Automatic Rootcausing for
Program Equivalence Failures
INn Binaries

Shuvendu K. Lahiri (Microsoft Research)
Rohit Sinha (UC Berkeley)
Chris Hawblitzel (Microsoft Research)

Large scale program equivalence checking

* Compiler translation validation
* [Pnueli et al. TACAS’98, Necula PLDI'0O0, ...]

e Cross-version verification
e [Godlin & Strichman DAC’09, Lahiri et al. CAV’12,...]

* Verifying student solutions against reference
implementations
* [Singh et al. PLDI13]

Motivation: Rootcausing equivalence failures

* Provide effective feedback to users of the tool
* Dealing with thousands of equivalence failures

* Compiler translation validation
 Same alarm manifests in hundreds of test programs

* Comparing student attempts
* Many students often make similar mistakes

Application: Compiler validation

Source
))
ARM+opt @ @
ARM D)
—
X86+opt @
—
X86 | @ ® |
vl v2 v3 v4

Versions

* Validating the CLR .NET compiler [Hawblitzel, Lahiri et al. FSE'13]
* SymDiff to compare two assembly/binary programs

Verification flow

e

A

C/.NET/
x86/ARM

9
Boogie

J |

C)
C/.NET/

x86/ARM

9
Boogie

) |

SymDiff

(Boogie
+

leferentlal program verifier for Boogie | I

(Programs consists of scalars and maps)

Bucketization of equivalence failures

* Almost 500,000 test C# methods pushed through the tool

* Was applied by CLR test team for several months, found real bugs
* Even 1-2% false alarm =» ~several thousand warnings

* Main ask from users
* Need to group failures into a small number of buckets

* Each bucket captures one source of equivalence failure
e Different manifestations of the same bug
* Different manifestations of same false alarm

False alarms

e Often due to modular checking and missing domain-knowledge
* Concrete addresses
e 0x004fe208 vs 0x003dd484
Different memory layout by the compiler
* Field stored in two different offsets: [eax + 4] vs. [eax + 32]
Aliasing assumptions known only to the compiler
e Store to address x does not modify address y

Side effects of procedures
* A procedure call does not modify certain heap locations
* Purity

BUCKETS _

O
2| EAcirdiff\SemanticDiff 2 ~ & || & Buckets for SymDiff F... {0 T

Syntax diffs

- O

] E\dIrdiffSemanticDiff © ~ & || (Y b.. () C. €15 @

eb Slice Gallery =

ks @ Suggested Sites ¥ & Web Slice Gallery » ¥ @ Suggested Sites v &)

~

Counterexamples +
yntactic rootcause

e £ EAcIrdiff\SemanticDiff\binites 2 ~ & || & AnalyzeTraces

BUCKETS: All (177) A

CHILDREN (165)

[SETemDIE “wReE] Aeet] 301
5] el wa3]]

Direct vs. indirect call (OffsetOf) (86)

