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ABSTRACT
Recurrent neural network language models (RNNLMs) have
recently demonstrated state-of-the-art performance across a
variety of tasks. In this paper, we improve their performance
by providing a contextual real-valued input vector in associa-
tion with each word. This vector is used to convey contextual
information about the sentence being modeled. By perform-
ing Latent Dirichlet Allocation using a block of preceding
text, we achieve a topic-conditioned RNNLM. This approach
has the key advantage of avoiding the data fragmentation as-
sociated with building multiple topic models on different data
subsets. We report perplexity results on the Penn Treebank
data, where we achieve a new state-of-the-art. We further ap-
ply the model to the Wall Street Journal speech recognition
task, where we observe improvements in word-error-rate.

Index Terms— Recurrent Neural Network, Language
Modeling, Topic Models, Latent Dirichlet Allocation

1. INTRODUCTION

Recurrent neural network language models (RNNLMs) [1, 2]
have recently been shown to produce state-of-the-art results in
perplexity and word error rate across a variety of tasks [3, 4].
These networks differ from classical feed-forward neural net-
work language models [5, 6, 7, 8, 9] in that they maintain
a hidden-layer of neurons with recurrent connections to their
own previous values. This recurrent property gives a RNNLM
the potential to model long span dependencies. However, the-
oretical analysis [10] indicates that the gradient computation
becomes increasingly ill-behaved the farther back in time an
error signal must be propagated, and that therefore learning
arbitrarily long-span phenomena is difficult.

In the past, a number of techniques have been used to
bring long span and contextual information to bear in con-
ventional N-gram language models. Perhaps the simplest of
these is the cache language model [11] in which a language
model score based on a model trained on the lastK words is
interpolated with that from a general model. Similar in spirit
to the cache based models are the latent semantic analysis
(LSA) based approaches of [12, 13]. These methods repre-
sent long-span history as a vector in latent semantic space,
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and base LSA-estimated word probability on the cosine sim-
ilarity between a hypothesized word and the history. These
similarity-based probabilities are then interpolated with N-
gram probabilities. Topic-conditioned language models , e.g.
[14, 15], most frequently work by partitioning the training
data into subsets, with the goal of making subsets containing
data on only one topic. Separate language models are then
trained, and at runtime the most appropriate one (or combina-
tion) is chosen. Khudanpur and Wu [16] proposed the use of
topic-features within a maximum-entropy framework, and in
a voice-search application [17], long span context was used
to enhance the maximum-entropy model of [18, 19] by creat-
ing features to indicate when a hypothesized word appeared
in a user’s history. Finally, in whole-sentence language mod-
els [20, 21], trigger features based on the existence of widely
separated word pairs also provides long-span information.

In this paper, we study the use of long-span context in
RNNLMs. One approach to increasing the effective context
is to improve the learning algorithm to avoid the problem of
vanishing gradients identified in [10]. This is exemplified by
recent work on Hessian-free optimization [22]. Another is
to modify the model itself, as in the Long Short-Term Mem-
ory neural networks [23], which use gating neurons to ”latch”
onto the error signal for multiple timesteps. In contrast to
these approaches, we have chosen to explicitly compute a
context vector based on the sentence history, and provide it
directly to the network as an additional input. This has the ad-
vantage of allowing us to bring sophisticated and pre-existing
topic modeling techniques to bear with little overhead, specif-
ically Latent Dirichlet Allocation (LDA) [24]. Moreover, it
does this in a way that in other applications allows us to use
context that is external to the text (e.g. a vector represent-
ing user-habits in voice search). This approach is similar in
spirit to that of [25, 26], both of which bring side informa-
tion to bear in a language model. Chu and Mangu [27] also
recently used LDA to determine topics, but performed a hard
partitioning of the data and built a set of disjoint models.

This paper makes several contributions. First, we sug-
gest the use of context vectors to improve the performance
of a RNNLM. Secondly, we demonstrate perplexity improve-
ments over the previous state-of-the-art for the Penn Tree-
bank. Thirdly, we develop an efficient method for computing
context vectors when using a sliding window of context. Fi-



nally, we evaluate our models by rescoring N-best lists from
a speech recognizer and observe improvements there as well.

