
Convergent Contemporary Software Peer Review Practices

Peter C. Rigby
Concordia University

Montreal, QC, Canada
peter.rigby@concordia.ca

Christian Bird
Microsoft Research
Redmond, WA, USA

cbird@microsoft.com

ABSTRACT

Software peer review is practiced on a diverse set of soft-
ware projects that have drastically different settings, cultures,
incentive systems, and time pressures. In an effort to char-
acterize and understand these differences we examine two
Google-led projects, Android and Chromium OS, three Mi-
crosoft projects, Bing, Office, and MS SQL, and projects
internal to AMD. We contrast our findings with data taken
from traditional software inspection conducted on a Lucent
project and from open source software peer review on six
projects, including Apache, Linux, and KDE. Our measures
of interest include the review interval, the number of develop-
ers involved in review, and proxy measures for the number of
defects found during review. We find that despite differences
among projects, many of the characteristics of the review pro-
cess have independently converged to similar values which we
think indicate general principles of code review practice. We
also introduce a measure of the degree to which knowledge
is shared during review. This is an aspect of review practice
that has traditionally only had experiential support. Our
knowledge sharing measure shows that conducting peer re-
view increases the number of distinct files a developer knows
about by 66% to 150% depending on the project. This paper
is one of the first studies of contemporary review in software
firms and the most diverse study of peer review to date.

Categories and Subject Descriptors

D.2.8 [Software Engineering]: [Metrics]; K.6.3 [Software
Management]: [Software development; Software process]

General Terms

Management, Measurement

Keywords

Peer code review, Empirical Software Engineering, Inspection,
Software firms, Open source software

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESEC/FSE ’13, August 18 – 26, 2013, Saint Petersburg, Russia
Copyright 2013 ACM 978-1-4503-2237-9/13/08 ...$15.00.

1. INTRODUCTION

Software peer review, in which an independent evaluator
examines software artifacts for problems, has been an engi-
neering best practice for over 35 years [9, 10]. While effective
in identifying defects, the rigidity of traditional formal re-
view practices has been shown to limit adoption and review
efficiency [12, 29]. In contrast, contemporary or modern
peer review encompasses a series of less rigid practices [6,
22]. These lightweight practices allow peer review to be
adapted to fit the needs of the development team. For exam-
ple, peer review is widely practiced on open source software
(OSS) projects. Rigby et al. [23] described a minimalist OSS
process that efficiently fit the development team. However,
there was a lack of traceability and tools to support review
that made it difficult to externally monitor the progress and
quality of an OSS system. Despite a large body of research
on peer review in the software engineering literature, little
work focuses on contemporary peer review in software firms.
There are practitioner reports, but these are experiential
[20] or biased by a commercial interest in the review tool
being examined [6]. To date, practitioners have driven the
development of contemporary peer review and the tools that
support it [26, 6]. The proliferation of reviewing tools (e.g.,
CodeCollaborator, ReviewBoard, Gerrit, Crucible) and the
growing number of companies using lightweight review in-
dicates success in terms of adoption (e.g., Google, Cisco,
Microsoft), but there is no systematic examination of the
efficacy of contemporary peer review in software firms.

We posit that contemporary peer review (review practiced
today by many commercial and OSS projects) evolved from
the more traditional practice of formal inspections of a decade
or more ago. In this paper, we present an exploration of
aspects of contemporary peer review in software projects
that span varying domains, organizations, and development
processes in an attempt to aggregate and synthesize more
general results. Our primary conjecture is that if the peer
review practices and characteristics in multiple disparate
projects (See Table 2) have become similar as they have
naturally or organically evolved, then such characteristics
may be indicative of convergent practices that represent
generally successful and efficient methods of review. As such,
these can be prescriptive to other projects choosing to add
peer review to their development process.
Our overarching research question is how do the parame-

ters of peer review differ in multiple disparate projects? We
operationalize this question for each parameter of review:

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the author/owner(s). Publication rights licensed to ACM.

ESEC/FSE’13, August 18–26, 2013, Saint Petersburg, Russia
ACM 978-1-4503-2237-9/13/08
http://dx.doi.org/10.1145/2491411.2491444

202

Table 1: Project data sets: The time period we ex-
amined in years and the number of reviews

Project Period Years Reviews

Lucent 1994–1995 1.5 88

Apache 1996–2005 9.8 5.9K
Subversion 2003–2008 5.6 4.9K
Linux 2005–2008 3.5 28K
FreeBSD 1995–2006 12.0 47K
KDE 2002–2008 5.6 23K
Gnome 2002–2007 5.8 8K

AMD 2008–2011 3.2 7K

MS Bing 2010–2013 3.7 102K
MS Sql Server 2011–2013 2.8 80K
MS Office 2013 2011–2013 2.7 96K

Android 2008–2013 4.0 16K
Chrome OS 2011–2013 2.1K 39K

1. What peer review process (e.g., Fagan inspection vs
Commit-then-review) does the project use?

2. How long do reviews take and how often are reviews
performed?

3. What is the size of artifact under review?

4. How many people are involved in review?

5. How effective is review in terms of problems discussed?

6. Does review spread knowledge about the system across
the development team?

With the exception of the last question, these parameters
of review have been studied in many experiments over the
last 35 years [9, 19, 24]. Our contribution is to compare a
large diverse set of projects on these parameters.

This paper is organized as follows. In Section 2, we provide
a brief overview of the software peer review literature and
describe the review practices of the projects we study in
this paper. In Section 3, we describe the data that we mine
and our multiple case study methodology. In Section 4,
we present our case study findings and describe convergent
and divergent practices. In Section 5, we provide a first
measurement of the impact of peer review on knowledge
sharing in a development team. While we discuss threats to
validity throughout the paper, we provide a fuller discussion
of them in Section 6. In Section 7, we conclude the paper.

