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ABSTRACT

Recurrent neural network language models (RNNLMs) have
recently produced improvements on language processing
tasks ranging from machine translation to word tagging and
speech recognition. To date, however, the computational
expense of RNNLMs has hampered their application to first
pass decoding. In this paper, we show that by restricting
the RNNLM calls to those words that receive a reasonable
score according to a n-gram model, and by deploying a set
of caches, we can reduce the cost of using an RNNLM in the
first pass to that of using an additional n-gram model. We
compare this scheme to lattice rescoring, and find that they
produce comparable results for a Bing Voice search task. The
best performance results from rescoring a lattice that is itself
created with a RNNLM in the first pass.

Index Terms— recurrent neural network language model,
cache, computational efficiency, voice search

1. INTRODUCTION

Recurrent neural network language models [1] have been suc-
cessfully applied in a variety of language processing tasks
ranging from machine translation [2] to word tagging [3, 4]
and speech recognition [1, 5]. In common with other contin-
uous space language models, RNNLMs map words that are
semantically or grammatically related to similar locations in
continuous space. Thus, adjusting model parameters for one
word in a particular context tends to improve likelihood esti-
mates for similar words in similar contexts. Despite their en-
couraging performance on a broad array of tasks, RNNLMs
have not been widely used for first pass speech recognition
because of their computational complexity. Addressing this
problem is the topic of this paper.

Previous attempts to use RNN models in speech recog-
nition have fallen in the following two categories. The first
class of approaches involves converting an RNN model into
an n-gram language model format which can be directly used
in first pass decoding. For example, [6] has sampled artificial
data from trained RNN models and then trained n-gram mod-
els from the sample data. In a similar vein, [7] converted RNN
models to weighted finite state transducers, and for feedfor-
ward networks, [8] converted NNLM models to n-gram mod-
els via a hierarchical pruning algorithm. The second class of
approaches involves using RNN models in second pass n-best

re-scoring. For example, [9] has proposed to cache redun-
dant computation in n-best hypotheses re-scoring, and [10]
has proposed prefix tree based n-best list re-scoring.

In this paper, we address the problem of using RNNLMs
directly in the first pass of speech recognition decoding. Our
approach has two basic components. First, we use a baseline
n-gram model to score search path extensions when words
are hypothesized during decoding. Only if a newly hypoth-
esized word has a reasonable score, a RNNLM is called to
compute a new LM score, which is then included as part of
the path cost. Secondly, we propose a set of caches which
store previously computed scores and normalization values.
These caches effectively convert the RNN into an n-gram lan-
guage model dynamically, in a context-dependent way: once
a word is hypothesized in a given n-gram context, the prob-
ability is reused when the same word is encountered in the
same context. In theory, the RNN model is sensitive to the
entire path history, but in practice we find that truncating the
history and re-using probabilities incurs no penalty.

The main contributions of this paper are: 1) we apply
RNN models directly in first pass decoding. For the Bing
voice search task, we find that RNN models outperform n-
gram models, but at the expense of much greater computa-
tional complexity; 2) we propose a cache based RNN infer-
ence scheme, which avoids repeated computation of identical
LM calls, and caches useful intermediate results for fast RNN
inference; and 3) we show that the use of RNN models in both
first pass decoding and second pass lattice re-scoring results
in the lowest error rate in our task.

The remainder of the paper is organized as follows. In
Section 2 we review RNN inference. In Section 3 we de-
scribe the decoder which makes calls to RNN inference. We
propose cache based RNN inference in Section 4. We report
experimental results in Section 5, discuss the potential of our
work in Section 6, and draw conclusions in Section 7.

2. RNN INFERENCE

Fig. 1 illustrates an RNN. For simplicity we do not include
Maximum Entropy features as proposed in [11]. The network
has an input layer w(t), hidden layer s(t), output layer class
component c(t), and output layer word component y(t). The
vectors w(t) and y(t) have dimensionality of the vocabulary
(V). ¢(t) and y(¢) represent probability distributions over
classes and words respectively given the previous word w(t)



w() MO)

l4c(t)

Fig. 1. Recurrent neural network infrastructure. Computa-
tional steps are numbered O through 6. A downward arrow
implies assigning a value to all the nodes in the span of the
arrow.

s(t-1)

and the hidden state vector s(t — 1).
The values in the hidden and output layers are computed
as follows:

s(t) = f(Uw(t) + Ws(t — 1)), (1)
c(t) = g(Zs(t)), 2)
y(t) g(Vs(t)), 3)

where f(z) and g(z) are sigmoid and softmax activation func-
tions as following:

1
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The values of U, V, W, and Z are computed in RNN train-
ing. The final probability of output word is the product of ¢(t)
and y(t)(see [5] for details).