The remainder of this paper is structured as follows. Sec-
tion 2 describes the augmented RNN model we use. Section
3 describes our method of constructing context vectors based
on Latent Dirichlet Allocation. Sections 4 and 5 present per-
plexity results on the Penn Treebank and word error rates on
the Wall Street Journal speech recognition task. We provide
some future directions and concluding remarks in Section 6.

2. MODEL STRUCTURE

The simple recurrent neural network language model [1] con-
sists of an input layer, a hidden layer with recurrent connec-
tions that propagate time-delayed signals, and an output layer,
plus the corresponding weight matrices. The input vector
w(t) represents input word at timet encoded using 1-of-N
coding (also called one-hot coding), and the output layer pro-
duces a probability distribution over words. The hidden layer
maintains a representation of the sentence history. We extend
this basic model with an additionalfeature layer f(t) that is
connected to both the hidden and output layers, as shown in
Figure 1. The feature layer represents an external input vector
that should contain complementary information to the input
word vectorw(t). In the rest of this paper, we will be using
features that represent topic information. Nevertheless,we
note that the external features can be any information source
such as part of speech tags, morphological information about
the current wordw(t), or speaker-specific information in the
context of ASR.

There are several possible advantages to using topic infor-
mation as additional input to the model, instead of building
many separate topic-specific submodels: mainly, the training
data will be less fragmented. Also, by providing the topic
information directly at the input of the model, we elegantly
avoid the long-standing problem of training recurrent neural
networks to remember longer-term information (usually re-
ferred to asthe vanishing gradient problem, and addressed
in [10, 23]).

The input vectorw(t) and the output vectory(t) have di-
mensionality of the vocabulary (later denoted as V). After the
network is trained using stochastic gradient descent, the vec-
tor y(t) represents a probability distribution over words from
the vocabulary given the previous wordw(t), the context vec-
tor s(t−1) and the feature vectorf(t).

The values in the hidden and output layers are computed
as follows:

s(t) = f (Uw(t) + Ws(t−1) + Ff(t)) (1)

y(t) = g (Vs(t) + Gf(t)) , (2)

where

f(z) =
1

1 + e−z
, g(zm) =

ezm

∑
k ezk

. (3)

Fig. 1. Recurrent neural network based language model, with
the additional feature layerf(t) and the corresponding weight
matrices.

The training of neural network language models consists of
finding the weight matricesU,V,W,F andG such that the
likelihood of the training data is maximized. The reader is
referred to [5, 28] for further detail.

3. LATENT DIRICHLET ALLOCATION FOR
CONTEXT MODELING

We use Latent Dirichlet Allocation (LDA) [24] to achieve
a compact vector-space representation of long span context.
This procedure maps a bag-of-words representation of a doc-
ument into a low-dimensional vector which is conventionally
interpreted as a topic representation. For our purposes, a doc-
ument will consist of a sentence or block of contiguous words.
Each induced topic has associated with it a unigram distribu-
tion over words, and the collection of distributions is denoted
β. LDA is a generative model of text, and the generation pro-
cess of a document goes as follows:

1. Decide on the document lengthN by sampling from a
Poisson distribution:N ∼ Poisson(ξ).

2. Decide on a multinomial distribution over topics for the
document by sampling from a Dirichlet distribution pa-
rameterized byα: Θ ∼ Dir(α).

3. For each of theN words to be generated, first decide
on a topic to draw it from, and then on the word itself:



• Choose the topiczn ∼ Multinomial(Θ).
• Choose a wordwn from the unigram distribution

associated with the topic:p(wn|zn, β).

A key parameter in LDA isα, which controls the shape of the
prior distribution over topics for individual documents. As is
common, we used a fixedα across topics. Whenα is less than
1, the prior distribution is peaked, with most topics receiving
low probability in any given document.α = 1 represents a
uniform prior, andα > 1 penalizes distributions that assign a
high probability to any one topic in a specific document. Blei
et al. [24] describe a method based on variational inference
for learning the model parameters from a collection of docu-
ments, and our experiments use their implementation (http:
//www.cs.princeton.edu/∼blei/lda-c/).