2. BACKGROUND AND PROJECT INFOR-

MATION

In this section we introduce three types of peer review:
traditional inspection, OSS email-based peer review, and
lightweight tool supported review. We also describe the
projects and data we have for each review type. The novel
data in this paper comes from Advanced Micro Devices
(AMD), Microsoft, and Google-led projects. Table 2 is in-
tended to show the time periods and size of data set we have
for each project, and is not intended for comparisons among
projects. In the remainder of this paper, we normalize and
convert the raw data to perform meaningful comparisons.

2.1 Software Inspection

Software inspections are the most formal type of review.
They are conducted after a software artifact meets predefined
exit criteria (e.g., a particular requirement is implemented).
The process, originally defined by Fagan [9], involves some
variation of the following steps: planning, overview, prepa-
ration, inspection, reworking, and follow-up. In the first
three steps, the author creates an inspection package (i.e.,
determines what is to be inspected), roles are assigned (e.g.,
moderator), meetings are scheduled, and the inspectors ex-
amine the inspection package. The inspection is conducted,
and defects are recorded but not fixed. In the final steps,
the author fixes the defects and the mediator ensures that
the fixes are appropriate. Although there are many varia-
tions on formal inspections, “their similarities outweigh their
differences” [31].

Comparison data: We use data that Porter et al. collected
in inspection experiments at Lucent [19] to compare our
findings for contemporary review with traditional software
inspection. Their study was conducted in a semi-controlled
industrial setting. Each condition in their study was de-
signed to emulate a particular variation in inspection process.
However, they found that variation in inspection processes
accounted for very little variation in the number of defects
found during review. People and product measures, such as
the expertise of the review, accounted for much more of the
variance.

2.2 Open Source Software Peer Review

Peer review is a natural way for OSS developers, who
rarely meet in person, to ensure that the community agrees
on what constitutes a good code contribution. Most large,
successful OSS projects see peer review as one of their most
important quality assurance practices [23, 18, 1]. On OSS
projects, a review begins with a developer creating a patch.
A patch is a development artifact, usually code, that the
developer feels will add value to the project. Although the
level of formality of the review processes varies among OSS
projects, the general steps are consistent across most projects:
1) the author submits a contribution by emailing it to the
developer mailing list or posting to the bug or review tracking
system, 2) one or more people review the contribution, 3) it is
modified until it reaches the standards of the community, and
4) it is committed to the code base. Many contributions are
ignored or rejected and never make it into the code base [3].
This style of review is called review-then-commit (RTC). In
contrast to RTC, some projects allow trusted developers to
commit contributions (i.e. add their contributions to the
shared code repository) before they are reviewed. The main
or core developers for the project are then expected to review
all commits. This style of review is called commit-then-
review (CTR). All projects use RTC, but some also use CTR
depending on the status of the committer and the nature of
the patch [23].

Comparison data: We have data from six large, successful
OSS projects (which we will refer to as the “OSS projects” in
this paper1): the Apache httpd server, the Subversion version
control system, the Linux operating system, the FreeBSD

1Although Chrome and Android have open source licenses,
they are led by Google.

203

operating system, KDE desktop environment, and Gnome
desktop environment. The results from these projects have
been published by Rigby et al. [24, 25] and are used here
only for comparison purposes.

2.3 Peer Review at Microsoft

Microsoft has slowly been evolving its code review process.
While code review has been an integral practice at Microsoft
for many years, the method used has shifted from sending
patches and discussion them on large email lists to using
centralized tools.
A few years ago, Microsoft developed an internal tool,

CodeFlow, to aid in the review process. In many projects
(including the Microsoft projects that we examined for this
study), code review is primarily accomplished via CodeFlow
and occurs once a developer has completed a change, but
prior to checkin into the version control system. A developer
will create a review by indicating which changed files should
be included, providing a description of the change (similar to
a commit message), and specifying who should be included
in the review. Those included receive email notifications
and then open the review tool which displays the changes to
the files and allows the reviewers to annotate the changes
with their own comments and questions. The author can
respond to the comments within the review and can also
submit a new set of changes that addresses issues that the
reviewers have brought up. Once a reviewer is satisfied with
the changes, he can “sign off” on the review in CodeFlow.
While many teams have policies regarding code review sign
off, there is no explicit connection between the review system
and version control that disables checkin until a review has
been signed off. Teams’ review policy may vary in many
ways. For example, some require just one reviewer to sign
off while others require more; some specify who should sign
off for changes in different components and some leave it up
to the developer; etc. For more details, we refer the reader
to an earlier empirical study [2] in which we investigated
the purposes for code review (e.g., finding defects, sharing
knowledge) along with the actual outcomes (e.g., creating
awareness and gaining code understanding) at Microsoft.

New Data: In this paper, we present the results of analyz-
ing review data drawn from three large projects at Microsoft
that use CodeFlow as the primary mechanism for code review
and that differ in their domain and development methodol-
ogy – Bing, Microsoft Office 2013, and Microsoft SQL Server.
Bing is an Internet search engine; it is continuously being
developed and deployed and undergoes constant development.
Office is a suite of business applications that ships as a boxed
product and follows a more traditional process with phases
for planning, implementation, stabilization, and shipping.
SQL Server is a database management and business intelli-
gence application that follows a development cycle similar
to Office. We present details of data gathering for these
projects in subsection 3.1.

2.4 Google-based Gerrit Peer Review

When the Android project was released as OSS, the Google
Engineers working on Android wanted to continue using the
internal Mondrian code review tool used at Google [28].
Gerrit is an OSS, git specific implementation of the code
review practices used internally at Google, created by Google

Engineers [11]. Gerrit centralizes git acting as a barrier
between a developer’s private repository and the shared
centralized repository. Developers make local changes in
their private git repositories and then submit these changes
for review. Reviewers make comments via the Gerrit web
interface. For a change to be merged into the centralized
source tree, it must be approved and verified by another
developer. The review process has the following stages:

1. ”Verified” - Before a review beings, someone must verify
that the change merges with the current master branch
and does not break the build. In many cases, this step
is done automatically.