RNN inference consists of 7 steps labeled O through 6 in
Fig. 1. Steps 0, 1 and 2 correspond to computing Ws(t —
1), Uw(¢), and f(.) respectively in Equation (1). Similarly,
steps 3 and 4 correspond to Equation (2), and steps 5 and 6
correspond to Equation (3).

In order to derive the time complexity of RNN inference,
we assume an average of % words are considered in step
6. This assumption is somewhat more pessimistic than what
is obtained in practice with frequency binning [5] or speed-
regularized likelihood classing [12]. Based on this assump-
tion, the average computational complexity of RNN infer-
ence, i.e., computing P(y(¢)|w(t),s(t — 1), is

O(HxH—I—Hx(C—i—g)), (6)

where H is the size of hidden layer, V is the size of vocabu-
lary, and C is the size of classes.

3. WEIGHTED FINITE STATE TRANSDUCER
(WFST) DECODER

In this section, we briefly describe the decoder which is used
in our experiments. It is a dynamic decoder modeled after
[13]. The search space is represented as a determinized, min-
imized finite state transducer. Input arcs are labeled with con-
text dependent HMM states, and output arcs with words. The

language model is dynamically applied at word-ends. Lan-
guage model lookahead scores are embedded in the graph,
and compensated for at word ends, when multiple language
models may be consulted and interpolated. Based on this or-
ganization, we have successfully experimented with the fol-
lowing skip heuristic to reduce computation caused by RNN
inference: when the cost of a path evaluated by baseline n-
gram model is above a threshold, such a path is killed without
calling RNN model for evaluation. As we will see in the ex-
periments, the skip heuristic is critical to speed, and does not
incur accuracy loss.

In a standard token-passing dynamic WFST decoder us-
ing an n-gram language model, tokens landing on the same
WEST arc and in the same language model state can be com-
bined. Theoretically, this is incompatible with an RNNLM
because each history state depends on the entire path. To re-
solve this, we introduce a recombination length parameter k.
Tokens/Paths with identical last k history words are merged.
A hidden state of the RNN is stored to represent the k history
words (see Section 4.2 for details).

4. CACHE BASED RNN INFERENCE

Four caches are used to speed up RNN inference. The
caches are implemented as hash tables to store key value
pairs. The caches discussed in this paper are local: they are
cleared before decoding a new utterance, and are dynami-
cally constructed as the decoder makes LM calls. The tree
on the bottom of Figure 2 shows the topologically ordered
RNN LM calls for a given utterance. The numbers in the
nodes represent the orders of RNN LM calls. For example,
P(movies| < s >, action), is called in the orders of 4 and 6
(duplicated calls are possible during SR decoding). Since the
decoder recombines the history, it does make calls that do not
involve < s >, though these are not shown.

4.1. Cache 1:
Cache

Query to Language Model Probability

Cache 1 is used to store the LM probability of a LM call. For
example, < s > action movies — P(movies| < s >
,action) is stored in cache 1 after call #4 and the value is
retrieved and re-used for call #6. A hit with cache 1 accom-
plishes inference with a single hash table lookup.

4.2. Cache 2: History to Hidden State Vector Cache

The history to hidden state vector cache stores key-value pairs
of histories and their corresponding hidden state vectors. Al-
gorithm 1 shows cache 2 update as used in previous work such
as [9, 10]. An update example of such cache is described as
follows. Assume the decoder makes call #4, P(movies |<
s > action), and there is an entry with key being < s >
action. The value of that key is retrieved to populate s(t — 1)
and then steps 0 through 6 are executed in RNN inference. As
a result, P(movies |< s > action) is computed. In addi-
tion, we create an entry of < s > action movies — s(t) if
the key of the entry has not been stored in cache?2.
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Fig. 2. RNN language model calls in SR decoding

The above cache is denoted as naive cache 2 as it involves
repeated computation when the same history is used to com-
pute the probability of multiple successors: s(t — 1) is re-
peatedly multiplied by W. To avoid this, in Algorithm 2, we
store Ws(¢ — 1) in Cache 2B. When RNN inference is called,
cache2B is first checked. If an entry is found, then steps O
through 2 can be skipped (complexity savings of O(H x H)
in Equation (6)). Otherwise, the computation is the same as
in naive cache 2.

