
The Roma Personal Metadata Service

Edward Swierk, Emre Kıcıman, Nathan C. Williams,
Takashi Fukushima∗, Hideki Yoshida†, Vince Laviano and Mary Baker

Stanford University
Computer Science Department

Stanford, California USA

roma@mosquitonet.stanford.edu

Abstract

People now have available to them a diversity of dig-
ital storage facilities, including laptops, cell phone
address books, handheld devices, desktop comput-
ers and web-based storage services. Unfortunately,
as the number of personal data repositories in-
creases, so does the management problem of ensur-
ing that the most up-to-date version of any docu-
ment in a user’s personal file space is available to
him on the storage facility he is currently using.
We introduce the Roma personal metadata service
to make it easier to locate current versions of per-
sonal files and ensure their availability across dif-
ferent repositories. This centralized service stores
information about each of a user’s files, such as
name, location, timestamp and keywords, on be-
half of mobility-aware applications. Separating out
these metadata from the data respositories makes
it practical to keep the metadata store on a highly
available, portable device. In this paper we describe
the design requirements, architecture and current
prototype implementation of Roma.

1 Introduction

As people come to rely more heavily on digital de-
vices to work and communicate, they keep more
of their personal files—including email messages,

∗Visiting from Kobe Steel Ltd., Electronics Research Lab-
oratory, Kobe, Japan.

†Visiting from Toshiba Corporation, Corporate R&D
Center, Kawasaki, Japan.

notes, presentations, address lists, financial records,
news clippings, music and photographs—in a vari-
ety of data repositories. Since people are free to
switch among multiple heterogeneous devices, they
can squirrel away information on any device they
happen to be using at the moment, as well as on an
ever-broadening array of web-based storage services.
For example, a businessperson wishing to record a
travel expense could type it into his laptop, scribble
it into his personal digital assistant, or record it in
a web-based expense tracking service.

One might expect this plethora of storage options
to be a catalyst for personal mobility[13], enabling
people to access and use their personal files wher-
ever and whenever they want, while using whatever
device is most convenient to them. Instead, it has
made it harder for mobile people to ensure that up-
to-date versions of files they need are available on
the current storage option of choice. This is be-
cause contemporary file management tools are poor
at handling multiple data repositories in the face of
intermittent connectivity. There is no easy way for
a user to determine whether a file on the device he
is currently using will be accessible later on another
device, or whether the various copies of that file
across all devices are up-to-date. As a result, the
user may end up with many out-of-date or incon-
sistent copies of the same file scattered on different
devices.

There are several approaches a user can take to
solve the problems caused by storing files across sev-
eral data repositories.



Centralized file storage The simplest approach
is for a user simply to store all of his files on the
same device, thus sidestepping completely the prob-
lems of multiple storage repositories. This approach
is not for everyone. Indeed, storing all of one’s per-
sonal information—from private diaries to business
records—on the same device may be considered too
risky by some. But for others, the simplicity may
be appealing.

A user can store all of his files on a PC at home
or a workstation at work, and access them remotely
from whatever device he happens to have available
at the moment. To accomplish this, his system ad-
ministrator could set up a web server or a network
file system server such as NFS[16], which would let
him view and manipulate the file repository on the
client device via a network, using existing applica-
tions. However, the other, more challenging require-
ment is widespread, fast and inexpensive network
access. Without it, the user may be tempted to
store copies of some files on locally-accessible de-
vices, thus defeating the advantages of the central-
ized approach. While such network access may exist
someday, today we are unfortunately stuck choosing
between fast, inexpensive local networks and slow,
expensive global ones. Centralized file storage on a
stationary server is therefore impractical.

Alternatively, a user can store all of his files on
a portable device and simply carry that wherever
he goes. The device must be small enough to carry
everywhere and power-efficient enough to run for a
day or so between battery charges. It must be ca-
pable of connecting to other devices like a laptop
or PC for applications that require a larger display
and input device. Although today’s handheld de-
vices meet many of these requirements, their storage
capabilities come up short. The continuing develop-
ment of ever-more-demanding applications ensures
that users will require physically large devices to
store and manipulate their files for the forseeable
future.

Other difficulties with the centralized approach
include performance bottlenecks and potential re-
liability problems, due to the existence of a single
point of failure in the central server.

Distributed file storage A more sophisticated
approach is for a user to store his personal files on
different physical devices, and to use some mecha-
nism to link them together so that they behave as

one virtual device. By spreading files over several
devices, the user can overcome many of the deficien-
cies of the centralized approach, such as slow or dis-
connected networks, device portability constraints,
performance bottlenecks and reliability problems.
However, the coupling between devices may still
prove problematic for users who are loath to mix
their private personal files with their professional
files.

With a distributed file system a user can ac-
cess his files through the network, using existing
applications on any supported client device. Un-
like a network file system, a distributed file system
such as AFS[9] maintains storage on a set of servers
that work together, functioning as a single virtual
server while offering high performance and reliabil-
ity. The Coda system[11] adds special support for
client devices that operate while disconnected from
the network. These multiuser, enterprise-scale sys-
tems generally support only higher-end devices like
workstations, PCs and laptops. Therefore, users of-
ten maintain completely separate data repositories
for smaller, more specialized devices.

Peer-to-peer file synchronization tools[2], like
rsync[20] and HotSync[18], also manage files on mul-
tiple devices, but take a different tack from that of
distributed file systems. Rather than attempting
to unify several devices into a single virtual server,
file synchronization tools let the user explicitly copy
files between pairs of devices. Then the user can pe-
riodically invoke a synchronization operation that
propagates changes made to files on one device to
the copies on another device. While this kind of sys-
tem is well-suited to pairs of small devices that are
only occasionally connected to a network, it does
not solve the problems of tracking multiple versions
of files across many repositories.

The ideal solution would unify and centralize dis-
parate file storage repositories, while preserving the
flexibility of the distributed file storage approach.
Users should be free to copy files to any device
to ensure that the files can be found there later—
personal financial records on the home PC, digital
audio files in the car, phone numbers on the cell
phone—without having to remember which copies
reside on which devices and what copy was modi-
fied when.

