1782

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL.27, NO.7, JULY 2015

Real-Time City-Scale Taxi Ridesharing

Shuo Ma, Yu Zheng, Senior Member, IEEE, and Ouri Wolfson, Fellow, IEEE

Abstract—We proposed and developed a taxi-sharing system that accepts taxi passengers’ real-time ride requests sent from
smartphones and schedules proper taxis to pick up them via ridesharing, subject to time, capacity, and monetary constraints. The
monetary constraints provide incentives for both passengers and taxi drivers: passengers will not pay more compared with no
ridesharing and get compensated if their travel time is lengthened due to ridesharing; taxi drivers will make money for all the detour
distance due to ridesharing. While such a system is of significant social and environmental benefit, e.g., saving energy consumption
and satisfying people’s commute, real-time taxi-sharing has not been well studied yet. To this end, we devise a mobile-cloud
architecture based taxi-sharing system. Taxi riders and taxi drivers use the taxi-sharing service provided by the system via a smart
phone App. The Cloud first finds candidate taxis quickly for a taxi ride request using a taxi searching algorithm supported by a
spatio-temporal index. A scheduling process is then performed in the cloud to select a taxi that satisfies the request with minimum
increase in travel distance. We built an experimental platform using the GPS trajectories generated by over 33,000 taxis over a period
of three months. A ride request generator is developed (available at http://cs.uic.edu/~sma/ridesharing) in terms of the stochastic
process modelling real ride requests learned from the data set. Tested on this platform with extensive experiments, our proposed
system demonstrated its efficiency, effectiveness and scalability. For example, when the ratio of the number of ride requests to the
number of taxis is 6, our proposed system serves three times as many taxi riders as that when no ridesharing is performed while saving

11 percent in total travel distance and 7 percent taxi fare per rider.

Index Terms—Spatial databases and GIS, taxi-sharing, GPS trajectory, ridesharing, urban computing, intelliegent transportation systems

1 INTRODUCTION

TAXI is an important transportation mode between public
and private transportations, delivering millions of pas-
sengers to different locations in urban areas. However, taxi
demands are usually much higher than the number of taxis
in peak hours of major cities, resulting in that many people
spend a long time on roadsides before getting a taxi.
Increasing the number of taxis seems an obvious solution.
But it brings some negative effects, e.g., causing additional
traffic on the road surface and more energy consumption,
and decreasing taxi driver’s income (considering that
demands of taxis would be lower than number of taxis dur-
ing off-peak hours).

To address this issue, we propose a taxi-sharing sys-
tem that accepts taxi passengers’ real-time ride requests
sent from smartphones and schedules proper taxis to
pick up them via taxi-sharing with time, capacity, and
monetary constraints (the monetary constraints guaran-
tee that passengers pay less and drivers earn more com-
pared with no taxi-sharing is used). Our system saves
energy consumption and eases traffic congestion while
enhancing the capacity of commuting by taxis. Mean-
while, it reduces the taxi fare of taxi riders and increases
the profit of taxi drivers.

Unfortunately, real-time taxi-sharing has not been well
explored, though ridesharing based on private cars, often

e S. Ma and O. Wolfson are with the Computer Science Department, Uni-
versity of Illinois at Chicago, Chicago, IL 60607.
E-mail: {sma, wolfsonj@cs.uic.edu.

o Y. Zheng is with Microsoft Research, Beijing 100080, P.R, China.
E-mail: yuzheng@microsoft.com.

Manuscript received 28 Oct. 2013; revised 11 June 2014; accepted 11 June
2014. Date of publication 30 June 2014; date of current version 1 June 2015.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.

Digital Object Identifier no. 10.1109/TKDE.2014.2334313

known as carpooling or recurring ridesharing, was studied
for years to deal with people’s routine commutes, e.g., from
home to work [1], [2]. In contrast to existing ridesharing,
real-time taxi-sharing is more challenging because both ride
requests and positions of taxis are highly dynamic and diffi-
cult to predict. First, passengers are often lazy to plan a taxi
trip in advance, and usually submit a ride request shortly
before the departure. Second, a taxi constantly travels on
roads, picking up and dropping off passengers. Its destina-
tion depends on that of passengers, while passengers could
go anywhere in a city.

In this paper, we report on a system based on the mobile-
cloud architecture, which enables real-time taxi-sharing in a
practical setting. In the system, taxi drivers independently
determine when to join and leave the service using an App
installed on their smartphones. Passengers submit real-time
ride requests using the same App (if they are willing to share
the ride with others). Each ride request consists of the origin
and destination of the trip, time windows constraining when
the passengers want to be picked up and dropped off (in
most case, the pickup time is present). On receiving a new
request, the Cloud will first search for the taxi which mini-
mizes the travel distance increased for the ride request and
satisfies both the new request and the trips of existing pas-
sengers who are already assigned to the taxi, subject to time,
capacity, and monetary constraints. Then the existing pas-
sengers assigned to the taxi will be inquired by the cloud
whether they agree to pick up the new passenger given the
possible decrease in fare and increase in travel time. Only
with a unanimous agreement, the updated schedules will be
then given to the corresponding taxi drivers and passengers.

We place our problem in a practical setting by exploiting
a real city road network and the enormous historical taxi
trajectory data. Compared to existing carpooling systems,
our proposed ridesharing model considers more practical

1041-4347 © 2014 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

MA ET AL.: REAL-TIME CITY-SCALE TAXI RIDESHARING

constraints which include time windows, capacity, and
monetary constraints for taxi trips. In addition, our work
proposes efficient searching and scheduling algorithms that
are capable of allocating the “right” taxi among tens of thou-
sands of taxis for a query in milliseconds. The contribution
of this paper is many fold:

e We proposed and developed a taxi-sharing system
using the mobile-cloud architecture. The cloud inte-
grates multiple important components including
taxi indexing, searching, and scheduling. Specifi-
cally, we propose a spatio-temporal indexing struc-
ture, a taxi searching algorithm, and a scheduling
algorithm. Supported by the index, the two algo-
rithms quickly serve a large number of real-time ride
requests while reducing the travel distance of taxis
compared with the case without taxi-sharing.

e Our paper considers and models monetary con-
straints in ridesharing. These constraints provide
incentives not only for passengers but also for taxi
drivers: passengers will not pay more compared
with no ridesharing and get compensated if their
travel time is lengthened due to ridesharing; taxi
drivers will make money for all the reroute distance
due to ridesharing. The monetary constraints makes
our modeling of the taxi ridesharing problem more
realistic.

e We performed extensive experiments to validate the
effectiveness of taxi-sharing as well as the proposed
system’s efficiency and scalability. According to the
experimental results, the fraction of ride requests that
get satisfied is significantly increased by three times
meanwhile riders save 7 percent in taxi fare via taxi-
sharing when the taxis are in high demand. Further-
more 2 million liter of gasoline can be saved each year
in Beijing by taxis alone if taxi-sharing is allowed.

The rest of this paper is organized as follows. In Section 2,
we formally describe the real-time taxi-sharing problem. Sec-
tion 3 overviews the architecture of our proposed system.
Section 4 describes the index of taxis used and the taxi
searching algorithm. Section 5 describes the scheduling pro-
cess. We present the evaluation in Section 6 and summarize
the related work in Section 7.

Compared with our earlier work [3], this paper claims
following contributions. First, we devised and implemented
a cloud-mobile based taxi-sharing system, where the mobile
App for taxi riders and drivers are designed. The detailed
interactions among the mobile Apps of taxi riders, drivers,
and the cloud are presented in Section 3. Second, we refined
our taxi-sharing model by introducing the monetary con-
straints for both drivers and riders in Section 5.2. This is
one crucial step towards a practical deployment of such a
system. In addition, we discussed the time complexity of
reordering the pickup and drop-off locations in the sched-
uled route of a taxi at the beginning of Section 5 and
showed that this step is not necessary in practice via experi-
ments in Section 6.2.3. Third, we conducted more compre-
hensive experiments to validate our system. For example, in
Section 6.1.5, we introduce new measurements, such as
Taxi-sharing Rate and Seat Occupancy Rate, to evaluate the
effectiveness of ridesharing. We also test the performance of

1783

our approach by changing the parameter of the monetary
constraints in Section 6.2.1.

2 THE REAL-TIME TAXI-SHARING PROBLEM

The real-time taxi-sharing problem consists of a data model,
constraints, and an objective function. We describe each
part separately below before giving the formal definition of
the problem.

2.1 Data Model
2.1.1 Ride Request

A ride request @) is associated with a timestamp @ . ¢ indicat-
ing when () was submitted, a origin point @) . 0, a destination
point @) . d, a time window Q.pw defining the time interval
when the rider wants to be picked up at the origin point,
and a time window @ . dw defining the time interval when
the rider wants to be dropped off at the destination point.
The early and late bounds of the pickup window are
denoted by Q.pw.e and Q.pw.l respectively. Likewise,
Q@ .dw.e and Q . dw.l stand for that of the delivery window.

In practice, a rider only needs to explicitly indicate (). d
and @ .dw.l, as most information of a ride request can be
automatically obtained from a rider’s mobile phone, e.g.,
Q.o and (@ .t. In addition, we can assume that both Q.pw.e
and @ . dw.e equals to @) . t, and Q.pw.l can be easily obtained
by adding a fixed value, e.g., 5 minutes, to Q).pw.e.

2.1.2 Taxi Status

A taxi status V' represents an instantaneous state of a taxi
and is characterized by the following fields.

V.ID. The unique identifier of the taxi.

V.t. The time stamp associated with the status.

V1. The geographical location of the taxi at V..

