Fast Edge-Routing for Large Graphs

Tim Dwyer and Lev Nachmanson

Microsoft Research,
Redmond, USA,

{t-tdwyer,levnach}@microsoft.com

Abstract. To produce high quality drawings of graphs with nodes drawn
as shapes it is important to find routes for the edges which do not inter-
sect node boundaries. Recent work in this area involves finding shortest
paths in a tangent-visibility graph. However, construction of the full
tangent-visibility graph is expensive, at least quadratic time in the num-
ber of nodes. In this paper we explore two ideas for achieving faster edge
routing using approximate shortest-path techniques.

1 Introduction

Most graphs that people need to visualize have nodes with associated textual
or graphical content. For example, in UML class diagrams the nodes are drawn
as boxes with textual content describing the class attributes or methods. In
metabolic pathway diagrams nodes representing chemical compounds may have
long textual labels or a graphic representation of the molecular structure. If
edges that are not directly connected to a particular node are drawn over that
node then the label may be obscured. Alternately, if edges are drawn behind a
node then the reader may erroneously assume a connection to the node. Routing
edges around nodes can avoid this ambiguity.

, .

@@) (g &
(a) Spanner graph routes with (b) KD-Tree routing

20° cones.

Fig. 1. The “Olympic Torch Relay” graph from the GD’08 competition.

Some layout algorithms, such as the level scheme for directed graphs or the
topology-shape-metrics approach for orthogonal graph drawing (see [1]) consider
edge routing as an integral step in the layout process. However, the popular
force-directed family of layout algorithms for general undirected graphs do not
usually consider routing edges around node hulls; except perhaps as a post-
processing step (e.g. Gansner and North [9]). Recent work such as [6,7] has
proposed force-directed methods which are able to preserve the topology of a
given edge routing, but a feasible initial routing must still be found using a
standard routing algorithm. As described in Section 2, for graphs with hundreds
of nodes, the quadratic (in the number of nodes) or worse cost of constructing
the visibility graph can be too slow, especially for interactive applications where
the layout is changing significantly from iteration to iteration.

In this paper we present two approaches to achieve faster routing using ap-
proximate shortest paths. The first approach uses a spatial decomposition of
the nodes, moving them slightly to obtain strictly disjoint convex hulls around
groups of nodes, and then computing visibility graphs over these composite hulls
rather than individual nodes. The second approach generates a sparse visibility-
graph spanner. The two techniques are complementary, that is they can be used
together to obtain even faster routing.

2 Related Work

Dobkin et al. [4] introduced visibility-graph methods for shortest-path edge rout-
ing into graph-drawing applications. They also considered the problem of fitting
splines to the piecewise-linear path to obtain smooth curves.

Freivalds [8] gives a novel approach which treats edge routing as a problem
of finding a low-cost path across a continuous cost function defined over the
drawing area. A grid simplification is used so that the cost of routing one edge
is O(L%?log L) where L is the length of the path in grid units. The method
is slow but is noteworthy in that adding additional routing criteria, such as
perpendicular crossings between edges and slight offsets between collinear edges,
is very easy.

Wybrow et al. [13] explored an efficient incremental implementation of a
tangent-visibility graph for interactive graph manipulation or editing, for exam-
ple, adding or removing a single node. However, their method is still O(n?logn)
running time for n nodes in the static case. Faster algorithms for static con-
struction of a visibility graph exist, but they are intricate and the asymptotic
complexity improvement is not clear cut. For example, Ghosh and Mount [10]
give an O(F 4 Vlog V) time algorithm for constructing a visibility graph with
E edges over a set of obstacles with V' vertices. Note that the usual tangent-
visibility graph construction is not sensitive to the number of vertices V but
rather to the number of obstacles n, and that the visibility graph may contain
O(n?) edges.

(a) The edge routing (b) The corresponding KD-tree with compound ob-
stacles enclosed.

