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We introduce and test computational methods that provide a principled
approach to ridesharing. We address several challenges with collabora-
tion and coordination among self-interested people aimed at minimizing
the cost of transportation and the impact of travel on the environment.
The work investigates the problem of applying mechanism design ideas
to a dynamic, real-life problem, and evaluates different VCG-like pay-
ment schemes in terms of their computational efficiency, budget-balance,
incentive compatibility and strategy-proofness in this domain. The Agen-
t-based Carpooling (ABC) methodology employs planning, optimization,
and payment mechanisms that provide fair and efficient solutions to the
rideshare collaboration challenge. We review the behavior of a working
ABC prototype that learns about destinations and preferences from GPS
traces and calendars, and considers time, gas, and cognitive costs. ABC
identifies beneficial ridesharing plans by performing cost-benefit analyses.
The system provides incentives to collaborate in ridesharing by introduc-
ing a VCG-based payment mechanism. The ABC methods and prototype
have been applied to precomputed, scheduled contexts as well as dynamic
settings where requests are handled on the fly, and evaluated on hun-
dreds of real-life GPS traces collected from a community of commuters.
The evaluations show promise for reducing the number of vehicles on the
road, thus reducing CO2 emissions and fuel expenditures.
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1 Introduction

Learning and reasoning methods hold promise for addressing challenges to the
environment and climate. According to a recent study, transportation is the
source of 33% of COy emissions [6]. The study also provides an estimate that
computing and communication technology applied to individual transportation
could reduce COy emissions by 70-90 MMT in 2020 and generate gross fuel
savings of $20-50 billion. Ridesharing has been proposed as a promising means
for reducing the cost of transportation and the impact of travel on the environ-
ment. In this work we describe an effort to develop principles of coordination
that provide a formalized approach to ideal ridesharing that aims at bringing
people together in collaborative rideshare plans. Taking a broader perspective,
the domain serves as a challenging and representative arena for exploring meth-
ods that allow self-interested parties to collaborate effectively in joint plans.

We shall review our approach to the rideshare challenge via bringing together
plan optimization with payment mechanisms that provide fair and efficient so-
lutions. We present an adaptive and dynamic rideshare system that considers
people’s preferences to construct personalized joint plans and to calculate fair
payments. An agent participating in a rideshare incurs multiple costs, including
time costs for lengthening or delaying a trip, fuel costs for adding new waypoints
and cognitive costs for driving. We review how the ridesharing system learns
about trip requests and preferences from GPS traces and calendars, and ex-
plore the methods that allow the system to take into consideration time, gas,
and cognitive costs. The optimization component for constructing collaborative
rideshare plans solves computationally expensive optimization problems. We in-
vestigate the use of different VCG-based payment schemes in a dynamic setting,
and consider computational efficiency, budget-balance, incentive compatibility
and strategy-proofness. The methods have been explored within a prototype
and experimental platform called the Agent-Based Carpool (ABC) system. We
describe our evaluation of multiple aspects of the system using hundreds of real-
life GPS traces collected from a community of commuters over five years. The
system has been tested with scheduled contexts, as well as dynamic settings
in which agents can stochastically enter the system. We explore future models
of transportation, and discuss real-world considerations that may impact the
performance of the ABC system.

Ridesharing domain allows us to examine the design and application of co-
ordination mechanisms to a dynamic domain where agents have different pref-
erences. Our coordination mechanism generalizes to settings where agents need
to collaborate on joint plans to minimize their cumulative cost, and obtain fair
payments as incentives. We provide empirical evaluations of the mechanisms on
real-life data, which highlight the challenges and tradeoffs that arise from the
coordination of self-interested agents in real-life domains. Our mechanism re-
spects the privacy of users, prioritizes fairness and user happiness, and promotes
truthful behavior.

There has been growing interest in the use of the web and computing meth-



ods in assisting ridesharing. A number of online rideshare services! offer users
varied experiences from simple to complicated. Nuride, Zimride, Craiglist and
mailing groups provide social networks where users can meet and manually ar-
range carpools. More sophisticated ridesharing services such as iCarpool and
CarpoolWorld help users with online trip matching. These services also moti-
vate users to carpool with mile-based rewards, or interfaces that allow users to
negotiate on payments. The systems typically serve as a platform to bring users
together, rather than as an active mechanism that generates rideshare plans and
provides fair payments. In distinction to prior efforts, we employ optimization
and mechanism design techniques to explore ridesharing via the challenge of
providing personalized collaboration and coordination plans for self-interested
parties in a dynamic environment.

Coalescing rational agents into groups of participants in rideshare plans is
similar to the initial-commitment decision problem (ICDP) proposed by [12].
ICDP determines the set of tasks that an agent needs to commit to in a collab-
oration. The ABC system is responsible for assigning agents to specific tasks as
drivers or passengers. The methods employed in ABC system are an extension
to prior work on ICDP as a payment mechanism is included, which provides a
rationale and incentives for self-interested agents to collaborate.

Several previous studies on set-cover optimization problems focus on mech-
anism design for cost sharing [5, 15]. The cost sharing problem focuses on
dividing the cost of a service among self-interested agents in a fair manner,
where the cost is independent of agents’ preferences. Several approximately ef-
ficient truthful mechanisms are presented for cost sharing in that work. The
optimization used in ABC makes use of greedy optimization procedures similar
to the approach taken in the earlier set-cover optimization efforts. However,
the payment mechanisms employed in the past are not suitable for collabora-
tion among self-interested agents. We don’t have a distinction between service
providers and receivers, and the cost is not independent of agents’ preferences.

