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Abstract
Building applications that are responsive and can exploit par-
allel hardware while remaining simple to write, understand,
test, and maintain, poses an important challenge for develop-
ers. In particular, it is often desirable to enable various tasks
to read or modify shared data concurrently without requiring
complicated locking schemes that may throttle concurrency
and introduce bugs.

We introduce a mechanism that simplifies the parallel ex-
ecution of different application tasks. Programmers declare
what data they wish to share between tasks by using isolation
types, and execute tasks concurrently by forking and joining
revisions. These revisions are isolated: they read and mod-
ify their own private copy of the shared data only. A runtime
creates and merges copies automatically, and resolves con-
flicts deterministically, in a manner declared by the chosen
isolation type.

To demonstrate the practical viability of our approach, we
developed an efficient algorithm and an implementation in
the form of a C# library, and used it to parallelize an interac-
tive game application. Our results show that the parallelized
game, while simple and very similar to the original sequen-
tial game, achieves satisfactory speedups on a multicore pro-
cessor.

Categories and Subject Descriptors 1.3 [Concurrent Pro-
gramming]: Parallel Programming; 3.3 [Language Con-
structs and Features]: Concurrent Programming Structures

General Terms Languages

Keywords Concurrency, Parallelism, Transactions, Isola-
tion, Revisions

1. Introduction
Despite much research on parallel programming, how to ef-
fectively build applications that enable concurrent execu-
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tion of tasks that perform various functions and may execute
asynchronously is not generally well understood. This prob-
lem is important in practice as a wide range of applications
need to be responsive and would benefit from exploiting par-
allel hardware.

Consider an application where many tasks are executing
in parallel. For example, an office application may concur-
rently run tasks that (1) save a snapshot of the document to
disk, (2) react to keyboard input by the user who is editing
the document, (3) perform a spellcheck in the background,
and (4) exchange document updates with collaborating re-
mote users. Some of these tasks are CPU-bound, others are
IO-bound; some only read the shared data, others may mod-
ify it. However, all of them need to potentially access the
same data at the same time; thus, they must avoid, negotiate,
or resolve conflicts.

Ensuring consistency of shared data while allowing tasks
to execute concurrently is often challenging, as it may re-
quire not only complex locking protocols, but also some
form of data replication. We present a programming model
that simplifies the sharing of data between such tasks. Its key
design choices are:

Declarative Data Sharing. The programmer uses special
isolation types to declare what data can be shared be-
tween concurrent tasks.

Automatic Isolation. Whenever the programmer forks an
asynchronous task (we call these tasks revisions), it oper-
ates in isolation. Conceptually, each revision operates on
a private copy of the entire shared state, which is guaran-
teed to be consistent and stable.

Deterministic conflict resolution. When the programmer
joins a revision, all write-write conflicts (data that was
modified both by the joinee and the joiner) are resolved
deterministically as specified by the isolation type. For
example, if there is a conflict on a variable of type
versioned〈T 〉 (the most common isolation type), the
value of the joinee always overwrites the value of the
joiner. Deterministic conflict resolution never fails, thus
revisions never “roll back”.

These choices ensure deterministic concurrent program
execution. Unlike conventional approaches, however, we do
not require executions to be equivalent to some sequential



int x = 0;
task t = fork {

x = 1;
}
assert(x = 0 ∨ x = 1);
join t;
assert(x = 1);

versioned〈int〉 x = 0;
revision r = rfork {

x = 1;
}
assert(x = 0);
rjoin r;
assert(x = 1);

Figure 1. Comparison of a classic asynchronous task oper-
ating on a standard integer variable (left) and of a revision
operating on a versioned variable (right). The assert state-
ments show the possible values of x at each point.

execution, which would unnecessarily restrict the available
concurrency. Instead, we posit that programmers, if given the
right abstractions, are capable of reasoning about concurrent
executions directly. For example, see Fig. 1. Under standard
asynchronous task semantics (left), accesses to the integer
variable by the main thread and the task are interleaved
nondeterministically. But when working with revisions and
a versioned type (right), the revision is guaranteed to work
on an isolated copy. Effects of a revision are only seen once
that revision is joined. In the meantime, other revisions can
freely access that same data.