Fig. 2. An edge between two nodes a and b, routed using a tangent-visibility graph
over a simplified set of obstacles and the corresponding KD-tree. The labels indicate:
‘h’-a horizontal split internal node; ‘v’-a vertical split internal node; and ‘I’-a KD-tree
leaf-node.

3 A spatial-decomposition routing scheme

The most expensive part of the routing schemes described above is the O(n? log n)
construction of the tangent-visibility graph over n nodes with convex boundaries.
Therefore, the first new idea we explore in this paper is a scheme for routing
over simpler visibility graphs using a spatial partitioning scheme. The intuition
is to replace groups of nodes (especially those that are far from the end nodes
of the edge being routed) with their convex hulls, thus reducing the number of
obstacles to consider in construction of the visibility graph. For example, see
Figure 2.

To achieve this we need to obtain a recursive spatial partitioning of the nodes
such that the convex hulls of the nodes in each partition are not overlapping with
their siblings in the partition hierarchy. To be precise, recursive application of a
spatial partitioning to nodes positioned in the plane gives a tree structure where
each tree node at level k in the tree has children on level k 4+ 1. We use desc(T)
to denote the set of all leaf nodes (the original nodes in our graph) that are
contained in a particular tree node 7. We require that for any tree node U at
level k in the tree, the convex hull of desc(U) must not overlap with the convex
hull of desc(V') for any other tree node V also at level k, i.e. a sibling of U.

In order to achieve a reasonable asymptotic complexity, we also require that
the tree be balanced. Obtaining such a tree for a given arrangement of nodes may
be difficult or impossible. However, if we are willing to allow a little adjustment of
node positions then we can enforce separation of siblings in a balanced KD-tree
partitioning [2].

3.1 KD-tree Partitioning

Our spatial-decomposition routing scheme begins with a starting configuration
of nodes obtained with any layout algorithm, the examples in the paper were

arranged using a fast-force directed approach. The bounding boxes of nodes can
be initially overlapping as overlaps are removed by the first step, see Section 3.2.
We build a KD-tree structure for these initial node positions as follows.

Fig. 2 shows an example of routing around simplified convex hulls and the
KD-tree used to generate this routing. The KD-tree has internal nodes and leaf
nodes, where an internal node has two child KD-tree nodes and a leaf node has
two copies of the list of nodes from our original graph, one sorted by z-position,
the other sorted by y-position. The KD-tree is built by initially constructing a
single leaf node with lists containing all original graph nodes. We then recursively
split the leaves either horizontally or vertically across the median element in the
appropriate sorted list, and insert a new internal node as parent of these new
leaves in the emerging hierarchy. We follow Lauther [11] in choosing to do a
horizontal split if the bounding box of the elements in the leaf node is wider
than tall, and vice versa otherwise, in order to keep the aspect ratio of leaf
bounding boxes roughly square. We continue splitting until leaves are all smaller
than some arbitrary bucket-size B. Initially sorting the n graph nodes by x- and
y-position takes O(nlogn) time. The sortedness of lists for new leaf nodes can
be maintained by copying them in order from their parents. The tree is balanced
since we always split across the median element, so O(log n) splits are performed.
Thus, construction of the KD-tree requires O(nlogn) time.

3.2 Removing overlaps

The routing scheme that follows requires that nodes in the KD-tree do not
overlap their siblings. We first remove overlaps between the B children of each
leaf node in the KD-tree, i.e. the original graph nodes. A number of methods
for effectively resolving overlaps between rectangular bounding boxes exist. We
use the quadratic-programming based method of [5] since we find that it leads
to relatively little displacement of nodes from their starting positions.

Next we must remove overlaps between the bounding boxes of the children of
internal nodes. Each internal node ¢ has two children as the result of a split. If the
split was horizontal then we resolve overlap horizontally. That is, if the amount of
horizontal overlap o, = rightSide(le ftChild(i)) — leftSide(rightChild(i)) > 0,
then we translate le ftChild(i) by —op/2 and rightChild(i) by op/2. We resolve
overlap in the same manner vertically if ¢ was constructed with a vertical split.
All internal nodes are processed in this way, proceeding bottom-up.