Our system, Roma, provides an available, central-
ized repository of metadata, or information about a

2



single user’s files. The metadata format includes
sufficient information to enable tracking each file
across multiple file stores, such as a name, times-
tamp, and URI or other data identifier. A user’s
metadata repository may reside on a device that the
user carries along with him (metadata records are
typically compact enough that they can be stored on
a highly portable device), thus ensuring that meta-
data are available to the user’s local devices even
when wide area network connectivity is intermit-
tent. To maintain compatibility with existing ap-
plications, synchronization agents periodically scan
data stores for changes made by legacy applications
and propagate them to the metadata repository.

Related to the problem of managing versions of
files across data repositories is the problem of locat-
ing files across different repositories. Most file man-
agement tools offer hierarchical naming as the only
facility for organizing large collections of files. Users
must invent unique, memorable names for their files,
so that they can find them in the future, and users
must arrange those files into hierarchies, so that re-
lated files are grouped together. Having to come up
with a descriptive name on the spot is an onerous
task, given that the name is often the only means by
which the file can later be found[15]. Arranging files
into hierarchical folders is cumbersome enough that
many users do not even bother, and instead end up
with a single “Documents” folder listing hundreds of
cryptically named, uncategorized files. This prob-
lem is compounded when files need to be organized
across multiple repositories.

Roma metadata include fully extensible at-
tributes that can be used as a platform for support-
ing other methods of organizing and locating files.
While our current prototype clients take advan-
tage of such attributes for simple querying, several
projects have explored the use of attribute-based
naming to locate files in either single or multiple
repositories[4, 7] using arbitrarily complex queries.

The rest of this paper describes Roma in detail.
We begin by outlining the requirements motivating
our design. In subsequent sections we detail the ar-
chitecture and current prototype implementation of
Roma, as well as some key issues that became ap-
parent while designing the system. These sections
are followed by a survey of related work and a dis-
cussion of some possible future directions for this
work.

2 Motivation and design re-
quirements

To motivate this work, consider the problems faced
by Jane Mobile, techno-savvy manager at ABC
Widget Company, who uses several computing de-
vices on a regular basis. She uses a PC at work and
another at home for editing documents and man-
aging her finances, a handheld organizer for storing
her calendar, a laptop for working on the road, and
a cell phone for keeping in touch. In addition, she
keeps a copy of her calendar on a web site so it is al-
ways available both to herself and to her co-workers,
and she frequently downloads the latest stock prices
into her personal finance software.

Before dashing out the door for a business trip to
New York, Jane wants to make sure she has every-
thing she will need to be productive on the road.
Odds are she will forget something, because there is
a lot to remember:

• I need to bring the latest price list for blue fuzzy
widgets, which is probably somewhere on my di-
vision’s web site or on the group file server,
or maybe on my laptop. Jane does not want
to click her way through window after window
just to locate a single document; she should be
able go to one place to browse or search all the
documents she considers relevant, regardless of
where they are actually stored. Even though
the file server and the web site are completely
outside her control, Jane would like to use the
same tools that she uses to locate documents
on her own storage devices.

• I have to make some changes to that presenta-
tion I was working on yesterday. Did I leave
the latest copy on my laptop or on my PC at
home? If Jane copies an outdated version to
her laptop, she may cause a write conflict that
will be difficult to resolve when she gets back.
She just wants to grab the presentation with-
out having to check both computers to figure
out which version is the more recent one.

• I promised my client I’d bring along the spec-
ifications document for blue fuzzy widgets—
I think it’s called BFWidgetSpec.doc, or is it
SpecBluFuzWid.doc? If Jane could do a key-
word search over all her documents (regardless
of which applications she used to create them)

3



and over all her devices at once, she would not
have to remember what the file is called, which
directory contains it, or on which device it is
stored.

• I want to work on my expense report on the
plane, so I’ll need to bring along my financial
files. Like most people, Jane does not have the
time or patience to arrange all her documents
into neatly labeled directories, so it’s hard for
her to find groups of related files when she re-
ally needs them. More likely, she has to pore
over a directory containing dozens or hundreds
of files, and guess which ones might have some-
thing to do with her travel expenses.

To summarize, the issues illustrated by this ex-
ample are the need for a tool a user can rely on to
locate files stored on any of his devices or storage
repositories; the difficulty of keeping track of mul-
tiple versions of a file across different devices; and
the unfortunate dependence on filenames and direc-
tories for identifying and grouping files together.

These issues lead us to a set of architectural re-
quirements for Roma. Our solution should be able
to:

1. Make information about all of the user’s per-
sonal files always available to applications and
to the user.

2. Associate with each file (or file copy) a set of
standard attributes, including version numbers
or timestamps to help synchronize file replicas
and preempt many write conflicts.

3. Allow the attribute set to be extended by appli-
cations and users, to include such attributes as
keywords for searching, categories for browsing
related files, digests or thumbnails for preview-
ing file content, and parent directories for tra-
ditional hierarchical naming (where desired).
This information can be used to develop more
intuitive methods to organize and locate files.

4. Track files stored on data repositories outside
the user’s control. A user may consider a cer-
tain file as part of his personal file space even if
he did not directly create or maintain the data.
For example, even though the user’s bank ac-
count balances are available on a web site con-
trolled and maintained by the bank, he should

be able to organize, search and track changes to
these data just like any other file in his personal
space.

5. Track files stored on disconnected repositories
and offline storage media. Metadata can be
valuable even if the data they describe are un-
available. For example, the user may be work-
ing on a disconnected laptop on which resides
a copy of the document that he wants to edit.
Version information lets him figure out whether
this copy is the latest, and if not, where to find
the most recent copy upon reconnection. Al-
ternatively, if the laptop is connected on a slow
network, he can use metadata (which are of-
ten smaller in size than their associated file) to
find which large piece of data needs to be pulled
over the network.