Mechanism design has been applied to the coordination of self-interested
robots in sequential decision-making scenarios [2]. In this work, we apply sim-
ilar ideas to a dynamic optimization problem, where both the joint plan and
payments are calculated based on people’s preferences, and present detailed
analysis of the optimization and payment mechanisms with respect to the com-
putational issues with real-life data.

Song&Regan presents a design for a collaborative carrier network for the
truckload tracking industry [20]. That work contains cost-benefit analysis for the
truckload domain, but does not provide a detailed analysis of the optimization
and payment mechanisms nor address the computational issues with real-life
data as way we do in this paper.

In the next section, we describe the architecture of the ABC ridesharing
system, focusing on the user modeling component. Section 3 presents the op-
timization mechanism. We then provide the payment mechanism, and discuss

1www.nuride.com, www.carpoolworld.com, www.zimride.com, www.icarpool.com,
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the tradeoffs that arise by applying different payment schemes to ridesharing.
Section 5 presents the empirical evaluation of our ridesharing system on real-
life dataset. Section 6 explores real-world considerations for our ridesharing
domain.

2 Methodology and Architecture

Computing ideal ridesharing plans is a challenging problem as the solution must
be adaptable to varied and dynamic preferences of self-interested agents, must
provide compelling and fair incentives, and must be easy to use. The ABC
system addresses these challenges to create personalized rideshare plans while
minimizing the cumulative cost of transportation. The system has three main
components that embody separate but interrelated reasoning methodologies: a
user-modeling component that accesses and represents the preferences of agents,
an optimization component that generates rideshare plans, and a payment com-
ponent that provides incentives to agents to collaborate.

The user-modeling component is responsible for identifying the preferences
of agents about their desired trips, and for passing the preferences into the op-
timization and payment components. Before the start of the optimization, the
user-modeling component gathers information about agents’ individual com-
mute plans, including their origin, destination, timing of a trip, and preferences
about a return trip. A destination analyzer accesses or guesses the intended
destination of a mobile user via direct input of the destination, deviation of
recurrent commute patterns from a sequence of GPS trails, or via a dynamic
probabilistic inference conditioned on a partial trajectory [14]. To perform cost-
benefit analysis of a ridesharing plan, the user-modeling component models
agent-specific costs for driving, delaying a trip, diverting an ideal route to pick
up or drop off other agents, and changing stop points. Dynamically capturing
these costs are crucial for the success of the ridesharing system, as the system
needs to adapt to different and changing preferences of the agents. For exam-
ple, an agent may be willing to wait and pick up other agents on the way when
the cost of time is low, but not on a rainy day when time cost is high. The
user-modeling component also receives user input on the per mile cost of gas
and maintenance.

Time is an important resource and is one of the major factors influencing
the cost of different commute plans. The user-modeling component employs a
probabilistic time-cost model. The model considers as input the time of day,
day of week, and sets of attributes about agents’ commitments drawn from an
online appointment book. The probabilistic model for the cost of time is learned
from user annotated training data via a machine-learning procedure based on
Bayesian structure search. See [10, 11] for more details about the machine
learning and reasoning about the cost of time in different settings. For the
current state of each of the agents, the user modeling component constructs a
time-cost function T' to estimate the cost of the time spent travelling between
the start time (¢5) and end time (¢.) of the trip, and the additional cost for



delaying the start time of a rideshare trip from the start time t? to ¢ of an
independent trip. T is captured with respect to the nearest deadlines drawn
from the agent’s calendar. Given that the set of calendar items fall between
[ts,te] is M, m € M is a calendar item, the start time of m is t7*, the end time
of m is tJ*, ¢, is the minute time cost for travelling, ¢, is the additional cost
for missing a minute of m, ¢4 is the minute cost for delay; T is defined as,

T(ts,te) = ((te = ts) X en) + (Its — 2] % ca)
+(D - dlm,ta,te) X cm)
meM

d(m,ts,te) = min(tl, t.) — max(¢™,ts)

The user modeling component is also responsible for acquiring agent prefer-
ences about collaborating with different agents with respect to social networks
that they belong to, or their characteristics. The cost model presented in Sec-
tion 3.2 to model personal costs of users for different rideshares can be extended
accordingly to incorporate these preferences.

3 Rideshare Optimization

The optimization component groups agents together and generates a collection
of rideshare plans that maximizes the efficiency of transportation. The compo-
nent acquires private user preferences from the user modeling component (e.g.,
time cost, destination, preferences), combines these preferences with more global
contexts to capture the collaborative value of a rideshare plan. The optimiza-
tion does not reveal any private information about the agents, except the final
attributes of the collaborative rideshare plan, which are only revealed to the
other members of the rideshare group. The optimization component has two
properties that make it difficult for agents to find out about other agents in
the system and thus collude in the mechanism; the component combines multi-
ple user preferences and contextual factors to determine the best possible plan,
agents do not get to know about other rideshare plans that they are not involved
in.

The optimization component takes in the set of individual desired com-
mute plans as inputs and solves two difficult optimization problems to generate
a collection of collaborative rideshare plans. The two optimizations are: (1)
generating rideshare plans for groups of agents and (2) clustering agents into
rideshare groups (see Figure 1).