V.s. The current schedule of V, which is a tempo-
rally-ordered sequence of origin and destination
points of n ride requests Q1, Qs, ... Q, such that for
every ride request Q;, ¢ = 1,...n, either 1) Q; . o pre-
cedes @; . d in the sequence (referred to as the prece-
dence rule thereafter), or 2) only Q;.d exists in the
sequence.

e V. The current projected route of V, which is a
sequence of road network nodes calculated based
on Vis.

From the definition, it is clear that the schedule of a vehi-
cle status is dynamic, i.e., changes over time. For example, a
schedule involving two ride requests ; and 2 could be
Q1.0 — Q2.0 — Q1.d — Q2 .d at a certain time. The schedule
is updated to Q2.0 — @1.d — Q2 .d once the taxi has passed
point Q) .o.

2.2 Constraints

The crux of the taxi-sharing problem is to dispatch taxis to
ride requests, subject to certain constraints. We say that a
taxi status V' satisfies a ride request Q or Q is satisfied by V' if
the following constraints are met.

e Vehicle capacity constraint. The number of riders that
sit in the taxi does not exceed the number of seats of
a taxi at any time.

1784

| » Service providing data flow » Taxi Status updating flow |

Scheduling Scheduling
?; S Server Server ? S
s[Cluster Cluster &+
F =
Indexing L@Communication Monitor
Server €]
2 k. T -----
e
® .
@ ' Cloud
D O D] 1@ ©
b s I
el e (8
New Riders Taxi Drivers EExisting Riders;

Fig. 1. The architecture of the real-time taxi-sharing system.

o Time window constraints. All riders that are assigned
to V should be able to depart from the origin point
and arrive at the destination point during the corre-
sponding pickup and delivery window, respectively.

e Monetary constraints. These constraints provide cer-
tain monetary incentives for both taxi drivers and
riders. That is, a rider does not pay more than with-
out taxi-sharing; a taxi driver does not earn less than
without taxi-sharing when travelling the same dis-
tance; the fare of existing riders decreases when a
new rider joins the trip. We will further discuss the
monetary constraints in Section 5.2.

2.3 Objective Function and Problem Definition

Since multiple taxi statues may satisfy a ride request, an
objective function is usually applied to find the optimal taxi.
A variety of objective functions have been used in the exist-
ing literature, where a weighted cost function combining
multiple factors such as travel distance increment, travel
time increment and passenger waiting time, is the most
common [4], [5], [6]. In this study, given a ride request, we
aim to find the taxi status which satisfies the ride request
with minimum increase in travel distance, formally defined
as follows: given a fixed number of taxis traveling on a road net-
work and a sequence of ride requests in ascending order of their
submitted time, we aim to serve each ride request () in the stream

T,-Share
Pick your role

Fiide Rquest

:

.

& i
e [T

(a) Pick a role (b) A new request

Fig. 2. Screenshots of the mobile client for riders.

(c) Ride request notification (d) Ride request confirmation

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL.27, NO.7, JULY 2015

by dispatching the taxi V which satisfies @) with minimum
increase in V'’s scheduled travel distance on the road network.

This is obviously a greedy strategy and it does not guaran-
tee that the total travel distance of all taxis for all ride
requests is minimized. However, we still opt for this defini-
tion due to two major reasons. First, the real-time taxi-
sharing problem inherently resembles a greedy problem. In
practice, taxi riders usually expect that their requests can be
served shortly after the submission. Given the rigid real-time
context, the taxi-sharing system only has information of cur-
rently available ride requests and thus can hardly make opti-
mized schedules based on a global scope, i.e., over a long
time span. Second, the problem of minimizing the total travel
distance of all taxis for the complete ride request stream is
NP-complete. Please see [3] for a proof.

3 SYSTEM ARCHITECTURE

The architecture of our system is presented in Fig. 1. The
cloud consists of multiple servers for different purposes
and a monitor for administers to oversee the running of the
system. Taxi drivers and riders use the same smart phone
App to interact with the system, but are provided with dif-
ferent user interfaces by choosing different roles, as shown
in Fig. 2a.

As shown by the red broken arrow (a), a taxi automati-
cally reports its location to the cloud via the mobile App
when (i) the taxi establishes the connection with the system,
or (ii) a rider gets on and off a taxi, or (iii) at a frequency
(e.g., every 20 seconds) while a taxi is connected to the sys-
tem. We partition a city into disjoint cells and maintain a
dynamic spatio-temporal index between taxis and cells in
the indexing server (detailed in Section 4.1), depicted as the
broken arrow (b).

Denoted by the solid blue arrow (), a rider submits a new
ride request () to the Communication Server. Fig. 2b shows
the corresponding interface on a rider’s smart phone where
the blue pin stands for the current location of the rider. All
incoming ride requests of the system are streamed into a
queue and then processed according to the first-come-first-
serve principle. For each ride request @, the communication
server sends it to the Indexing Server to search for candidate
taxis Sy that are likely to satisfy (), depicted as the blue
arrow 2. Using the maintained spatio-temporal index, the
indexing server returns Sy to the communication server,
denoted by the blue arrow @).

Ouivery Pt (@

(e) Ride completed

MA ET AL.: REAL-TIME CITY-SCALE TAXI RIDESHARING

Fig. 3. Screenshot of the mobile client for drivers.

Represented by the blue arrow @), the communication
server sends ride request () and the received candidate taxi
set Sy to the Scheduling Server Cluster. The scheduling clus-
ter checks whether each taxi in Sy can satisfy @ in parallel
(detailed in Section 5), and returns the qualified taxi V' that
results in minimum increase in travel distance and a
detailed schedule, shown as arrow (3.

Note that in our current implementation, a single
machine (see Section 6.2.2 for the specs of the machine)
instead of a cluster is used to implement the indexing server
and the scheduling servers. The single-machine implemen-
tation is able to answer a query in a few milliseconds, i.e.,
millions of queries per hour. But we believe in that the clus-
ter-based implementation (e.g., using Windows Azure A2
virtual machines) can provide a more robust service. For
example, it prevents system crash in case of unexpected
power failure of a single machine.

Each rider R who has been already assigned to the taxi V'
will be enquired whether they would like to accept the join
of the new rider, as depicted by blue arrow ©. The informa-
tion, such as the estimated fare saving and travel time
increase due to @’s join, will be displayed on their smart-
phones shown in Fig. 2c. Rider R accepts the route change if
she thinks the fare saving is worth the travel time increase.
Otherwise, she can veto the route change by clicking the
“Reject” button. The system remembers the rider’s choice,
and automatically rejecting a route change in future if the
ratio of the fare saving to the travel time delay is smaller
than the largest value the rider has ever rejected. Thus, a
taxi passenger will not be bothered often.

After all riders R’s who have been already assigned to
taxi V accept the route change, the new rider of @ gets a
confirmation on her smart phone, as illustrated in Fig. 2d.
The confirmation informs the new rider the taxi ID, esti-
mated pickup time and fare, the scheduled route, and a
unique reservation code. The new schedule and the same
reservation code are sent to the driver’s phone at the same
time. The reservation code will be used to build a connec-
tion between the phones of the new rider and the taxi
driver when the new rider gets on the taxi. On the driver
side, the smart phone displays a taxi’s schedule, e.g., the

(b) taxi tab

(a) ride request tab

Fig. 4. Screenshot of the monitor.

1785
— _ : i : 80 81w & e &n
. I "o —
___J'___._:_'___:____ g | 0 Doj-eDyj - Don
=
. : o : L4 : 4 g | Dy 0 - Dlj """ Dy,
| | v gl M=
R T Cis : : 8i D,() Dil ----- Dl/ ----- Dm
| (N ;
L s SN N : :
-:— : : Py &n Dn() Dn] ----- Dn_] ----- 0
L — —
| | |
—s—X Dy =(t;,dy)

(a) Grid-partitioned map (b) Grid distance matrix

Fig. 5. Grid partitioned map and grid distance matrix.

next pickup and destination points as well as the route, as
illustrated in Fig. 3.

When a rider’s trip is completed, the rider’s App will
show the exact information, such as the actual fare and
travel time, as illustrated in Fig. 2e. The reservation code
will be used again to confirm the payment to the Cloud as a
transaction ID.

The system administrator oversees the taxi-sharing sys-
tem via the monitor. The monitor provides two views: one
for ride requests, the other for taxis. Fig. 4a shows a screen-
shot of the ride request view, where all requests are dis-
played on the map at their corresponding pickup point,
with scheduled requests in red and unscheduled requests
in blue. On the right, two boxes list the detail information of
scheduled and unscheduled ride requests respectively. The
search box allows the administrator to quickly locate a
request on the map via a request ID.

Fig. 4b shows a screenshot of the taxi view of the monitor.
Each taxi is represented by a yellow taxi symbol on the map.
The locations of these symbols on the map are updated while
the corresponding taxis upload new statuses. Similarly, the
search box is used to quickly locate and track a taxi via que-
rying a specific taxi ID.

4 TAXI SEARCHING

The taxi searching module quickly selects a small set of can-
didate taxis with the help of the spatio-temporal index. In
this section, we will first describe the index structure and
then detail the searching algorithm.