3 Architecture

At the core of the Roma architecture (illustrated
in Figure 1) is the metadata server, a centralized,
potentially portable service that stores information
about a user’s personal files. The files themselves
are stored on autonomous data repositories, such as
traditional file systems, web servers and any other
device with storage capability. Roma-aware appli-
cations query the metadata server for file informa-
tion, and send updates to the server when the in-
formation changes. Applications obtain file data di-
rectly from data repositories. Agents monitor data
stores for changes made by Roma-unaware applica-
tions, and update file information in the metadata
server when appropriate.

Roma supports a decentralized replication model
where all repositories store “first class” file
replicas—that is, all copies of a file can be manipu-
lated by the user and by applications. To increase
availability and performance, a user can copy a file
to local storage from another device, or an appli-
cation can do so on the user’s behalf. Roma helps
applications maintain the connection between these
logically related copies, or instances, of the file by
assigning a unique file identifier (UID) that is com-
mon to all of its instances. The file identifier can be
read and modified by applications but is not nor-
mally exposed to the user.

Once the file is copied, the contents and attributes
of each instance can diverge. Thus Roma keeps

4



Metadata

server


Agent


Laptop


Web

Server


Desktop


Metadata


Data


Kiosk


PDA


Figure 1: The Roma architecture. Applications
running on each of a user’s devices communicate
with a centralized personal metadata server. Agents
track changes made to data stored on devices out-
side the user’s control, such as the web server in
this diagram, and make appropriate updates to the
metadata server.

one metadata record for each file instance. A meta-
data record is a tuple composed of the UID, one or
more data locations, a version number and optional,
domain-specific attributes. Figure 2 shows a typical
metadata record.

The data location specifies the location of a file in-
stance as a Universal Resource Identifier (URI)[22].
Files residing on the most common types of data
repositories can be identified using existing URI
schemes, such as http: and ftp: for network-
accessible servers and file: for local file systems.
When naming removable storage media, such as a
CD-ROM or a Zip disk, it is important to present a
human-understandable name to the user (possibly
separate from the media’s native unique identifier,
such as a floppy serial number).

The version number is a simple counter. When-
ever a change is made to a file instance, its version
number is incremented.

Roma-aware applications can supplement meta-
data records with a set of optional attributes, stored
as name/value pairs, including generic attributes
such as the size of a file or its type, and domain-

<metadata>
<uid>123456789</uid>
<name>
Blue Fuzzy Widget specifications

</name>
<location>
<protocol>http</protocol>
<host>anthill.stanford.edu</host>
<path>
/projects/bluestuff/BFWidgetSpec.doc

</path>
</location>
<version>12</version>
<attribute>
<key>type</key>
<value>
Microsoft Office Document

</value>
</attribute>
<attribute>
<key>keyword</key>
<value>blue</value>

</attribute>
<attribute>
<key>author</key>
<value>Jane Mobile</value>

</attribute>
</metadata>

Figure 2: A typical metadata record. This record
describes an instance of Jane’s specifications docu-
ment that resides on host anthill.stanford.edu.
The uid, name, location and version tags are
standard elements; attribute tags contain op-
tional, domain-specific attributes.

5



specific attributes such as keywords, categories,
thumbnails, outlines or song titles.

These optional attributes enable application user
interfaces to support new modes of interaction with
the user’s file space, such as query-based interfaces
and browsers. In Section 4.2 we describe some au-
tonomous agents that we have built to scan files in
the user’s space automatically and add attributes
to the metadata server based on the files’ contents.
Section 6 briefly describes Presto, a system devel-
oped by the Placeless Documents group at Xerox
PARC that allows users to organize their documents
in terms of user-defined attributes. The user inter-
action mechanisms developed for Presto would mesh
well with the centralized, personal metadata repos-
itory provided by Roma.

3.1 Metadata server

The metadata server is a logically centralized entity
that keeps metadata information about all copies of
a user’s data. Keeping this metadata information
centralized and separate from the data stores has
many advantages:

• Centralization helps avoid write conflicts, since
a single entity has knowledge of all versions of
the data in existence. Some potential conflicts
can be prevented before they happen (before
the user starts editing an out-of-date instance
of a file) rather than being caught later, when
the files themselves are being synchronized.

• Centralization allows easier searching over all
of a user’s metadata because applications only
have to search at a single entity. The complete-
ness of a search is not dependent on the reach-
ability of the data stores. In contrast, if meta-
data were distributed across many data stores,
a search would have to be performed at each
data store. While this is acceptable for highly
available data repositories connected via high-
bandwidth network, it is cumbersome for data
stores on devices that need to be powered on,
plugged in, or dug out of a shoebox to be made
available.

• Separation of the metadata from the data store
allows easier integration of autonomous data
stores, including legacy and third-party data
stores over which the user has limited control.

Storing metadata on a server under the user’s
control, rather than on the data stores with the
data, eliminates the need for data stores to be
Roma-aware. This greatly eases the deploya-
bility of Roma.

• Separation also makes it feasible to impose
a personalized namespace over third-party or
shared data. A user can organize his data in a
manner independent of the organization of the
data on the third-party data store.

• Separation enables applications to have some
knowledge about data that are currently inac-
cessible, either because the data store is offline
or because it speaks a foreign protocol.

The main challenge in designing a centralized meta-
data server is ensuring that it is always available de-
spite intermittent network connectivity. Section 5.2
describes one solution to this problem, which is to
host the metadata server on a portable device kept
close to the user. Since metadata tend to be sig-
nificantly smaller than the data they describe, it is
feasible for users to take their metadata server along
with them when they disconnect from the network.

3.2 Data stores

A data store is any information repository whose
contents can somehow be identified and retrieved
by an application. Roma-compatible data stores
include not only traditional file and web servers,
but also laptops, personal digital assistants (PDAs),
cell phones, and wristwatches—devices that have
storage but cannot be left running and network-
accessible at all times due to power constraints, net-
work costs, and security concerns—as well as off-
line storage media like compact discs and magnetic
tapes. Information in a data store can be dynami-
cally generated (for example, current weather con-
ditions or bank account balances). Our architecture
supports:

• data stores that are not under the user’s con-
trol.

• heterogeneous protocols (local file systems,
HTTP, FTP, etc.). There are no restrictions
on the protocols supported by a data store.