3.1 A Rideshare Plan

One of the advantages of having a personalized and adaptive ridesharing system
is choosing the most convenient plan for a collaborative group of agents among
all possible plans, with respect to their preferences. Choosing the best possible
rideshare plan is a large search problem where the system explores possible trip
start times, stop orderings, stop locations, trip durations, and possible routes



\ el
I +
flus

uhﬁ-‘w:ﬂﬂ {

N
ENEN

\_\} i \g\ i ’

o/l ﬁ AN o i

(a) Input: Set of individual commute
plans

(b) Rideshare plan optimization

201y
|
) g
A N

I
Ll

& W i 1™
NS Tz

| ! é.\ I \, i |
" \% g\' =gy 3
e 1@ A —

(c) Rideshare group optimization

(d) Output: A collection of collabora-
tive rideshare plans

Figure 1: ABC rideshare optimization steps



among stop points to generate a plan with highest possible cumulative value.
Let P be the set of all agents in rideshare system, S C P a rideshare group, C(S)
the universe of all possible rideshare plans for S. A rideshare plan C; € C(S) is
defined by the following attributes:

o S ={phn,....pq}, the set of agents of the rideshare group;
e pg €5, the assigned driver for the rideshare plan C;; S_q = S\ {pa};

o L_g = {lhslhe,....lgs,lge}, the set of start\end (stop) locations of
agents in S_g, where p;’s start location is ¢; s, the end location is ¢; .. For
all p; € S_g, {; s and {; ¢ are located in a radius of £7 ; and €7, — the initial
start\end locations for p;’s individual commute plan. £, the complete
set of start\end locations, is the combination of £_,; with the start\end
locations of pg: £ =L_gU{la,s.lac}, where {4 s = € s lae =105,

e O©_,, the commute chain excluding py, is any ordering of £_4 such that
for all p; € S_q, index({; 5) < index({;.) (i.e., any agent’s start location
precedes the end location in ©_g4). © = {g50Q_g 0Ly, is the commute
chain for S.

e ¢, the start time of the rideshare plan. #(I), the scheduled time of stop
location [ is defined as below, where A¢(¢;,¢;11) is the estimated travel
duration betwen two consecutive stop locations ¢;, £;11 € ©_g:

ts = Ed,s
tl) =q ts+ Z At(l;,0;41) otherwise

L5, 1:1<index (L)

3.2 Value of Rideshare Plans

Although reduction in gas costs and personal goals of reducing CO5 emissions
from vehicles are considered to be the motivation for bringing self-interested
agents to collaborate in rideshare plans, the additional time and travel required
for adding new stops to a trip, or having fewer numbers of agents driving in
heavy traffic can play an important role in the willingness of agents to par-
ticipate. We define a personal inconvenience cost that captures several agent-
specific cost factors. The personal inconvenience factors are composed to yield
the total cost of a rideshare plan.

A model for the cost of personal inconvenience combines the time cost with
gas and cognitive costs to estimate the cost of an agent becoming associated
with a trip. The user modeling component provides the probabilistic time-cost
function, T;(ts.t.). The fuel cost in dollars for one mile is represented as c,.
The inconvenience model combines the input from the user modeling component
with traffic prediction services and public contexts (e.g., daily events that may
affect the traffic) to construct a cognitive cost model for an agent. CC;({s,¢.)
represents the predicted cognitive cost of p; for driving between the given stops.
The optimization engine makes calls to Microsoft Mappoint services to estimate



the travel duration. At({;,{;) represents the duration of travel between stops ¢;
and ¢;, whereas Ad(¢;, ;) represents the distance to be travelled between these
stops.

The initial inconvenience cost for agent p;, PC°(p;), represents the cost for
an agent following the individual trip that would be created between initial
start\end locations of p; in the absence of ridesharing.

PC%(pi) = Ti(t7 1) +Ad(l7,£7,.) X ¢q +
CCi(l7 s, 6 )
e = s +AHE L)

where the start time of the individual trip is 7 ;.

A gas and cognitive cost is incurred if an agent is assigned as the driver in a
given trip. £;,¢;41 € L are consecutive stop locations in commute chain Q). The
inconvenience cost of the driver for rideshare plan C, PC(pg, C), is calculated
as follows,

PC(ps, C) = Ta(t(£g,) t(€3.)) +

D (Ad(l,€551) X cg + CCally,4541))
45,6 +1€Q

The passengers of a rideshare are only subject to time costs for the duration
between their scheduled start and end locations. The inconvenience cost of a
passenger p; € S_q, PC(p;) is:

PC(p;, C) = Ty(t(li,s), t(lie))
v;(C) represents the value of agent p; for rideshare plan C.
v;(C) = PC%(p;) — PC(p;,C)

The value of a rideshare plan, V(C), represents the value of agents in rideshare
plan C' for switching to collaborative plan C from their individual plans. V(C)
is calculated as,

V(C) = () uil(0)

pi€S

3.3 Rideshare Plan Optimization as Search

Rideshare plan optimization seeks to identify a rideshare plan for a group of
agents S with the highest combined value. This optimization problem is a
search problem over the universe of rideshare plans C(S) available for S, where
the search dimensions of C(S) are the set of possible commute chains, set of
possible stop locations for the passengers, trip start times and potential routings
between stop points. The optimization engine performs geospatial search over
the feasible paths that satisfy the constraints of a rideshare plan for S. Given



the start\end locations of the assigned driver, the engine computes updated
routes by adding potential passenger stop points as waypoints and performing
A* search. The set of potential passenger stop points are selected from a radius
around the original stop points of the passenger. The magnitude of the radius
is limited by the maximum distance the passenger is willing to diverge from the
original stop location to make the trips more efficient. The engine searches the
start time of the rideshare plan that minimizes the total cost.