4.1 Index of Taxis

The spatio-temporal index of taxis is built for speeding up
the taxi searching process. Specifically, we partition the
road network using a grid. (Other spatial indices such as R
tree can be applied as well, but we envision that the high
dynamics of taxis will cause prohibitive cost for maintain-
ing such an index.) As shown in Fig. 5a, within each grid
cell, we choose the road network node which is closest to
the geographical centre of the grid cell as the anchor node
of the cell (represented by a blue dot in Fig. 5a. The anchor
node of a grid cell g; is thereafter denoted by ¢;. We com-
pute the distance, denoted by d;;, and travel time, denoted
by t;;, of the fastest path on the road network for each
anchor node pair ¢; and ¢;. Both the distance and travel
time is only computed once. (Alternatively, travel time can
be updated dynamically, i.e. calculated once in a while
(e.g., every 10 minutes) by leverageing historical data

1786

I

[nearest | earliest

| . |

d5i 27| [z & | |Taxi>4| |

| . |

dai £2 | | g7 | |Taxiz 1| |

i | : |

i | ; I

| |

i g] ! 2 |
: v

spatial |

P furthest temporal |

Taxi,, :t, v

latest

Fig. 6. Spatio-temporal index of taxis.

archives, and travel time estimation techniques e.g., T-
Drive [7], [8], [32]. However since the effectiveness of
travel time estimation is not a focus of this work, we do
not discuss it in details here.) Intuitively, we can use the
computed travel time to quickly filter out a large number
of taxis whose schedule is “far away” from a given ride
request. The distance and travel time results are saved in a
matrix as shown in Fig. 5b. The matrix is thereafter
referred to as the grid distance matrix.

The distance between any two arbitrary nodes is approxi-
mated by the distance between two corresponding anchor
nodes. In other words, the grid distance matrix provides an
approximation of the distance between any two nodes of
the road network. These approximated distances avoid the
expensive computation cost of frequent fastest path calcula-
tions at the stage of taxi searching.

As illustrated in Fig. 6, each grid cell g; maintains three
lists: a temporally-ordered grid cell list (g; .1'), a spatially-order
qrid cell list (g; . 1%), and a taxi list (g; . 1,) . g; . I, is a list of other
grid cells sorted in ascending order of the travel time from
these grid cells to g; (temporal closeness). Likewise, g; . [is
a list of other grid cells sorted in ascending order of the
travel distance from these grid cells to g; (spatial closeness).
The spatial and temporal closeness between each pair of
grid cells are measured by the values saved in the grid dis-
tance matrix shown in Fig. 5b. For example, t5; measures the
temporal closeness from g, to g;, and dy; measures the spa-
tial closeness from g, to g;. The spatial grid cell list is only
computed once. The temporal grid cell list is computed
each time when travel times ¢;;’s are updated. It is worth
mentioning that cells that are neighbours in the grid may
not be the neighbours in a grid cell list because the distance
is measured in the road network instead of a free space.

The taxi list g; . [, of grid cell g; records the IDs of all taxis
which are scheduled to enter g; in near future (typically within
a temporal scope of 1 or 2 hours). Each taxi ID is also tagged

T T T T T ;i T

I I | I] [} I

+ ' + ! | I I
I S | I o O s N . SN | [S,

\ | ! i i ! 4 nearest

) 1 | I | t)

T :] T }
I AL N W 1§ 1 P DA A I I B i e

i 1 | i | 2

| | lf } 0 | 2
Foa—r—— 45— — e — 1 T e L]

i T !] |]

| \ox_/——-Vgs L | | =
R 5721 WA M |

| {3 | | f | £

} —tT l ! | =

| 89 | h i |
F-r-p-==541-3 b

T I I] | 1 f

I | I } [} [} [

| il + ' + b | furthest

IZGrid cells within the searching boundary of pickup point Q.o

Fig. 7. The single-side taxi searching algorithm.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL.27, NO.7, JULY 2015

carliest
P |-+ Leur

earliest

Taxi, | Taxis | |
I Selected Taxies I Selected Taxies
Taxi; } Taxig }
; }<_Q.wp,l ; ! *— Qwp.l-t;;
| —
i |1 i |
@ vlatest Taxiy vlatest

Fig. 8. Choose taxis from the selected grid cells.

with a timestamp ¢, indicating when the taxi will enter the
grid cell. All taxis in the taxi list are sorted in ascending order
of the associated timestamp ¢, . g;.[, is updated dynamically.
Specifically, taxi V; is removed from the list when V} leaves g;;
taxi Vj, is inserted into the list when V}, is newly scheduled to
enter g;. If taxis are tracked (see [9]), when new GPS records
are received from taxis, taxi lists need to be updated. Specifi-
cally, when a new GPS record from V;,, is received, denote by
gn, the current cell in which V;, is located, the timestamp asso-
ciated with V},, in the taxi list of cell g,, and cells to be passed
by V,, after g,, need to be updated.

4.2 Searching Algorithms
4.2.1 Single-Side Taxi Searching

Now we are ready to describe our first taxi searching algo-
rithm. For the sake of the clarity of description, please con-
sider the example shown in Fig. 7. Suppose there is a query
(@ and the current time is t., . g7 is the grid cell in which
Q.o is located. g;'s temporally-ordered grid cell list g7 .1} is
shown on the right of Fig. 7. g7 is the first grid cell selected
by the algorithm. Any other arbitrary grid cell g; is selected
by the searching algorithm if and only if Eq. (1) holds, where
ti7 represents the travel time from grid cell g; to grid cell gy.
Eq. (1) indicates that any taxi currently within grid cell g;
can enter g; before the late bound of the pickup window
using the travel time between the two grid cells (if we
assume that each grid cell collapses to its anchor node)

To quickly find all grid cells that hold Eq. (1), the single-side
searching algorithm simply tests all grid cells in the order-
preserved list g7 . I} and finds the first grid cell g; which fails
to hold Eq. (1). Then all taxis in grid cells before g; in list
g7 . 1! are selected as candidate taxis.

In Fig. 7, grid cell g3, g5 and gy are selected by the searching
algorithm. Then for each selected grid cell g;, the algorithm
selects taxis (in g; . l,) whose t, is no later than @ . wp.l — t,7.
For instance, Fig. 8 shows how taxis are selected from grid
cell gr and gs.

The taxi which can satisfy () with the smallest increase in
travel distance must be included in one of the selected grid
cells (under the assumption that each grid cell collapses).
Unfortunately, this algorithm only considers taxis currently
“near” the pickup point of a query (thus called single-side
search). As the number of selected grid cells could be large,
this algorithm may result in many taxis retrieved for the later
scheduling module (therefore increasing the entire computa-
tion cost), which is certainly not desirable for a rigid real-
time application like taxi ridesharing. Actually, the

MA ET AL.: REAL-TIME CITY-SCALE TAXI RIDESHARING

& o]

Spatial Closeness

_ Spatial Closeness _

‘?.s
O

<«

]

furthest

7 All grid cells within the n All grid cells within the
A searching boundary of Q.0 searching boundary of Q.d

; i Grid cell’s index in the corresponding spatially-ordered grid list

Fig. 9. Overview of the dual-side taxi searching algorithm.

spatiotemporal factor on the destination point of queries also
provides us with opportunities to reduce the number of grid
cells to be selected. Along this idea, we propose a dual-side
searching algorithm as an effort for striking a balance
between the distance optimality and the computation cost.

4.2.2 Dual-Side Taxi Searching

The dual-side searching is a bi-directional searching process
which selects grid cells and taxis from the origin side and
the destination side of a query simultaneously.

To dive into the details of the algorithm, consider the ride
request illustrated in Fig. 9 where g; and g are the grid cells
in which Q.o and @ .d are located respectively. Squares
filled with stripes stand for all possible cells searched by the
algorithm at @ . o side. These cells are determined by scan-
ning g7 . I, the temporally-order grid cell list of g;. That is,
each grid cell in g7 .. which holds Eq. (2) is a candidate cell
to be searched at the origin side. Eq. (2) indicates that any
taxi currently within grid cell ¢g; can enter g; before the late
bound of the pickup window using the latest travel time
between the two grid cells (assuming each grid cell collap-
ses to its anchor node). The red number in each such grid
cell indicates its relative position in g7.[;, the spatially-
ordered grid list of g7

tcur + t7‘,7 S Q dw . L. (2)

Squares filled with dots indicate the candidate grid cells
to be accessed by the searching algorithm at () . d side. Like-
wise, each such grid cell g; is found by scanning ¢, .l to
select all grid cells which holds Eq. (3), which indicates that
any taxi currently in g; can enter the g, before the late bound
of the delivery window (assuming that each grid cell collap-
ses to its anchor node). In this example, g¢ is the only satisfy-
ing grid cell as shown by Fig. 9

tcur + t]'Q S Q . dw . l (3)

Fig. 10 then illustrates the searching process step by step.
The algorithm maintains a set S, and a set S; to store the
taxis selected from @ .o side and @ . d side respectively. Ini-
tially, both S, and \S; are empty. The first step in the search-
ing is to add the taxis selected from taxi list g7 ./, to taxi set
S, as depicted in Fig. 10a, and add the taxis selected from
taxi list g; . [, to taxi set Sy as depicted by Fig. 10b. Then the
algorithm calculates the intersection of S, and Sy. If the

1787
] wlelels]| o]
carliest earliest
- tour Teur —> =
BT o oy] e
! [Taxiy o S (T
1] !
3 Q.wp.l Q.wd.l i !
latest [~ 7] (a) Step 1:S,N S, = {} (b) latest
el | B
carliest carliest
+ [Taid L o 1
| -
: S
} Taxig = ° }
o O.wp.l-t3 ; !
| = — |
latest (740 T Ich\t
— (0 Step 2: S, N Sy = {} (d) LI%h S

[er]e]e]

earliest

Taxiy N
[Faxie| =
[Faxis|
vt Qwp.l-to;

v
latest| 7x;

© | Step 3: 5, N S, = {Taxiyo, Taxiy7} | 0

Fig. 10. Calculation of the taxi set in the taxi searching process.

intersection is not empty, the algorithm stops immediately
and returns the intersection set. Otherwise, it expands the
searching area by including one other grid cell at each side
at a time.