2. ”Approved” - While anyone can comment on the change,
someone with appropriate privileges and expertise must
approve the change.

3. ”Submitted/Merged” - Once the change has been ap-
proved it is merged into Google’s master branch so
that other developers can get the latest version of the
system.

New Data: In this paper, we present results from two
Google-led, OSS projects that use the Gerrit peer review tool:
Android and Chromium OS. Android is an operating system
developed for mobile and tablet devices. It is Open Source
Software and was initiated by a group of companies known
as Open Handset Alliance, which is led by Google.2 Google
Chromium OS, referred to as Chrome, is an operating system
which runs only web apps and revolves around the Chromium
web browser.3 We present details of data gathering for these
projects in subsection 3.1.

2.5 AMD and CodeCollaborator

Ratcliffe [20] presented a practitioners report on the adop-
tion of a CodeCollaborator based peer review practice on an
internal AMD project, which served as the model for other
projects at AMD. The practice used at AMD involves the
following steps: 1) the author uploads the software artifacts
for review in the web interface, 2) reviewers are assigned to
the review, 3) a review discussion occurs and problems are
fixed, 4) once a review is approved it is committed. The
CodeCollaborator tool allows for assignment of rules and the
specification and enforcement of business rules (e.g., a review
must be approved by 2 reviewers before it can be committed).
While asynchronous discussion can occur, a chat interface
can also be used. Cohen, the founder of the company that
sells CodeCollaborator, performed a detailed evaluation of
the tool at Cisco [6].

New data: Ratcliffe’s practitioners report was mainly qual-
itative. In this work, we present the quantitative results from
the use of CodeCollaborator at AMD. The AMD data set
is limited, so we indicate below when we are unable present
results for AMD.

2.6 Contemporary Peer Review Process

Comparing the above review processes, we find that con-
temporary peer review is characterized by being lightweight

2http://source.android.com/
3http://www.chromium.org/chromium-os

204

and occurring before the code is added to a version control
repository that many developers depend upon (e.g., the mas-
ter branch). This process contrasts sharply with traditional
software inspection where large completed artifacts are re-
viewed in co-located meeting with rigidly defined goals and
participant roles. Contemporary OSS review is lightweight
and fits the development team, but when it is conducted
on a mailing list it is difficult to track. Some OSS projects
and all the software firms we examine use a review tool,
which makes the process traceable thought the collection
of review metrics. Contemporary reviews are typically con-
ducted asynchronously and measures of review are recorded
automatically.

Convergent Practice 1: Contemporary peer review fol-
lows a lightweight, flexible process

In general, contemporary review involves the following
steps.

1. The author creates a change and submits it for review.

2. Developers discuss the change and suggest fixes. The
change can be re-submitted multiple times to deal with
the suggested changes.

3. One or more reviewers approve the change and it is
added to the “main” version control repository. The
change may also be rejected.

3. METHODOLOGY AND DATA

We use Yin’s multiple cases study methodology [32]. Case
study findings ‘generalize’ or are transferable through analyt-
ical generalizations. Unlike statistical generalization, which
derives samples from and generalizes to a defined popula-
tion, analytic generalization requires researchers to develop
a theory or framework of findings related to a particular
phenomenon. We use theoretical sampling to select a di-
verse set of cases and then contrast our findings developing
a framework that describes the convergent and divergent
practices of contemporary peer review.

We began by collecting data on Microsoft review practices
and were surprised to see convergences with the practices ob-
served by Rigby on OSS projects [23]. These practices tended
to coincide with those seen at AMD [20] and Cisco [6]. We
collected data on the Google-led OSS projects, Chromium OS
and Android, to understand the practices of hybrid projects.
We also have data on the traditional inspection practices at
Lucent [19] that we use for comparison purposes.
We quantify how lightweight, tool-supported review is

conducted. Since each case study has different data points
and measures, a further contribution of this work is the
conversion of raw and summary data from past and current
cases to report comparable measures. We contribute a unified
set of findings across a large, diverse sample of projects.

In this section, we give an overview of the data we have for
each project. In each subsequent section, we discuss in detail
the pertinent data and measures. We also discuss limitations
in our data and construct validity issues.

3.1 Data Extraction

The data extraction for the following projects is described
in other work: Lucent [19], OSS projects [23], and AMD [20].
The former two data sets are used for comparison purposes,
while the AMD data had not been quantitatively reported in
previous work. In previous work, we described the extraction
process and resulting data for Google Chrome and Android;
the data is also available for other researchers [17]. This
work did not involve analysis of the data. In the remainder
of this section, we discuss what constitutes a review for each
project and briefly describe how we extracted peer review
data.

Microsoft: The Microsoft data for this study was collected
from the CodeFlow tool. This tool stores all data regarding
code reviews in a central location. We built a service to mine
the information from this location and keep a database up
to date for tools to leverage and for empirical analysis. For
each review, we record information including who created the
review, what files were modified, how many sets of changes
were submitted, the comments that reviewers added, and
who signed off.

One difficulty with this data is knowing when a review
is complete. There are a number of states that a review
can be in, one of which is “Closed”. However, to be in the
“Closed” state, someone must explicitly set the review to that
state. We observed that in practice, a developer may check
in his changes once reviewers had signed off without first
changing the review to “Closed”. In other cases, there was
evidence that a member of a project closed reviews as a form
of maintenance (one person closed thousands of reviews in a
matter of minutes). To deal with this, we use the heuristic
that a review is considered completed at the time of the last
activity by a participant in the review (i.e. the date of the
last comment or the last sign off, whichever is later). For
all the cases studies in this work, reviews with no comments
or sign offs were excluded from the data set as no review
discussion occurs.
Google Chrome and Android: We consider reviews in the

merged and abandoned states, open reviews are not consid-
ered in this work. Reviews must also have one comment from
a human reviewer who is not the author (Verifications by
bots are removed). To collect peer review data from these
projects, we reverse engineered the Gerrit JSON API and
queried the Gerrit servers for data regarding each review for
both projects, gathering information such as the author’s
and reviewers’ activity, files changed, comments made, and
dates of submission and completion. We stored this informa-
tion on peer reviews in a database for further analysis. The
extracted data and details of our technique are available to
other researchers [17].