The rideshare plan optimizer selects the plan C*(S) that offers the maximum
total value to agent set S, among all possible plans C(S). It provides C*(S) to
the rideshare group optimizer.

C*(S) = argmazc,cc(s)V(Cy)

3.4 Rideshare Group Assignment as Set Cover

Given a set of agents P in the rideshare system, the rideshare group optimization
finds the set of subset of P that covers all agents in P by offering the highest
cumulative value. Thus, this optimization is identical to the well-known NP-
hard set-cover problem.

Let us consider a set of agents, P = {ps,...,p,} willing to collaborate in
a rideshare system. £k is the capacity of a single vehicle, thus the maximum
size of a collaborative rideshare group. A set cover for SC; = {Sy,,...,Sn}

for agent set P is a set of subsets of P, such that for all subsets Sj; |S;| < &,

U S; = P, and for any S;, S, € SC; S;( Sk = 0. Thus, a set cover SC;
5;€8C;
in rideshare system represents a collection of rideshare groups, and their best
possible rideshare plans that cover all agents in the ridesharing system without
exceeding the capacity of a transportation vehicle. SC(P) = {SC4,...,SC,} is
defined to be the universe of all set covers for set of agents P.

We define a valuation function, V(.S;), which corresponds to the value gen-

crated by the best possible rideshare plan for bringing agents S; together. The
value of a set cover SC;, which is also a collective rideshare plan for P is:

0 |Sj|§1
V(S;) = {V(c*(sj)) otherwise
v(sC) = > V(S
S,;€5C;

A set-cover solver returns the optimal set cover SC* € SC(P) such that
SC* = argmazsc,esc(p)V (SC;). However, optimal set cover solver takes ex-
ponential time in practice. The two characteristics of the ridesharing domain
make the optimal solution infeasible to apply. The dynamic nature of the do-
main requires the optimization to run efficiently, because agents may unex-
pectedly arrive, leave, or change preferences which may result in running the
optimization multiple times. In addition to the NP-hard complexity of the set
cover, the optimization calls expensive online traffic prediction and routing ser-
vices to evaluate the value of each set cover which makes the optimization more



expensive. As a solution, we use an approximate, greedy set-cover algorithm to
generate the rideshare groups [15, 21].

The rideshare optimization system ensures that no rideshare group is worse
off by engaging in the process. The rideshare group generator includes single-
item subsets as well as rideshare groups in the set-cover optimization, thus
selects individual (initial) trips for some of the agents rather than assigning
them into carpools should no beneficial rideshare plan be available. Thus, any
rideshare group generated by the optimizers offers non-negative cumulative util-
ity to the agents. However, ensuring non-negative utility does not guarantees
individual rationality or fairness between agents in the rideshare system. The
system may incur additional costs to the assigned driver for a group while gen-
erating benefit for the other passengers. The next section investigates payment
mechanisms that can fairly divide the collaborative benefit generated by the
rideshare optimization component.

4 Mechanism Design for Rideshare

Drivers of carpools usually bear additional commute costs for adding new way-
points to their original plans to generate value for the collaboration. Asthe ABC
system focuses on bringing self-interested agents together, we need a payment
mechanism that distributes the value generated by the ridesharing plan fairly
among agents. The payment mechanism motivates the agents to participate in
the plan.

As stated by the impossibility theorem, no exchange mechanism can be effi-
cient, budget-balanced and individually rational [16]. Moreover, expensive pay-
ment calculations may not be feasible for a dynamic system. We shall present
our initial VCG-based payment mechanism, and then explore the tradeoffs with
applying the mechanism within the ABC prototype in terms of efficiency, com-
putational complexity, budget-balance, and individual rationality.

4.1 VCG Payments for ABC

Sharing costs for fuel among agents is a simple but widely used payment mech-
anism in ridesharing. However this simple payment scheme is not suitable for
a personalized ridesharing system, because this payment scheme does not con-
sider varying user preferences in payment calculation. Using such a payment
scheme in ABC would make the system vulnerable to deceptive reporting of
needs by individual agents targeted at making carpool plans more suitable for
their preferences.

ABC’s payment mechanism distributes VCG-based payments to promote
truthful behavior, to ensure fairness and the ultimate sustainability of the sys-
tem, while maximizing total value of the collaboration [23, 8, 3].

The valuation of agent p; for a collective rideshare plan SC is v;(SC €
SC(P)) = v;(C*(S)), given that p; is involved in rideshare plan C*(S) € SC.
Let p; be p;’s payment to the system, v;(SC) — p; represents p;’s utility. The



VCG payments for ABC system are calculated as below, given that V*; is the
collaborative value of the collection of rideshare plans (SC*) to all agents except
pi, (V_;)* is the value of the collection of rideshare plans when p; is excluded
from the ABC system:

pi = (Vo))" =V

If the carpool policy calculated by the optimization component is optimal,
the VCG payment mechanism is efficient — its output maximizes social value,
is individual-rational — all agents have positive utility by participating, and
strategy-proof — truth-telling is a dominant strategy.