To select next cells, we use the following heuristic: for a
taxi V, the closer a cell to be passed by V is to g; and the
closer a cell to be passed by V is to g (measured in the dis-
tance between the anchor nodes of the cells), the smaller V’s
scheduled travel distance increases after the insertion of the
ride request. For the purpose of minimizing increased travel
distance, the next grid cell included at @ .o side is always
chosen as the next element in the spatially-ordered grid list
g7.l2 which holds Eq. (2). Similarly, the next grid cell
included at @ .d side is always chosen as the next element
in the spatially-ordered grid list g» . I which holds Eq. (3).

In this example, since S, and S; produces an empty inter-
section, the algorithm expands at @ .o side to include g3
(indicated by the broken red rectangle) and add taxis
selected from g3 .1, as depicted in Fig. 10c. At @) . d side, the
algorithm covers g and adds taxis as indicated in Fig. 10d.
Unfortunately, the intersection set of S, and S; remains
empty. Consequently, the algorithm needs to continue
expanding the searching area at both sides. gy is then selected
at Q.o side; but no grid cell can be further included at the
Q . d side. After adding the taxis selected from gy . [, into set
S, as shown in Fig. 10e, we find Taxiiy and Taxi;; as the
intersection between S, and Sy;. Hence, the searching algo-
rithm terminates.

Compared to the dual side searching algorithm, the dis-
advantage of the single side searching algorithm is that the
number of selected grid cells could be large and thus it
results in many taxis retrieved for the later scheduling pro-
cess. In other words, it increases the overall computation
cost, which is certainly not desirable for a rigid real-time
system like taxi-sharing. Though the dual-side searching
algorithm may result larger increase in travel distance for
the given ride request, as a compensation for the small loss
in distance optimality, the algorithm selects far fewer taxis
for the schedule allocation step, reducing the computation
cost and ride request processing time. We found in the
experiments that the number of selected taxis is reduced

1788
i | origin point .o @ destination point i.d

.. . Fam ¥ . . .
n | origin point n.0 ini destination point n.d

— a path in the original schedule - - - # a new path due to the insertion
————— I Y .
! |
1 ¥
| | ——9
L

Fig. 11. One possible insertion of a ride request into a schedule.

by 50 percent while the increase in travel distance is just
1 percent over the single-side search algorithm.

5 TAXI SCHEDULING

Given the set of taxi statuses Sy retrieved for a ride request
@ by the taxi searching algorithm, the purpose of the taxi
scheduling process is to find the taxi status in Sy which sat-
isfies () with minimum travel distance increase.

To this end, given a taxi status, theoretically we need to
try all possible ways of inserting @) into the schedule of the
taxi status in order to choose the insertion which results in
minimum increase in travel distance. All possible ways of
insertion can be created via three steps: (i) reorder the points
in the current schedule, subject to the precedence rule, i.e.,
any origin point precedes the corresponding destination
point (we refer to this step as the schedule reordering there-
after); (ii) insert @ .o into the schedule (iii) insert the @ .d
into the schedule. The capacity and time window con-
straints are checked in all three steps, during which the
insertion fails immediately if any constraint is violated. The
monetary constraints are then checked for the insertion after
all three steps have been done successfully. Finally, among
all insertions that satisfy all constraints, we choose the inser-
tion that results in minimum increase in travel distance for
the given taxi status.

Consider a schedule with n points, among which m points
are pickup points. After the first step, i.e., the schedule reor-
dering step, there will be as many as n!/2™ sequences which
comply with the precedence rule. (n! is the total number of
squences of all n points. Since each pickup point must
precede the correspoinding destination point, so the total
number of squences needs to be divided by 2™.) Though
reordering the schedule is theoretically necessary for finding
the optimal insertion way, we find that it is not the case in
practice via experiments (see Section 6.2.3). Therefore, for
the sake of simplicity, we do not consider the schedule reor-
dering step here.

Next we describe how to check the feasibility of each
insertion possibility, subject to the capacity and time win-
dow constraints first (Section 5.1) and then the monetary
constraints (Section 5.2), given a pair of @) and V. A com-
puter cluster can be employed to parallelize the computa-
tion by assigning taxi statuses to different computers in the
cluster, so the constraints checking for multiple taxi statuses
can be performed simutaneously.

5.1 Time Window Constraints

Given a schedule of n points, there is clearly O(n?) ways to
insert a new ride request into the schedule. For example,
Fig. 11 shows one way of inserting a request into a schedule
with four points. To insert Q3.0 after point @);.0 optimally,
the algorithm needs to find the first path (starting from the

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL.27, NO.7, JULY 2015

shortest path) from @ .0 to Q3.0 which allows the taxi to
arrive at Q3.0 during Q3 .pw given the scheduled arrival
time at Q; . 0. Since the shortest path is often not the fastestt
one when considering real road traffic, it is likely that multi-
ple paths needs to be calculated before finding the first satis-
factory path from @Q; .o to)3 . o. Similar process is required
for other connecting paths, as illustrated by the dash lines
in Fig. 11. As a result, the overall computation load can be
extremely high for checking just one insertion way. To ease
the computation load, here we only consider using the fast-
est path from one point to another during the insertion,
though the new route may not be the shortest one in theory.

Denote by — the travel time of the fastest path from one
location to another location, and ¢,, represents the time spent
waiting for the passenger if the taxi arrives @3 .o ahead of
Qs .pw.e. Eq. (4) gives the travel time delay, denoted by ¢,
after inserting (03 . o between ()1 .oand ()3 . 0

ti=(Q1.0—Q3.0)+(Q3.0— Q2.0)
+ty—(Q1.0— Q2.0)

If ¢, results in the late arrival at point (2.0 or any point
after ();.0 in the original schedule, then the insertion fails.
For this purpose, we introduce the notion of slack time.
Denote by a, and ay the projected arrival time at a pickup
point @) .0 and a destination point @ . d, respectively. Then
the slack time at .o and @.d, denoted by (Q.0), and
(Q.d),, respectively, is calculated by Eq. (5) and Eq. (6),
respectively

(4)

(Q.0),=Q.pw.l—a, 5)
(Q.d), =Q.dw.l—ay (6)

Thus, we can use slack times as a shortcut to check
whether the delay incurred due to an insertion destroys the
timely arrivals at any subsequent point in the schedule. In
the example shown by Fig. 11, if ¢; > Min{(Q1.d),,
(Q2.d),}, then the insertion fails. If Q5.0 is inserted success-
fully, the system proceeds to insert)3 .d in a similar way.
Algorithm 1 summaries the process of computing a new
route for a possible insertion way, represented by a pair
(i, 7). This algorithm is run for all possible insertion ways.

Algorithm 1: Computing the new schedule and route after an insertion

Data: Ride request @Q, taxi status V/, insertion position 7 for Q.o,
insertion position j for Q.d, current time tcy.
Result: Return new_schedule if the insertion succeeds; otherwise return
False.
if teyr + (VI — Q.0) > Q.pw.l then /* cannot arrive Q.o on time */
L return False

[

@

if the time delay incurred by the insertion of Q.o causes the slack time of
any point after position i in schedule s smaller than 0 then

L return False
new_schedule <— insert Q.o into V.s at position ¢ /* the slack time
of each pickup(delivery) point after position ¢ is also
updated accordingly */
6 t; <— the scheduled arrival time of the j*" point of V.s
7 lj <— the geographical location of the " point of V.s
8 if t; + (I; - Q.d) > Q.dw.l then /* cannot arrive Q.d on time */
9 return False

'S

w

10 if the time delay incurred by the insertion of Q.d causes the slack time of
any point after position j in new_schedule smaller than 0 then

11 L return False

12 new-_schedule <— insert Q.d into new_schedule at position j /* the
slack time of each pickup(delivery) point in new_schedule is
also updated accordingly */

13 return new_schedule

MA ET AL.: REAL-TIME CITY-SCALE TAXI RIDESHARING

@ destination point i.d

i) origin point i.o

n origin point n.o {ni destination point n.d
— a path in the shared route —--+ an individual route
dg Fray Fuy
2 ===+ ’—'2—"‘\3_,
1 .dI—,®] = _d’_ _______
(a) before 2™ rider scheduled (b) after 2" rider scheduled
d ds

(c) before 3" rider scheduled (d) after 3" rider scheduled

Fig. 12. An example of the pricing constraint.

5.2 Monetary Constraints

The new schedule after the insertion, so far, has only been
checked against the capacity and time window constraints.
It should also meet the monetary constraints. In this section
we formulate the monetary constraints of taxi-sharing.

On one hand, we impose two constraints which encour-
age riders to participate in taxi-sharing by rewarding them
with certain monetary gains. The first rider monetary con-
straint says that any rider who participates in taxi-sharing
should pay no more than what she would pay if she takes a
taxi by herself. The second rider monetary constraint says
that if an occupied taxi V' is to pick up a new rider @), then
each rider P currently sitting in V' whose travel time is
lengthened due to the pickup of @, should get a decrease in
taxi fare; and the fare decrease should be proportional to
P’s increase in travel time.

On the other hand, we enforce one constraint which gives
the driver motivation to participate in taxi-sharing. This
constraint says that a driver should charge for all distances
she has travelled. Intuitively the driver should make money
for the distance of reroutes incurred by the join of any new
passenger.

Now let us consider these three monetary constraints
together in the scheduling context: given a taxi status V and
a new ride request @, under what conditions will V' satisfy
the above three monetary constraints with respect to @,,.