AMD: We attained a summary of the data dump from the
CodeCollaborator tool [20]. Unfortunately, this data set does
not have all the parameters of review we wish to measure,
such as the number of comments per review. In this data
set, we only include review discussions that have at least one
reviewer.
Lucent: Siy attended inspection meetings and collected

self-report data from reviewers on a compiler project at
Lucent [19]. The roles and number of participants were

205

specified in advance. Since this is comparison data, we
discuss differences, but do not present this data in figures.

OSS project: Rigby et al.’s work considered six OSS project,
Apache, Subversion, Linux, FreeBSD, KDE, and Gnome [24,
25, 23]. The review data was extracted from developer mail-
ing lists. For a review to be considered valid it had to contain
the following: 1) a change or ‘diff’ and 2) one or more emails
from reviewers (i.e. not the author of the change). Both
accepted and rejected changes that were reviewed are in the
data set. Like the Lucent data, we do not report this data
in our figures.
Plotting the Data: We use two types of plots: beanplots

and boxplots. Beanplots show the distribution density for
multiple samples along the y-axis (rather than more com-
monly along the x-axis) to enable easy visual comparison
and in this work contain a horizontal line that represents
the median [13]. Beanplots are best for a large range of
non-normal data as they show the entire distribution (they
essentially show the full distribution drawn vertically, and
show whether there are peaks and valleys in a distribution)
while boxplots are better for smaller ranges. When we have
count data that is highly concentrated, we use a boxplot.
For all the boxplots in this work, the bottom and top of
the box represent the first and third quartiles, respectively.
Each whisker extends 1.5 times the interquartile range. The
median is represented by the bold line inside the box. Since
our data are not normally distributed, regardless of the style
of plot, we report and discuss median values.

4. MULTIPLE CASE STUDY FINDINGS

In this section, we present our convergent and divergent
findings in the context of iterative development, reviewers
selection practices, review discussions and defects, and knowl-
edge sharing through review. For each finding, we place it in
the context of the Software Engineering literature on peer
review, summarize it in a “Convergent Practice” box, and
then discuss the evidence that we have for each practice.

4.1 Iterative Development

The concept of iterative development is not new and can
be traced back to the many successful projects in the early
days of software development [14]. However, progressive
generations of software developers have worked in shorter
and shorter intervals. For example, “continuous builds” [8]
and “release early, release often” [21]. Peer review is no
exception.

An original goal of software inspection was to find software
defects by exposing artifacts to criticism early in the develop-
ment cycle. For example, Fagan inspection introduced early
and regular checkpoints (e.g., after finishing a major compo-
nent) that would find defects before the software’s release.
However, the time from when the review started to when the
discussion ended (i.e. the review interval) was on the order of
weeks [9]. In 1998, Porter [19] reported inspection intervals
at Lucent to have a median of 10 days. OSS projects like
Apache and Linux have review intervals on the order of a
few hours to a day [23].

Android Chrome AMD Bing Office SQL

Projects

in
te

rv
a
l
in

 d
a
y
s
 (

lo
g
)

1
 m

in
1
 h

r
.2

5
1

7
3
0

3
6
5

Figure 1: First Response on left (we do not have
first response data for AMD) and Full interval on
right

Convergent Practice 2: Reviews happen early (before a
change is committed), quickly, and frequently

AMD, Microsoft, and the Google-led projects exemplify
the convergent practice of frequent reviews, Figure 2, that
happen quickly, Figure 1. The reviews are always done
early (i.e. before the code is checked into the version control
system).
AMD: AMD has short review intervals, with the median

review taking 17.5 hours. The number of reviews per month
is also high and increases from a few reviews per month when
the tool and practice was introduced, to over 500 reviews
per month.

Microsoft: Bing, SQL, and Office also show short intervals
for reviews with median completion times of 14.7, 19.8, and
18.9 hours respectively. In terms of reviews per month, all
three projects are very active, but show different trends.
SQL has a median of 3739 reviews per month and is fairly
consistent month to month. In contrast, Bing has a median
of 2290, but has shown a steady increase over time since its
initial adoption of CodeFlow. Office has the highest median
at 4384, and it follows a typical release cycle with an initial
ramp up of reviews and a fall-off near release.
Google Chrome and Android: The median frequency is

1576 and 310 for Chrome and Android, respectively. The
median completion time is 15.7 and 20.8 hours, for Chrome
and Android, respectively.
Project Comparisons: The review interval, which is on

the order of hours and with a median around a day, shows

206

1
1
0

1
0
0

1
0
0
0

1
0
0
0
0

Android Chrome AMD Bing Office SQL

Projects

R
e
v
ie

w
s
 p

e
r

m
o
n
th

 (
lo

g
)

Figure 2: The number of reviews per month

remarkable consistency across all projects. Figure 1 also
shows the amount of time it takes for the first response to
a review. We can see for all projects that most reviews are
picked up with an few hours, indicating that reviewers are
regularly watching and performing review.

The number of reviews per month, or the review frequency,
is very high in comparison to traditional inspection practices,
but tends to vary with the stage, development style, and
size of the project (a divergent finding). In Figure 2, we can
see three distinct types of projects: adoption (e.g., Bing),
cyclic (e.g., Office), and stable (e.g., Chrome). The long tails
in each beanplot show that adoption took place, and with
AMD and Bing the amount of review is still increasing with
each month. This trend can be seen in Figure 3, which plots
Bing data as a timeseries. In contrast to this monotonic
trend, cyclic projects, like Android, FreeBSD, Office show an
irregular cone shape, with gradual fluctuations in the amount
of development and review (See Office in Figure 2). Finally,
Chrome and SQL show a relatively stable number of reviews.
Linux and KDE exhibit similar trends.