The VCG payment component does not overburden the agents by inquiring
about the utility of each potential rideshare assignment. Instead, valuations are
generated by the system based on acquired preferences.

4.2 Tradeoffs on VCG Based Payments

Applying VCG payments to ridesharing optimization faces several challenges.
First, the VCG payment mechanism is not budget-balanced, and may return a
loss. Secondly, calculating VCG payments in a dynamic mechanism is compu-
tationally expensive. Third, VCG mechanisms require the computation of opti-
mal outcomes to ensure truthfulness. The ABC system calculates VCG-based
payments based on an approximate optimization of rideshare assignments and
routes. Thus, agents are not necessarily incented to be truthful [17].

We modify the VCG payment scheme to adapt it to the dynamic require-
ments of ABC the problem. To simplify the analysis, we make the assumption
that removing one agent from a carpool group does not affect the rideshare allo-
cation of agents outside of that group. We calculate local VCG-based payments,
which computes the VCG payment of agent p; only among the agents that share
the same carpool as p;. This assumption makes payment calculations signifi-
cantly more efficient, as carpool optimizations for payment calculations are done
over a small subset of all agents.

We tested the local VCG-based payment scheme on a large dataset of GPS
trails that we describe in more detail in Section 5. The experimental results
show that value distribution with local payments maintains 99.7% to 100% of
individual-rationality among agents with varying fuel and time costs. However,
the evaluation highlighted the prospect of incurring a deficit with VCG-based
payments. In our study, we found that the system pays drivers more than it
collects from the passengers. To sustain the carpooling system with local VCG-
based payments, the system needs to distribute 55% to 79% of the cumulative
value generated with carpools back to agents as payments. The deficit of the
system grows proportional to the average time costs of the agents, as it gets
harder to bring self-interested agents together when time cost is high.

Given the challenge with balancing the budget, we experimented with an-
other VCG-centric scheme. Previous work presents a threshold-based mecha-
nism that enforces budget-balance as a hard constraint on payment calculation
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[19]. We modified the local VCG-based payment scheme with the threshold
rule specified by Parkes et al., to eliminate deficit. Ayicx,; represents the non-
negative portion of VCG payments which is called Vickery discount.

Am’ck,i =V* - (V—Z)*

where V* is the cumulative value of rideshare plans.

For some parameter C' > 0, we redefine threshold discounts A}, ;, and pay-
ments p; as given below. With linear programming, we calculate the threshold
parameter C' that eradicates the deficit, and use this parameter to calculate
threshold-based payments.

Afmk,i = max(0, Ayick,; — C)
P§ = v(SCY) - Afm‘ck,i

Studies with the real-world commute dataset using the local VCG-based
payments with the threshold rule demonstrated that the revised mechanism
was able to eliminate the deficit for a range of time and fuel cost values. The
mechanism did not negatively influence the individual rationality nor the effi-
ciency of the ABC system.

With threshold-based payments and suboptimal outcomes, our mechanism
is not guaranteed to be truthful. Investigating the effect of using the local pay-
ments and threshold on the truthfulness of agents requires a deeper level of
analysis on the system. Parkes et al., states that the threshold-based payment
scheme has better incentive properties than other rules proposed in their work.
We believe that the payment scheme is hard to manipulate by bounded-rational
agents given the incomplete information available to agents about other agents
and the indirect affect of an agents preferences on outcomes. To provide ad-
ditional motivation for truthfulness, the implementation of the ABC payment
mechanism can be further enriched with second chance mechanism as proposed
by Nisan&Ronen [17].

5 Real-World Trip Dataset and Studies

The ABC prototype provides options for offline, batch optimizations and for
real-time simulations of incoming ride requests based on the dynamic queuing
and assignment of carpools. Statistics are maintained on multiple dimensions of
cost and savings. The system also provides visualizations of paths on a city map.
We ran studies based on the driving trip data gathered from 215 subjects over a
5 year period [13]. These subjects voluntarily placed GPS receivers with logging
in their cars over several weeks. Nearly all the subjects live in the Seattle, WA
USA area. The GPS receivers were programmed to record GPS data only when
the users are in motion. The dataset contains a total of 1,434,308 (latitude,
longitude) points for an average of 6,671 points per participant.

As the goal of this research is generating carpool plans for daily commutes
of users, we segmented the dataset into discrete trips. We identified any two

11



consecutive GPS points either 5 minutes or more than 7 km apart as two sep-
arate trips. The trips that are shorter than a threshold are eliminated, which
resulted in 7,377 individual trips. For each user, we selected a pair of morning
and evening trips that appear to capture daily commute patterns of the users by
having the following properties: (1) the regularity of the commutes on trip data
of the user, (2) minimum divergence of the selected commutes from a round
trip. 215 morning\evening commute patterns were extracted for 215 users in
dataset with an average duration of 26 mins for morning, 29 mins for evening,
and average distance of 21km for morning and 24 km for the evening.

The commute patterns extracted from the trip dataset is used to test the
ABC prototype. We shall present our evaluation of the ABC prototype on
batch optimization of scheduled morning/evening commutes, and then extend
our studies to explore the performance of the prototype on future models of
transportation. Next, we explore the dynamic version of the ABC prototype
on real-time simulations. We conclude with an extension of ABC system that
considers park&ride lots in optimization.