Since we move each (graph) node up to logn times, the running time of this
overlap removal step is O(nlogn).

3.3 Computing convex hulls

The next step is to compute convex hulls around the descendents of each internal
node. Again, this is computed bottom up. It is possible to compute the convex
hulls of all internal nodes in the KD-Tree in O(nlogn) total time using the
linear time hull merging method of Preparata and Hong [12]. However, we use a
naive application of Graham Scan to calculate internal node hulls of the points in

child hulls in O(n log? n) total time since the overall complexity of edge routing is
dominated by the computation of visibility graphs anyway. In the sequel, hull(7)
refers to the precomputed convex hull of internal node 1.

3.4 Simplified Visibility Graphs

Using the KD-tree of non-intersecting convex hulls described above we are able
to construct a simplified visibility graph for all edges between a particular pair
of leaves. Procedure leaf-obstacles returns a list of obstacles for any two leaves
u and v in the KD-Tree T

leaf-obstacles(u, v, T)
U < the set of nodes of the shortest path between v and v in the KD-tree
w «— the lowest common ancestor of w and v
H «— {hull(sibling(i))|i € U \ {u,v,w}}

return H U {hull(c)|c € children(u) U children(v)}

Where sibling(i) returns the sibling of internal node ¢ and children(u) returns
the original graph nodes that are children of leaf node w.

Lemma 1. Procedure leaf-obstacles returns O(logn) obstacle hulls.

Proof. If the mazximum bucket size B = 1 then the height of the balanced KD-tree
T is logn in which case the hulls returned by leaf-obstacles are just the siblings
of the ancestors of u and v up to the lowest common ancestor. The worst case is
that the lowest common ancestor of u and v is the root of T, resulting in 2logn
obstacles. In practice we use B ~= 10 which results in up to 2(logn —log B+ B),
i.e. also O(logn) for B << n. O

3.5 Routing edges

First we group edges by the (unordered) pair of leaves in KD-Tree T of their end
nodes. For each group of edges between KD-Tree leaves u and v we generate the
visibility graph over leaf-obstacles(u, v, T). This takes time O(log? n loglogn).

4 A sparse visibility-graph spanner

An alternative approach for edge routing in a large graph that we explore is
the one suggested by [3]. This approach uses so called Yao graphs which are
built by using fans of cones. A fan of cones is constructed at each vertex of
an obstacle and only one edge of the visibility graph is chosen per cone. The
resulting spanner graph contains only O(”*) edges where n is the number of
vertices of the graph and « is the cone angle. In spite of the graph sparseness for
every € > 0 one can choose angle « such that for each shortest path in the full
visibility graph the length of the corresponding shortest path in the spanner is
at most (1 + €) of the length of the former [3]. We construct the spanner graph
by a direct method rather than by following the suggestion of [3] to build the

Fig. 3. Bold-dashed segments depict the edges created by one sweep.

conic Voronoi diagram first. We have not found the details of this algorithm for
building such a spanner graph in [3] or in literature.

The technique presented here is a sweepline algorithm. One sweep finds edges
inside cones constructed with the inner angle a and the bisector pointing to
the direction of the sweep. By performing Z sweeps we cover all possible edge
directions from 0 to w. The input for the algorithm is the set P of convex
mutually disjoint polygonal obstacles, the angle o and a vector representing the
cone bisector direction (sweep direction). We say that a vertex w is visible from
vertex v if u # v and the line segment uv does not intersect the interior of a
polygon in P. This way the neighbor vertices of an obstacle are visible to each
other, and a side of an obstacle can be taken as an edge of the visibility graph.
For the sake of simplicity the following explanation assumes further that the
bisector coincides with the vector (0,1) and therefore the sweepline is horizontal
and processing is from bottom to top. For points a = (ay, a) and b = (bs, by) we
say the cone distance between them is |b, — a,|. Let V be the set of the vertices
of P. For v € V we denote by C, the cone with the apex at v, bisector (0, 1),
and angle « and by Vis, the set of vertices from V N C,, which are visible from
v. For each v € V with Vis, # 0 the algorithm finds u € Vis,, which is closest to
v in the cone distance, and adds the edge (v,u) to the spanner graph, see Fig.
3.