6



• data stores with naming and hierarchy schemes
independent of both the user’s personal names-
pace and other data stores.

In keeping with our goal to support legacy and
third-party storage facilities, data stores do not have
to be Roma-aware. There is no need for direct com-
munication between data stores and the metadata
server. This feature is key to ensuring the deploya-
bility of Roma.

3.3 Applications

In Roma, applications are any programs used by
people to view, search and modify their personal
data. These include traditional progams, such as
text editors, as well as personal information man-
agers, web-based applications, and special-purpose
Internet appliances. Applications can be co-located
with data sources; for example, applications run-
ning on a desktop computer are co-located with the
computer’s local file system.

Roma-aware applications have two primary re-
sponsibilities. The first is to take advantage of
metadata information already in the repository, ei-
ther by explicitly presenting relevant metadata to
the user or by automatically using metadata to
make decisions. For example, an application can
automatically choose to access the “nearest” or lat-
est copy of a file.

The application’s second responsibility is to in-
form the metadata server when changes are made
to the data that affect the metadata. At the very
least, this means incrementing the version number
when a change has been made (for synchronization
purposes), but can also include updating domain-
specific metadata. We are investigating how often
updates need to be sent to the metadata server to
balance correctness and performance concerns.

While applications should be connected to the
metadata server during use, they are not necessarily
well connected to all data stores; they may be con-
nected weakly or not at all. For example, an appli-
cation might not speak the protocol of a data store,
and thus might be effectively disconnected from it.
Also, a data store itself may be disconnected from
the network.

3.4 Agents

Roma agents are software programs that run on be-
half of the user, without requiring the user’s atten-
tion. These agents can perform many tasks, includ-
ing:

• providing background updates of metadata on
behalf of the user (for example, updating meta-
data in response to changes made by non-
Roma-aware applications);

• warning a user when he is about to edit an out-
of-date version of a document;

• hoarding files in preparation for disconnected
operation;

• making timely backups of information across
data stores; and

• tracking third-party updates on autonomous
data stores like web servers.

We have found it useful to classify agents based on
the nature of their interactions with the metadata
server:

Read-only: Some agents require only read access
to metadata. An agent that warns the user
that he is about to edit a stale instance of a
document is an example of a read-only agent.

Write-only: This class of agents only writes to the
metadata server, but does not need to read
information from it. Agents that scan doc-
uments for changes made by third parties or
non-Roma-aware applications can fall into this
category.

Read/write: Other agents require both read and
write access to a metadata server. Agents that
make backups or hoard files require both read
access (to decide what files to copy) and write
access (to inform the metadata server of the
new copies of the files).

Agents can be run anywhere on a user’s own de-
vices or on cooperating infrastructure. The only
limitation on an agent’s location is that the agent
must be able to access both the relevant data stores
and the metadata server. Note that the use of
a portable metadata server precludes some kinds

7



of agents from running while the metadata server
is disconnected from the rest of the network; Sec-
tion 5.2 describes a way to mitigate the effects of
this disconnection on agents.

3.5 Examples

To illustrate how Roma supports a user working
with files replicated across several storage devices,
let us revisit Jane Mobile and consider what a
Roma-aware application does in response to Jane’s
actions.

The action of copying a file actually has two dif-
ferent results, depending on her intent, and the ap-
plication should provide a way for her to distinguish
between the two:

• She makes a file instance available on a differ-
ent repository (in preparation for disconnected
operation, for example). The application con-
tacts the metadata server, creates a new meta-
data record with the same file identifier, copies
all attributes, and sets the data location to
point to the new copy of the file.

• She copies a file to create a new, logically dis-
tinct file based on the original. The applica-
tion contacts the metadata server, creates a
new metadata record with a new file identifier,
copies all attributes, and sets the data location
to point to the new copy of the file.

Other actions Jane may take:

• She opens a file for updating. The application
contacts the metadata server, and checks the
version number of this instance. If another in-
stance has a higher version number, the appli-
cation warns Jane that she is about to modify
an old version, and asks her if she wants to ac-
cess the latest version or synchronize the old
one (if possible).

• She saves the modified file. The application
contacts the server, increments the version
number of this instance, and updates any at-
tributes, such as the file’s size. As described
in Section 5.1, a write conflict may be detected
at this point if the version number of another
instance has already been incremented.

• She brings a file instance up to date by synchro-
nizing it with the newest instance. The appli-
cation contacts the server, finds the metadata
record with the highest version number for this
file, and copies all attributes (except the data
location) to the current instance.

3.6 Limitations

The Roma architecture meets our requirements for
providing metadata about a user’s personal docu-
ments, even when those documents are on different
devices or devices that are disconnected or powered
off. It provides a mechanism for tracking update
information for multiple copies of documents, as-
sociating extended attributes with documents, and
searching for documents based on these metadata.

Although this architecture meets our require-
ments, some important issues remain: ensuring that
the metadata store is available to the user’s applica-
tions and to third-party synchronization agents, and
revising applications to take advantage of the meta-
data store to aid the user in synchronizing and locat-
ing files. These issues are discussed in Sections 5.2
and 5.4, respectively.

4 Implementation

In this section we describe the current status of our
prototype Roma implementation.

4.1 Metadata server

We have implemented a prototype metadata server
that supports updates and simple queries, includ-
ing queries on optional attributes. It is written in
Java as a service running on Ninja[8], a toolkit for
developing highly available network services. Meta-
data are stored in an XML-based format, and we
use XSet[23], a high performance, lightweight XML
database, for query processing and persistence.

Java-based clients can query and update the
metadata server through a native RMI interface.
Figure 3 shows a snippet of code from a typical
client.

Clients written in other languages, such as C, can
use an XML-over-HTTP gateway interface. Fig-
ure 4 shows a query interaction between a client
and the gateway.

8



PDFSServerIF server =
(PDFSServerIF) loader.
getService("pdfs.server.PDFSServer");

Metadata q = new Metadata();
q.setName("Blue Fuzzy Widget " +
"specifications");

server.query(q);

Figure 3: A sample Java client query. server is the
interface to a Ninja iSpace service. q is a query that
specifies the content of the <name> metadata tag.

