and join 
states do not have such regular properties on the counts of event 
types. If a state satisfies equation (5), it must be a switch state. In 
this subsection, we first find out the split/merge states by verify-
ing whether a state satisfies equation (6), and then find out the 
switch states that can be identified by equation (5). Because our 
model allows shortcut transitions, some switch states cannot be 
easily identified by equation (5). For all remaining states with 
their state types undetermined, we will determine their state types 
in the next sub-section. The default state type is switch. 

5.2 REFINE THE WORKFLOW MODEL 
The basic workflow obtained by Algorithm 1 does not contain any 
shortcut transitions or loop structures, because we only keep one 
transition path between every two dependent events. However, in 
a real workflow, there may be some shortcut transitions and loop 
structures. In addition, Algorithm 1 also cannot identify the 
fork/join state types. Therefore, the basic workflow only contains 
a part of the real workflow, and it often cannot interpret all train-
ing event traces. In fact, a meaningful mined workflow should be 
able to interpret the traces. In this subsection, based on the learned 
basic workflow, we build a workflow to interpret all event traces 
by identifying fork/join states and recovering loop structures and 
shortcut transitions. 

We recover loop structures or shortcut transitions based on the 
statistical properties of these structures. Here, we use a simple 
example to describe the basic idea behind our algorithm. Fig.2(a) 
presents a simple program workflow containing a loop structure. 
We generated event traces by running a concurrent program with 
different interleaving patterns in which each thread runs along the 
workflow in Fig.2(a). Two typical sample event traces are shown 
in Fig. 2(b). Our basic workflow construction algorithm can only 

construct a basic workflow without a loop (see Fig.2(c)). When 
we use the basic workflow in Fig.2(c) to interpret the first event 
trace in Fig. 2(b), we find that the first five events of the event 
trace are generated by two threads (denoted as ଵܶ and ଶܶ) running 
along the basic workflow. When the 6th event of the trace (i.e. B) 
is being verified, the active states of  ଵܶ and ଶܶ are ݏଷ and ݏଶ re-
spectively, and both threads cannot produce event B from their 
active states (i.e. this event B is an un-interpretable event by the 
basic workflow.). The reason why some events cannot be inter-
preted is that some transitions are missing in the basic workflow. 
Specifically, event B is a part of the recurrence of the missing 
loop in Fig.2(a). However, we do not have knowledge about the 
loop structure and the original workflow. In order to interpret the 
first event trace, we now have two possible solutions: the event is 
either generated by ଵܶ or generated by ଶܶ. If it is generated by ଵܶ, 
then there is a loop from ݏଷ to ݏଵ in the workflow, which is the 
workflow in Fig.2(a). If the event is generated by ଶܶ, then there is 
a loop from ݏଶ to ݏଵ in the workflow, which is the workflow in 
Fig.2(d). Similarly, when we try to interpret the 8th event of the 
second event trace in Fig.2(b), the active states of the threads are 
 ସ. One can interpret the second event trace either by theݏ ଷ andݏ
workflow in Fig.2(a) or by that in Fig.2(e). Here, we observe that, 
for both event traces, when we try to interpret an event B that is a 
part of the recurrence of the loop, there is a thread at state ݏଷ. In 
general, for any training event trace with a different interleaving 
pattern, when we verify an un-interpretable event of type B, which 
is a part of the recurrence of the loop, there is always at least one 
thread whose active state is ݏଷ. On the contrary, there is a thread 
with active states of ݏଶ or ݏସ only by chance. Therefore, if we vote 
for threads’ active states over all event traces once we encounter 
an un-interpretable event B, we will find that ݏଷ has the highest 
vote value. This property can help us to detect the loop structures, 
a loopback transition from ݏଷ to ݏଵ. Although the example in Fig.2 
is a simple case, this statistical property is widely valid for 
workflows with loop or shortcut structures. For example, Fig.3 
shows the vote value histogram that is counted for the un-
interpretable events of B2 in WS(b) during the experiment. In the 
figure, there is a high peak value at s2, which indicates a loopback 
transition from s2 to s1. Our algorithm utilizes this statistical prop-
erty to detect and recover loop structures and shortcuts. 