Our mechanism eliminates the need to perform any syn-
chronization (such as critical sections) inside tasks. Each
task is guaranteed to see a stable snapshot of the whole
shared state, on which it can perform reads and writes at any
time without risking blocking, interference, aborts, or retries,
no matter how long it runs. Our approach is data-centric in
the sense that it removes complexity from the tasks (which
need no longer worry about synchronization) and adds it to
the data declarations (which now need to specify the isola-
tion type).

Our main contributions are:

• (Section 2) We present a precise description of the se-
mantics of revisions and of the various isolation types.
We introduce revision diagrams as a novel way to reason
about visibility of effects.
• (Section 3) We review common implementation tech-

niques for parallelizing application tasks and how they re-
late to revisions. In particular, we elaborate the semantic
differences between revisions and transactions, and dis-
cuss related work.
• (Section 4) We describe a case study on how we par-

allelized an example application, a full-featured multi-
player game called SpaceWars3D [16]. We describe what
changes were involved in parallelizing the game, and how
we solved some of the more interesting issues. Moreover,
we perform a quantitative evaluation in the form of mea-
surements that compare the frame rates, the task execu-
tion times, and the overhead of accessing shared state be-
tween the sequential and the parallel version.

• (Section 5) We lift the covers and explain our runtime
implementation (a C# library) and our optimized algo-
rithm, which uses lazy copy-on-write, disposal of re-
dundant replicas, and has a low overhead for accessing
shared data.

Our results show that revisions and isolation types pro-
vide an elegant yet efficient mechanism for enabling paral-
lelization of tasks in reactive or interactive applications.

2. Revisions and Isolation Types
In this section, we present a thorough abstract description
of the semantics of the two ingredients of our method: re-
visions and isolation types. Our descriptions are informal,
but we include a formal revision calculus in the appendix for
reference.

2.1 Revisions
Revisions represent the basic unit of concurrency. They
function much like asynchronous tasks that are forked and
joined, and may themselves fork and join other tasks. We
chose the term “revision” to emphasize the semantic simi-
larity to branches in source control systems, where program-
mers work with a local snapshot of shared source code.

There are two important differences between revisions
and asynchronous tasks. First, we consider the main thread
that is executing the program to be a revision as well, called
the main revision. Thus, all code executes inside some well-
defined revision. Second, the programmer must explicitly
join all revisions that she forked. This contrasts with asyn-
chronous tasks for which the join is usually optional.

2.1.1 Revision Diagrams
One of the most important aspects of revisions is that they
provide a precise way to reason about how tasks may see
or not see each others’ effects. To this end, we find it very
helpful to visualize the concurrent control flow using revi-
sion diagrams (Fig. 2). Revisions correspond to vertical lines
in the diagram, and are connected by horizontal arrows that
represent the forks and joins. We sometimes label the revi-
sions with the actions they perform. Such diagrams visualize
clearly how information may flow (it follows the lines) and
how effects become visible upon the join.

Note that our use of revision diagrams to reason about
program executions is a marked departure from traditional
concurrency models such as sequentially consistent mem-
ory or serializable transactions, which reason about concur-
rent executions by considering a set of corresponding to-
tally ordered sequential histories. These traditional models
make the fundamental assumption that programmers must
think sequentially, and that all concurrency must thus be ‘lin-
earized’ by some arbitration mechanism. However, such ar-
bitration invariably introduces nondeterminism, which may
easily present a much larger problem for programmers than
direct reasoning about concurrent executions.



versioned〈int〉 x;
versioned〈int〉 y;
x = 0
y = 0;
revision r = rfork {

x = 1;
}

y = x;
rjoin r;
print x, y;

(prints 1, 0)

y=x
x=1

x=y=0

print x,y
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Figure 2. An example of a revision diagram (on the right)
representing the execution of a program (on the left). Re-
visions correspond to vertical lines in the diagram, and are
connected by horizontal arrows that represent the forks and
joins. We label the revisions with the actions they perform.