POST /ISPACE/pdfs.client.http.RMAPServer
?query HTTP/1.1

<?xml version="1.0"?>
<metadata>
<name>
Blue Fuzzy Widget specifications

</name>
</metadata>

HTTP/1.1 200 OK

<?xml version="1.0"?>
<metadata>
<uid>123456789</uid>
<name>
Blue Fuzzy Widget specifications

</name>
<location>
...

Figure 4: A sample XML-over-HTTP query inter-
action. A client establishes a HTTP connection to
the gateway and issues a POST request, specifying
a query operation in the URL suffix. The request
body designates the content of the <name> metadata
tag. Corresponding metadata records are returned
to the client in the HTTP response.

We have also implemented a proof-of-concept
portable metadata server. Though the metadata
server itself requires a full Java environment to op-
erate, we have implemented a simple mechanism to
migrate a metadata repository between otherwise
disconnected computers using a PDA as a transfer
medium. As a user finishes working on one com-
puter, the metadata repository is transferred onto
his PDA. The next time he begins using a com-
puter, the metadata repository is retrieved from the
PDA. In this way, though the prototype metadata
server itself is not traveling, the user’s metadata are
always accessible, regardless of the connectivity be-
tween the user’s computer and the rest of the world.

4.2 Data stores

Currently, the data stores we support are limited to
those addressable through URIs. Our applications
can currently access data stores using HTTP and
FTP, as well as files accessible via a standard file
system interface.

4.3 Agents

We have built an example of a write-only agent
to synchronize metadata in the Roma server in re-
sponse to actions made by non-Roma-aware appli-
cations. Our agent performs periodic scans of files
under its management, searching for file updates.
Upon detecting an update, it uses a set of file type-
specific analyzers to collect new metadata from the
updated document.

Our agent is written in C, and speaks with the
metadata server through its XML-over-HTTP inter-
face. We have currently implemented file analyzers
to extract image size and color depth information
from GIF and JPEG image files; bibliographic in-
formation such as title and author from Word and
LATEX documents; and library dependency informa-
tion from ELF-formatted binary files. In particular,
the ELF analyzer promises to be useful when calcu-
lating a set of programs to hoard.

Other agents, such as the read-only “warning”
agent, and the hoarding and backup agents remain
future work.

9



4.4 Applications

We have implemented three Roma-aware applica-
tions. These applications allow users to view and
manipulate their metadata and data from a variety
of devices.

The first is a web-based metadata browser that
provides hierarchical browsing of a user’s personal
data. The browser displays the names of data files,
their version information, and the deduced MIME
type of the file. In addition, if the file is accessible,
the browser will present a link to the file itself. We
have also written a proxy to enable “web clipping”
of arbitrary web content into the user’s personal file
space, as displayed in Figure 5.

Our second application is a set of command-line
tools. We have written Roma-aware ls and locate
commands to query a metadata server, a get com-
mand to retrieve the latest version of a file from
remote data stores, and import, a utility to create
metadata entries for files on a local data store.

We have also implemented a proof-of-concept
PDA application. Built using a Waba VM and
RMILite[21, 3], our PDA application can query and
view the contents of a metadata server. Currently,
the PDA application is limited to browsing meta-
data and cannot display the file data themselves.

Our applications extend the basic Roma meta-
data record with a format attribute to describe the
data format of files. If available, our command-line
tools use the Unix magic command to determine the
data format. Our web clipper determines the data
format based on the MIME type of the file.

5 Design issues and future
work

In this section we describe some of the issues and
design decisions encountered so far in our work with
Roma, along with some of the work that remains for
us to do.

5.1 Why “personal”?

One important design issue in Roma is the scope
of the types of data it supports. There are several
reasons behind our choice to support only personal
files, rather than to tackle collaboration among dif-
ferent users as well, or to attempt to simplify system

administration by handling distribution of applica-
tion binaries and packages.

First, restricting ourselves to personal files gives
us the option of migrating the metadata server to
a personal, portable device that the user carries ev-
erywhere, to increase its availability. This option is
described in more detail in the next section.

Second, it avoids a potential source of write
conflicts—those due to concurrent modifications by
different users on separate instances of the same file.
Such conflicts are often difficult to resolve without
discussion between the two users.

However, single users can still make concurrent
modifications to their own files[1], potentially caus-
ing conflicts. Conflicts can also result from modifi-
cations by third parties working on a user’s behalf,
such as an email transfer agent appending a new
message to the user’s inbox while the user deletes
an old one. However, these conflicts can often be
resolved automatically using knowledge about the
application, such as the fact that an email file con-
sists of a sequence of independent messages. An-
other way a user can create conflicts himself is by
concurrently executing applications that access the
same document. Avoiding this behavior is usually
within the control of the user, and any resulting
conflicts do not require coordination among multi-
ple users for resolution. We are investigating the
use of version vectors to store more complete and
flexible version information[14].

Third, it lets us exploit the fact that users are
much better at predicting their future needs for
their personal files than for other kinds of files[5].

Fourth, it lets us support categories, annotations
and other metadata that are most meaningful to a
single person rather than a group.

Finally, we believe there is a trend toward special-
ized applications tailored for managing other types
of files:

• Groupware systems like the Concurrent Ver-
sioning System (CVS), ClearCase, Lotus Notes
and Microsoft Outlook impose necessary struc-
ture and order on access to shared data with
multiple writers. Email is often sufficient for
informal collaboration within a small group.

• Tools like the RedHat Package Manager (RPM)
and Windows Update are well suited for dis-
tributing system-oriented data such as applica-
tion packages, operating system components,

10



Figure 5: A screen shot of the web clipper proxy. As the user browses the web, the proxy adds links on the
fly, allowing the user to browse the metadata server and add pages to his personal file space.

and code libraries. These tools simplify sys-
tem administration by grouping related files
into packages, enforcing dependencies, and au-
tomatically notifying the user of bug fixes and
new versions of software.

• The web has become the best choice for dis-
tributing shared data with many readers.