Unlike loop and shortcut structures, fork/join states do not expose 
any unique statistical property. We cannot use the above statistical 
method to identify a fork/join structure. If we perform the above 
method forcibly on the event traces generated by a fork/join struc-
ture, then the resulting workflow is often very complex, which is 
caused by various event interleaving patterns. On the other hand, 
all event traces generated by a loop structure can always be inter-
preted by a fork/join structure. For example, all event traces pro-
duced by the workflow in Fig.2(a) can always be interpreted by 
the workflow in Fig.2(f). Formally, the observation is described as:  

Property 5.1 Event traces that can be interpreted by a workflow 
ଵܹ with loop structures can also be interpreted by a workflow ଶܹ 

which is created based on ଵܹ by replacing the loop structures with 
fork/join structures, and ܿ݌ሺ ଶܹሻ ൑ ሺ݌ܿ ଵܹሻ, but not vice versa. 

Here, ܿ݌ሺܹሻ is the complexity of a workflow ܹ , which is de-
fined as the sum of transition number and the number of thread 
types. Each thread type is defined as a pair of thread starting and 
ending points. Given the constant states of the basic workflow (we 
only add transitions or mark thread spawn/sync states in the re-
finement algorithm), ܿ݌ሺܹሻ is a good description of a workflow 



model’s complexity. Based on property 5.1, we introduce a loop 
favorite rule in our algorithm. For two workflows that can interp-
ret the event traces, we prefer the workflow with less complexity. 
If event traces can be interpreted by either a workflow with a loop 
structure or a workflow with a fork/join structure, and both of 
them have the same complexity, we prefer the former. In sum-
mary, starting from the learned basic workflow, we try to con-
struct the simplest workflow with a minimal number of threads to 
interpret all event traces. 

 
(a). A simple workflow with a loop. 

 
(b). Sample event traces of a two-thread program (a) 

 
(c). The result workflow of Algorithm 2. 

 
(d). A possible workflow of the first trace in (b). 

 
(e). A possible workflow of the second trace in (b). 

 
(f). A possible solution with fork/join states. 

Figure 2. An example for the depiction of our refinement idea. 

 

 

Figure 3. The distribution of vote values counted when we 
encounter the un-interpretable events of B2 in WS(b). 

 

Because we have no information about when a new thread starts, 
an un-interpretable event can be interpreted as an event log pro-
duced by either a missing workflow structure component (i.e. 
shortcut or loop) or a newly started thread (i.e. fork/join states). In 
the algorithm, we have to make a decision to select one structure 
between them (i.e. loop decision or fork decision) whenever a new 
un-interpretable event is encountered. A workflow has a Markov 
property that states that the current state is what determines the 
next step in its behavior. Thus, an early decision will influence the 
later decisions, but the converse is not true. At each decision point, 

we first create two temporary workflows. One (denoted as ࢃ૚ in 
the algorithm) is constructed by a procedure in which we make a 
loop decision at the current decision point and make fork decision 
at all following decision points. The other (denoted as ࢃ૛ in the 
algorithm) is constructed through a procedure with all fork deci-
sions. Then, we select a decision at the current decision point 
based on the loop favorite rule. Similarly, we also make the next 
decision with the same procedure. Note: here, the temporary 
workflows are only constructed for decision making, and they are 
not output as the results of the algorithm. The detailed algorithm 
is presented in APPENDIX A. In the algorithm, we do not count 
the active states with their neighboring events having strict for-
ward dependencies, because such a state neither has an out-
shortcut transition nor is a join state. For example, we do not have 
ܤ ՜௦௙  in Fig. 1(c) and (f). The following theorem shows that ܥ
the workflow learned by our refinement algorithm is optimal in 
the sense of complexity defined above. The proof of the theorem 
can be found in [25]. 

Theorem 5.2. The refinement algorithm finds out the workflow 
with a minimal complexity to interpret all event traces. 

6 EMPIRICAL EVALUATION 
To validate and evaluate our proposed workflow algorithm, we 
performed a set of experiments on simulated event traces and case 
studies on real event traces generated by some open source pro-
grams (Hadoop and JBoss). We use open source programs be-
cause they are publicly available for download. The results on 
them are easy to be verified and reproduced by third parties. The 
results demonstrate the usefulness of our workflow mining tech-
nique in recovering underlying workflows from event traces. Due 
to space limitation, the results on JBoss are available at [25]. The 
code of the simulator and our algorithm will also be available 
soon (after the legal review according to the code release policy of 
Microsoft) at http://research.microsoft.com/apps/pubs/default.asp 
x? id=118640. 