In contrast, we reason directly about the concurrent exe-
cution by visualizing concurrent effects and isolation guar-
antees using revision diagrams, while having deterministic
join results.

2.1.2 Nested Revisions
To simplify modular reasoning about program executions, it
is important to allow revisions to be nested. See Fig. 3 for
examples on how revisions may or may not be nested. On
the left, we see a revision that forks its own inner revision,
then joins it. This corresponds to classical nesting of tasks.
In the middle, we show how an inner revision “survives”
the join of the revision that forked it, and gets subsequently
joined by the main revision. On the right, we show that not
all diagrams we can draw are actually possible, because a
join can only join revisions for which it has a handle (the
handle returned by the second fork becomes accessible to the
main revision only after the outer revision has been joined).

Just like asynchronous tasks, revisions are a basic build-
ing block that can be used to express many different forms
of concurrency or parallelism. Often, we may wish to first
fork a number of revisions, and then immediately join all
of them. This pattern is sometimes called the fork-join pat-
tern and is common for divide-and-conquer algorithms. Re-
visions are more general though and their lifetime is not re-
stricted by the lexical scope, and can for example be used
to model long-running background tasks. Particularly, there
is no implicit join at the end of each function as in the Cilk
framework [10, 14, 32].

2.2 Isolation Types
When joining revisions, we wish to merge the copies of the
shared data back together. Exactly how that should be done
depends on what the data is representing, which can not be
easily inferred automatically. We thus ask the programmer
to explicitly supply this information by choosing an appro-
priate type for the data.

outer = rfork {

...

inner = rfork {

...

}

...

join inner;

}
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join outer;
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outer = rfork {

...

inner = rfork {

...

}

}
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join outer;
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join inner;
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Figure 3. Revisions can be nested. Inner revisions may be
joined before or after the outer revision is joined (left, mid-
dle). However, some diagrams are impossible (right) because
the main revision can not join a revision before it has ac-
cess to its handle (the handle returned by the second fork
becomes accessible to the main revision only after the outer
revision has been joined).

Choosing the right isolation type for every single shared
object, field or variable may seem daunting at first. However,
in our experience with parallelizing the game application
we found that just a few isolation types cover almost all
situations. Our isolation types fall into the following two
major categories:

1. Versioned types. When joining versioned types, we first
check whether the value has been modified in the revision
since it was forked. If not, we do nothing. Otherwise, we
change the current value of the revision that is performing
the join to the current value of the revision that is being
joined (Fig.4). For a basic type T , we write versioned〈T 〉
for the corresponding versioned type.
In our game application, versioned types were the most
common case. They are a good choice both for data on
which concurrent modifications do not happen (many
variables were concurrently written and read, but only
a few were concurrently written to), or for situations in
which there is clear relative priority between tasks (in the
sense that some tasks should override the effects of other
tasks).

2. Cumulative types. When joining cumulative types, the
combined effect of modifications is determined by a gen-
eral merge function. Such a function takes three values
and returns a result value. The three arguments are the
original value (value at the time when the revision was
forked), the master value (current value in the revision
that performs the join), and the revised value (current
value in the revision that is being joined). For a basic type
T , we write cumulative〈T, f〉 for the corresponding cu-
mulative type with merge function f .



x=0

assert(x==1)

x=0

x=1

assert(x==2)

x=2

x=1

x=0

versioned<int> x;

x=2

assert(x==1)

x=1

x=0

assert(x==0)

x=1

x=0

Figure 4. Revision diagrams illustrating the semantics of a
versioned integer variable.

x=0

x=x+1x=x+2

x=x+3
x=x+4

assert(x==10)
assert(x==5)

x=x+2x=x+3

x=0

cumulative<int,  o. m. r. m+r-o >  x;

merge

(0,3,2)

5

merge

(0,2,1)3

merge

(1,7,4)10

Figure 5. Revision diagrams illustrating the semantics of a
cumulative integer variable.

For example, consider an integer variable to which sev-
eral revisions add some quantity, and for which the cu-
mulative effect of these additions should be the sum. We
can then define the following merge function

int merge(int original, int master, int revised)
{

return master + revised − original;
}

which produces the desired result (Fig. 5).
In our game application, we used cumulative types for
collections (lists or sets) where tasks were adding ele-
ments concurrently.

