
Automatic Rootcausing for
Program Equivalence Failures
in Binaries

Shuvendu K. Lahiri (Microsoft Research)

Rohit Sinha (UC Berkeley)

Chris Hawblitzel (Microsoft Research)

Large scale program equivalence checking

•Compiler translation validation
• [Pnueli et al. TACAS’98, Necula PLDI’00, …]

•Cross-version verification
• [Godlin & Strichman DAC’09, Lahiri et al. CAV’12,…]

•Verifying student solutions against reference
implementations
• [Singh et al. PLDI‘13]

2

Motivation: Rootcausing equivalence failures

3

• Provide effective feedback to users of the tool
• Dealing with thousands of equivalence failures

• Compiler translation validation
• Same alarm manifests in hundreds of test programs

• Comparing student attempts
• Many students often make similar mistakes

Application: Compiler validation

X86

ARM

ARM+opt

Source

v1 v2 v3
Versions

X86+opt

v4

• Validating the CLR .NET compiler [Hawblitzel, Lahiri et al. FSE’13]
• SymDiff to compare two assembly/binary programs

Verification flow

SymDiff
(Boogie

+
Z3)

P1

P2
P2≠P1

P1 = P2

Differential program verifier for Boogie
(Programs consists of scalars and maps)

S1

C/.NET/
x86/ARM


Boogie

S2

C/.NET/
x86/ARM


Boogie

Bucketization of equivalence failures

• Almost 500,000 test C# methods pushed through the tool
• Was applied by CLR test team for several months, found real bugs
• Even 1-2% false alarm  ~several thousand warnings

• Main ask from users
• Need to group failures into a small number of buckets

• Each bucket captures one source of equivalence failure
• Different manifestations of the same bug
• Different manifestations of same false alarm

6

False alarms

• Often due to modular checking and missing domain-knowledge
• Concrete addresses

• 0x004fe208 vs 0x003dd484

• Different memory layout by the compiler
• Field stored in two different offsets: [eax + 4] vs. [eax + 32]

• Aliasing assumptions known only to the compiler
• Store to address x does not modify address y

• Side effects of procedures
• A procedure call does not modify certain heap locations

• Purity

• ….

7

8

Syntax diffs

Counterexamples +
syntactic rootcause

BUCKETS

Prior works

9

Fault localization
(Jose et al. PLDI’11, ..)

Program Repair
(Nguyen et al. ICSE’13, Singh et
al. PLDI’13, …

- Provides a program
slice (often large for eq
checking of binaries)
- Little guarantee

- Need to repair the
program
- Needs a template of
repair
- Scalability

This work
Verified rootcause
(for equivalence)

Wish list for rootcausing

• Formalize a valid rootcause at Boogie level (and thus can verify)
• Points out the first pair of instructions where programs diverge

• Automatic
• Providing templates difficult for failures due to modeling imprecision

• Can express domain knowledge at the Boogie level
• Ideas can be agnostic to the source programs

• Reusable for other programs (x86/ARM/x64/C/Java)

10

This talk

• Formalization of rootcause for equivalence failures
• For structurally similar programs

• Dealing with the need for multiple fixes

• Implementation
• Optimizations (MAXSAT, Binary search)

• Evaluation

11

Example

12

procedure p1(M:[int]int, x:int)
returns (r1:int, M1:[int]int)
{
M1 := M;
r5 := M1[x]; //ld r5, [x]

M1, r1 := f(M1, r5); //call f
r1 := r5; //mov r1, r5
M1, r1 := f(M1, r1); //call g
return;

}

Optimization: Remove redundant load

procedure p2(M:[int]int, x:int)
returns (r2:int, M2:[int]int)
{
M2 := M;
r6 := M2[x]; //ld r6, [x]

M2, r2 := f(M2, r6); //call f
r2 := M2[x]; //ld r2, [x]
M2, r2 := g(M2, r2); //call g
return;

}

Optimized Extra load

Equivalence does not hold if
f can modify M1 at x

Insight: Fix p2 by using
values computed by p1

Rootcause definition

• For procedures P1, P2 and a counterexample, a fix (L,R) is a pair of
assignments L: x := e (in P1), and R: y := e’ (in P2) such that

1. replacing e’ (in P2) with the value of e at L (in P1), makes P1 and P2
equivalent, and

