Automatic Rootcausing for
Program Equivalence Failures
INn Binaries

Shuvendu K. Lahiri (Microsoft Research)
Rohit Sinha (UC Berkeley)
Chris Hawblitzel (Microsoft Research)



Large scale program equivalence checking

* Compiler translation validation
* [Pnueli et al. TACAS’98, Necula PLDI'0O0, ...]

e Cross-version verification
e [Godlin & Strichman DAC’09, Lahiri et al. CAV’12,...]

* Verifying student solutions against reference
implementations
* [Singh et al. PLDI13]



Motivation: Rootcausing equivalence failures

* Provide effective feedback to users of the tool
* Dealing with thousands of equivalence failures

* Compiler translation validation
 Same alarm manifests in hundreds of test programs

* Comparing student attempts
* Many students often make similar mistakes



Application: Compiler validation
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Versions

* Validating the CLR .NET compiler [Hawblitzel, Lahiri et al. FSE'13]
* SymDiff to compare two assembly/binary programs



Verification flow
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Bucketization of equivalence failures

* Almost 500,000 test C# methods pushed through the tool

* Was applied by CLR test team for several months, found real bugs
* Even 1-2% false alarm =» ~several thousand warnings

* Main ask from users
* Need to group failures into a small number of buckets

* Each bucket captures one source of equivalence failure
e Different manifestations of the same bug
* Different manifestations of same false alarm



False alarms

e Often due to modular checking and missing domain-knowledge
* Concrete addresses
e 0x004fe208 vs 0x003dd484
Different memory layout by the compiler
* Field stored in two different offsets: [eax + 4] vs. [eax + 32]
Aliasing assumptions known only to the compiler
e Store to address x does not modify address y

Side effects of procedures
* A procedure call does not modify certain heap locations
* Purity
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Prior works

This work
Verified rootcause
(for equjvalence)

Fault localization

Program Repair

(Jose et al. PLDI'1], ..) (Nguyen et al. ICSE’13, Singh et
al. PLDI'13, ...
- Provides a program - Need to repair the
slice (often large foreq —— program
checking of binaries) | - Needs a template of
- Little guarantee repair

- Scalability



Wish list for rootcausing

* Formalize a valid rootcause at Boogie level (and thus can verify)
* Points out the first pair of instructions where programs diverge

* Automatic
* Providing templates difficult for failures due to modeling imprecision

* Can express domain knowledge at the Boogie level

* |deas can be agnostic to the source programs
* Reusable for other programs (x86/ARM/x64/C/Java)



This talk

* Formalization of rootcause for equivalence failures
* For structurally similar programs

* Dealing with the need for multiple fixes

* Implementation
e Optimizations (MAXSAT, Binary search)

e Evaluation



Example

procedure pl(M:[int]int, x:int)

returns

{

M1 :
r5 :

M1,

rl :

M1,

Optimization: Remove redundant load

rl := £(M1, r5);

rl
return;

(rl:int, M1:[int]int)

M1[x];

//call f
//mov rl, r5
//call g

:= f(M1, rl);

Optimized

Equivalence does not hold if
f can modify M1 at x

procedure p2(M:[int]int, x:int)
returns (r2:int, M2:[int]int)
{
M2
ré :

M;
M2[x]; //1d ré6, [x]

M2, r2 := f(M2, r6); //call f

r2 := M2[x]; //1d r2, [x]
M2, r2 := g(M2, r2); //call g
return;

Insight: Fix p2 by using

values computed by p1
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Rootcause definition

* For procedures P1, P2 and a counterexample, a fix (L,R) is a pair of
assignments L: x :=e (in P1), and R: y := e’ (in P2) such that

1. replacing e’ (in P2) with the value of e at L (in P1), makes P1 and P2
equivalent, and

2. (L, R) is the earliest such pair satisfying (1)

* Note that a “fix” does not repair P2
* Not the same as replacing expression e’ with e



Captures the

Example value from p1

const r5@0: int;
procedure pl(M:[int]int, x:int)
returns (rl:int, M1:[int]int)

{
M1 := M;
r5 := M1[x]; //1d r5, [x]
assume r5@0 == r5;

M1, rl := f(M1, r5); //call f

rl := r5; // mov rl, r5
M1, rl := f(M1, rl); //call g
return;
}
« e [ ]
OptlmIZEd ]