An interesting aspect of using isolation types is the ques-
tion of data granularity. Sometimes, the values of variables
are correlated in the sense that they may be subject to some
invariant. For example, valid values for the coordinate vari-
ables x and y may be restricted to the unit circle. Then, as-
signing only one of them may appear to locally preserve that
invariant, while it is not globally preserved (Fig. 6). The so-
lution is either to always assign both variables, or to group
them together using a composite type.

Our definitions have been mostly informal and “by exam-
ple”. For reference and to remove potential ambiguities, we

assert(x==1)

assert(y==1)

pos.y = 1y=1
x=1

x=0

y=0

versioned<int> x;

versioned<int> y;

typedef struct { int x,y } coord;

versioned<coord> pos;

assert(pos.x ==1)

assert(pos.y ==0)

pos.x = 1

pos.x=0

pos.y=0

Figure 6. Revision diagrams that illustrate the difference
between versioning two integer variables (on the left) and
versioning a pair of integer variables (on the right).

present a formal calculus for revisions and isolation types in
the appendix.

3. Related Work
There has been much prior work on parallel or concurrent
programming models and languages [1, 2, 6, 12, 14, 28,
32, 35, 36]. Most of them specialize on the expression of
parallel algorithms. This purpose is somewhat different from
our goal of facilitating the parallelization of applications like
servers, games, or GUIs. Specifically, we assume that the
different tasks we are trying to execute in parallel have the
following characteristics:

• The tasks are coarse-grained.
• The tasks execute different code and have different data

access patterns.
• The tasks exhibit many conflicts on the shared data.
• The tasks are mostly independent at a high abstraction

level (i.e. most conflicts do not express true data depen-
dencies).
• The tasks have varying characteristics (I/O vs. CPU

bound) and may exhibit unbounded latencies.
• The tasks may need to react to external, nondeterministic

events such as user input or network communication.

In this section, we review common implementation tech-
niques and how they relate to revisions, provide a compari-
son between revisions and transactions, and discuss related
work on isolation types.

3.1 Traditional Locking and Replication
Sometimes, standard locking schemes are appropriate for
safely sharing data between tasks. However, locking com-
plicates the code because it requires programmers to think
about the placement of critical sections, which involves non-
trivial tradeoffs and complicates code maintenance.

Moreover, locking alone does not always suffice. For ex-
ample, consider a game application which executes concur-
rently (1) a physics task which updates the position of all



game objects based on their speed and the time elapsed, and
(2) a render task which draws all objects onto the screen.
Then, any solution based solely on locks would either ham-
per concurrency (too coarse) or provide insufficient isolation
(too fine), as some of the objects may be rendered at the fu-
ture position, while others are rendered at the current posi-
tion.

For this reason, replication is often a necessary ingredi-
ent to achieve parallelization of application tasks. Games,
for example, may maintain two copies of the shared state
(using so-called double-buffering) to guarantee isolation of
tasks while enabling any number of read-only tasks to ex-
ecute concurrently with a single writer task. However, this
pattern is somewhat specific to the synchronization struc-
ture of games, and maintaining just two buffers is not always
enough (for example, there may be multiple concurrent mod-
ifications, or snapshots may need to persist for more than a
single frame). Moreover, performing a full replication of the
shared state is not the most space-efficient solution.

Another common replication-based solution is to use im-
mutable objects to encode shared state. Any tasks that wish
to modify an immutable object must instead create a copy.
This pattern can efficiently guarantee isolation and enables
concurrency. However, it can introduce new challenges, such
as how to resolve conflicting updates, or how to bound
space requirements in situations where frequent modifica-
tions to the data may cause excessive copying. Revisions
solve both of these problems by implicitly linking the copy-
ing and merging to the concurrent control flow, and by using
programmer-declared isolation types to resolve conflicts de-
terministically.