The algorithm works by processing events as the sweepline moves up. There
are the following types of events (see Fig. 4(a)):
lowest vertex at the leftmost lowest vertex of an obstacle;
left vertex at a vertex that can be reached by a clockwise walk on obstacle edges

starting from the vertex of a lowest verter event and stopping at the rightmost

highest vertex;
right vertex at a vertex that can be reached by a counterclockwise walk starting at
the vertex of a lowest vertex event and stopping at the vertex before the rightmost
highest vertex;
left intersection at the lowest intersection of a left cone side and an obstacle;
right intersection at the lowest intersection of a right cone side and an obstacle;
cone closure see below.

Events are kept in a priority queue @ with those sited at the lowest y-
coordinate taking highest priority. For each cone participating in a sweep we
keep pointers to its left and right sides. A cone side can be a default cone side,

AN
/

——

K
(a) Events (b) Cone sides

Fig. 4. (a) Stars are lowest vertex events; circles labeled L and R are left and right
vertex events; diamonds labeled L and R are left and right intersection events (b)
Dotted lines show the default cone sides, Dashed lines - broken cone sides that are
created at vertex events, solid lines - broken cone sides that are created at intersection
events.

[

(a) Cone closure event (b) Missing bro-
ken side

Fig.5. (a) The arrow points to a cone closure event. After such an event the cone is
discarded. (b) The lower cone is discarded after discovering the vertex that completes
the grey edge. The cone’s left broken side is removed from LCS and the intersection
marked by the arrow is not detected.

i.e. a ray starting at the cone apex at angle &5 to the y-axis, or it could be a
ray along an obstacle side if the cone is partially obscured by the obstacle as
demonstrated by Fig. 4(b). We call such a cone side a broken side. Now we can
define a cone closure event as an event happening when a broken side intersects
a default cone side of the same cone, see Fig. 5(a). For a broken side we keep a
pointer to its default cone side.

4.1 Balanced trees of active cone sides and obstacle segments

During the sweep we maintain a set of active cones. An active cone with its apex
at a vertex is constructed at the vertex event. It is discarded when completely
obstructed by an obstacle or when a visible vertex is discovered inside of the
cone. We keep left cone sides of the active cones in a balanced tree LC'S, and
their right cone sides in a balanced tree RC'S. The processing order guarantees
that no two default active left (right) sides intersect. We also know that the
cone side that we search for, insert into or remove from the tree must intersect
the sweepline. This allows us to define the following order between cone sides
a and b where x is the intersection of a with the sweepline. If x is to the left