Optimization: Remove redundant load

Replaces the
value in p2

procedure p2(M:[int]int, x:int)
returns (r2:int, M2:[int]int)
{

M2 := M;
ré := M2[x]; //1d r6, [x]
M2, r2 := f(M2, r6); //call f
r2 := M2[x]; //1d r2, [x]
r2 := r5@o;
M2, r2 := g(M2, r2); //call g
return;
}
Extra load



Instrumentation

* Left program

For each scalar assignment instruction [ : x := e with a label [ € L, we transform
it to:
[ : X := e;assume(AG] = x)
e Right program
For each assignment instruction r : x := e with a label » € K, we transform it to:

r.x:—e; x:=7./ #Qr: x; assume /\ [,-':Ti = X = H@Q[)
leL
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Benefit of the formulation

* Naturally captures debugging equivalence failures
* Provides a program pair that helps with debugging
* Useful for bucketization

e Automatic (when such a pair exists)
* Do not need to solve the (more difficult) repair problem
* Exploits the similarity of computations on both sides



Challenge: multiple fixes

* TWO cases
* Single fix along multiple paths
* Multiple fixes along single path



Single fix along multiple paths

* Fix only one path in the left program

* Formally: rootcause verified for all inputs that exercise the counterexample
path in the left program (weaker guarantee than all inputs)

* May take the right program along a different control flow path

* Exploits the structural similarity of the two programs

* Unlike previous work that treats one program as a black-box [Singh et al.
PLDI‘13], hence need to repair the entire program



Multiple fixes along a path

* Encode domain knowledge as additional preprocessing
* Weaken the equivalence check

1. Fix intermediate synchronization points
 E.g. State of the heap has to be identical after procedure calls

* Weaken the final equivalence check with intermediate equivalence
that failed

2. Constrain callee summaries Can be expressed
as preprocessing

of Boogie
programs




Constraining Callees : Weaker Fix

procedure pl(M:[int]int, x:int)
returns (rl:int, M1:[int]int)

{
M1 := M; rl := M1[Xx];

assume M1@0 == M1;
M1, rl := getLength(M1, rl);
[ -

assume M1 == M1@0; //no side-effect on heap

assume rl@o == ril;

if (rl1 > 9) {
M1, rl := writeToFile(M1, rl);
}

}...

procedure p2(M:[int]int, x:int)
returns (r2:int, M2:[int]int)
{

M2 := M; r2 := M2[x];

r2 := M2[r2 + 8];

r2 := ri@o;

if (r2 > 0) {
M2, r2 := writeToFile(M2, r2);
}

Domain knowledge: If a callee (e.g. getLength) appears in only one of the programs,

treat it as side-effect-free
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MAXSAT-based optimization

* If P1 and P2 have n assignments each, our naive algorithm explores
O(n?) candidate fixes.

* Only a small set of candidate pairs actually fixes P2

 How do we prune away the rest? (difficult to get concrete runs due to
uninterpreted functions)

* Pose it as a MAXSAT problem for any assignment in P2

For each assignment instruction r : X := e with a label r» € K, we transform it to:

r:x:=e; X:=7.!HQr: x; assume /\ ['ff, = x = Q]
€L




Effect of MAXSAT optimization

* Average 49% improvement in runtime, and 4x reduction in the
number of candidates

#candidate fixes with MAXSAT
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Evaluation

* A representative sample of benchmarks from earlier work

* JIT vs. compiled binaries

* Average of 165 assembly instructions (1242 Boogie statements) per
procedure

* Found rootcause in 34/46 benchmarks (74% of cases)

* X86 vs. Optimized x86

* Average of 68 assembly instructions (510 Boogie statements) per
procedure

* Found rootcause in 12/15 small benchmarks (80% of cases)



Conclusion

* Natural formulation of verified rootcause for equivalence failures of
similar programs
* Automatic
* Can be extended to several cases requiring multiple fixes
* Rootcause integrated into SymDiff Codeplex

* Future Directions:
* Combine with CEGIS (multiple fixes)
* Application to automatic grading of student submissions in MOOQOCs

http://research.microsoft.com/symdiff
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http://research.microsoft.com/symdiff

Questions