 
(a) The release of expired allocations. 

 

 
(b) The processing of backorders. 

Figure 4. WebSphere® Commerce Processes. 
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Figure 5. A workflow of reviewing a conference paper. 

6.1 SIMULATION 
To construct a controlled experimental environment, we designed 
a simulator that can generate synthetic program event traces ac-
cording to a software workflow model. The design of the simula-
tor follows the principles proposed in QUARK [21] including the 
guarantee of “code and branch coverage” and locality of reference, 
and so on. Unlike QUARK, our simulator can generate traces of 
interleaved events based on a concurrent workflow model. In this 
experiment, we measure the performance of our workflow miner 
by discovering workflows from the synthetic program event traces. 

Simulation Models: In our simulation experiments, several real 
application models are used to generate the event traces. In [23], 
Zou et al. present two workflows in the form of automata: the 
releases of expired allocations (Fig.4(a)) and the processing of 
backorders (Fig.4(b)). In [17], the authors use a paper reviewing 
process (Fig.5) to demonstrate their workflow mining algorithm. 
The models are shown in Fig.4 and Fig.5, and are referred to as 
WS(a), WS(b), and Rev respectively. By using these models, users 
can evaluate and compare our algorithm with other algorithms in 
[17] [23]. In addition, these typical real application workflows are 
complex enough to demonstrate the capability of our algorithm: 
the models in Fig.4 contain several nested loops and many short-
cut transitions, and the model in Fig.5 has a loop embraced by a 
fork/join structure.  

Evaluation Metric: In order to carry out a quantitative evaluation 
of the workflow miner, we adopt two metrics to measure the simi-
larity from the mined workflow X and the simulator model Y in 
terms of their generated traces. The first metric is known as recall, 
the percentage of event traces generated by workflow Y that can 
be interpreted by workflow X. The second metric is precision, the 
percentage of event traces produced by workflow X that can be 
interpreted by workflow Y. 

Results: We run these models with several threads (we randomly 
start 1-3 threads) in our simulator to generate traces of interleaved 
events. From the generated traces (2000 event traces for each), we 
learn workflow models through the algorithm provided in the 
above sections. We compare the effectiveness of the k-Learner 
algorithm [6] and our algorithm by measuring the precision and 
recall of the resulting state machines. We repeat each experiment 
10 times with 10 different set of traces, and computing the aver-
age that shown in Table 2. Here, we round the results to keep 
three numbers after the decimal point. For these three workflows, 
our algorithm can exactly rediscover the original workflow model, 
thus, both the recall and precision are 100%. However, the preci-
sions of the models produced with k-Learner are very poor (2 
models with a precision less than 0.1). This indicates that k-
Learner cannot perform well when events are interleaved.  

Computational cost: Our algorithm is efficient, which only uses 
9.9, 22.3 and 72.0 seconds (with a CPU of 2.33GHz, the code is 

not fully optimized) to learn the models of WS(a), WS(b), and Rev 
from 2000 event traces respectively. Table 3 shows that the com-
puting time of each model grows almost linearly as the number of 
input event traces increases. 

Table 2. Empirical Results: Precision and Recall 

 
Simulation Models 

WS(a) WS(b) Rev 
Precs. Recall Precs. Recall Precs. Recall

k-Learner (k=1) 0.511 1.000 0.069 1.000 0.000 1.000
k-Learner (k=2) 0.255 1.000 0.080 1.000 0.001 1.000
Our Algorithm 1.000 1.000 1.000 1.000 1.000 1.000

 
Table 3. Computing Time (in seconds) vs. Event Trace Number 

Trace No. 
Simulation Models 

WS(a) WS(b) Rev 
2000 9.9 22.3 72.0 
4000 19.3 41.1 154.4 
6000 29.4 62.5 228.6 

6.2 CASE STUDY: HADOOP 
Hadoop [22] (our version: 0.19) is a well-known open-source 
implementation of Google’s Map-Reduce computing framework 
and distributed file system (HDFS). It enables distributed compu-
ting of large scale, data-intensive and stage-based parallel applica-
tions. The logs produced by Hadoop are not sequential log mes-
sage sequences. Even in the log messages of the same Map task, 
some messages (e.g. messages about data shuffling) are also inter-
leaving. 