5.1 Studies on Scheduled ABC

The scheduled model of ridesharing gets the morning\evening commute patterns
of individual users as its input, and optimizes both patterns simultaneously to
generate the best possible combination of morning\evening rideshares. The
scheduled ABC prototype assumes that the morning\evening commuter plans
of users are known at the time of optimization and they do not change during
the day. The optimization sets as a hard constraint that the morning driver set
has to be identical to the evening river set, as all users drove in the morning has
to drive back in the evening. However, the allocation of passengers are flexible
and may change between morning\evening commutes.

The results of the scheduled rideshare system are evaluated in terms of the
the efficiency on number of commutes (i.e., the reduction ratio on total number
of commutes), efficiency on number of commutes (i.e., the reduction ratio on
total cost) and the reduction on COs emissions. The system is tested with
varying fuel costs (i.e., from $0.035/mile to $0.14/mile) and varying average
time costs (i.e., from $0/hour to $9.6/hour).

Figure 2 compares the individual commute plans with the collection of
rideshare plans generated by the system. The thinner blue color on main high-
ways indicates the positive effect of ridesharing on the morning commute traffic
in the Seattle region. When the fuel cost is set to $0.07 /mile?, and average time
cost is set to $4.8 /hour, ABC system is able to achieve 41% efficiency on num-
ber of commutes, 14% efficiency on total cost of transportation which results in
84.16 tons of CO5 reduction per year.

To investigate the influence of the cost of fuel on the efficiency of the rideshare
optimization, we tested ABC over a range of fuel costs. As shown in Figure 3,

2http://www.commutesolutions.org/calc.htm states $0.07/mile to be the per mile cost of
driving.
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Figure 2: Seattle area map displaying the commute routes of study participants
(darker blue color represents more crowded routes) Left: Morning trips without
ABC system, Right: Morning trips with ABC system

System Efficiency

50
45

35
30
25
20
15
10

74-——'/"

-B-Efficiency on number

of commutes

-+ Efficiency on total cost

==|ncreasein time

cost(%)

$0.035/mile  $0.07/mile

Gas Cost

$0.105/mile

$0.14/mile

=¥ Decrease in gas
cost(%)

Figure 3: Effect of fuel cost on the efficiency of ABC system

13



the efficiency of the carpooling system on both the number of commutes and the
total cost increases significantly with increases in the cost of fuel. These results
indicate that increasing fuel costs can provide increasing incentives for agents to
collaborate, and we expect the willingness of agents to carpool to grow as fuel
costs increase. Consequently, the reduction on CO, emissions increases 25% as
gas costs increases from 0.035/mile to $0.14 /mile.

We investigated the influence of changes in the cost of time on the efficiency
of the rideshare system by varying the average time costs of users as shown in
Figure 4. As the costs of time increase, the efficiency of the optimization with
regard to the number of commutes and total costs incurred drops significantly
The reduction on COy emissions drop 29.6%. Increasing time costs reduce the
incentive of agents to collaborate in ridesharing.

50

45 .\
Z o -&-Efficiency on number of
S \ commutes
S 30 o
£ .| Efficiency on total cost
[F7]
;:: 20 - —
2 15 / ; Se— =¢Increasein time
>
% 10 / cost(%)

% e

6 & =¥ Decrease in gas cost(%)

$0/hour  $2.4/hour $4.8/hour $7.2/hour $9.6/hour
Time Cost

Figure 4: Influence of the average time cost on the efficiency of ABC planning.

The results on both time and fuel costs indicate how the rideshare methods
can adapt to changing preferences among agent. The decision-theoretic opti-
mization component is able to balance the costs of carpooling (i.e., increasing
time costs) with its benefits (i.e., decreasing fuel costs, cognitive costs). As
shown in Figure 4, the system is able to compress the time component of the
overall cost of transportation despite increasing per minute time costs of users.

To simulate the effect of increasing the number of agents in the system, we
populated commute patterns with randomly created artificial commute patterns.
The artificial commute patterns are generated by pairing randomly selected
start/end points from the trips dataset, with trip start times taken from a
Gaussian distribution representing the start times of the commute patterns in
the data. As displayed in Figure 5, the efficiency of the system grows as
the logarithm of the number of the agents in the system. With more agents,
the system is more likely to find better matches for the users. Therefore, the
performance ridesharing system is expected to improve with increasing numbers
of users.
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5.2 Studies on Future Models of Transportation

In this section, we focus on future models of transportation in which vehi-
cles are considered to be shared resources that are allocated according to dy-
namic needs of users (For a popular example of shared vehicles, see [1]). We
will show that these transportation models facilitate more efficient and collab-
orative transportation plans for individual users in comparison to traditional
ownership-based model of transportation when incorporated into the ABC pro-
totype. We present two transportation models of shared vehicles; limited zipcars
and unlimited zipcars, which introduce different levels of constraints to the ABC
optimization, thus result in varying levels of efficiencies.

The limited zipcar model sets as a condition that every shared vehicle driven
during morning commute needs to be driven back in the evening commute, but
not necessarily by the same driver. Thus, the limited zipcar model relaxes
the constraint of the traditional scheduled model by allowing both passenger
and driver sets to change between morning and evening commutes, but keeps
the shared vehicle set constant between morning and evening commutes. The
unlimited zipcar model further relaxes the constraints of the limited zipcar
model, and allows vehicle set to change between morning and evening commutes.
The unlimited zipzar model is an upper bound on the value that can be provided
by the ridesharing optimization, as this model assumes an unlimited supply of
shared vehicles and thus minimizes the set of constraint on the optimization.