Since these applications handle system data, col-
laborative projects and shared read-mostly data, we
believe that the remaining important category of
data is personal data. We thus focus on handling
this category of data in Roma.

5.2 Ensuring availability of metadata

Since our overarching goal is to ensure that infor-
mation about the user’s files is always available to
the user, we need to make the system robust in the
face of intermittent or weak network connectivity—
the very situations that underscore the need for a
metadata repository in the first place.

Our approach is to allow the user to keep the
metadata server in close physical proximity, prefer-
ably on a highly portable device that he can always
carry, as described in the next section. Wireless
network technologies will soon make “personal-area
networks” a reality, thus enabling a Roma device to
communicate with other computing and communi-
cation devices in its vicinity. It is not hard to imag-
ine a server embedded in a cell phone or a PDA, with
higher availability and better performance than a
remote server in many situations. Metadata can

then be close and accessible to whatever application,
device or data store the user is currently accessing.

The main difficulty with storing metadata on a
portable server is making the metadata available to
agents that act on behalf of the user and modify
data in the user’s personal file space. If the network
is partitioned and the only copy of the metadata
is with the user, how does such an agent read or
modify them? In other words, we need to ensure
that metadata are available to remote entities as
well as to the user’s local applications.

One solution is to cache subsets of the metadata
from the metadata server in multiple locations. If
the metadata server currently resides on the user’s
handheld device, a replica residing on a station-
ary, network-connected server can provide access to
third parties. This naturally raises the issues of syn-
chronizing and handling update conflicts among the
metadata replicas.

However, our hypothesis is that updates made to
the metadata by third parties rarely conflict with
user updates. For example, a bank’s web server up-
dates a file containing the user’s account balances,
but the user himself rarely updates this file. In this
case, the agent monitoring the web server for up-
dates is a write-only agent, and is the sole writer of
the metadata record for the account balances file.
Studying metadata access patterns such as this one
in greater depth is part of our future work in eval-
uating Roma.

11



5.3 How much storage does Roma
need?

Estimating the storage requirements of the meta-
data server is key to justifying the usefulness of the
Roma system. We need to ensure that the amount
of metadata needed for a typical user’s files does not
exceed the storage capacity of a practical portable
device. Furthermore, even given a sufficiently large
storage device, if the metadata are as large as the
data they describe, then there is little benefit in
building a personal metadata service. Thus there
are two important measurements to consider: the
absolute amount of storage required for the meta-
data server, and the ratio of the size of the metadata
records to the size of the files they describe.

While the Roma prototype has not been used
widely enough for us to take measurements, a pre-
liminary survey of the home directories of several re-
search group members gives us some numbers from
which we can infer an estimate. (Each member of
the research group ran the Unix commands find ~
| wc to count the files in his home directory, and
du -s ~ to compute the sum of the files’ sizes.)

The number of files in a user’s personal file space
ranges from 10,000 to 100,000 and the average file
size is 25,000 to 250,000 bytes. Metadata records
storing the kinds of information shown in Figure 2
might weigh in at 1,000 bytes on average. Then in
the worst case the metadata server would require
approximately 100 megabytes of storage, and the
ratio of metadata record size to file size would be 1
to 25.

Since a 100-megabyte metadata repository would
easily fit on a flash memory card or miniature hard
drive, Roma is practical to implement today. In
addition, it is considerably less expensive to build
a device capable of running a metadata server with
reasonable performance than one storing data 25
times larger.

5.4 Making applications Roma-
aware

Making applications Roma-aware is the biggest
challenge in realizing Roma’s benefits of synchro-
nization and file organization across multiple data
stores. To gain the most benefit, application user
interfaces and file input/output routines must be
adapted to use and update information in the meta-

data store. We have several options for extending
existing applications to use Roma or incorporating
Roma support into new applications.

Our first option is to use application-specific ex-
tension mechanisms to add Roma awareness to
legacy applications. For example, we implemented
a Roma-aware proxy to integrate existing web
browsers into our architecture. Roma add-in mod-
ules could be written for other applications that
have extension APIs, such as Microsoft Outlook, or
for open-source applications that can be modified
directly.

Our second option is to layer Roma-aware soft-
ware beneath the legacy application. Possibilities
include modifying the C library used by applica-
tions to access files, or writing a Roma-aware file
system. This option does nothing to adapt the ap-
plication’s user interface, but it can provide some
functionality enhancements such as intelligent re-
trieval of updated copies of files.

The third option, which we have implemented, is
to use agents to monitor data edited by legacy ap-
plications in the same way we monitor data repos-
itories not under the user’s control. These agents
ensure that the metadata at the server are kept up-
to-date with changes made by legacy applications.
They can also perform other tasks to enhance non-
Roma-aware applications, such as synchronizing lo-
cal files with other data repositories, or notifying
the user that updated file instances are available.

Beyond choosing the most appropriate method to
extend an application to use Roma, the bulk of the
programming effort is in modifying the application’s
user interface and communicating with the meta-
data store. Our current prototype provides simple,
generic HTTP and Java RMI interfaces to the meta-
data store, through which applications pass XML-
formatted objects. Platform- or domain-specific
Roma libraries could offer much richer support to
application developers, including both user interface
and file I/O components, to help minimize the pro-
gramming effort. For example, a Roma library for
Windows could offer a drop-in replacement for the
standard “file explorer” components, so that adapt-
ing a typical productivity application would involve
making a few library API calls rather than develop-
ing an entirely new user interface.

12



5.5 Identifying file instances

Our current Roma implementation uses a URI to
identify the file instance corresponding to a partic-
ular metadata record. Unfortunately, using URIs
as file identifiers is problematic: a Roma user could
end up with several inconsistent metadata records
for the same file instance, or even worse, the user
could delete the only copy of a file because the meta-
data server shows that a backup instance exists at
a “different” location.

These problems stem from the fact that URIs are
not intended for one-to-one identification of file in-
stances. On many systems, a file instance can be
identified by more than one URI, due to aliases
and links in the underlying file system or multi-
ple network servers providing access to the same
files. For example, the file identified by ftp://
gunpowder/pub/paper.ps can also be identified as
http://gunpowder/ftp/pub/paper.ps, since the
public FTP directory is also exported by an HTTP
server.