 
Figure 6. Learned workflow of Hadoop MapTask 

Trace collection and preprocessing: We run different Hadoop 
jobs of some sample applications, such as WordCount and Sort, 
and collect log data after each job is finished (Note: we enable the 
logging tool at the info level). At first, we use the log preprocess-
ing method presented in [20, 24] to parse event log messages and 
to group log messages according to log parameters. For example, 
all log messages that contain a parameter called MapTask ID are 
grouped into an event trace. Because several MapTasks are run-
ning simultaneously, these events are highly interleaved with each 
other. Then, we use the error detection algorithm in [20] to filter 
out event traces that contain errors. Finally, we obtain 1767 event 
traces. Each trace contains about 15 concurrent map tasks and 
about 234 events in average. 

Results: After that, we learn workflow from event traces with our 
proposed algorithm. Fig.6 is an example of the resulting workflow 
that is learned from the event traces related to the parameter 
MapTask ID. By carefully checking with Hadoop source code and 



documents, we find that the workflow can reflect the real process 
of MapTask with a high precision. A task is launched and then it 
processes the input data read from HDFS. After the task is done, it 
sends the resulting data to many Reducers concurrently (This is 
represented by a fork/join structure in the workflow), and finally 
cleans up the resources by removing temporary files. Hadoop has 
a scheduling strategy to run a small number of speculative tasks. 
Therefore, there may be two running instances of the same task at 
the same time. If one task instance finishes, the other task instance 
will be killed no matter which stage the task instance is running at. 
Some killed tasks can also report their status due to thread race 
conditions, therefore, events of H13, H14 and H15 are triggered. 

6.3 DISCUSSION 
As with the results of all other workflow mining algorithms 
[2][17][21], some resulting workflow models of our algorithm are 
over-generalized (i.e. having more possible routes than the real 
workflow). For example, in the case in section 6.2, there is a path 
from ݏଵ଴ to ݏଵସ, which does not exist in the real program. There 
are two main reasons for the over-generalization problem. At first, 
we only consider the first-order of event dependencies (i.e. the 
dependencies between neighboring events) in our current algo-
rithm. In some real programs, there are some high-order depen-
dencies, e.g. the occurrences of H13, H14 and H15 depend on the 
occurrence of H7 in Fig.6. Second, our approach assumes that 
there is at most one transition referring to an event type in a 
workflow model. In some real systems, one event type may ap-
pear at multiple positions in a workflow. For example, from the 
event traces generated by the workflow in Fig.7(a) (This is the 
workflow of X11 [19]), a workflow in Fig.7(b) is learned through 
our algorithm which is more general than the original one. The 
workflow in Fig.7(b) can generate event traces such as <B,E,…,E> 
and <A,D,E,…,E> that cannot be generated by the original 
workflow Fig.7(a). We will leave it for future work to deal with 
these problems. 

 

 (a) Original workflow (b) Mined workflow 

Figure 7. An example of the over-generalization problem 

The proposed method only finds out the workflow that minimizes 
the defined complexity metric, and it does not provide any means 
to tune the precision and recall of the learned workflow. In addi-
tion, the workflow with minimal complexity may not be exactly 
the same as the real workflow or the one a human operator wants 
to see. 

7 CONCLUSION 
Most existing techniques for mining program workflow models 
can only learn models from sequential event traces. They cannot 
be applied to traces of interleaved events which are prevalent in 
distributed or parallel programs (or some event driven programs). 
In this paper, we proposed an approach to automatically discover 
program execution workflows from traces of interleaved events. 

We extend the traditional state machine to support concurrency by 
introducing split/merge states and fork/join states. Our mining 
approach is based on the statistical inference of temporal depen-
dency relations from event traces. We then use such dependency 
relations to construct a basic workflow by building the connec-
tions among neighboring events. After that, we further refine the 
workflow by validating it with event traces. During the validation 
procedure, we add the shortcut transitions, loop structure, and 
fork/join states into the workflow model to make sure that all 
event traces can be interpreted by the workflow model. The expe-
rimental results on both simulated event traces and real program 
traces demonstrate that our approach can learn the workflow with 
a high precision. 