Denote by @1, ...Q,-1 the riders involved in the current
schedule of V before the join of @,,. Also denote by d; the
distance between ;.0 and @Q;.d on the road network
,4=1,...,n. Denote by f; the taxi fare of rider Q); if V picks
up @,,. Denote by F': RT — R™ the fare calculation function,
which maps the travelled distance to the taxi fare. Function
F can be defined by some transportation authority or taxi
company. Then the first monetary constraint can be
expressed by Eq. (7)

Denote by M the revenue of the driver if she picks up @,
and by D the travel distance of the new route after the
pickup. Then the driver monetary constraint is expressed by
Eq. (8)

M > F(D). ®)

Since M = X f;, we then have Eq. (9) by bridging the two
equations above

1789
F(D)< M =3f <SF(d;),i=1,...,n.)

M can take any value between F(D) and 3 F'(d;) in order
to make Eq. (9) hold. In this paper, we take the lower bound
F(D) in order to minimize the total taxi fare of riders. There-
fore, we have M = F'(D).

Then we need to distribute the total fare M to each indi-
vidual rider. Denote by Af; the decrease in taxi fare for rider
Q;, and AT; the increase in travel time of rider Q); due to the
pickup of @, i =1,...,n — 1. The fare is determined in the
way expressed by Eqgs. (10) and (11), where f, is the taxi
fare of rider @Q,,, AD is the travel distance increase of the taxi
route due to the pickup of @, and f > 0 is some constant

fo=F(d,) - f, (10)

Afi= % [(F(dn)
2ia T
Eq. (10) says that the new rider pays by f less than what-
ever she would pay if she rides alone. Eq. (11) says that
(i) existing riders collectively save an amount which equals
the difference between the charge of the new rider and the
driver’s expected fare increase due to the increase in travel
distance; and (ii) existing riders split the total saving pro-
portional to their individual travel time delay (the second
rider monetary constraint). Since it requires Af; > 0, there-
fore, we have Eq. (12)

- f)-F@AD),i=1,...,n—1. (11

F(d,) > F(AD) + f. (12)

Eq. (12) by itself is the sufficient and necessary condition
for taxi V to satisfy all three monetary constraints with
respect to Q..

Fig. 12 illustrates how to apply the monetary constraints
with a concrete example. Fig. 12a shows the schedule of a
taxi before the second rider boards. The fare of the first rider
is fi = F'(d1). The monetary constraint for picking up the sec-
ond rider is F'(d2) > F(AD) + f, where AD is the increase in
travel distance due to the join of the second rider. If the above
constraint stands, then we have Af; = [F(dy) — f] — F(AD)
and fo = F(dy) — f. Likewise, Fig. 12c shows the schedule of
the taxi after the second rider joins and before the third rider
joins. Similarly, the pricing constraint for picking up the
third rider is F(d3) > F(AD') + f, where AD' is the increase
in travel distance due to the join of the third rider. If this con-
straint stands, then we have Af;, = % [F(d3) — f]—
F(AD'")),i=1,2and f5 = F(d3) — f.

Some riders may think the taxi fare decrease is not worth
the increase in travel time and thus rejects the pickup deci-
sion. We thus introduce a parameter Q;.r for each rider Q;,
which presents Q);’s acceptable money-to-time rate. That is to
say, (); supports the pickup of a new rider only when the
ratio of the fare decrease to the travel time increase is larger
than @Q;.r. The above constraint is expressed by Eq. (13). And
an insertion satisfies the monetary constraints only when all
current riders on the taxi support the pickup decision

1790

7500

@
o
S
k=1

4500

3000

of road segments

a
=3
S

5 10 15 20 25 30
of requests originated on the road segment in a day

(a) Origins

5 10 15
of requests destined on the road segment in a day

(b) Destinations

Fig. 13. Distribution of ride requests over road segments.

6. EVALUATION

6.1 Setting
6.1.1 Data Set

Road networks: We perform the experiments using the real
road network of Beijing, which contains 106,579 road nodes
and 141,380 road segments.

Taxi Trajectories: The taxi trajectory data set contains the
GPS trajectory of over 33,000 taxis during a period of
87 days spanning from March to May in the year of 2011.
The total distance of the data set is more than 400 million
kilometres and the number of points reaches 790 million.
After trip segmentation, there are in total 20 million trips,
among which 46 percent are occupied trips and 54 percent
are non-occupied trips. We map each occupied trip to the
road network of Beijing using the map-matching algorithm
proposed in [10]. Fig. 13 shows the distribution of pickup
and destination points of the ride requests in the data set
over road segments in a day (note that long tails, i.e., road
segments with large number of requets, are not shown in
the figures due to space limitation). It is clear that ride
requests are distributed sparsely over the road network.

6.1.2 Experimental Platform

In order to validate our proposed system under practical
settings, instead of generating random ride requests and ini-
tial taxi statuses, we mine the trajectory data set to build an
experimental platform. From the historical trajectory data
set, the platform learns information regarding 1) the distri-
bution of the ride requests on the road network over time of
day, and 2) the mobility patterns of the taxis. With this
learned knowledge, the platform then generates a realistic
ride request stream (meaning that the origin-destination
pairs and time windows of ride requests follow the learned
distribution) and initial taxi statuses for our experiments.
We envision that this platform (available at http://cs.uic.

600 4

400

200 4

normalized no. of road segments

= /

01% 02% 03% 04% 05% 06% 07%

-+ ~ probablity of being the destination

(a) Different destination road (b) Distribution of destination road
segments for requests segments for requests originiated
originated from r; from a specific road segment

Fig. 14. Transition probability of road segment r;during a time frame f;

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL.27, NO.7, JULY 2015

70K
£%50
=
538
£ 50K 3240 I -
g <
£ 40K B33 o \ I
2 y
% 30K 25 '\.\ /.
g %3 20 o
Z 20K ot .
3 10k 27101 3
0K Eg 0
0 4 8 12 16 20 24 4= 0 4 8 12 16 20 2
hour of day Hour of day

(a) from all road segments (b) from a particular road segment

Fig. 15. Inflated and extracted number of ride requests during a day.

edu/~sma/ridesharing/) can be applied to many other
urban and transport computation problems.

Ride request stream. The goal is to generate real-time ride
requests that are as realistic as possible. For this purpose,
we first discretise one day into small time frames, denoted
by fi’s. Denote all road segments by r;’s. We assign all his-
torical ride requests into time frames. Assume that the arriv-
als of ride requests on each road segment approximately
follow a Poisson distribution during time frame f;. Thus,

we can learn)\{ , i.e., the parameter of the Poisson distribu-
tion for road segment r; during time frame f;. Specifically,
for each road segment 7;, we count the number of ride
requests that originate from r; within time frame f;, denoted
by ¢/. Then we calculate)’ based on ¢/ using Eq. (14) (where
len(f) is the length of a frame in time units) and generate a
ride request stream that follows a Poisson process with
parameter . In order to generate destination of requests
trufhfully, for each ¢/, we decompose it into an array of
numbers {c/,,ch,...cl, }, where ¢/, k=1,2,..m represents
the number of requests which are originated from road seg-
ment r; and destined for road segment 7, during time frame
fj, as illustrated by Fig. 14a. Therefore, the transition proba-
bility from 7; to r;, during time frame f;, denoted by pfk, can
be estimated using Eq. (15). Fig. 14b shows the distribution
of destination road segments for requests that originate
from road segment r; in an hour

N = clflen(f), (19)

Pl = ch/cl. (15)

For each ride request) generated in frame f; with the ori-
gin road segment being 7;, the destination road segment is
generated according to the transition distribution pf,.
Q.pw.eand Q.dw.eequals to () . ¢, i.e., the submitted time
of the ride request. @ . pw . l is calculated by applying a fixed
window size. Q) . dw . equals to the sum of). pw .l and the
average travel time between the origin and destination pair
learned from the GPS trajectory data set.

Note that the taxi GPS trajectory data set only reveals
the number of ride requests that got served. In reality there
are also many ride requests unsatisfied and disappeared
due to the shortage of taxis. To take such ride requests into
consideration, we introduce a system parameter A, suppos-
ing that the number of real ride requests is A times the
number of request extracted from the trajectory data set.
Figs. 15a and 15b show the supposed number and the
extracted number of ride requests that originate from all

MA ET AL.: REAL-TIME CITY-SCALE TAXI RIDESHARING

TABLE 1
Parameter Setting for Ride Request Generation

Notation Definition Value
ts The start time of simulation 09:00

te The end time of simulation 09:30

ftaxi The number of taxis 7088

F#taxi, The number of taxis occupied initially 4722
ws The window size 5 min
len(fi) The length of a time frame 60 min

road segments and a specific hot spot road segment (i.e.,
with a large number of requests), respectively, over time of
a “hot day” (i.e. with more requests than an average day),
where the time frame is 1 hour and A = 2.

Initial taxi statuses. To keep the characteristics of the realis-
tic scenario, we use the real taxi statuses by slicing the histori-
cal trajectories at a certain timestamp. Specifically, we select a
date and choose a particular second of day as the timestamp
when the experiment starts, denote it by ¢,. We scan all the
GPSrecords of the selected date to determine the initial states
of taxis. A taxi status V' is set to be occupied if it is recorded
occupied crossing timestampt,. The initial schedule of V' can
be initialized according to the record. A taxi V is set to be
vacant if it is recorded vacant both just before and right after
t;. The concept of “just before” and “right after” is controlled
by a temporal parameter, which is set to be 10 minute. All
remaining taxis are then considered as not recorded and
thus not used in the simulation.

The ride requests and initial states used in all experi-
ments are generated with parameters listed in Table 1.

6.1.3 Framework

We study two strategies in the searching algorithm (single-
side and dual-side) and two strategies in the scheduling
algorithm (first-fit and best-fit), resulting in four taxi-
sharing methods. We compare the performance of these
four methods with that of a non-taxi-sharing method as
the number of requests (i.e., A) changes. We also test the
performance of these four methods by changing the
money-to-time rate parameter of the monetary constraints,
and study the necessity of the schedule reordering step
(i.e., considering different pickup and drop-off orders) in
the scheduling algorithm.