3.2 Related Work on Transactions
Like revisions, transactions or transactional memory [15, 21]
address the problem of handling concurrent access to shared
data. The key difference between transactions and revisions
is that transactions (whether optimistic or pessimistic) han-
dle conflicts nondeterministically, while revisions resolve
conflicts deterministically. Moreover, revisions do not guar-
antee serializability, one of the hallmarks of transactions, but
provide a different sort of isolation guarantee (as discussed
above in Section 2). See Fig. 7 for an example that highlights
the semantic difference between revisions and transactions.

Just as we do with revisions, proponents of transactions
have long recognized that providing strong guarantees such
as serializability [30] or linearizability [18] can be overly
conservative for some applications, and have proposed alter-
nate guarantees such as multi-version concurrency control
[29] or snapshot isolation (SI) [3]. SI transactions (for ex-
ample, see SI-STM [33]) are similar to revisions insofar as
they operate on stable snapshots and do not guarantee serial-
izability. However, they are more restricted as they do not
perform deterministic conflict resolution (but rather abort
transactions in schedule-dependent and thus nondetermin-

void foo()
{

if (y = 0)
x = 1;

}

void bar()
{

if (x = 0)
y = 1;

}

Revisions and Isolation Types:

versioned〈int〉 x,y;
x = 0; y = 0;
revision r = rfork { foo() ; }
bar();
rjoin r;
assert(x = 1 ∧ y = 1);

Transactions:

int x,y;
x = 0; y = 0;
task t = fork { atomic { foo(); } }
atomic { bar(); }
join t;
assert((x = 1 ∧ y = 0) ∨ (x = 0 ∧ y = 1));

Figure 7. Example illustrating the semantic difference be-
tween transactions and revisions. The assert statements in-
dicate the possible final values, which are different in each
case. The transactional program has two possible executions,
both of which are different from the single (deterministic)
execution of the program that uses revisions and isolation
types.

istic way) and do not support nesting of transactions in a
comparably general manner.

Optimistic transactions do not fare well in the presence of
conflicts that cause excessive rollback and retry. Moreover,
combining optimistic transactions with I/O can be done only
under some restrictions [38] because the latter cannot always
be rolled back. None of these issues arises with revisions as
they are not optimistic and never require rollback.

3.3 Related Work on Deterministic Concurrency
Recently, researchers have proposed programming models
for deterministic concurrency [5, 8, 31, 37]. These models
differ semantically from revisions, and are quite a bit more
restrictive: as they guarantee that the execution is equivalent
to some sequential execution, they cannot easily resolve all
conflicts on commit (like revisions do) and must thus restrict
tasks from producing such conflicts either statically (by type
system) or dynamically (pessimistic with blocking, or opti-
mistic with abort and retry). Also, unlike our revisions, some
of these models[5, 8] allow only a restricted “fork-join” form
of concurrency.

Hardware architects have also proposed supporting deter-
ministic execution[4, 11]. However, these mechanisms guar-
antee determinism only, not isolation.



3.4 Related Work on Isolation Types
Isolation types are similar to Cilk++ hyperobjects [13]: both
use type declarations by the programmer to change the se-
mantics of shared variables. Cilk++ hyperobjects may split,
hold, and reduce values. Although these primitives can (if
properly used) achieve an effect similar to revisions, they do
not provide a similarly seamless semantics. In particular, the
determinacy guarantees are fragile, i.e. do not hold for all
programs. For instance, the following program may finish
with either x == 2 or x == 1:

reducer opadd〈int〉 x = 0;
cilk spawn { x++ }
if (x= 0) x++;
cilk sync

Isolation types are also similar to the idea of transactional
boosting, coarse-grained transactions, and semantic commu-
tativity [17, 19, 20], which eliminate false conflicts by rais-
ing the abstraction level. Isolation types go farther though:
for example, the type versioned〈T 〉 does not just avoid false
conflicts, but resolves true conflicts deterministically.

Note that isolation types do not suffer from the weak-
vs. strong-atomicity problem [7] because all code executes
inside some revision.

The insight that automatic object replication can im-
prove performance also appears in work on parallelizing
compilers[34].

3.5 Related Work on Fork-Join Models
Once a revision is forked, its handle can be stored in arbi-
trary data structures and be joined at an arbitrary later point
of time. The join is always explicitly requested by the pro-
grammer: this is important as it has side effects.