of b then a < b, else if = is to the right of b then a > b. Otherwise, if a and b
are both broken sides, then compare the default cone sides they point to, else
we are comparing a broken side and a cone side; in LC'S the default left cone
side is less than the broken cone side, and in RC'S the default right cone side
is greater than the broken side. When looking for element a in a tree, inserting,
or removing the element, we only need to compare a with elements of the tree
and no other comparison is done. This observation will help us to overcome a
difficulty arising later.
Trees LC'S and RC'S serve to find
active cones “seeing” a vertex. An- ‘
other function of the trees is calcula-]
tion of intersection events. However, ao
as shown at Fig. 5(b), a broken side y
containing an intersection event site
can be removed before the intersec-
tion is found. To work around this ‘
we maintain two additional balanced
trees called LS and RS. The members Fig.6. FindConesSeeingEvent: Cone side b is
. the first in RCS not to the left of e. Side a first
of these trees are called active obsta- takes the value of ag then a;. The two cones
cle segments; they are line segments marked by an arc-segment “see” e.
connecting two adjacent vertices of an
obstacle which are intersected by the current sweepline. Members of LS are seg-
ments traversed on the clockwise walk from the lowest vertex to the top of the
obstacle and the remaining obstacle segments are members of RS. An active
segment is added to the tree when its low vertex is processed and removed when
its top is processed. Elements of LS (RS) are called left (right) active segments.
The order of the segments in LS and RS is defined by the z-coordinates of
the intersections of the segments and the sweepline. We call a segment almost
horizontal if the absolute value of the difference between the y-coordinates of
its start and end point is less than some small positive € set in advance. Almost
horizontal segments are not included in LS and RS since their intersections
with the sweepline are not well defined, since we assume that the sweepline is
horizontal. The order is well defined since the obstacles are disjoint.

4.2 Algorithm description

The main loop of the algorithm is described below.

Sweep (P, a, bisector)
initialize queue @ by all lowest vertex events
while @ is not empty
e «— pop event from @
ProcessEvent(e)

Routine ProcessEvent proceeds according to the event type. If the event is a
cone closure then we discard the cone. However, it can happen that the cone of
a cone closure event has been discarded earlier when a visible vertex was found

inside the cone. To handle this we keep a Boolean flag associated with a cone
and set it to true when the cone is removed. In the case of a cone closure event
if flag is not set we remove the cone; that is, its left and right sides are removed
from LCS and RCS respectively.

We describe in detail only the event handlers Left VertexEvent and LeftIn-
tersectionEvent since other events are symmetric, with the exception of lowest
vertex. We explain this exception below.

LeftVertexEvent(e)
move the sweepline to the site of e
FindConesSeeingEvent(e)
CloseConesByHorizontalSegment(e)

remove from LS the segment incoming into e clockwise
AddConeAtLeftVertex(e)

The procedure FindConesSeeingEvent finds all cones that “see” the site of
e, creates the corresponding edges and discards the cones, see Fig. 6.

FindConesSeeingEvent(e)
b « the first right cone side in RC'S which is not to left of e
if b exists
a < the left side of the cone of b
while a is defined and a is not to the right of e
create the edge from the apex of the cone of a to the vertex and remove the cone
a « the successor of a in LCS

Procedure CloseConesByHorizontalSegment handles the case when the
obstacle side going clockwise and ending at the vertex of event v is almost
horizontal. It finds all cones obstructed by the segment. Since by this time we
have removed all cones “seeing” v or “seeing” the start of the segment, every
cone with a side intersecting the segment is completely obstructed by it. Tree
RC'S, for example, can be used to find all such cones in an efficient manner.

In AddConeAtLeftVertex we try to create a cone, enqueue events, and
add a segment to LS. Let v be the vertex of e, and u is the next one on the
obstacle in the clockwise order. We enqueue a left vertex event for w if it is not
below v. The cone is created at v only when it is not completely obscured by the
obstacle. The left side of the cone is a default side: for this side we look for the
intersection with the last segment of RS to the left of v. If the right cone side
is a default cone side we look for the intersection of it with the first segment of
LS to the right of v. If the right side of the cone is an obstacle side we check
for its intersection with the last segment of RC'S which is to left of v. If the
cone is created we add new cone left (right) side to LC'S (RC'S). If the segment
[v,u] is not almost horizontal and points to the left of the default right cone side
starting from v then the segment is added to LS as a left active segment. An
obstacle segment which does not point to the left of the default right cone side
is not inserted into LS since no default right cone with the apex different from
v can intersect it without first intersecting the obstacle at some other segment.