Convergent Practice 3: Change sizes are small

Having a short interval cannot be achieved without changes
to other aspects of software development. By creating smaller
changes, developers can work in shorter intervals. For exam-
ple, Mockus et al. noted that Apache and Mozilla had much
smaller change sizes than the industrial projects they used
for comparison, but did not understand why [15, 22]. On
the OSS projects studied by Rigby et al., the median change
on OSS projects varies from 11 to 32 lines changed. They
argued that the small change on OSS projects facilitates
frequent review of small independent changes.

Reviews per Month

Bing

Office

Month

R
e
v
ie

w
s

Figure 3: Number of reviews per month in Bing and
Office. We were requested to keep raw numbers and
dates confidential, but this plot shows the trends in
code review as a tool is adopted (Bing) and over the
course of a release cycle (Office).

From Figure 4, both Android and AMD have a median
change size of 44 lines. This median change size is larger than
Apache, 25 lines, and Linux, 32 lines, but much smaller than
Lucent where the number of non-comment lines changed is
263 lines. Bing, Office, SQL, and Chrome have larger median
changes than the other projects examined, but are still much
smaller than Lucent. For example, Chrome’s median change
is 78 lines and includes 5 files. However, for Chrome, only
23% of changes are the same size or larger than a median
Lucent change. Furthermore, the distribution of changes
on Google-led and the other OSS project are left skewed
indicating that the majority of changes are small. While the
distribution for the commercial firms is also left skewed, it is
almost log normal.

4.2 Selecting Reviewers

Traditionally, developers are assigned to review an artifact.
On OSS projects, developers select the changes that they are
interested in reviewing and no reviews are assigned. Many
review tools allow for assignment as well as self-selection
incorporating a positive mix of both techniques [26, 11, 6].
The self-selection used in review tools is accomplished by
adding a group (e.g., a mailing list) to the reviewer list, then
individuals from this group can find the review [20, 2]. In
this section, we discuss the optimal number of reviewers as
well as different reviewer selection techniques.

The optimal number of inspectors involved in a meeting
has long been contentious (e.g., [5, 30]). Reviews are ex-
pensive because they require reviewers to read, understand,
and critique an artifact. Any reduction in the number of
reviewers that does not lead to a reduction in the number
of defects found will result in cost savings. Buck [5] found
no difference in the number of defects found by teams of
three, four, and five individuals. Bisant and Lyle [4] proposed
two person inspection teams that eliminated the moderator.
In examining the sources of variation in inspections, Porter

207

Android Chrome AMD Bing Office SQL

Projects

L
in

e
s
 c

h
a
n
g
e
d
 (

lo
g
)

5
1
5

4
5

1
5
0

1
0
0
0

1
0
0
0
0

Figure 4: Churn: Lines added and removed. Note:
we do not show proportion of changes over 10 000
lines.

et al. [19] found that two reviewers discovered as many de-
fects as four reviewers. The consensus seems to be that two
inspectors find an optimal number of defects [27]. In OSS
review, the median number of reviewers is two; however,
since the patch and review discussions are broadcast to a
large group of stakeholders, there is the potential to involve
a large number of interested reviewers if necessary [25].

Convergent Practice 4: Two reviewers find an optimal
number of defects

At AMD the median number of reviews is 2. While review-
ers are typically invited, Ratcliffe describes how CodeCollab-
orator allows invites to be broadcast to a group of develop-
ers [20]. He further describes how CodeCollaborator suggests
potential reviewers based on who has worked on the file in
the recent past.
For Google Chrome and Android, there is a median of

two reviewers, see Figure 5. Gerrit allows developers to
subscribe to notifications when a review includes changes to
a particular part of the system [28]. Reviewers can also be
invited when the author includes their email address in the
review submission sent to Gerrit.
At Microsoft the median number of reviewers invited to

each review in Bing, Office, and SQL respectively are 3, 3,
and 4. As Figure 5 shows, the median number of people that
actually take part in a review (other than the author) is 2.
Interestingly, we found that there was only a minimal increase
in the number of comments about the change when more
reviewers were active and there was no increase in the number
of change sets submitted (i.e., the same number of “rounds
of reviewing”). We also investigated, both qualitatively and

Android Chrome AMD Bing Office SQL

1
2

5
1
0

2
0

5
0

Projects

R
e
v
ie

w
e
rs

 p
e
r

re
v
ie

w
 (

lo
g
)

Figure 5: Two reviewers involved in review in the
median case

quantitatively, reviews that had many more reviewers than
the median and found that the author or the reviewers will
invite additional developers after a round of reviewing has
taken place. This can be the result of a developer realizing
that someone else is better fit to examine the change or
concluding that the change carries a high risk and should be
reviewed by “more eyes”. The general practice appears to
involve inviting three to four reviewers and then letting the
review take its course which may lead to involving additional
participants.

4.3 Defects vs Discussion

The rigid time constraints of synchronous review meet-
ings forced traditional inspections to focus exclusively on
finding defects, discussions of other topics, such as solutions
to the defect, were strictly forbidden [9]. Inspection used
explicit roles, such as reader and secretary, to ensure that
defects were accurately recorded and that developers were
not distracted from findings defects [9]. At Lucent there is a
median of 3 true defects found per review [19]. An additional
4 defects per review were found to be false positives. Inspec-
tions also found a large number of soft maintenance issues,
median 13 per review, which included coding conventions,
and the addition of comments. This type of soft maintenance
code improvements was also observed at Microsoft and in
OSS review [2, 25]. In contrast to software inspection, asyn-
chronous reviews have less rigid time constraints allowing
for detailed discussions of software artifacts. For example,
on OSS projects, the discovery of the defect is not the focal
point. Instead developers discuss potential defects and so-
lutions to these defects. These team discussions mean that
the author is no longer isolated from his or her peers when

208

Android Chrome Bing Office SQL

C
o
m

m
e
n
ts

 p
e
r

re
v
ie

w
 (

lo
g
)

1
2

5
1
5

4
5

1
5
0

1
0
0
0

Figure 6: Number of comments per review

fixing the defects found during review [25]. In this section,
we also provide proxy measures for the number of defects
found and show that they are comparable to those found
during inspection.