3 @ Suggested Sites » &) Web Slice Gallery =

Differeﬂt fo‘SEtS (12_) 47z 000038 ZD00 cmp 5, U LB TEzm]
48: 0ODO3A DOOS beq SHORT G M55613 IGOT 7 (Fila "e: ~
43: 00DD3C 4628 mov r0, 5 \ielrdi £\ SemancicDi ££41biny \tasth\srace) \AngryBird=1) 001627
50: DOOD3E 2100 movs rl, O \\y. sasm")
EL: 000040 €803 ldr 3, [z0] 8: {Line 3)
52: 000D4Z €B1E ldr r3, [r3+s] 3: (() stm (Ptr (IncrBefore sp -16)) (Reglist r4 ¥5 ril lr)}
£3: 000044 €2DE ldr r3, [r3+1Z] 10: ({} add ri1 sp 8)
E4: DODDLE 473E blx 3 // ck: bjibeoll 11: {{} mov r4 r0)
£5: 12: () ldr ¥l (Ptr r4 64))
'\'.[] 1 tD l t - t 11 EE: C MEBE13_TG07: 13- (() mov »0 rd)
i tl{:ﬂS e Ega e V5. {:Ollstl"ll[: or (]' 57: 000048 6D23 ldr r3, [r4+801 14: {{} bl {(Symbol "c: e(ref): ref"))
58: DODD4A 3301 adds 3, 1 15: ({} mov rl rD)
59: DODDAC 6523 str ¥3, [r4+80] 16: ({}) mov r0 Dx55555555)
€0: DODD4E 4620 mov r0, rd 17: ({} bl (Symbol CORINFO HELP CEKCASTCLASS))
€1: 000050 FOOO FBO0 bl bk: au(): ref [callee = 2689, r0 1418371 = 0, rl 1418372 — 2688, Mem —
Icallee = 2065, r0 1416927 = -B44, Mem = 1329, flags = 01 1336, flaga = 01
Mismatch (Final memory state ve. final memory state)
. Cause: Different Functions (CallMem const bk$00 $ref vs CallMem const CORINFO HELP CHKCASTCLASS)
Mismatched call to CORINFO_HELP CHKCASTCLASS (10) et T G e Reb T et
= Instruction 2 :: 17: () bl (Symbol CORINFO HELD CEKCASTCLASS))
62: 000054 6803 ldr r3, [r0] 18- ({} mov r5 r0)

63: (000056 FOOO FBOO bl System Collections. Gemeric.
List1[System. _ Canon]: get_Count(): int

({s) cmp r5 0)
{{eq) b (Symbol LO))

64: ODDOSA 6DZ3 ldr ¥, [r4+80] () mov z0 £E)

65: ODDOSC 4298 cmp r0, r3 {(20) mov 1 0)

66: ODOOSE DDOC ble SHORT G MS5613_IGO8 () ldr z12 (Btx =0))

€7: 000080 2620 mov £, ré [() ldr 12 (Bor =12 48))
Unkﬂﬂwn (1“) €8: 00DDEZ FOOO FAOO bl bk: aui): ref (() 1dr r12 (Por r12 [OFfsecOf "ck: bi (boal)")))
—_— €5: 000086 6DZ1 lér rl, [rd+20] {() blx (Typed "ck: bj(bool) " r1z))

70: 000068 6203 lér r3, [x0) (Line 285)

71: 000DER FOOD FBOO bl System. Collections. Generic. {Label L0

List'1[System. _ Canonl: get_Item(int): ref (0 ldr r3 (Ptr T4 80))

72: O0DODEE 2601 wov rl, 0 ((20) add r3 r3 1)

73: 000070 F104 0040 add xd, rd, &4
74: 000074 FOOO FEOO bl CORINFO_HELD ASSIGN _REF

((} str »2 (Ptr r4 80))
() mov r0 r4)

- 75: 000078 E0O1 b SHORT G_M55€13_IGOS (() bl {Symbol "bk: au(): ref”))
Switch table (1[]) 75- (0 1ar ri2 (Bee r0})
_—m 77 G _MEBE13 IGO&: = (() ldr v12 (Ptr rlZ 44))
78 00007A 2300 mova r3, O 36: (() ldr r12 (Ptr rl12 (DffsetOf "System. Collections_
795 00DDTC 6423 st r3, [rd+64] Generic. List'1[System. _ Canonl: get_Coust(): int")})
B a7 () blx (Typed "System Collections. Ceneric. List'l
81: G_MS5613_TG0S- [System _ Canonl: get Count(): int” r12))
82:- 00007E 6C21 ldr rl, [r4+64] 1: ({) ldr r3 (Ptr r4 80))
83- 000080 4620 mow r0D, r4 39: ((s) cmp rD »3)
- 84- 000082 FOOO FBO0 bl c: e(raf) : ref 40: ({le) b (Symbol L1})
D]fferent cﬂnstants {ﬁ} 85- 000086 4601 mov rl, r0 a1: ({) mov zB £d)
56- O00DDEE 2300 cmp rl. 0 a2t [0} BL {Eymbol "Bk: aull: rafl)
87: 00008A DOOE beg SHORT G M55613 IG13 43:- {{) 1dr rl (Pcr rd BO))
Ba- 14z [() ldr r13 (Bex r0))
83° G _MEGEL3_IEL0: 152 [0} ldr £12 (Prr £12 481)
W 50: DI00BC €B0B ldr e, [r1) 181 [0) ldr £12 (Pre rlZ (Offsecof "System. Collsctions.
81 0000BE F240 0200 movw r2, LOW RELOC 0x20BT7BEC Generic. List"1[System. Canon]: get_Ttem(int): ref")])
320 0O00SZ F2C0 0200 movt r2, HIGH RELOC On20BTE6C 47: [{) Blx (Typed "System. Colleceions. Generic. List'l
335 0000BE 4233 cmp £, 12 [System. _ Canonl: get Ttemlint): ref” riZ))
{ } 54 000058 D100 bne SHORT C_ME5613_IG12 8- () mov rl ¥d)
85: 43: ({) add r0 rd €4)
365 ¢ _MESEL3_IEIL: 50t [0} bl {Eynbol CORTNFO_HELD ASSIEN REF)) b
37- 0000SA EOOE b SHORT @ MESELI ICL3 g1t [0 B (Symbal L2])