Figure 6 compares the efficiencies of the future models of transportation
with the traditional ownership-based model. As shown in the figure, the effi-
ciency of the carpooling system on both the number of commutes and the total
cost increases as the transportation model changes from ownership based to

15



= 50
w9
c
Q2 a0
o
a: 30 - "
] | Efficiency on number
GEJ 20 - of commutes
=1
17
- . .
N g Efficiency on total
cost
o

Ownership Limited zipcar Unlimited zipcar
based

Transporation Models

Figure 6: Efficiency of ABC planning with varying transportation models.

limited zipcar and to unlimited zipcar. These results indicate that relaxing the
constraints on transportation models can improve the efficiency of carpooling
significantly.

5.3 Studies on Dynamic ABC

Dynamic ABC is an extension of the ABC prototype to a dynamic architecture
that can handle commute requests on the fly, thus provides users flexibility to
add, update or remove commute requests. The dynamic ABC prototype utilizes
an online myopic optimization to assign an upcoming commute request either
as a passenger or a driver to a carpool, or as an individual commute if there are
no beneficial carpools available. The carpool plans are updated dynamically as
more commute requests are introduced to the system. The myopic optimization
assigns a user to a carpool plan only if doing so improves the combined value of
the users. Thus, the system guarantees that every update of the carpool plans
increases the cumulative efficiency of the plans. A commute plan with a passed
start time is removed from the optimization, and its local VCG payments are
calculated within the carpool group according to the mechanism presented in
Section 4.2.

Figure 7 displays an instance of the dynamic ABC prototype. The activity
window shows the commute requests received at the current time, and the plans
that are just started being executed. The waiting window lists the commute
plans that are created by the system, but have not being carried out yet. The
ABC interface displays the economic analysis of the updates that are performed
on the set of commute plans, in terms of the gas, time, cognitive costs and COq
emissions. The map interface displays ongoing rideshares in green, ongoing indi-
vidual trips in red, recently generated rideshares in blue and recently generated
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Figure 7: Interface for Dynamic ABC Prototype

individual trips in pink.

The dynamic ABC prototype presents a more realistic implementation of
ridesharing with dynamically arriving and leaving users. To test the dynamic
ABC prototype, the commute patterns of individual users are sorted with re-
spect to their initial start time, and given as input to the prototype one by one
a particular amount of time before the initial start time (i.e., the notification
interval). The performance of the dynamic prototype with varying notification
intervals is compared with the scheduled prototype in Figure 8. These results
show that the dynamic prototype is able to generate up to %86.5 efficiency on
total cost when compared with the scheduled prototype, and improve its effi-
ciency on number of commutes by %9.4. We observe that the performance of
the dynamic prototype increases as the notification interval grows, as the system
is able to pair users with more appropriate carpool options when it has a larger

set of candidates to consider.

The current prototype implements a myopic optimization that only consid-
ers the current set of commute plans of users, without reasoning about their
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future commute plans. This simplification may be problematic if the system
assigns users as passengers in the morning commute but fails to assign them to
carpools in the return trip. To remedy this problem, the dynamic ABC pro-
totype implements the unlimited zipcar model, and assumes that there is an
unlimited supply of vehicles for users to use whenever a carpool is unavailable
without paying extra cost. In a real-life application of this system, this un-
realistic assumption can be satisfied by a backup system such as a taxi or a
shuttle service. This myopic system can be improved in future work with non-
myopic optimization that can predict the future demand on carpools, and by
consequently incorporating the cost of the backup service into the optimization.

Implementing the ABC system as a continuous and dynamic mechanism
introduces new challenges in terms of payment calculations. Although, we apply
local VCG-payments and calculate the payments within a carpool group, the
payment mechanism might get more vulnerable to deceptions from users as they
get to continuously interact with the system. In a dynamic mechanism, it is no
longer possible to calculate a threshold parameter with linear programming, thus
threshold-based payments are only budget-balanced in expectation. In future
work, the payment mechanism of the dynamic ABC prototype can benefit from
work on online mechanism design literature to adopt itself to these challenges
[18, 7].

5.4 Studies on Park&Ride Lots

Park&Ride lots in Seattle area offer a new and efficient way of commuting by
combining personal and public transportation. These lots are public and free
parking lots distributed through Seattle region by Washington State Depart-
ment of Transportation. They serve as stop points for public transportation and
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Figure 9: Up: Rideshare plan generated by the default system without consid-
ering park&ride lots. Green car picks up the maroon passenger and travels to
final destination. Down: Rideshare plan generated after considering park&ride
lots. The green and maroon users meet at the park&ride lot, green user drives
both users to the final destination.

meeting locations for commuters. In this section, we modify our ridesharing op-
timization to consider the park&ride lots as waypoints at which passengers of a
rideshare can come together with the driver, and form a more efficient rideshare
plan. For each passenger of the rideshare, the modified optimization trades off
the cost of the driver for picking up the passenger from his/her original start
location, and the cumulative cost of the driver and the passenger for getting to
a park&ride lot to meet. The optimization adds a stop at the park&ride lot to
pick up a passenger, if doing so has a higher cumulative benefit for the rideshare
group (See Figure 9 for an example of this analysis). Considering the park&ride
lots makes the Rideshare plan optimization more complex as the optimization
needs to consider all combinations of pick-up locations (including park&ride
lots) for all passengers. It is important to note that, if a rideshare plan includes
picking up a passenger from a park&ride lot, the cost of the plan takes into
account both the drivers and the passengers individual costs for getting to the

park&ride lot.
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listing the effect of each park&ride lot on the efficiency of ridesharing. No
park&ride represents the default model that does not consider park&ride lots.