We denote the caching strategies we use as cache first.
That is, once an entry is stored in cache2, it is not updated.
Alternatively, we have tested a cache best strategy: we cache
the hidden state vector which leads to the highest probability
within a sliding time window. Both approaches lead to similar
results. We therefore use cache first strategy through out all
experiments.

Algorithm 1 Naive cache 2 update algorithm

Ensure Cache 2 update for query P(w; | wi—n+1 -

oldHistory = w; _n 41 . wz 1

newHistory = w; 42 .

s(t—1) = qetValue(cache2 oldHistory)

execute steps 0, 1, and 2 to generate s(t)

if newHistory is not in keys of cache2 then
cache2(newHistory) = s(t)

end if
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Algorithm 2 Cache 2 update algorithm

Ensure: Cache2A and cache2B update for query P(w; | wi—n+41 ... wi—1)
oldHistory = w; _pn41 ... wi—1
newHistory = w; —n42 ... w;

if oldHistory in keys of cache2B then
s(t) = getValue(cache2B, oldHistory)

else
s(t — 1) = getValue(cache2A, oldHistory)
execute steps 0, 1, and 2 to generate s(t)
cache2B(oldHistory) = s(t)

end if

10: if newHistory is not in keys of cache2A then

11: cache2A(newHistory) = s(t)

12: endif
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4.3. Cache 3: History to Class Normalization Factor
Cache

Similar to cache 2, the computation of class probabilities in
steps 3 and 4 in RNN inference can be made once for calls
which have same histories (e.g., P(movies |< s > action)
and P(music |< s > action)). This is because steps 3 and
4 depend on history only (< s > action in our examples).
We use cache 3 for this purpose. In terms of implementation,
we can either cache all classes P(c(t) |< s > action), or
cache the class normalization term (the denominator term in
Equation (5)). We choose the latter as the former may require
significantly more memory. Cache 3 reduces the time com-
plexity factor of O(H x C) to O(H) in Equation (6) when
the key is found in this cache.

4.4. Cache 4: History and Class Id to Sub-vocabulary
Normalization Factor Cache

Similar to cache 3, steps 5 and 6 in RNN inference can be
computed once for calls which have same histories and class
id. This is because steps 5 and 6 depend on history and class
only. We use cache 4 for this purpose. Again, we store the
normalizer only. Cache 4 reduces the complexity factor of
O(H x &) to O(H) in Equation (6) if the key has been found
in this cache

4.5. Order of Cache Consultation

When queried for a language model probability, we first con-
sult cache 1 for the probability. If it is not found, the probabil-
ity must be computed. In this case, Caches 2-4 are consulted
as inference steps 0-6 are executed.

5. EXPERIMENTS

5.1. Experimental Setting

Table 1. Characteristics of training, validation and test data

sets.
data sentences | tokens
train 549K 2.15M
validation 1344 5316
test 2037 7094

Table 2. Vocabulary size and perplexity on validation and test
data sets for baseline, KN4 and RNN models.

baseline | KN4 | RNN
vocab size 70K 35K | 35K
validation pplx 156 157 143
test pplx 143 125 120

We apply RNN models to first pass decoding on Bing
voice search data [14]. Production acoustic and language



Table 3. First pass word error rates (%) for validation and test
data sets using different language models interpolated with
the baseline.

baseline | KN4 | RNN | Cache RNN
Valid 26.80 25.90 | 25.70 25.70
Test 25.30 23.80 | 23.20 23.20

models were used as the baseline. We used a collection of
recently transcribed queries to train our rescoring language
models. For RNN model training, we used 50M 3-gram maxi-
mum entropy features and 50 classes (see [12], with the speed
regularization constant being 0.001). The hidden layer size
was 100. Training takes around 3 hours. Table 1 shows the
characteristics of the training, validation and test sets.