6.1.4 Baseline Methods

The Non-Taxi-sharing method (NR) forbids taxi-sharing and
assumes that a vacant taxi moves to pick up the rider that it
can pick up at the earliest time.

Taxi searching step. A taxi-sharing method is single-side if
the taxi searching algorithm retrieves taxis only from the
origin side of a request; otherwise, it is dual-side.

Taxi scheduling step. A taxi-sharing method is called best-
fit where the taxi scheduling process tries all candidate taxis
returned by the taxi searching algorithm. Otherwise, is
called first-fit if the scheduling process terminates once it
finds a taxi that satisfies the ride request.

Because the two choices can be made independently, we
get the following four taxi-sharing methods: Single-side and
First Fit Taxi-sharing (SF), Single-side and Best-fit Taxi-sharing

1791

(SB), Dual-side and First Fit Taxi-sharing (DF), Dual-side and
Best-fit Taxi-sharing (DB).

The fare calculation function F' = pD, where D is the
traveled distance and p is some constant price for a unit
traveled distance. The money-to-time rates of ride requests
are assumed to follow an exponential distribution with a
mean value m.

6.1.5 Measurements

The performance of the taxi-sharing system is evaluated in
two perspectives, namely effectiveness and efficiency. We
first describe following effectiveness measurements.

Relative distance rate (RDR). Define the distance of a ride
request) as the distance between its origin point Q.o and
its destination point @ . d. Denote by Dsp the sum of distan-
ces of ride requests that get satisfied and by Dy the total
distance travelled by all taxis while being occupied in a
taxi-sharing method. RDR is calculated by Eq. (16)

RDR = Dy /Dgp. (16)
RDR evaluates the effectiveness of taxi-sharing by measur-
ing how much distance is saved compared to the case where
no taxi-sharing is used. The value of RDR can be any posi-
tive number. The smaller RDR is, the more vehice distance
the ridesharing system saves. When the value is greater
than 1, it indicates that the ridesharing system does not save
but increases the total travel distance.

Satisfaction rate (SR). Is the ratio of the number of ride
requests that get satisfied to the total number of ride request
(exclude ride requests that are already served by taxis at the
initial state in the ride request counting). Thus, SR € [0, 1].
The larger SR is, the more requests the ridesharing system
has satisfied.

Seat occupancy rate (SOR). Measures the seat occupancy
rate in all taxis during a given time period. Denote by C' the
number of passenger seats in a taxi, by N the number of
taxis, by T a period of time, and by 7T the sum of the travel
time of all requests that are satisfied during period 7. SOR
is calculated by Eq. (17). SOR provides an inituitive percep-
tion of how well the seats in the vehicles are utilized. SOR
ranges from zero to one. When SOR equals to 1, it means a
fully utilizated outcome where each seat in every vehicle is
occupied all the time

SOR=Ts/(N x C xT). 17

Taxi-sharing rate (TR). Is the percentage of ride requests
participating in taxi-sharing among all satisfied requests.
The value of TR ranges from 0 to 1. A larger value indicates
more ridesharing opportunities created.

Fare saving rate (FSR). Is the average saving percentage in
taxi fare of riders who participate in taxi-sharing. The value
may range from 0 to 1 with 1 meaning that all ridesharing
riders save the whole fare and get free rides.

Now we introduce following efficiency measurements.

Number of road nodes accessed per ride request (#RNAPR). Is
the number of accessed road network nodes per ride
request (due to the shortest path calculations).

Number of grid cells accessed per ride request (#HGCAPR). Is
the number of accessed grid cells per ride request.

1792
TABLE 2
Default Values of Parameters Used in Experiments

Definition Value
Beijing Map Size 32 *40 km?
The size of grid (i.e., number of grid cells) 30730
Schedule reordering before insertion no
p, taxi fare per kilometer 1'9)

C, no. of passenger seats in a taxi 3
m, mean of the money-to-time rate distribution ¥0/min

Num. of taxis accessed per ride request (#TAPR). Is the no. of
taxis accessed by the scheduling module per request.
RNAPR, GCAPR, TAPR are machine-independent indica-
tors for computation cost of the system.

Execution time per ride request. Is the CPU time spent for
serving each ride request. It consists of taxi searching time
(elapsed between step @ and @ in Fig. 1) and taxi schedul-
ing time (elapsed between (§) and (7) in Fig. 1).

6.2 Experimental Results
Table 2 lists default values for experiment parameters.

6.2.1 Effectiveness

Fig. 16a shows SR, i.e., the satisfaction rate, of all methods
as A changes. All ridesharing methods first show a slight
increase and then keep declining in SR as A increases. This
is because as the value of parameter A starts increasing, the
ridesharing opportunies increase as well. When A is small,
the increase in ridesharing opportunies is larger than the
increase in the number of request, as a result, the satisfac-
tion rate surges. When A gets larger, ridesharing opportu-
nies do not emerge as fast as new requests arrive, therefore,
the satisfiaction rate starts dropping. In contrast, the non-
ridesharing method NR can only suffers from the increase
in A, i.e., resulting in a decreasing SR. It is clear that all fla-
vours of taxi-sharing methods have a considerably higher
satisfaction rate (about 23 percent higher on average) than
the NR method for all A values. The difference in the satis-
faction rate among taxi-sharing methods is insignificant as
no particular technique is proposed for minimizing the sat-
isfaction rate.

Fig. 16b shows TR, the percentage of ride requests partic-
ipating in taxi-sharing among all satisfied ride requests, for
all taxi-sharing methods. Not surprisingly, TR surges as A
increases. This is because taxi-sharing opportunities are
likely to rise as the number of taxi ride request increases.
Consequently, more ride requests can be satisfied via taxi-
sharing. But since the total number of ride requests
increases even faster, the satisfaction rate still drops, as
illustrated by Fig. 16a.

3 R
2 =

3

Satisfaction rate
N
5
Average saving rate of riders

%] oo —o—o o

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL.27, NO.7, JULY 2015

To calculate the fare of riders in the experiments, we
instantiate the fare calculation function as follows: the fare
charged by a taxi driver is linear to the distance travelled by
the taxi, i.e., the product of the distance travelled and fare
per unit distance. Fig. 16c shows that FSR, the average fare
saving of riders who participate in taxi-sharing, drops as A
increases. The larger A is, the more passengers participate
in ridesharing. However this does not necessarily guarantee
that the average saving of the participants increases. The
average cost of this amount saving is about 5.08 minute
delay in travel time. We believe that most riders are willing
to tolerate this amount of delay, especially under the high
request demand scenarios in which this taxi-sharing system
is most likely to be useful.

Fig. 16d shows RDR steadily drops as parameter A
increases. Again, this is likely because as the number of
ride requests increases, more ride requests can share partial
trips with each other and thus more distance the taxi-
sharing methods save. The SB taxi-sharing method outper-
forms other methods, since SB reduces the increase in travel
distance most. The DB taxi-sharing method slightly trails SB
method as the taxi searching step of it explores fewer grid
cells. Two first-fit based taxi-sharing methods show clearly
higher relative distance rate. From the picture, we can see
that taxi-sharing methods save up to 12 percent in travel
distance, depending on delta. Given the fact that there are
67,000 taxis in Beijing (not in the data set) and each taxi
runs 480 km per day (learned from the data set), the saving
achieved by taxi-sharing here means over 1.5 billion kilo-
metres in distance per year, which equals to 120 million liter
of gas per year (supposing a taxi consumes 8 liter of gaso-
line per 100 km) and 2.2 million of carbon dioxide emission
per year (supposing each liter of gas consumption generates
2.3 kg of carbon dioxide).

Fig. 16e shows SOR increase as parameter increases. This
is easy to understand since as the number of requests
increases, more ridesharing opportunies appear. As a result,
SOR increases as well. The differences between ridesharing
methods in SOR are not significant since these methods are
not designed for optimizing SOR.

Figs. 17a,17b, 17¢c, 17d and 17e shows SR, TR, FSR, RDR
and SOR of taxi-sharing methods for different mean values
of the money-to-time rate of ride requests, respectively,
when A = 1. All measurements except FSR show a decrease
tendency as the mean money-to-time rate increases. When
the mean money-to-time rate increases from ¥0.25/min to
¥0.5/min, the decrease is the largest.

6.2.2 Efficiency

Tested on a single server with 2.67 GHz CPU and 16 GB
RAM (using a single thread), the average taxi searching

102%
—- SF|

N
3
B

100%

©
8
B
w
8
B

N
8
B

©
B
32

Seat Occupancy Rate

Relative Distance Rate
©
8
=2

©
8
=

3 4 6 1 >
delta ! 2

(b) TR

3 4
delta

(a) SR

Fig. 16. Performance in effectiveness measurements of different methods.