The result of LDA is a learned value forα, and the set
of topic distributionsβ. An inference procedure can then be
used to obtain the expected number of words accounted for
by each topic in any given text, and thus the topic distribution
of the text.

In our experiments, we used topic distributions computed
from a fixed-length block of words preceding the current
word. Thus, it is necessary to update the context vector af-
ter each word, which is an expensive process to do exactly.
Therefore, as described in the next section, we have devel-
oped an efficient alternative method for computing context
vectors based on theβ matrix output by LDA.

3.1. Fast Approximate Topic Representations

Empirically, it has been observed [24] that the runtime for
LDA inference isO(kN2) whereN is the number of words,
andk is the number of topics. Computing an LDA representa-
tion for each word given its sentence prefix would thus require
O(kN3) time, which is undesirably slow. The same holds
for computation over a sliding window of words. Therefore,
we developed a more efficient method for computing context.
In this computation, we make context vectors directly during
the training of the RNN language model, using only theβ

matrix computed by the LDA. From theβ matrix, we extract
a continuous-space representation for each word by using the
normalized column vectors. Since the topics are about equally
represented in the training data, this results in a vector ofen-
triestjwi

representingP (tj |wi).
We found that it is possible to compute a reasonable topic

distribution for a block of wordsw by multiplying individual
distributions over topics for each word fromw, and renormal-
izing the resulting distribution:

f(t) =
1

Z

K∏

i=0

tw(t−i), (4)

wheretw(t) is the vector that represents the LDA topic dis-
tribution for wordw(t). For this approximation to work, it is

important to smooth theβ matrix by adding a small constant
to avoid extremely small probabilities.

As we see in Section 4, the procedure can be further im-
proved by weighting more recent words higher than those in
the more distant past. To do this, we introduce features with
an exponential decay, where we compute the feature vector as

f(t) =
1

Z
f(t − 1)γt

(1−γ)
w(t) , (5)

whereγ controls the rate at which the topic vector changes
- values close to 1 cause the feature vector to change slowly,
while lower values will allow quick adaptation to topics.

While this procedure is not an approximation of the LDA
inference procedure, we have found that it nevertheless does
a good job representing contextual history, and admits an in-
cremental update, reducing a factor ofN2 from the runtime.
An empirical comparison to the use of LDA topic posteriors
is found in Section 4.

4. PENN TREEBANK RESULTS

To maintain comparability with the previous research, e.g.
[29, 3], we chose to perform experiments on the well-known
Penn Treebank (PTB) [30] portion of the Wall Street Jour-
nal corpus. This choice also allows the fast evaluation of
different models and parameter settings. We used the same
standard preprocessing of the data as is common in previous
research: all words outside the 10K vocabulary are mapped
to the<unk> token; sections 0-20 are used as the training
set (930K tokens), sections 21-22 as the validation set (74K
tokens) and sections 23-24 as the test set (82K tokens). Exten-
sive comparison of performance of advanced language mod-
eling techniques on this setup is given in [3].

To obtain additional features at every word position, we
trained a LDA model using documents consisting of 10 sen-
tence long non-overlapping blocks of text from the PTB train-
ing data. We explored several configurations, and found that
good results can be obtained with between 10 and 40 topics.
Once the LDA model is trained, we can compute the prob-
ability distribution over topics for any new document. After
some experimentation, we used a sliding window of the pre-
vious 50 words to represent the history. While this often goes
beyond sentence boundaries, it makes sense because the PTB
reproduces news stories, in which adjacent sentences are re-
lated to each other. The resulting probability distribution over
topics is used directly as an additional feature input for the
RNNLM.

Our initial experiments were performed using small RNN
models with only 10 neurons. For reduction of computa-
tional complexity, we used a factorization of the output layer
using 100 classes, as described in [2]. After tuning hyper-
parameters such as the optimal number of topics and the size
of the sliding window, we ran the same experiments with
RNN models having 100 neurons. The results are summa-
rized in Table 1. As can be seen, the perplexity is reduced very



Table 1. Perplexities on the Penn Treebank Corpus for RNN
models with LDA-based features, using 40 topics and a slid-
ing window of 50 previous words.