At a lowest vertex event we do almost all the work of a left vertex event and
a right vertex event. However, since the lowest vertex is the first one examined
on the obstacle we do not try to close cones by the horizontal obstacle segments
adjacent to the vertex. When processing a right vertex event we enqueue the next
right vertex event only in the case when the segment from the event vertex to

the next vertex going counterclockwise on the obstacle is not almost horizontal;
this way we avoid processing a top vertex of an obstacle twice.

Let us describe the way LeftIntersectionEvent works. This procedure deals
with the intersection of a default left cone side and a right obstacle segment.

LeftIntersectionEvent(e)
c «— the cone side of e
x < the intersection point of e
s < the obstacle segment of e
u < the top point of s
if the cone of ¢ is not removed
if segment [z, u] is almost horizontal
remove the cone of ¢
move the sweepline to the event site
else
RemoveFromTree(c, LCS)
move the sweepline to the event site
t < new broken side [z, u]
replace ¢ by t in the cone and insert ¢ into LC'S
m « the successor of t in LCS
if m exists and intersects ¢
enqueue the new left intersection event

if ¢ intersects the cone right side and the intersection point is below u
enqueue a new cone closure event at the intersection point

RemoveFromTree, in most cases, triv-
ially removes the cone side from the tree. How-
ever, it can happen that the sweepline passes
through the intersection point of an intersec-
tion event before we start processing it. In
this case the removal might fail since the tree
is not ordered correctly. The remedy here is
to lower the sweepline temporarily by some
value (but not lower than the start of the cone
side being removed), remove the cone side and
then restore the sweepline. The comparison
of the cone sides still works since the lowered
sweepline intersects the first cone side under
comparison, see Fig.7.

4.3 Performance of the sweep

LI\ /

«
o

~
S

Fig.7. Lowering the sweepline tem-
porarily when removing the cone side
at an intersection event. The right cone
side (dashed) is being removed.

Let n be the number of vertices of obstacles from P. The number of events is
O(n) since there are n vertices producing not more than n cones and each cone
creates at most three events: two intersection events and one closure event. The

trees never have more than n elements each.

Each search on the trees takes

O(logn) steps. Operations “successor” or “predecessor” on the trees also take
O(logn) steps. In FindConesSeeingEvent and in CloseConesByHorizon-
talSegment we walk the tree by moving to the cone side successor until some
condition holds. We can potentially make O(nlogn) steps per call. However, for
each processed cone side we remove the corresponding cone, so the routines can-
not make more then O(nlogn) steps during the whole algorithm run. Therefore
the overall number of steps of the algorithm is O(nlogn).

5 Spline refinement

At the final stage of our routing algorithm we “beautify” the spline. The detailed
discussion of this stage is beyond the scope and space limitations of this paper,
but on a very high level we do the following steps; shortcutting, relaxation and
fitting. In shortcutting we try to skip each internal vertex of the shortest path by
removing it and checking that the path still does not intersect the interior of an
obstacle. Intersections are checked efficiently using a binary space partitioning.
In relaxation we modify the path in such a way that it does not touch the
obstacles anymore. In fitting we inscribe cubic Bezier segments into the corners
of the shortest path. We have not carefully proven asymptotic complexity of
these steps but in practice we find only a fraction of the full routing time is
spent in refinement.

6 Experimental results

We tested routing over various combinations of spanner visibility graphs and KD-
tree partitioning for several different graphs of very different sizes. Please see our
appendix for more detailed results, but in summary, we find that the two methods
proposed in this paper are complementary or can be used in isolation to achieve
significant speed-up. For a large graph with 1138 nodes and 1458 edges shortest-
path edge routing over the standard tangent-visibility graph took around 95
seconds. Routing over a spanner visibility graph with 10° cones reduced this
time to 43 seconds, including time spent in spline refinement. With 45° cones,
this was further reduced to 34 seconds. Increasing cone size was found to increase
the longest edge length - by up to 7% for 45° cones, however the short-cutting
step in our spline refinement phase was very effective at keeping average edge
lengths relatively short. At a cursory glance the quality of the spanner-visibility
graph routing together with refinement is close to the optimal shortest path
routing. Routes that are slightly longer than necessary (for example following
the side of an obstacle when a more direct route is possible) are only noticeable
with careful inspection, e.g. see Fig. 8.