2. (L, R) is the earliest such pair satisfying (1)

• Note that a “fix” does not repair P2
• Not the same as replacing expression e’ with e

13

Example

14

procedure p1(M:[int]int, x:int)
returns (r1:int, M1:[int]int)
{
M1 := M;
r5 := M1[x]; //ld r5, [x]

M1, r1 := f(M1, r5); //call f
r1 := r5; // mov r1, r5
M1, r1 := f(M1, r1); //call g
return;

}

const r5@0: int;

Optimization: Remove redundant load

assume r5@0 == r5;

procedure p2(M:[int]int, x:int)
returns (r2:int, M2:[int]int)
{
M2 := M;
r6 := M2[x]; //ld r6, [x]

M2, r2 := f(M2, r6); //call f
r2 := M2[x]; //ld r2, [x]

M2, r2 := g(M2, r2); //call g
return;

}

r2 := r5@0;

Optimized Extra load

Captures the
value from p1

Replaces the
value in p2

Instrumentation

• Left program

15

• Right program

Benefit of the formulation

• Naturally captures debugging equivalence failures
• Provides a program pair that helps with debugging

• Useful for bucketization

• Automatic (when such a pair exists)

• Do not need to solve the (more difficult) repair problem

• Exploits the similarity of computations on both sides

16

Challenge: multiple fixes

• Two cases
• Single fix along multiple paths
• Multiple fixes along single path

17

Single fix along multiple paths

• Fix only one path in the left program
• Formally: rootcause verified for all inputs that exercise the counterexample

path in the left program (weaker guarantee than all inputs)

• May take the right program along a different control flow path

• Exploits the structural similarity of the two programs
• Unlike previous work that treats one program as a black-box [Singh et al.

PLDI‘13], hence need to repair the entire program

18

Multiple fixes along a path

• Encode domain knowledge as additional preprocessing
• Weaken the equivalence check

1. Fix intermediate synchronization points
• E.g. State of the heap has to be identical after procedure calls

• Weaken the final equivalence check with intermediate equivalence
that failed

2. Constrain callee summaries

19

Can be expressed
as preprocessing
of Boogie
programs

Constraining Callees : Weaker Fix

20

procedure p1(M:[int]int, x:int)
returns (r1:int, M1:[int]int)
{
M1 := M; r1 := M1[x];

M1, r1 := getLength(M1, r1);

if (r1 > 0) {
M1, r1 := writeToFile(M1, r1);

}
...

}

procedure p2(M:[int]int, x:int)
returns (r2:int, M2:[int]int)
{
M2 := M; r2 := M2[x];
r2 := M2[r2 + 8];

if (r2 > 0) {
M2, r2 := writeToFile(M2, r2);

}

...
}

Domain knowledge: If a callee (e.g. getLength) appears in only one of the programs,
treat it as side-effect-free

r2 := r1@0;

assume r1@0 == r1;

assume M1@0 == M1;

assume M1 == M1@0; //no side-effect on heap

MAXSAT-based optimization

• If P1 and P2 have n assignments each, our naïve algorithm explores
O(n2) candidate fixes.

• Only a small set of candidate pairs actually fixes P2
• How do we prune away the rest? (difficult to get concrete runs due to

uninterpreted functions)

• Pose it as a MAXSAT problem for any assignment in P2

22

What is the maximal
subset of conjuncts that

satisfies
P1 != P2

Effect of MAXSAT optimization

• Average 49% improvement in runtime, and 4x reduction in the
number of candidates

23

Evaluation

• A representative sample of benchmarks from earlier work

• JIT vs. compiled binaries
• Average of 165 assembly instructions (1242 Boogie statements) per

procedure

• Found rootcause in 34/46 benchmarks (74% of cases)

• x86 vs. Optimized x86
• Average of 68 assembly instructions (510 Boogie statements) per

procedure

• Found rootcause in 12/15 small benchmarks (80% of cases)
24

Conclusion

• Natural formulation of verified rootcause for equivalence failures of
similar programs
• Automatic

• Can be extended to several cases requiring multiple fixes

• Rootcause integrated into SymDiff Codeplex

• Future Directions:
• Combine with CEGIS (multiple fixes)

• Application to automatic grading of student submissions in MOOCs

25

http://research.microsoft.com/symdiff

http://research.microsoft.com/symdiff

Questions

26