The baseline n-gram LM model is trained on a much
larger data set which consists of heterogeneous data sources
such as Bing computer search queries and Bing mobile search
queries. Note that the training data do not include the afore-
mentioned in-domain training data. Table 2 shows the vocab-
ulary size and perplexity of the baseline, Kneser-Ney 4-gram
(KN4) and RNN language models. The RNN model results in
the lowest perplexities for both validation and test data sets.

5.2. First Pass Decoding Results

Table 3 presents word error rates for first pass decoding with
our models. The baseline LM has a 25.3% WER on the test
set. This falls to 23.2% with the RNNLM. By contrast, using
the same data in a KN 4-gram model is 0.6% worse. There
is no degradation from caching'. All experiments used an in-
terpolation weight of 0.5. Table 4 shows the runtimes; with
caching, the use of an RNNLM is comparable to using an
additional n-gram LM. This opens avenues in which various
syntactic and semantic features [15, 16] can be easily incor-
porated.

Table 4. First pass speed (xRT) for validation data set using

different collections of language models
[ [ baseline | baseline+KN4 | baseline+RNN | baseline+Cache RNN |
[Speed | 094 | .16 [ 3.49 [ .16 |

Table 5 shows the incremental effect of the four caches
as measured on 100 randomly sampled voice search queries.
When the RNN is used in every single LM call (i.e. the skip
heuristic is not used), and no caching is done, the runtime is
over 100xRT. With all our optimizations, this drops to just
under 1.2xRT.

Table 5. Incremental speed reduction of four caches. Error
rates are the same in all cases.

no skip skip heuristic no skip
naive cache 2 haive cache 2| _cache2 | +cache | | +cached | +cached all caches
102.77 382 [ 332 | 132 | 130 | 1Li8 275

'We use the recombination length of 3, which is enough to preserve word
histories as the average voice search query size is under 4.

5.3. Second Pass Lattice Re-scoring Results

For comparison, we have run a set of lattice rescoring ex-
periments. In these experiments, we generate lattices with
three language models: baseline, baseline+KN4, and base-
line+RNN. In each case we then re-score with the RNN LM.
These results are summarized in Table 6. On the test set,
rescoring achieves 22.9% compared with 23.2% for first pass
decoding. The best results are attained by creating the lattice
with the RNNLM interpolated with the baseline ngram model
in the first pass, and then rescoring with the same model using
interpolation weight 0.3.

Table 6. Word error rates of second pass lattice re-scoring.

baseline | baseline+KN4 | baseline+RNN
RNN weight 0.5 0.4 0.3
Valid WER 25.50 25.50 25.40
Test WER 22.90 23.10 22.70

Table 7. Perplexity on voice search validation and Penn Tree-
bank data sets fcl)er %ache based RNN models.

recombination Iength
T ] 3 4 5
voice search 143.09 [ 190.32 | 149.96 | 143.10 | 143.11 | 143.09
Penn Treebank 127.29 150.15 150.82 133.45 128.61 127.72

6. DISCUSSION

We have tested our approach with the voice-search task be-
cause it is a heavily used and very important speech appli-
cation. However, it has the property that most utterances are
short, and therefore the use of a cache based on a fixed history
length might be more effective in this scenario than in others
with longer sentences. To test if cache based RNN can be ap-
plied to longer utterances, we have computed perplexities for
both voice search validation and Penn Treebank sentences.
The average voice search utterance is under 4 words, while
the average Treebank utterance is 21 words. Table 7 shows
perplexities on these two sets, for caching based on history
lengths from 1 to 5. We see that in both cases, perplexity
drops rapidly up to history lengths 3 or 4, at which point it is
very close to that obtained with unlimited context. This sug-
gests that caching may be appropriate for longer utterances.

7. CONCLUSIONS

In this paper, we applied RNN language models directly in
first pass decoding. We showed that RNN models outper-
form n-gram models in the Bing voice search task but with
much greater computational complexity. To address this, we
propose cache based RNN inference, which can significantly
reduce the runtime, while attaining identical results to con-
ventional RNN models. Finally, we showed that the use of
RNN models in both first pass decoding and second pass lat-
tice re-scoring results in the lowest WER in our task.
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