Some languages statically restrict the use of joins, to
make stronger scheduling guarantees (as done in Cilk++
[14, 32]) or to simplify the most common usage patterns and
to eliminate common user mistakes (as done in X10 [24]).
In fact, many models use a restricted “fork-join” parallelism
[5, 8]. In our experience, such restrictions (while reasonable
for data-parallel problems) can make it difficult to write ap-
plications that adapt to external nondeterminism or to unpre-
dictable latencies. In our game, for example, we wish to run
the autosave task in the background as it has unpredictable
latency, rather than forcing a join at the end of the frame.

4. Case Study
We now describe how we parallelized an example applica-
tion using revisions and isolation types.

We first describe the sequential game application and why
parallelization is a challenge. Next, we describe how we used
revisions to parallelize the game loop and how we wrapped
the shared data using isolation types. We also discuss how
we address nondeterminism. Finally, we present experimen-
tal results that evaluate the performance characteristics of

using revisions and isolation types and measure the gains
from parallelization.

4.1 The Game
The game application is a multiplayer game called Space-
Wars3D; it was designed to teach DirectX programming
with C# [16]. Its conceptual architecture is depicted in Fig. 8
(top left). The square boxes represent tasks of varying sizes
and characteristics (CPU-bound or IO-bound). The code
amounts to about 12,000 lines. There is ample opportunity
for executing different tasks in parallel and for parallelizing
individual tasks. The key challenge is to ensure that the data
is concurrently available, yet remains consistent.

The starting point is a completely sequential game loop
design shown in Fig. 8 (bottom left). It suffers from some
major performance issues:1

1. (not parallel enough) There is room to parallelize tasks.
For instance, the CollisionCheck(i) could be executed in
parallel but are performed sequentially. Also, although
the render task RenderFrameToScreen cannot itself be par-
allelized (due to restrictions in the framework), it can ex-
ecute in parallel with other tasks.

2. (not responsive enough) The periodic automatic SaveGame

call that occurs every 100 frames has unpredictable la-
tency, and causes annoying freezes in the game experi-
ence.

To improve the frame rate and make the gameplay smoother,
we would like to fix the issues above. However, there are nu-
merous conflicts between these tasks that we need to pay
attention to. For example, consider the coordinates of the
game objects (like ships, bullets, asteroids, etc.). All of the
following tasks may potentially access these coordinates at
the same time:

• RenderFrameToScreen reads the position of all objects.
• UpdateWorld modifies the positions of all objects based

on the elapsed time.
• CollisionCheck(i) reads the positions of all objects and

may also modify some positions. These modifications are
supposed to override the updates done by UpdateWorld.
• SendNetworkUpdates reads positions of local objects and

sends them to the remote player.
• HandleQueuedPackets receives updates from the remote

player and modifies positions of local objects. These
updates are supposed to override the updates done by
UpdateWorld. and by CollisionCheck(i).
• AutoSave reads the positions of all objects.

1 Note that we modified the original game (by creating the asteroids and
the autosave feature) for the specific purpose of causing performance issues
for illustration purposes. Our naive collision check, while not representative
for well-designed games that may employ the GPU and more sophisticated
geometric partitioning, does illustrate the problem correctly.
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while (!done)
{

input.GetInput();
input.ProcessInput();
physics.UpdateWorld();
for (int i = 0; i 〈physics.numsplits; i++)

physics.CollisionCheck(i);
network.SendNetworkUpdates();
network.HandleQueuedPackets();
if (frame % 100 = 0)

SaveGame();
ProcessGuiEvents();
screen.RenderFrameToScreen();
audio.PlaySounds();
frame++;

}

Revision UpWrl, SendNtw, HdlPckts, AutoSave;
Revision[] ColDet = new Revision[physics.numsplits];

while (!done)
{

input.GetInput();

UpWrl = rfork {
input.ProcessInput(); physics.UpdateWorld();

}
for (int i = 0; i 〈physics.numsplits; i++)