The table in Figure 10 presents an initial investigation of the effect of
park&ride lots on the efficiency of ridesharing for the MSMLS dataset. Due to
practicality reasons, this empirical investigation makes two limiting assumptions
(1) the optimization considers one of the 8 park&ride lots given in Figure 10 at a
given time, (2) the optimization assumes that either all passengers and the driver
meets at the park&ride lot, or all passengers are picked up from their original
start locations. The results show that 6 of the park&ride lots considered at the
experiment improve the efficiency of ridesharing on total cost, 4 of the locations
improve efficiency on total number of commutes. In our future studies, we will
focus on extending the optimization algorithm to consider multiple park&ride
lots and possible combinations of park&ride and original start locations for
passengers. We believe that these extensions will improve the effect of park&ride
lots on the efficiency of ridesharing further. In future work, our optimization
engine can be utilized as a guide to determine ideal park&ride placements with
respect to the cumulative cost of transportation.
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6 Real-World Considerations

This paper focuses on computational methods for efficient and fair rideshar-
ing. However sustaining the success of a live ridesharing mechanism requires
thinking about social factors and contingencies that may affect the mechanism.
This section highlights and discusses major real-world considerations related to
ridesharing.

Providing fair and satisfactory incentives is crucial for the success of the
ridesharing mechanism. The users may bear additional costs for adopting their
commutes with others, and they must be satisfied with the compensation they
receive from the system. The payment component of the ABC system is based
on monetary payments. In mechanism design literature monetary payments are
mostly used in electronic commerce [22]. When it comes to providing incentives
in dynamic mechanisms that manage services (e.g., bandwidth management,
p2p services), previous work usually offers non-monetary incentives that affects
the quality of service (e.g., improving data quality, increasing the bandwidth)
[4]. Possible non-monetary payments for the ridesharing domain might be better
parking spots or using fast-lines in highways. However, non-monetary payments
may not compensate for extra gas or time costs drivers may bear. On the other
hand, burdening users with monetary payments result in hesitancy to join the
system. We believe that future user studies on the ABC system will provide
more insight about human reaction to different types of incentives and payments,
and result in more successful designs for payment mechanisms.

The current design of the ABC system is fully autonomous in the sense that
the rideshare plans and payments are computed and dictated to users, under
the assumption that human users completely agree with the decisions of the sys-
tem. Nevertheless, the system might benefit from giving some control to users,
especially if monetary payments are involved. Users might get notified about
rideshare plans before they plans are finalized, or the system might ask for an
approval before committing to a high payment. Sharing control with the user
might be particularly important during the trial period of the system to gener-
ate trust, when users do not completely understand the way ABC system works.
Moreover, user input might be beneficial to better understand the preferences
of users (e.g., time and cognitive costs). Incorporating a mixed-initiative com-
ponent that trades off the cost of interrupting the user with the benefit might
improve the performance of the system without overburdening users [9].

When people get involved in the ABC system in real life, we expect that
there might be contingencies in which some users willingly or unexpectedly fail
to obey their commitments. A driver may fail to pick up passengers, or a pas-
senger may not show up. We refer to these users as deviators. To deter users
from failing their commitments, ABC payment component has a punishment
module that determines how much a user needs to pay in case of failing a com-
mitment. If a rideshare plan fails, the system runs the optimization component
again by excluding the deviator, constructs updated rideshare plans, and noti-
fies users. If no rideshare is available for some of the users, the system backs up
to taxi/shuttle services. The punishment of a deviator is the difference of the
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utilities of all users excluding the deviator between the original and the updated
rideshare plans. The deviator pays the additional burden on all other users for
failing the commitment.

Success of the ABC system is likely to depend on multiple social and psy-
chological considerations. Although the focus this work is not on these issues,
it is important to note that they are crucial for the wide deployment of this
system. The system can significantly benefit from social networks, trusted or-
ganizations and organizational membership to generate rideshare groups that
users are comfortable with. It might be possible to design special incentives that
depend on the economics within organizations. The architecture of the ABC
system can be further improved with addition of a reputation mechanism that
helps to distinguish reliable users from deviators.

7 Summary and Conclusions

We reviewed research on reasoning and optimization for generating ridesharing
plans. We explored the problem as an agent collaboration challenge and de-
veloped extensions to prior work on coordination among multiple agents and
market-based incentives to solve key challenges. We constructed a prototype
and explored the performance of the system with a dataset of real-world trips
collected over five years. In ongoing work, we are investigating new applica-
tions of the tools, including the use of the methods to inform such decisions as
to where to locate park and ride facilities and several practical issues with the
deployment of a dynamic version of the system in a running online service that
serves a city region. We are also exploring extensions to ABC system to account
real-world considerations. Beyond the methods and results, we hope that other
researchers will be energized about the opportunity to apply inference, opti-
mization, and market mechanisms to address challenges with the environment.
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