Although our work is motivated by the purpose of software com-
prehension, workflow mining is a basic research topic that has a 
wide range of application fields other than software engineering. 
We believe our approach can be widely applied in many applica-
tions, such as business intelligence. Future research directions 
include integrating high order temporal dependencies, incorporat-
ing domain or existing knowledge about a program, allowing for a 
workflow model having an event type at multiple points. 
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9 APPENDIX A 
In this appendix, we present the detail of our refinement algorithm. 
For every event type ܽ, and state ݍ, we define two integer values 
ܰሾܽሿ and ܥሾܽ,  ሿ. Here, ܰሾܽሿ denotes the number of times thatݍ
event type ܽ in the training event traces cannot be inferred by the 
workflow during refinement. ܥሾܽ, ሿݍ  records the number of 
workflow threads whose current state is ݍ  when an un-
interpretable event of type ܽ  is encountered. ଵ݂  and ଶ݂  are two 
flags used to indicate whether current workflow model ࢃ should 
be refined by a loop decision or a fork decision. Their initial val-
ues are both false. ࢃ૚ and ࢃ૛ are two temporary workflow mod-
els (refer to section 5.2). The whole refinement process contains 
the following steps. 

Step 0. Let ܥሾܽ, ሿݍ ൌ ሿݍሾܭ ,0 ൌ and ܰሾܽሿ ,ݐ݁ݏ ݕݐ݌݉݁ ݊ܽ ൌ 0 for 
any ܽ א ሺߑ\ѳሻ and ݍ א ୟୱୱ݌ ;ܵ ൌ true; 

Step 1. For an input training event trace ܮ, we use the method 
presented in [25] to interpret the trace. Once there is an event ݈ in 
L that cannot interpreted, we increase ܰሾ݈ሿ by 1, and set ݌ୟୱୱ ൌ
false. At the same time, for each workflow thread ௞ܹ, we increase 
,ሾ݈ܥ ௞ݍ ௞ሿ by 1 whereݍ  is the active state of ௞ܹ  and ݍ௞  is not a 
connection between two events having a strict forward depen-
dence. 

Step 2. For each event trace in the training set, we carry out the 
process of Step 1. 

Step 3. For each event ܽ with a non-zero value of ܰሾܽሿ, we find 
out a state ݍ௧ that satisfies ܥሾܽ, ௧ሿݍ ൌ ,ሾܽܥௌሺא௤೔ݔܽ݉  ௜ሿሻ, and addݍ
ܽ to ܭሾݍ௧ሿ. 

Step 4. If ݌ୟୱୱ ൌ false , we find an arbitrary element ݍ א
݌ |݌ሺሼݐ݋݋ܴ_݀݊݅ܨ א ܵ ת ሿ݌ሾܭ ് ሽሻ׎  (refer to section 5.1), and 
find event ܽ that does not have any predecessor in ܭሾݍሿ, then goto 
Step 5. Otherwise, goto Step 6.  

Step 5. We denote ݍᇱ  as the preceding state of ܽ in the current 
workflow model ࢃ. If ଵ݂ ൌ false, we set ࢃ =’ࢃ, ଵ݂ ൌ true, and 
update ࢃ by adding a shortcut transition from ݍ to ݍᇱ, else update 
 .ᇱ as a fork state. After that, back to Step 0ݍ by setting ࢃ

Step 6. If ݌ୟୱୱ ൌ True and ଵ݂ ൌ false, we mark all join states and 
terminate the execution of the algorithm. Otherwise, if ଶ݂ ൌ false, 
we set ࢃ૚= ࢃ and goto Step 7; else ࢃ૛=ࢃ and go to Step 8. 

Step 7. Set ࢃ =ࢃ’, ଶ݂ ൌ true, and then back to Step 0. 

Step 8. Set ଵ݂ ൌ ଶ݂ ൌ false  and ࢃ= ’ࢃ  . If ܿ݌ሺࢃ૚ሻ ൑ ૛ሻࢃሺ݌ܿ , 
we update ࢃ by adding a shortcut transition from ݍ  to ݍᇱ ; else 
update ࢃ by setting ݍᇱ as a fork state. After that, back to Step 0. 

 