Convergent Practice 5: Review has changed from a
defect finding activity to a group problem solving activity

Examining contemporary practices in software firms, we
find convergence with OSS: defects are not explicitly recorded.
AMD uses CodeCollaborator, which has a field to record the
number of defects found; however, 87% of reviews have no
recorded defects, and only 7% have two or more defects found.
Measures of review activity indicate a median of two partic-
ipants per review and qualitative analysis by Ratcliffe [20]
found that discussions did occur but focused on fixing defects
instead of recording the existence of a defect. The disconnect
between explicitly recorded defects and activity on a review
indicates that reviewers are examining the system, but that
developers are not recording the number of defects found.

Microsoft’s CodeFlow review tool provides further evidence
– it does not provide a way for developers to record the
defects found during review. This design decision results
from the way that code review is practiced at Microsoft.
When an author submits a change for review, the author
and other reviewers have a joint goal of helping the code
reach a satisfactory level before it is checked in. We have
observed that reviewers will comment on style, adherence
to conventions, documentation, defects, missed corner cases,
and will also ask questions about the changes [2] in an effort
to help the author make the code acceptable. It is unclear
which of these represent defects and which do not (e.g. would

Android Chrome Bing Office SQL

1
2

5
1
0

2
0

5
0

Projects

N
u
m

b
e
r

o
f

re
s
u
b
m

is
s
io

n
s
 p

e
r

re
v
ie

w
 (

lo
g
)

Figure 7: Number of submissions per review

the comment “Are you sure you don’t need to check against

NULL here?” be a defect?). In addition, recording the defects
found during review would not aid in the aforementioned goal.
CodeFlow does provide the ability for an author to mark
any thread of conversation with a status of “open”, “ignored”,
“resolved”, or “closed” enabling participants to track the
various discussions within the changes. For our purposes, the
closest artifact to a defect is a thread of discussion that has
been marked as resolved, as a problem found within the code
would need to be resolved by the author prior to checkin.
The caveat is that a reviewer might make comments or ask
questions that lead to discussion and are eventually marked
as resolved, but that don’t represent a defect found or result
in any code being changed.
On the Google Chrome and Android projects, the Gerrit

review tool does not provide any field to explicitly record
the number of defects found. However, as we discussed in
section 2, reviews pass through three stages: verified to
not break the build, reviewed, and merged. The goal of
these stages is not to simply identify defects, but to remove
any defects before merging the code into a central, shared
repository. As we can see from Figure 6, there is a median
of 4 and 3 comments per review for Chrome and Android
respectively – discussion occurs on these projects at similar
levels to other OSS projects. On the Industrial side, the
medians are the same, with 4, 3, and 3 comments for Bing,
Office, and SQL respectively.

“You can’t control what you can’t measure” [7]

The contemporary software projects we studied do not record
the number of defects found during review, in part because it
distracts developers from their primary task of immediately
fixing the defects found in review. However, without this

209

Table 2: Descriptive statistics for the number of
comments, threads of discussion and threads marked
as resolved in Bing, Office, and SQL.
Project Comments Threads Resolved

1st Quartile 2 1 0
Bing Median 4 2 0

3rd Quartile 9 6 1

1st Quartile 2 1 0
Office Median 3 2 0

3rd Quartile 8 5 1

1st Quartile 2 1 0
SQL Median 3 3 0

3rd Quartile 8 7 2

measure can software projects improve their process and
product in the longterm? Are there alternative measures of
review effectiveness?
We suggest three alternative measures that when taken

together provide an approximation of review effectiveness.
First, the number of comments during review is an upper
bound on the number of defects found per review (See Fig-
ure 6). The underlying assumption is that each comment
represents a distinct defect. This assumption is often in-
valid as many comments will be related to the discussion of
a single defect. In our manual analyses, we found that it
was extremely rare for a comment to include more than one
substantive defect; however, trivial formatting issues were
often reported in a single comment. Second, a better esti-
mate is the number of comment threads (See Table 2). The
assumption is that each thread contains a single defect, how-
ever, sometimes a comment thread will contain discussions
of multiple related defects, other times it will contain false
positives, such as developer questions that do not uncover
a defect. Third, a lower bound on the number of defects
found in a review is the number of artifact resubmissions
(See Figure 7). For non-trivial defects, a revised artifact may
be submitted for re-review. However, a revision will cover
all the fixed defects identified during a review session. Since
CodeFlow is the only tool that tracks threads of conversation,
we report the summary statistics of the number of comments,
threads, and threads marked as resolved in Table 2.

Theses measures provide non-intrusive techniques (i.e. the
data is implicitly recorded during the primary activity of
discussing the software) to approximate review effectiveness.
We do not want to make strong claims about review effec-
tiveness because these measures are proxies of the number
of defects found and artifact sizes tend to be smaller than
in traditional inspection. However, we feel that the level of
discussion during review and patch resubmissions suggests
that contemporary review does find defects at a comparable
level to traditional inspection. These measures and review
practices on contemporary projects raise a larger philosophi-
cal question that deserves future work: is it more important
to have a discussion about the system or to find and report
defects?