(o]

Prior works

This work
Verified rootcause
(for equjvalence)

Fault localization

Program Repair

(Jose et al. PLDI'1], ..) (Nguyen et al. ICSE’13, Singh et
al. PLDI'13, ...
- Provides a program - Need to repair the
slice (often large foreq —— program
checking of binaries) | - Needs a template of
- Little guarantee repair

- Scalability

Wish list for rootcausing

* Formalize a valid rootcause at Boogie level (and thus can verify)
* Points out the first pair of instructions where programs diverge

* Automatic
* Providing templates difficult for failures due to modeling imprecision

* Can express domain knowledge at the Boogie level

* |deas can be agnostic to the source programs
* Reusable for other programs (x86/ARM/x64/C/Java)

This talk

* Formalization of rootcause for equivalence failures
* For structurally similar programs

* Dealing with the need for multiple fixes

* Implementation
e Optimizations (MAXSAT, Binary search)

e Evaluation

Example

procedure pl(M:[int]int, x:int)

returns

{

M1 :
r5 :

M1,

rl :

M1,

Optimization: Remove redundant load

rl := £(M1, r5);

rl
return;

(rl:int, M1:[int]int)

M1[x];

//call f
//mov rl, r5
//call g

:= f(M1, rl);

Optimized

Equivalence does not hold if
f can modify M1 at x

procedure p2(M:[int]int, x:int)
returns (r2:int, M2:[int]int)
{
M2
ré :

M;
M2[x]; //1d ré6, [x]

M2, r2 := f(M2, r6); //call f

r2 := M2[x]; //1d r2, [x]
M2, r2 := g(M2, r2); //call g
return;

Insight: Fix p2 by using

values computed by p1

12

Rootcause definition

* For procedures P1, P2 and a counterexample, a fix (L,R) is a pair of
assignments L: x :=e (in P1), and R: y := e’ (in P2) such that

1. replacing e’ (in P2) with the value of e at L (in P1), makes P1 and P2
equivalent, and

2. (L, R) is the earliest such pair satisfying (1)

* Note that a “fix” does not repair P2
* Not the same as replacing expression e’ with e

Captures the

Example value from p1

const r5@0: int;
procedure pl(M:[int]int, x:int)
returns (rl:int, M1:[int]int)

{
M1 := M;
r5 := M1[x]; //1d r5, [x]
assume r5@0 == r5;

M1, rl := f(M1, r5); //call f

rl := r5; // mov rl, r5
M1, rl := f(M1, rl); //call g
return;
}
« e []
OptlmIZEd]

Optimization: Remove redundant load

Replaces the
value in p2

procedure p2(M:[int]int, x:int)
returns (r2:int, M2:[int]int)
{

M2 := M;
ré := M2[x]; //1d r6, [x]
M2, r2 := f(M2, r6); //call f
r2 := M2[x]; //1d r2, [x]
r2 := r5@o;
M2, r2 := g(M2, r2); //call g
return;
}
Extra load