Model Dev PPL Test PPL
Kneser-Ney 5-gram, no cutoffs 148.0 141.2
10 neurons, no features 239.2 225.0
10 neurons, exact LDA features 197.3 187.4
10 neurons, approx. LDA features 201.5 191.2
100 neurons, no features 150.1 142.1
100 neurons, exact LDA features 132.3 126.4
100 neurons, approx. LDA features 134.5 128.1

Table 2. Perplexities on the Penn Treebank Corpus with ex-
ponentially decaying features.

Model Dev PPL Test PPL
10 neurons, no features 239.2 225.0
10 neurons,γ = 0 220.7 195.7
10 neurons,γ = 0.9 201.4 190.5
10 neurons,γ = 0.95 198.5 187.5
10 neurons,γ = 0.98 199.8 190.1

significantly for small models, and the improvements hold up
with larger models. Moreover, the approximate topic features
of Section 3.1 work almost as well as the exact LDA features.
Thus, in the subsequent experiments on larger data sets we
focused on the approximate features. Table 2 shows that for
values aroundγ = 0.95, the approximate features with ex-
ponential decay outperform those computed with an equally
weighted window of the last 50 words (Table 1).

4.1. State-of-the-art Comparisons and Model Combina-
tion

In this section, we show that the improvements of a context-
sensitive RNNLM hold up even in combination with Kneser-
Ney 5-grams, cache LMs, and other models. Moreover, in
combination with our best previous results we advance the
state-of-the-art by 6% relative. Table 3 presents results for
a RNN-LDA model with 300 neurons, and a set of previ-
ous models, both in isolation and when interpolated with a
Kneser-Ney 5-gram model and a cache model. The RNN-
LDA model outperforms the other models significantly, even
after they are combined with the cache model. The descrip-
tion of the compared models is given in [5, 7, 29, 28].

Next, we combine the new RNN-LDA model with the
previous state-of-the-art model combination on this task.
This is important to establish that the RNN LDA model pro-
vides truly new information. The previous model combina-
tion achieved a perplexity 78.8 by combining many different
RNN LMs and other well-known language models such as
a random forest LM [31], a structured language model [32],
a class-based LM and other models [28]. For these com-

Table 3. Perplexities on the Penn Treebank Corpus for vari-
ous neural net models, interpolated with the baseline 5-gram
and 5-gram+cache models. The RNN-LDA LM has 300 neu-
rons, and uses 40-dimensional features computed on a 50-
words history (sliding window).

Model Individual +KN5 +KN5+cache
KN5 141.2 - -
KN5 + cache 125.7 - -
Feedforward NNLM 140.2 116.7 106.6
Log-bilinear NNLM 144.5 115.2 105.8
Syntactical NNLM 131.3 110.0 101.5
Recurrent NNLM 124.7 105.7 97.5
RNN-LDA LM 113.7 98.3 92.0

Table 4. Perplexities on the Penn Treebank Corpus for model
combination using linear interpolation.

Model Test PPL
Kneser-Ney 5-gram, no count cutoffs 141.2
Model combination [28] 78.8
Combination of RNN-LDA models 80.1
RNN-LDA models + KN5 + cache 78.1
Combination of All 74.1

bination experiments, we trained 8 RNN-LDA models with
different configurations (up to 400 neurons and 40 dimen-
sional LDA). The results are presented in Table 4. It can be
seen that the final combination is significantly better than the
best previous result. In addition, when we examine the inter-
polation weights, the vast majority of weight is assigned to
the RNN-LDA models. The simple RNN models are the sec-
ond most important group, and small contribution still comes
from the 5-gram KN model with cache. Other techniques
provide insignificant improvements.

4.2. Comparison with Latent Semantic Analysis

Our use of LDA has been motivated by the fact that it is one
of the most widely used topic modeling approaches, and a
fully generative probabilistic model. We have also performed
a set of experiments with Latent Semantic Analysis [33], and
found that it performs comparably. Because LSA word repre-
sentations do not represent probability distributions, weper-
form the incremental update as

f(t) = γf(t − 1) + (1 − γ)tw(t), (6)

The results are summarized in Table 5; the combination with
“all” models now includes models using LSA features.

5. WALL STREET JOURNAL ASR RESULTS

In this section, we use a RNN-LDA model for N-best rescor-
ing in a speech recognition setting. We used the medium-



Table 5. Treebank perplexities using LSA.