Adding the KD-tree routing scheme was found to add a further, very signif-
icant, speed-up. Using a 45° cone spanner as well as KD-tree, routing the 1458
edges of our largest graph took only 5 seconds (compared to 95 seconds opti-
mal routing). The extra “spreading-out” of nodes due to the spatial partitioning
scheme, and the resultant increase in edge length (around 20% on average), was
noticeable (e.g. see Fig. 1), but less so for the very large graph.

7 Conclusion and Further Work

This paper represents the first attempt of which we are aware of using a spanner
visibility graph scheme in routing of graph drawings. We achieve very significant
speed-up with only marginal degradation in route quality so in future we intend
to use it by default with a largish cone-size of 30° for all routing. The only

'I Dietmar Ku Il Dietmar ku ‘| Dietmar Ku
] []]
Wolfgang [Wer] Wolfgang | Wer [}l Woligang l wen
Roeller Roeller Roeller
b)

I
|
(a) Optimal (b) 30° cone spanner (c) Spline smoothing

Fig. 8. Detail from routing over the GD’08 “Companies” contest graph. (a) shows
the optimal shortest path routing (b) an edge that follows the side of a shape rather
than taking the optimal shortest path when routed using a 30° cone spanner (c) spline
smoothing makes this path seem less bad. Even so, such non-optimal routes are rela-
tively rare thanks to short-cutting (see Sec. 5).

disadvantage of the spanner visibility graph scheme is that it is quite complicated
to implement. However, in this paper we have given more implementation details
than we have found in the literature.

The KD-tree routing scheme is novel as far as we are aware. This gave us very
significant speed improvement and was found to be particularly fast when used
in combination with the spanner visibility graph scheme. The only disadvantage
is that additional adjustment of nodes is required which may make it impractical
(for example) in interactive scenarios where too much layout adjustment would
spoil the user’s mental map.

We were also pleased with the results of our spline refinement strategy when
applied to spanner visibility graph routing. In the future we intend to do further
analysis and improvement of algorithmic complexity of this step which currently
could be high in the worst case, especially our short-cutting strategy.

References

1. Battista, G.D., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms
for the Visualization of Graphs. Prentice Hall (1999)

2. Bentley, J.L.: Multidimensional divide and conquer. Communications of the ACM
23(4), 214-229 (1980)

3. Clarkson, K.L.: Approximation algorithms for shortest path motion planning. In:
STOC ’87: Nineteenth. New York, New York (May 1987)

4. Dobkin, D.P.; Gansner, E.R., Koutsofios, E., North, S.C.: Implementing a general-
purpose edge router. In: Proc. 3" Int. Symp. Graph Drawing (GD’97). LNCS, vol.
1353, pp. 262-271. Springer (1998)

5. Dwyer, T., Marriott, K., Stuckey, P.J.: Fast node overlap removal. In: Proc. 13th
Intl. Symp. Graph Drawing (GD ’05). Lecture Notes in Computer Science, vol.
3843, pp. 153-164. Springer (2006)

6. Dwyer, T., Marriott, K., Wybrow, M.: Integrating edge routing into force-directed
layout. In: Proc. 14th Intl. Symp. Graph Drawing (GD ’06). Lecture Notes in
Computer Science, vol. 4372, pp. 8-19. Springer (2007)

7. Dwyer, T., Marriott, K., Wybrow, M.: Topology preserving constrained
graph layout. In: Proc. 16th Intl. Symp. Graph Drawing (GD’08). Lecture
Notes in Computer Science, vol. 5417, pp. 230-241. Springer (2009), URL
http://www.csse.monash.edu.au/ tdwyer/topology.pdf

10.