5. SHARING KNOWLEDGE THROUGH

REVIEW

The number of defects found during review is known to be
a limited measure of review effectiveness because it ignores
many of the other benefits of review, such as the sharing of
knowledge among developers [12]. Some of the benefits of
spreading knowledge across the development team include
having co-developers who can do each other’s work if a
developer leaves a project and involving new developers in
reviews to familiarize them with a project’s codebase. While
qualitative evidence from practitioners indicates that review
does indeed spread knowledge across the development team [2,
20], we are unaware of any empirical studies that measure
this phenomenon.
To provide a preliminary measurement of the knowledge

spreading effect of peer review, we extend the expertise
measure developed by Mockus and Herbsleb [16]. They mea-
sured the number of files a developer has modified (submitted
changes to). We also measure the number of files a developer
has reviewed and the total number of files he knows about
(submitted ∪ reviewed). Figure 8 show that the number of
files a developer has modified (on the left) compared to the
total number of files he or she knows about (on the right).4

For example, in the median case, a Google Chrome developer
submits changes to 24 distinct files, reviews 38 distinct files,
and knows about a total of 43 distinct files. Without review,
in the median case, a Chrome developer would know about
19 fewer files, a decrease of 44%. Similarly, in the median
case for Bing, Office, and SQL, review increases the number
of files a developer knows about by 100, 122, and 150%,
respectively.

Both Google Chrome and Android appear to have a larger
number of developers who have submitted to and reviewed
few files. OSS project are known to have, what one inter-
viewee called “drive-by” developers, who submit a single
change [25] (e.g., a bug fix that effects the developer). Fig-
ure 8 shows that this effect is especially pronounced on
the Android project where 54% of developers have modified
fewer than five files. The increase in the number of files seen
through review is also lower for Android, a 66% increase in
the median case. If we exclude developers who have modified
five or fewer files, we see the median number of files modified
jumps from 6 to 16 and the total number of files goes from
10 to 25.

Our measure of knowledge sharing though peer review
has shown a substantial increase in the number of files a
developer knows about exclusively by conducting reviews.
This measure deserves future study. Enhancements to the
measure could also be used to gauge the diversity of the
knowledge of developers assigned to a review. If a review
has developers from diverse parts of the system reviewing
the code and discussing it, it is less likely that there will be
downstream integration problems.

4We conservatively exclude submissions and reviews that
contain more than 10 files.

210

Android Chrome Bing Office SQL

Projects

F
ile

s
 S

e
e

n
 (

lo
g

)

5
1

5
4

5
1

5
0

1
0

0
0

1
0

0
0

0

Figure 8: On left, the number of files submitted for
review, On right, the total number of files either
submitted for review or reviewed

6. THREATS TO VALIDITY

We studied a large, diverse sample of projects; however,
each project has different tools, processes, incentives, etc,
so the data we collected is not as controlled and free from
confounds as it would be in an experimental setting. We have
attempted to clean and report the data using similar measures
and methods and have discussed limitations throughout the
paper.

When a finding was unusual we would read the associated
anomalous reviews and discuss them with developers. For
example, we have removed reviews that received no activity
from the Microsoft data sets (reviews that had no comments,
no sign offs, and only one submitted changeset). Upon
initially finding these in our data set, we inquired of the
developers who created the reviews. They indicated that
sometimes reviews are more for awareness (e.g., alerting
a manager to a feature being implemented or showing a
tester code that they should write a test for) than actually
reviewing the changes and that the complete lack of activity
represents reviews that are used for awareness purposes only.
It is possible that a portion of these reviews were actually
intended as actual code reviews rather than for awareness
and simply received no attention from the invited reviewers.
This type of review has also been removed from the Google-
led projects and from the OSS projects studied by Rigby
et al. [24] and used for comparison purposes in this paper.
In some cases, we re-ran measures on Rigby’s raw data sets.
The AMD and Lucent data sets presented further difficulties
because we have summary instead of raw data. We have
converted the raw data to make it comparable with the other
data we collected; however, we are often missing the required
data.

7. CONCLUSION

The variations in traditional, formal software inspections
were found to have little impact on its effectiveness as a
peer review process, with product and process factors being
better predictors of the number of defects found in review [19,
27]. Furthermore, as Wiegers points in his practical guide to
peer review, the “ similarities [in formal inspection process]
outweigh their differences” [31].

Contemporary peer review represents a lightweight,“stripped-
down”version of software inspection that removes the rigidity
of the formal inspection processes, while leaving the effective
defect finding technique of having an expert peer examine
software artifacts before they are added to the shared version
control repository.
Contemporary peer review has evolved from the needs of

practitioners and these practitioners have driven the devel-
opment of review tools [6]. The large body of literature on
software inspection has largely ignored these contemporary
practices. In this paper, we have presented findings on the
peer review practices used on three projects representative of
development at Microsoft, AMD projects, and two Google-
led OSS projects. We have compared parameters of review,
such as review interval and the number of comments in re-
view discussions, of these six projects with the data from
Rigby’s study of six OSS projects [23]. We also use data
from inspection at Lucent as a contrast. We found that
while there were some minor divergences in contemporary
practice “their similarities outweighed their differences,” i.e.
the findings converged.
The convergent contemporary peer review practices can

can be described as the following.

1. Contemporary review is performed regularly and quickly
just before the code is committed instead of when a
larger work product is complete as in inspection.

2. Contemporary review usually involves two reviewers.
However, the number of reviewers is not fixed and
can vary to accommodate other factors, such as the
complexity of a change.

3. Contemporary reviewers prefers discussion and fixing
code over reporting defects.

4. Tool supported review provides the benefits of trace-
ability, when compared to email based review, and
can record implicit measures, when compared to tradi-
tional inspection. The rise in adoption of review tools
provides an indicator of success.

A final contribution of this paper was a novel measure of
the degree to which reviews spreads knowledge across the
development team. This measure provides a quantification of
knowledge spread that has previously only had experiential
support. We find that review increases the number of distinct
files a developer knows about by 66% to 150% depending
on the project. We feel that future work is necessary to
determine whether lightweight measures, such as the diversity
and amount of discussion during review, can be used as new
release quality measures. Instead of counting the number
of defects found in a module, a manager might ask, “have
developers with sufficiently diverse backgrounds discussed
this new section of code enough for it to be released?”