® deita *

(c) FSR

5 6 3 4
° © delta

(e) SOR

MA ET AL.: REAL-TIME CITY-SCALE TAXI RIDESHARING 1793
—M-SF
11.5% SB
2 2% 101.2%
65% £ o e o 116% DF
5, o —o—o LI 101.0% 011.4% -
64% 8% o e 5 L} 5
E} Sew] Vvl ¥ 211.2% £1008% <
£ 6% sE v ~ & 3 811.3%
5 g Y oy §1008% g
T 62% 8 S E = £ o <3
S 280 o Bosw o 1004% 811.2%
2 61% Faa% A g 2 °
@ B S Baw 2 B oen F1002% =
s8| 5 & s o D111
60% oF| o 221% g Z 4 00.0% S11.1% W
o8| g‘ 20 < 104% g
R I i — g 1 102 998% 11.0% +— T ; T ;
Cnean mgnzgy-ta-urewgorale (Yudglein)"uU & O e Mianey-to-ioee rate (FuanMing ™ O ean Dmgiey-lo-%rioe rate (DV7usan/Mm1)00 Oean mgrfesyr(o'nr%gara(e (Y%;g/Mm)mo rgggn mo?iég-to-tir?{g?ate (3u7a5n/mm}'°°
(@) SR (b) TR (c) FSR (d) RDR (e) SOR
Fig. 17. Performance in effective measurements versus money-to-time rate.
o —o
42 45K 4 90 L
1 s @ —&-—SF =] 1 o
ggA F - 5 ./\ e st 3 e
- %2 _40K ~ —A— DF s =
25 337 8z v-DB 8 8759 —m—SF
S
2 3 301 < 235K < g
s 7 271 s 8 v o2
3@ 24] 2 530K)
83 21] s 530 3=
< 2 1 o & - X
cx 18 S 525K/ 2
- S 9 5
58 1] = g =
5] S 20K ki
9 * +*
g< 15K
} , ; v ; ; 3) 3 4 6
T2 SGea? 6 delta delta
(a) #TAPR (b) #RNAPR (c) #GCAPR

Fig. 18. Computation cost in terms of node access per ride request.

time and scheduling time for the DB method is 0.15 and
10.33 ms, respectively.

We also test the efficiency of the system using machine-
independent measurements. The three sub-graphs of Fig. 18
show the number of taxis accessed per ride request, the num-
ber of road nodes accessed per ride request, and the number
of grid cells accessed per ride request, respectively, for differ-
ent taxi-sharing methods under different A. It is clear from
the pictures that all taxi-sharing methods do not show sharp
increase in computation cost as A increases. It is also obvious
that the computation cost of the DB taxi-sharing method is
significantly smaller than that of SB taxi-sharing method.
Especially when A >4, the computation cost of the DB
method is even smaller than that of the SF' method. The
result of Figs. 16 and 18 together validate our motivation for
the dual-side taxi searching algorithm. That is, the dual-side
searching indeed incurs small increase in travel distance in
exchange for the significant decrease in computation cost.

6.2.3 Necessity of the Schedule Reordering

Fig. 19 shows the average execution time per ride request
under different values of A when using the DB taxi-sharing
method with and without the schedule reordering before
insertion. The execution time per ride request is about
20 percent longer on average when the schedule reordering
is performed.

Meanwhile there is almost no change in all effectiveness
measurements. From the results, we also learned that in
practice it is extremely rare that the optimal insertion
requires the schedule reordering. Although the execution
time per ride request remains a reasonable small value
with the schedule reordering step, there is still no incentive
to do so in practice.

7 RELATED WORK

We study three categories of related works, positioning our
work in the research community.

7.1 Taxi Recommendation and Dispatching

Quite a few recommender systems have been proposed
for improving an individual taxi driver’s income and
reducing unnecessary cruising. Based on historical taxi
trajectories, Yuan et al. [11] proposed a system that sug-
gests some parking places for an individual taxi driver
towards which they can find passengers quickly and max-
imize the profit of the next trip. Similarly, Ge et al. [12]
suggests a sequence of pickup points for a taxi driver.
While these systems are only designed from the perspec-
tive of taxi drivers, our system considers the needs of
both taxi drivers and riders.

Taxi dispatching services [13], [14], [15], [16], [17] usu-
ally send a taxi close to a passenger as per the passenger’s
call without considering taxi-sharing. Consequently, only
vacant taxis need to be examined for each dispatch, which
can be easily retrieved by answering a range query. In our
case, each taxi that is occupied under full capacity needs
to be considered. This complication introduces new
challenges.

7.2 Carpool and Dial-A-Ride

Carpool often refers to ridesharing which deals with routine
commutes. There are already websites and mobile Apps for
this purpose, such as Avego. Given the usual small size of

114

—l- with reordering
w/o reordering

Averge execution time
per ride request (ms)

3 4
delta

Fig. 19. Time cost of schedule reordering.

1794

the problem, researchers are able to solve it optimally by
using linear programming techniques [1], [2]. Unlike in car-
pool where ride requests are known in advance, the real-
time taxi-sharing system here is more challenging as ride
requests are generated on-the-fly and the routes of taxis
change continuously.

The taxi-sharing problem can be viewed as a special
member of the general class of the dial-a-ride problem
(DARP). The DARP is originated from and has been studied
in various transport scenarios, notably goods transport [18],
paratransit for handicapped and elderly personnel [19], etc.
Existing works on the DARP have primarily focused on the
static DARP, where all customer ride requests are known in
priori. Since the general DARP is NP-hard, only small
instances (involving only a few cars and dozens of ride
requests) can be solved optimally (often by resorting to inte-
ger programming techniques, see [20], [21]). Large static
DARP instances are usually solved by using the two-phase
scheduling strategy [6], [22], [23], [24] with heuristics. Spe-
cifically, the phase I partitions ride requests into some
group and computes an initial schedule for delivering the
riders in each group. In phase II, ride requests are swapped
between different groups, aiming to find new schedules
optimizing a predefined objective function.

Little research has been carried out on the dynamic
DARP, where requests are generated on the fly. Previous
works on the dynamic DARP problem [25] continues to
adapt the two-phase scheduling strategy. However, the
two-phase strategy is not feasible for the real-time taxi-
sharing. As if the strategy is applied, the cloud will not
serve a new request immediately. Instead it needs to wait
for more requests in order to make the phase II possible,
which prolongs the response time of a request. In addi-
tion, the heavy computation load of the phase II will fur-
ther increase the response time, resulting in many
requests unsatisfied.

7.3 Real-Time Taxi-Sharing

Though real-time taxi-sharing has been studied in several
previous works [4], [26], [27], [28], [29], our work demon-
strates three major advantages. First, our problem defini-
tion is more realistic by considering three different types
of constraints. Some existing works (e.g., [28]) did not con-
sider time window constraints and none of these previous
works explicitly modelled monetary constraints. (though
[30] implicitly considers monetary constraint by convert-
ing it to distance constraint.) Second, we analysed the
computational cost of each component of the system, pro-
posing a spatio-temporal index and a taxi searching algo-
rithm, which significantly improve the system efficiency.
Third, simulation results presented here is more convinc-
ing as we evaluated our system based on the real data
and at a much larger scale than most previous works did.
This is also one of main concepts of urban computing
[31], which tackles the big challenges in cities by using big
data. The size of the ride request stream in our experi-
ment is as large as 20K and these ride requests are learned
from the historical trajectory data set. Detail comparisons
between this work and our previous paper [3] are stated
in the end of Section 1.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL.27, NO.7, JULY 2015

8 CONCLUSIONS

This paper proposed and developed a mobile-cloud based
real-time taxi-sharing system. We presented detail interac-
tions between end users (i.e. taxi riders and drivers) and
the Cloud. We validated our system based on a GPS trajec-
tory data set generated by 33,000 taxis over three months,
in which over 10 million ride requests were extracted. The
experimental results demonstrated the effectiveness and
efficiency of our system in serving real-time ride requests.
Firstly, our system can enhance the delivery capability of
taxis in a city so as to satisfy the commute of more people.
For instance, when the ratio between the number of taxi
ride requests and the number of taxis is 6, our proposed
system served three times as many ride requests as that
with no taxi-sharing. Secondly, the system saves the total
travel distance of taxis when delivering passengers, e.g., it
saved 11 percent travel distance with the same ratio men-
tioned above. Supposing a taxi consumes 8 liters of gaso-
line per 100 km and given the fact learned from the real
trajectory data set that the average travel distance of a taxi
in a day in Beijing is about 480 km, the system can save
over one third million liter of gasoline per day, which is
over 120 million liter of gasoline per year (worth about 150
million dollar). Thirdly, the system can also save the taxi
fare for each individual rider while the profit of taxi driv-
ers does not decrease compared with the case where no
taxi-sharing is conducted. Using the proposed monetary
constraints, the system guarantees that any rider that par-
ticipates in taxi-sharing saves 7 percent fare on average. In
addition, the experimental results justified the importance
of the dual-side searching algorithm. Compared to the sin-
gle-side taxi searching algorithm, the dual-side taxi search-
ing algorithm reduced the computation cost by over 50
percent, while the travel distance was only about 1 percent
higher on average. The experimental results also suggest
that reordering the points of a schedule before the insertion
of the new ride request is not necessary in practice for the
purpose of travel distance minimization.

In the future, we consider incorporating the creditabil-
ity of taxi drivers and riders into the taxi searching and
scheduling algorithms. Additionally, we will further
reduce the travel distance of taxis via ridesharing. We
also consider refining the ridesharing model by introduc-
ing social constraints, such as gender preference, habits
preference (e.g., some people may prefer co-passengers
who do not smoke).

ACKNOWLEDGMENTS

This research was partially supported by US Department of
Transportation National University Rail Center (NURAIL);
llinois Department of Transportation (METSI); and US
National Science Foundation grants IIS-1213013, CCF-
1216096, DGE-0549489, 1IP-1315169. The work was done in
Microsoft Research when the first author was an intern
under the supervision of the second author.

REFERENCES

[11 R.Baldacci, V. Maniezzo, and A. Mingozzi, “An exact method for
the car pooling problem based on lagrangean column generation,”
Oper. Res., vol. 52, no. 3, pp. 422-439, 2004.

MA ET AL.: REAL-TIME CITY-SCALE TAXI RIDESHARING

[2]

[3]

[4]

[5]

[6]

(7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[171

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

R. W. Calvo, F. de Luigi, P. Haastrup, and V. Maniezzo, “A dis-
tributed geographic information system for the daily carpooling
problem,” Comput. Oper. Res., vol. 31, pp. 2263-2278, 2004.

S.Ma, Y. Zheng, and O. Wolfson, “T-Share: A large-scale dynamic
ridesharing service,” in Proc. 29th IEEE Int. Conf. Data Eng., 2013,
pp. 410-421.