Instrumentation

* Left program

For each scalar assignment instruction [: x := e with a label [€ L, we transform
it to:
[: X := e;assume(AG] = x)
e Right program
For each assignment instruction r : x := e with a label » € K, we transform it to:

r.x:—e; x:=7./ #Qr: x; assume /\ [,-':Ti = X = H@Q[)
leL

15

Benefit of the formulation

* Naturally captures debugging equivalence failures
* Provides a program pair that helps with debugging
* Useful for bucketization

e Automatic (when such a pair exists)
* Do not need to solve the (more difficult) repair problem
* Exploits the similarity of computations on both sides

Challenge: multiple fixes

* TWO cases
* Single fix along multiple paths
* Multiple fixes along single path

Single fix along multiple paths

* Fix only one path in the left program

* Formally: rootcause verified for all inputs that exercise the counterexample
path in the left program (weaker guarantee than all inputs)

* May take the right program along a different control flow path

* Exploits the structural similarity of the two programs

* Unlike previous work that treats one program as a black-box [Singh et al.
PLDI‘13], hence need to repair the entire program

Multiple fixes along a path

* Encode domain knowledge as additional preprocessing
* Weaken the equivalence check

1. Fix intermediate synchronization points
 E.g. State of the heap has to be identical after procedure calls

* Weaken the final equivalence check with intermediate equivalence
that failed

2. Constrain callee summaries Can be expressed
as preprocessing

of Boogie
programs

Constraining Callees : Weaker Fix

procedure pl(M:[int]int, x:int)
returns (rl:int, M1:[int]int)

{
M1 := M; rl := M1[Xx];

assume M1@0 == M1;
M1, rl := getLength(M1, rl);
[-

assume M1 == M1@0; //no side-effect on heap

assume rl@o == ril;

if (rl1 > 9) {
M1, rl := writeToFile(M1, rl);
}

}...

procedure p2(M:[int]int, x:int)
returns (r2:int, M2:[int]int)
{

M2 := M; r2 := M2[x];

r2 := M2[r2 + 8];

r2 := ri@o;

if (r2 > 0) {
M2, r2 := writeToFile(M2, r2);
}

Domain knowledge: If a callee (e.g. getLength) appears in only one of the programs,

treat it as side-effect-free

20

MAXSAT-based optimization

* If P1 and P2 have n assignments each, our naive algorithm explores
O(n?) candidate fixes.

* Only a small set of candidate pairs actually fixes P2

 How do we prune away the rest? (difficult to get concrete runs due to
uninterpreted functions)

* Pose it as a MAXSAT problem for any assignment in P2

For each assignment instruction r : X := e with a label r» € K, we transform it to:

r:x:=e; X:=7.!HQr: x; assume /\ ['ff, = x = Q]
€L

Effect of MAXSAT optimization

* Average 49% improvement in runtime, and 4x reduction in the
number of candidates

#candidate fixes with MAXSAT

250

N
o
o

=
(9
o

s o . WO
. ®

ou.-hs.n_n_-s ® osp

Effect of MAXSAT on #candildates /

0 50 100 150 200
#candidate fixes without MAXSAT

250

Effecfc of MAXSAT on runtime

50¢

‘gﬂ:,;:-

4 °
oo ® %

0

50 100 150 200 250 300 350 400
runtime without MAXSAT (sec)

23

Evaluation

* A representative sample of benchmarks from earlier work

* JIT vs. compiled binaries

* Average of 165 assembly instructions (1242 Boogie statements) per
procedure

* Found rootcause in 34/46 benchmarks (74% of cases)

* X86 vs. Optimized x86

* Average of 68 assembly instructions (510 Boogie statements) per
procedure

* Found rootcause in 12/15 small benchmarks (80% of cases)

Conclusion

* Natural formulation of verified rootcause for equivalence failures of
similar programs
* Automatic
* Can be extended to several cases requiring multiple fixes
* Rootcause integrated into SymDiff Codeplex

* Future Directions:
* Combine with CEGIS (multiple fixes)
* Application to automatic grading of student submissions in MOOQOCs

http://research.microsoft.com/symdiff

25

http://research.microsoft.com/symdiff

Questions