Currently we rely on applications and agents to
detect and handle cases where multiple URIs refer
to the same file, but this places a large burden on
application writers. In the future, Roma must ad-
dress this problem more systematically.

6 Related work

6.1 File systems

Helping users access data on distributed stor-
age repositories is an active area of research.
The primary characteristic distinguishing our work
from distributed file systems, such as Coda[11],
OceanStore[12], and Bayou[14], is our focus on pro-
viding highly available metadata rather than ensur-
ing availability of the data themselves. In fact, the
benefits of Roma can be attained by using it along-
side each of these systems.

The Coda distributed file system seeks to al-
low users to remain productive during periods of
weak or no network connectivity. To accomplish
this, it caches file data according to user prefer-
ences in anticipation of periods of disconnection
or weak connectivity. From the user’s point of
view, files in uncached directories are simply miss-
ing, which can be a jarring experience if the files
were present just a few minutes ago. With Roma,

having metadata available for all files allows the sys-
tem to maintain the user’s view of his personal file
space and provide useful feedback when the data
of an uncached file are unavailable, like “The file
/projects/bluestuff/BFWidgetSpec.doc is cur-
rently unavailable; connect to Jane’s Home PC
(anthill.stanford.edu) to access this file.” Coda
could also be used to replicate the metadata repos-
itory itself, implementing the caching mechanism
described in Section 5.2.

The architecture of OceanStore is similar to that
of Coda, but in place of a logically single, trusted
server is a global data utility comprised of a set
of untrusted servers whose owners earn a fee for
offering persistent storage to other users. Weakly
connected client devices can read from and write to
the closest available server; the infrastructure takes
care of replicating and migrating data and resolving
conflicts. As with Coda, in the absence of network
connectivity, both data and metadata are unavail-
able for OceanStore-managed files. A user running
Roma alongside OceanStore can benefit from hav-
ing a consistent view of his file space even when no
server is available to provide file data.

The Bayou system supports a decentralized
model where users can store and modify their files in
many repositories that communicate peer-to-peer to
propagate changes. A given repository might con-
tain only a subset of the files in the user’s personal
file space, at varying degrees of freshness, depending
on how long it has been since the repository was in
contact with the others. Again, having Roma avail-
able to provide an always-current set of file meta-
data can help the user and his applications deal with
missing or out-of-date files.

SyncML[19] is a lightweight, XML-based data
synchronization protocol, tailored to work on
resource-constrained devices and low-bandwidth
networks. It is not a complete system but rather
a protocol on which a synchronization system could
be built. Roma could be used alongside a SyncML-
based system just as described above for Coda or
Bayou. Roma could also be implemented using
SyncML to transport metadata between clients and
the metadata server.

The Presto system[4] focuses on enabling users to
organize their files more effectively. The Presto de-
signers have built a solution similar to Roma that
associates with each of a user’s documents a set
of properties that can be used to organize, search

13



and retrieve files. This work does not specifically
address tracking and synchronizing multiple copies
of documents across storage repositories, nor does
it ensure that properties are available even when
their associated documents are inaccessible. How-
ever, the applications they have developed could be
adapted to use the Roma metadata server as prop-
erty storage.

Both Presto and the Semantic File System[7] en-
able legacy applications to access attribute-based
storage repositories by mapping database queries
onto a hierarchical namespace. Presto achieves this
using a virtual NFS server, while the Semantic File
System integrates this functionality into the file sys-
tem layer. Either mechanism could be used with
Roma to provide access to the metadata server from
Roma-unaware applications.

The Elephant file system[17] employs a sophis-
ticated technique for tracking files across both
changes in name and changes in inode number.

6.2 Other metadata service applica-
tions

The Roma metadata server is designed for manag-
ing personal data stored on a number of heteroge-
neous devices. Roma allows users to view informa-
tion about all of their data, regardless of the capabil-
ity of any particular device to access and view their
data. A related project, the Dataheap, combines a
centralized metadata server with a transformation
service[10] that automatically converts a document
from its native format to one accessible on the user’s
current device. The Dataheap is being developed as
part of the Interactive Workspaces project at Stan-
ford University[6].

The Dataheap is being used in a conference room
environment to manage data access from networked
heterogeneous devices, from large wall-sized dis-
plays to PDAs. Data can be stored on any semi-
permanent device in the room; to keep a history
of activities in the room, data originating from
handheld or laptops is transferred to permanent
file stores. Metadata in the Dataheap, like that of
Roma, includes basic name, data format, and lo-
cation information. Dataheap clients query their
metadata server with a protocol similar to Roma’s.
The major difference is that when Dataheap clients
query for information in a particular data for-
mat, the Dataheap server will attempt to convert

data with otherwise-matching metadata into the re-
quested data format.

In this environment, the Dataheap’s attribute-
based naming is used to provide a convenient,
device-independent method of referencing informa-
tion, while the transformational capabilities of the
Dataheap assure that information is accessible from
varied devices, though sometimes in a degraded for-
mat. We have already used the Dataheap to build
a presentation management program, choreograph-
ing the display of slides and other documents across
multiple heterogeneous devices. We are currently
extending our use of metadata to keep data access
histories in our interactive room, as well as using at-
tributes to name the current “clipboard” contents in
the room.

7 Conclusions

We have described a system that helps fulfill the
promise of personal mobility, allowing people to
switch among multiple heterogeneous devices and
access their personal files without dealing with
nitty-gritty file management details such as track-
ing file versions across devices. This goal is achieved
through the use of a centralized metadata repository
that contains information about all of the user’s
files, whether they are stored on devices that the
user himself manages, on remote servers adminis-
tered by a third party, or on passive storage media
like compact discs. The metadata can include ver-
sion information, keywords, categories, digests and
thumbnails, and the format is completely extensi-
ble. We have implemented a prototype metadata
repository, designing it as a service that can be in-
tegrated easily with applications. The service can
be run on a highly available server or migrated to
a handheld device so that the user’s metadata are
always accessible.