E. Kamar and E. Horvitz, “Collaboration and shared plans in the
open world: Studies of ridesharing,” in Proc. 21st Int. Jont Conf.
Artif. Intell., 2009, pp. 187-194.

K. Wong, 1. Bell, and G. H. Michael, “Solution of the dial-a-ride
problem with multi-dimensional capacity constraints,” Int. Trans.
Oper. Res., vol. 13, no. 3, pp. 195-208, May 2006.

Z. Xiang, C. Chu, and H. Chen, “A fast heuristic for solving a
large-scale static dial-a-ride problem under complex constraints,”
Eur. . Oper. Res., vol. 174, no. 2, pp. 1117-1139, 2006.

J. Yuan, Y. Zheng, C. Zhang, W. Xie, X. Xie, G. Sun, and Y.
Huang, “T-drive: Driving directions based on taxi trajectories,”
in Proc. 18th SIGSPATIAL Int. Conf. Adv. Geographic Inf. Syst.,
2010, pp- 99-108.

J. Yuan, Y. Zheng, X. Xie, and G. Sun, “Driving with knowledge
from the physical world,” in Proc. 17th ACM SIGKDD Int. Conf.
Knowl. Discovery Data Mining, 2011, pp. 316-324.

O. Wolfson, A. P. Sistla, B. Xu, J. Zhou, S. Chamberlain, Y. Yesha,
and N. Rishe, “Tracking moving objects using database technol-
ogy in DOMINO,” in Proc. 4th Int. Workshop Next Generation Inf.
Technol. Syst., 1999, pp. 112-119.

J. Yuan, Y. Zheng, C. Zhang, X. Xie, and G.-Z. Sun, “An
interactive-voting based map matching algorithm,” in Proc.
11th Int. Conf. Mobile Data Manage., 2010, pp. 43-52.

J. Yuan, Y. Zheng, L. Zhang, Xi. Xie, and G. Sun, “Where to find
my next passenger,” in Proc. 13th Int. Conf. Ubiquitous Comput.,
2011, pp. 109-118.

Y. Ge, H. Xiong, A. Tuzhilin, K. Xiao, M. Gruteser, and M. Pazzani,
“An energy-efficient mobile recommender system,” in Proc. 16th
ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2010,
pp- 899-908.

R. Balan, K. Nguyen, and L. Jiang, “Real-time trip information ser-
vice for a large taxi fleet,” in Proc. 9th Int. Conf. Mob. Syst. Appl.
Serv., 2011, pp. 99-112.

K. Yamamoto, K. Uesugi, and T. Watanabe, “Adaptive routing of
cruising taxis by mutual exchange of pathways,” in Proc. 12th Int.
Conf. Knowledge-Based Intell. Inf. Eng. Syst., Part 11, 2008, pp. 559-566.
D. Santani, R. K. Balan, and C.]J. Woodard, “Spatio-temporal
efficiency in a taxi dispatch system,” Research Collection School
Of Information Systems, Singapore Management University,
Oct. 2008.

D. Zhang and T. He, “CallCab: A unified recommendation system
for carpooling and regular taxicab services,” in Proc. IEEE Int.
Conf. Big Data, 2013, pp. 439-447.

W. Wu, W.S. Ng, S. Krishnaswamy, and A. Sinha, “To Taxi or Not
to Taxi?—Enabling personalised and real-time transportation
decisions for mobile users,” in Proc. IEEE 13th Int. Conf. Mob. Data
Manage., Jul. 2012, pp. 320-323.

Y. Dumas, J. Desrosiers, and F. Soumis, “The pickup and delivery
problem with time windows,” Eur. |. Oper. Res., vol. 54, no. 1,
pp- 7-22,Sep. 1991.

A.Beaudry, G. Laporte, T. Melo, and S. Nickel, “Dynamic transpor-
tation of patients in hospitals,” OR Spectr., vol. 32, no. 1, pp. 77-107,
2010.

J. Cordeau, “A branch-and-cut algorithm for the dial-a-ride prob-
lem,” Oper. Res., vol. 54, pp. 573-586, 2003.

L. M. Hvattum, A. Lokketangen, and G. Laporte, “A branch-and-
regret heuristic for stochastic and dynamic vehicle routing prob-
lems,” Networks, vol. 49, no. 4, pp. 330-340, Jul. 2007.

J.-F. Cordeau and G. Laporte, “The dial-a-ride problem: Models
and algorithms,” Ann. Oper. Res., vol. 153, no. 1, 2007.

C. J.-F. and L. G., “A tabu search heuristic for the static multi-
vehicle dial-a-ride problem,” Transp. Res. Part B Methodol., vol. 37,
no. 6, pp. 579-594, 2003.

A. Attanasio, J.-F. Cordeau, G. Ghiani, and G. Laporte, “Parallel
Tabu search heuristics for the dynamic multi-vehicle dial-a-ride
problem,” Parallel Comput., vol. 30, no. 3, pp. 377-387, Mar. 2004.
M. E. T. Horn, “Fleet scheduling and dispatching for demand-
responsive passenger services,” Transp. Res. Part C Emerg. Technol.,
vol. 10, no. 1, pp. 35-63, 2002.

P.-Y. Chen, J.-W. Liu, and W.-T. Chen, “A fuel-saving and pol-
lution-reducing dynamic taxi-sharing protocol in VANETSs,” in
Proc. IEEE 72nd Veh. Technol. Conf., Sep. 2010, pp. 1-5.

1795

[27] P. M. d’Orey, R. Fernandes, and M. Ferreira, “Empirical evalua-
tion of a dynamic and distributed taxi-sharing system,” in Proc.
15th Int. IEEE Conf. Intell. Transp. Syst., Sep. 2012, pp. 140-146.

G. Gidofalvi, T. B. Pedersen, T. Risch, and E. Zeitler, “Highly scal-
able trip grouping for large-scale collective transportation sys-
tems,” in Proc. 11th Int. Conf. Extending Database Technol.: Adv.
Database Technol., 2008, pp. 678-689.

S. Ma and O. Wolfson, “Analysis and evaluation of the slugging
form of ridesharing,” in Proc. 21st ACM SIGSPATIAL Int. Conf.
Adv. Geographic Inf. Syst., 2013, pp. 64-73.

G. Gidofalvi and T. Pedersen, “Cab-sharing: An effective, door-to-
door, on-demand transportation service,” in Proc. 6th Eur. Congr.
Intell. Transp. Syst. Serv., 2007.

Y. Zheng, L. Capra, O. Wolfson, and H. Y., “Urban Computing;:
Concepts, methodologies, and applications,” ACM Trans. Intell.
Syst. Technol., vol. 5, no. 3, article 38, Sep. 2014.

Y. Wang, Y. Zheng, and Y. Xue, “Travel time estimation of a path
using sparse trajectories,” in Proc. 20th ACM SIGKDD (KDD ’14),

ACM, New York, NY, USA, 2014, pp. 25-34.
ICDE’13. Dr. Zheng is a member of the Editorial

‘e
.
Advisory Board of IEEE Spectrum and an Associ-

ate Editor of the /EEE Transactions on Big Data. He has served as chair
on over 10 prestigious international conferences, e.g., the program co-
chair of ICDE 2014 (Industrial Track). He has been invited to give over
10 keynote speeches at international conferences (e.g., IE 2014 and
APEC 2014 Smart City Forum). In 2013, he was named one of the Top
Innovators under 35 by MIT Technology Review (TR35) and featured by
Time Magazine for his research on urban computing. In 2014, he was
named one of the top 40 Business Elites under 40 in China by Fortune,
for the business impact of urban computing he has been advocating
since 2008. Dr. Zheng is also an Adjunct Professor at Hong Kong Poly-
technic University and Southwest Jiaotong University. He is a senior
member of the IEEE and ACM.

[28]

[29]

[30]

[31]

[32]

Shuo Ma received the BS degree in computer
science in 2008 from Beijing University of Posts
and Telecommunications, Beijing, China. He is
currently working toward the PhD degree with the
Department of Computer Science, University of
lllinois at Chicago. His research interests include
mobile computing, computational transportation
science, and spatial databases.

Yu Zheng is a lead researcher at Microsoft
Research and a Chair Professor at Shanghai
Jiao Tong University. He leads the research on
urban computing at Microsoft Research, and is
passionate about using big data to tackle urban
challenges. He has published over 50 referred
papers at prestigious conferences and journals,
such as KDD, VLDB, UbiComp and TKDE, where
he received five best paper awards, e.g. at

Ouri Wolfson (F’ 12) received the BA degree in
mathematics and the PhD degree in computer
science from the Courant Institute of Mathemati-
cal Sciences, New York University, New York,
NY. He was a consultant with Argonne National
Laboratory, Argonne, IL; the U.S. Army Research
Laboratory, Adelphi, MD; the Defense Advanced
Research Projects Agency, Arlington, VA; and
the Center of Excellence in Space Data and Infor-
mation Sciences, Goddard Space Flight Center,
National Aeronautics and Space Administration,
Greenbelt, MD. He was also with the computer science faculty of the
Technion—Israel Institute of Technology, Haifa, Israel, and Columbia
University, New York. He has been a member of Technical Staff with
Bell Laboratories. He is currently the Richard and Loan Hill professor of
computer science with the University of lllinois at Chicago and an affiliate
professor with the Department of Computer Science, University of lllinois
at Urbana-Champaign. His research interests include database systems,
distributed systems, and mobile/pervasive computing. He founded Mobi-
trac, which is a high-tech startup that was acquired by Fluensee Co. in
2006. He is a fellow of the Association for Computing Machinery, the
American Association for the Advancement of Science, and the IEEE.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