11.

12.

13.

Freivalds, K.: Curved edge routing. In: Proc. 13" Int. Symp. Fundamentals of
Computation Theory. LNCS, vol. 2138, pp. 126-137. Springer (2001)

Gansner, E.R., North, S.C.: Improved force-directed layouts. In: Proc. 6" Int.
Symp. Graph Drawing (GD’98). LNCS, vol. 1547, pp. 364-373. Springer (1998)
Ghosh, S.K., Mount, D.M.: An output-sensitive algorithm for computing visibility.
SIAM Journal on Computing 20(5), 888-910 (1991)

Lauther, U.: Multipole-based force approximation revisited - a simple but fast
implementation using a dynamized enclosing-circle-enhanced k-d-tree. In: Proc.
14" Intl. Symp. on Graph Drawing (GD’06). LNCS, vol. 4372, pp. 2029 (2007)
Preparata, F.P., Hong, S.J.: Convex hulls of finite sets of points in two and three
dimensions. Communications of the ACM 20(2), 87-92 (1977)

Wybrow, M., Marriott, K., Stuckey, P.J.: Incremental connector routing. In: Proc.
13*" Int. Symp. Graph Drawing (GD’05). LNCS, vol. 3843, pp. 446-457. Springer
(2006)

8 Appendix: Detailed Results

Path type Time Max. Increase Mean. Increase

«» Optimal 94.73 0% 0

S 10° cones 42.74 0.2% 0

f‘; B 20° cones 38.23 0.5% 0
& g 30° cones 36.23 3.5% 0
w — 45° cones 33.87 7.0% 0
& & Optimal + KD-Tree 9.76 201% 16%
2 ZO 10° cones + KD-Tree 8.22 201% 16%
= o 20° cones + KD-Tree 6.40 201% 16%
g 30° cones + KD-Tree 5.51 201% 16%

45° cones + KD-Tree 5.07 201% 16%

= Optimal 1.59 0% 0
£ & 10° cones 1.12 0.8% 0
2 5 20° cones 1.04 2.6% 0
'qé 2 30° cones 0.98 2.6% 0
g a 45° cones 0.97 6.3% 0
£ & Optimal + KD-Tree 1.22 179% 23%
8 ZO 10° cones + KD-Tree 1.16 179% 23%
% o 20° cones + KD-Tree 0.89 179% 23%
A = 30° cones + KD-Tree 0.78 179% 23%
o 45° cones + KD-Tree 0.76 179% 23%
= Optimal 0.38 0% 0
£ 2 10° cones 0.26 4.2% 0
i E%D 20° cones 0.23 4.2% 0
% 5 30° cones 0.23 3.5% 0
~ = 45° cones 0.23 7.0% 0
€ 8 Optimal + KD-Tree 0.31 231% 20%
S E 10° cones + KD-Tree 0.21 231% 20%
x = 20° cones + KD-Tree 0.19 231% 20%
A & 30° cones + KD-Tree 0.19 231% 20%
&} 45° cones + KD-Tree 0.18 231% 20%

Table 1. Routing performance results under various conditions for different graphs.
Time is in seconds. Percentage edge length increases are calculated by 100 x
(Approzimate — Optimal)/Optimal).

The results were obtained by using C# on a standard PC with a 2.1 GHz
processor and 4 GB of memory.

(a) Edges routed with a spanner visibility graph using a cone angle of 20 degrees.
Routing quality is virtually indistinguishable from the optimal shortest path
routing.

(G}
©

2o
‘ECU

-0

(b) Using the spatial decomposition method much faster routing is possible
but some adjustment of the layout occurs and edge routes are potentially more
circuitous.

Fig. 9. A large Matriz Market graph (1138Bus) with 1138 nodes and 1458 edges routed
using the methods described.