Model Individual +KN5 +KN5+cache +All
RNN-LSA LM 110.3 96.4 90.3 72.9

sized Wall Street Journal automatic speech recognition task,
with around 37M tokens in the LM training data. To han-
dle the computational complexity associated with applying
RNNs to larger data sets, a number of computational efficien-
cies have been developed [4], which are adopted here. The
most useful techniques for complexity reduction are:

• factorization of the output layer using classes to avoid
expensive normalization over the full vocabulary

• training the neural net jointly with a maximum entropy
model with N-gram features, to avoid huge hidden lay-
ers (denoted as RNNME model)

For the following experiments, we used lattices generated
with the Kaldi speech recognition toolkit [34]. To allow com-
parability with previous work, the 100-best lists used in this
work are the same as those used in [28]. The triphone GMM
acoustic models were trained on the SI-84 data further de-
scribed in [35]. We tested with the 20k open-vocabulary task.
Note that while we do not use advanced acoustic modeling
techniques such as SGMMs [36] and speaker adaptation, the
baseline system achieves comparable results as is common
in the language modeling research [37] and is sufficient for
comparison of advanced language modeling techniques.

The ASR system produced lattices using a pruned trigram
model with Good-Turing smoothing, from which we gener-
ated the 100-best lists that are used in the rescoring. The
baseline N-gram language models used for rescoring are a
modified Kneser-Ney 5-gram (KN5) with singleton cutoffs,
and a KN5 model without cutoffs.

Next, we trained a RNNME model with 10 hidden neu-
rons and 1000M parameters for a concurrent hash-based ME
model using 4-gram features. We used 200 classes in the out-
put layer. Next, we trained RNNME models with the same
configuration and with additional features that represent the
topic information in the current sentence and with exponential
decayγ = 0.9. We reset the feature vector at the beginning of
each new sentence, thus the features represent only the topic
of the current sentence. This places fewer constraints on the
training and test phases (the order of sentences can be ran-
dom). Results are presented in Table 6, where it can be seen
that the topic information is very useful and leads to 0.4% -
0.6% WER reduction.

We trained additional RNNME models with 200 hidden
neurons and with 40 LDA features, to see the potential of
topic information in larger models. As can be seen in Table 6,
we obtain similar reductions in perplexity as with the smaller
models; nevertheless, it is harder to obtain improvements in
word-error-rate over the large RNNME-200 model. We have
explored several scenarios including combination with the

Table 6. Perplexities, and word error rates for WSJ 100-best
list rescoring with RNNME and RNNME-LDA models.

Model PPLX
Dev

WER
Dev

WER
Test

KN5 121 12.5% 16.6%
KN5, no count cutoffs 113 12.0 16.6
RNNME-10 110 11.7 16.2
RNNME-10+LDA-5 105 11.1 15.9
RNNME-10+LDA-20 103 11.1 15.8
RNNME-200 89 9.9 14.7
RNNME-200+LDA-40 84 9.9 14.6
KN5+RNNME-200 87 9.9 14.6
KN5+RNNME-200+LDA-40 82 9.7 14.5

KN5 model, always obtaining improvements of 0.1% - 0.2%.
Still, the perplexity of the RNNME-200+LDA-40 model is
by more than 5% lower than of the RNNME-200 model; thus
in this task the improvements are sometimes small but always
consistent across metrics and setups.

6. CONCLUSION

In this paper, we introduced the use of context dependent
recurrent neural network language models. The main idea is
to condition the hidden and output vectors on a continuous
space representation of the previous words and sentences.
Using a representation based on Latent Dirichlet Allocation,
we are able to avoid the data fragmentation associated with
the traditional process of building multiple topic-specific
language models. We further develop a fast approximate
context-updating technique which allows us to efficiently
compute context vectors with a sliding window. The use of
these models results in the lowest published perplexity on the
Penn Treebank data, and in WER improvements for the Wall
Street Journal task.

In the future, we are interested in applying our approach
to leverageexternal information that is not present in the
text. For example, in the machine translation setting, to use
a source-language representation to condition the target-side
language model, or in a voice-search setting to use a contex-
tual vector representing a users interests.
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