211

8. REFERENCES
[1] J. Asundi and R. Jayant. Patch review processes in

open source software development communities: A
comparative case study. In HICSS: Proceedings of the

40th Annual Hawaii International Conference on

System Sciences, page 10, 2007.

[2] A. Bacchelli and C. Bird. Expectations, outcomes, and
challenges of modern code review. In Proceedings of the

International Conference on Software Engineering.
IEEE, 2013.

[3] C. Bird, A. Gourley, and P. Devanbu. Detecting patch
submission and acceptance in oss projects. In MSR:

Proceedings of the Fourth International Workshop on

Mining Software Repositories, page 4. IEEE Computer
Society, 2007.

[4] D. Bisant and J. Lyle. A two-person inspection method
to improve programming productivity. IEEE
Transactions on Software Engineering,
15(10):1294–1304, 1989.

[5] F. Buck. Indicators of quality inspections. IBM Syst.

Commun. Division, Tech. Rep. TR, 21, 1981.

[6] J. Cohen. Best Kept Secrets of Peer Code Review.
Smart Bear Inc., 2006.

[7] T. DeMarco. Contolling Software Projects:

Management, Measurement, and Estimation. Prentice
Hall, 1986.

[8] P. M. Duvall, S. Matyas, and A. Glover. Continuous
integration: improving software quality and reducing

risk. Addison-Wesley Professional, 2007.

[9] M. Fagan. Design and Code Inspections to Reduce
Errors in Program Development. IBM Systems Journal,
15(3):182–211, 1976.

[10] M. Fagan. A history of software inspections. Software
pioneers: contributions to software engineering,

Springer-Verlag, Inc., pages 562–573, 2002.

[11] Gerrit. Web based code review and project
management for git based projects.
http://code.google.com/p/gerrit/.

[12] P. M. Johnson. Reengineering inspection. ACM
Communications, 41(2):49–52, 1998.

[13] P. Kampstra. Beanplot: A boxplot alternative for
visual comparison of distributions. Journal of
Statistical Software, Code Snippets 1, 28:1–9, 2008.

[14] C. Larman and V. Basili. Iterative and incremental
developments: a brief history. Computer, 36(6):47 – 56,
June 2003.

[15] A. Mockus, R. T. Fielding, and J. Herbsleb. Two case
studies of open source software development: Apache
and Mozilla. ACM Transactions on Software

Engineering and Methodology, 11(3):1–38, 2002.

[16] A. Mockus and J. D. Herbsleb. Expertise browser: a
quantitative approach to identifying expertise. In ICSE:

Proceedings of the 24th International Conference on

Software Engineering, pages 503–512. ACM Press, 2002.

[17] M. Mukadam, C. Bird, and P. C. Rigby. Gerrit
software code review data from android. In Proceedings

of the 10th Working Conference on Mining Software

Repositories, MSR ’13, pages 45–48, Piscataway, NJ,
USA, 2013. IEEE Press.

[18] M. Nurolahzade, S. M. Nasehi, S. H. Khandkar, and
S. Rawal. The role of patch review in software
evolution: an analysis of the mozilla firefox. In
International Workshop on Principles of Software

Evolution, pages 9–18, 2009.

[19] A. Porter, H. Siy, A. Mockus, and L. Votta.
Understanding the sources of variation in software
inspections. ACM Transactions Software Engineering

Methodology, 7(1):41–79, 1998.

[20] J. Ratcliffe. Moving software quality upstream: The
positive impact of lightweight peer code review. In
Pacific NW Software Quality Conference, 2009.

[21] E. S. Raymond. The Cathedral and the Bazaar.
O’Reilly and Associates, 1999.

[22] P. Rigby, B. Cleary, F. Painchaud, M. Storey, and
D. German. Contemporary peer review in action:
Lessons from open source development. Software,
IEEE, 29(6):56 –61, nov.-dec. 2012.

[23] P. C. Rigby. Understanding Open Source Software Peer
Review: Review Processes, Parameters and Statistical
Models, and Underlying Behaviours and Mechanisms.
http://hdl.handle.net/1828/3258 University of
Victoria, Canada, Dissertation, 2011.

[24] P. C. Rigby, D. M. German, and M.-A. Storey. Open
source software peer review practices: A case study of
the apache server. In ICSE: Proceedings of the 30th

international conference on Software Engineering,
pages 541–550, 2008.

[25] P. C. Rigby and M.-A. Storey. Understanding
broadcast based peer review on open source software
projects. In Proceeding of the 33rd international

conference on Software engineering, ICSE ’11, pages
541–550, New York, NY, USA, 2011. ACM.

[26] G. V. Rossum. An open source app: Rietveld code
review tool. https://developers.google.com/
appengine/articles/rietveld.

[27] C. Sauer, D. R. Jeffery, L. Land, and P. Yetton. The
Effectiveness of Software Development Technical
Reviews: A Behaviorally Motivated Program of
Research. IEEE Transactions Software Engineering,
26(1):1–14, 2000.

[28] R. Schwartz. Interview with Shawn Pearce, Google
Engineer, on FLOSS Weekly.
http://www.youtube.com/watch?v=C3MvAQMhC_M.

[29] L. G. Votta. Does every inspection need a meeting?
SIGSOFT Softw. Eng. Notes, 18(5):107–114, 1993.

[30] E. Weller. Lessons from three years of inspection data.
IEEE Software, 10(5):38–45, 1993.

[31] K. E. Wiegers. Peer Reviews in Software: A Practical

Guide. Addison-Wesley Information Technology Series.
Addison-Wesley, 2001.

[32] R. K. Yin. Case Study Research: Design and Methods,
volume 5 of Applied Social Research Methods Series.
Sage Publications Inc., 3 edition, 2003.

212