8 Acknowledgements

The authors thank Doug Terry for his helpful ad-
vice throughout the project, and Petros Maniatis
for his assistance with the figures. We also thank
Andy Huang, Kevin Lai, Petros Maniatis, Mema
Roussopoulos, and Doug Terry for their detailed re-
view and comments on the paper. This work has

14



been supported by a generous gift from NTT Mobile
Communications Network, Inc. (NTT DoCoMo).

References

[1] Mary G. Baker, John H. Hartman, Michael D.
Kupfer, Ken W. Shirriff, and John K. Ouster-
hout, “Measurements of a Distributed File Sys-
tem.” Proceedings of the 13th ACM Sympo-
sium on Operating Systems Principles, Pacific
Grove, California, October 1991.

[2] S. Balasubramaniam, Benjamin C. Pierce,
“What is a File Synchronizer?” Proceedings of
the Fourth Annual ACM/IEEE International
Conference on Mobile Computing and Net-
working (MobiCom ’98), Dallas, Texas, Octo-
ber 1998.

[3] Mike Chen, Mohan Lakhamraju, Eric Brewer,
and David Culler, “Jini/RMI/TSpace for Small
Devices.” http://post-pc.cs.berkeley.
edu/rmilite/

[4] Paul Dourish, W. Keith Edwards, Anthony
LaMarca and Michael Salisbury, “Uniform
Document Interactions Using Document Prop-
erties.” Proceedings of the 12th Annual ACM
Symposium on User Interface Software and
Technology (UIST ’99), Asheville, North Car-
olina, November 1999.

[5] Maria Ebling, “Translucent Cache Manage-
ment for Mobile Computing.” Thesis, School
of Computer Science, Carnegie Mellon Univer-
sity, March 1998.

[6] Armando Fox, Brad Johanson, Pat Hanrahan,
and Terry Winograd, “Integrating Information
Appliances into an Interactive Workspace.”
IEEE Computer Graphics and Applications,
Vol. 20, No. 3, May/June 2000.

[7] David K. Gifford, Pierre Jouvelot, Mark A.
Sheldon, and James W. O’Toole, Jr., “Seman-
tic File Systems.” Proceedings of the 13th ACM
Symposium on Operating Systems Principles,
Pacific Grove, California, October 1991.

[8] Steve Gribble, Matt Welsh, Eric A. Brewer,
and David Culler, “The MultiSpace: an Evolu-
tionary Platform for Infrastructural Services.”

Proceedings of the Second USENIX Symposium
on Internet Technologies and Systems (USITS
’99), August 1999.

[9] J. H. Howard, “An Overview of the Andrew
File System.” Proceedings of the USENIX Win-
ter Technical Conference, Dallas, Texas, Febru-
ary 1988.

[10] Emre Kıcıman and Armando Fox, “Using Dy-
namic Mediation to Integrate COTS Entities in
a Ubiquitous Computing Environment.” Pro-
ceedings of the Second International Sympo-
sium on Handheld and Ubiquitous Comput-
ing (HUC 2000), Bristol, England, September
2000.

[11] James J. Kistler and M. Satyanarayanan, “Dis-
connected Operation in the Coda File System.”
Proceedings of the 13th ACM Symposium on
Operating Systems Principles, Pacific Grove,
California, October 1991.

[12] John Kubiatowicz, David Bindel, Yan Chen,
Steven Czerwinski, Patrick Eaton, Dennis
Geels, Ramakrishna Gummadi, Sean Rhea,
Hakim Weatherspoon, Westley Weimer, Chris
Wells and Ben Zhao, “OceanStore: An Ar-
chitecture for Global-Scale Persistent Storage.”
Proceedings of the Ninth International Confer-
ence on Architectural Support for Programming
Languages and Operating Systems (ASPLOS
2000), Cambridge, Massachusetts, November
2000.

[13] Petros Maniatis, Mema Roussopoulos, Ed
Swierk, Kevin Lai, Guido Appenzeller, Xin-
hua Zhao, and Mary Baker, “The Mobile Peo-
ple Architecture.” ACM Mobile Computing and
Communications Review (MC2R), July 1999.

[14] Karin Petersen, Mike J. Spreitzer, Douglas B.
Terry, Marvin M. Theimer and Alan J. Demers,
“Flexible Update Propagation for Weakly Con-
sistent Replication.” Proceedings of the 16th
ACM Symposium on Operating Systems Prin-
ciples, Saint-Malo, France, October 1997.

[15] Jef Raskin, The Humane Interface. Addison-
Wesley, 2000.

15



[16] R. Sandberg, D. Goldberg, S. Kleiman, D.
Walsh, and B. Lyon, “Design and Implementa-
tion of the Sun Network File System.” Proceed-
ings of the Summer 1985 USENIX Conference,
Portland, Oregon, June 1985.

[17] Douglas S. Santry, Michael J. Feeley, Norman
C. Hutchinson, Alistair C. Veitch, Ross W.
Carton and Jacob Ofir, “Deciding When to
Forget in the Elephant File System.” Proceed-
ings of the 17th ACM Symposium on Operat-
ing Systems Principles, Charleston, South Car-
olina, December 1999.

[18] Stu Slack, “Extending Your Desktop with
Pilot.” PDA Developer Magazine, Septem-
ber/October 1996.

[19] SyncML Consortium, SyncML Specification,
version 1.0.1. http://www.syncml.org/
downloads.html

[20] Andrew Tridgell and Paul Mackerras, “The
rsync Algorithm.” Technical Report TR-CS-
96-05, Australian National University.

[21] Wabasoft, Inc., “Wabasoft: Product
Overview.” http://www.wabasoft.com/
products.shtml

[22] World Wide Web Consortium, “Naming and
Addressing: URIs, URLs, ...” http://www.w3.
org/Addressing/

[23] Ben Y. Zhao and Anthony D. Joseph, “XSet:
A Lightweight Database for Internet Applica-
tions.” May 2000. http://www.cs.berkeley.
edu/~ravenben/xset/html/papers.html

16