ColDet[i] = rfork { physics.CollisionCheck(i); }
SendNtw = rfork { network.SendNetworkUpdates(); }
HdlPckts = rfork { network.HandleQueuedPackets(); )
if (frame % 100 = 0 ∧ AutoSave = null)

AutoSave = rfork { SaveGame(); };

ProcessGuiEvents();
screen.RenderFrameToScreen();

join(UpWrl);
for (int i = 0; i 〈physics.numsplits; i++)

join ColDet[i];
join(SendNtw);
join(HdlPckts);
if (AutoSave 6= null ∧ AutoSave.HasFinished()) {

join(AutoSave);
AutoSave = null;

}

audio.PlaySounds();
frame++;

}

Figure 8. (top left) Illustration of the conceptual game architecture. (bottom left) Pseudocode for the sequential game loop.
(right) Pseudocode for the parallel main loop.

All of the tasks are expected to work with a consistent
view of the data. This can be challenging to achieve without
some form of support from the framework.

Although tasks are sensitive to instability of the shared
data, it is often acceptable to work with slightly stale data.
For example, we could move SendNetworkUpdates to the top
of the loop without harm, because it would simply send the
positions of the last frame which is perfectly acceptable.
This illustrates that the precise semantics of the sequential
game loop are not set in stone: parallelization may make
slight changes as long as the overall behavior of the game
remains the same.

4.2 Parallelization
We now describe the process we performed to parallelize
the game. It involved two main steps: Parallelizing the game
loop using revisions, and declaring shared data using isola-
tion types. This process involved making choices that require
understanding of the semantics of the game: to achieve bet-

ter parallelism, the parallel loop is not fully equivalent to the
sequential loop, but only “close enough”.

See Fig. 8 (right) for pseudocode2 representing our par-
allel version of the game loop. All tasks are now inside con-
current revisions, except for four tasks that have to remain
on the main thread because of restrictions of the GUI and
graphics frameworks.

In each iteration, we fork revisions and store their han-
dles. Each CollisionCheck(i) is in a separate revision. AutoSave

only forks a revision every 100 frames, and only if there is
not an autosave still in progress. After forking all revisions,
the main thread performs the render task and processes GUI
events. Then it joins all the revisions; however, it joins the
autosave revision only if it has completed. Note that the con-
current revisions are joined in an order such that conflicting
updates are correctly prioritized (collision check overrides
update, network packets override both).

2 We show pseudocode rather than the actual C# code for the sake of using
a more concise syntax and omitting details unrelated to the point.



4.2.1 Declaring Isolation Types
We replaced a total of 22 types with isolation types. Iden-
tifying all the shared fields was a matter of identifying the
“model” state (the game follows vaguely a model-view-
controller architecture). Note that the majority of fields and
variables do not need to be versioned (for example, they may
be readonly, or may never be accessed concurrently). Over-
all, we used the following isolation types (we describe these
types in more detail later, in Section 5.2), listed in the order
of frequency:

• VersionedValue〈T〉 (13 instances). This was the most fre-
quently used isolation type, and the type T ranged over all
kinds of basic types including integers, floats, booleans,
and enumerations.
• VersionedObject〈T〉 (5 instances). These were used for

game objects such as photons, asteroids, particle effects,
as well as for positions.
• CumulativeValue〈T〉 (3 instances). 2 instances were used

for sound flags (which are essentially a bitmask imple-
mentation of a set), and one was used for a message
buffer that displays messages on the screen.
• CumulativeList〈T〉 (1 instance). This was used for the list

of asteroids; new asteroids are added when old ones burst,
which happens on collisions.

4.2.2 Deterministic Record and Replay
At an abstract level, concurrent revisions do guarantee deter-
ministic execution for correctly synchronized programs (that
is, programs that join each revision they fork exactly once,
and that do properly declare all shared data to have an isola-
tion type).

In our parallel loop (Fig. 8 (right)) this guarantee does
not hold completely, however, because we query whether the
revision AutoSave has completed before joining it. Because
timing varies between runs, this test does not always return
the same result in each execution and thus introduces nonde-
terminism. This example showcases an important dilemma:
if we want to enforce complete determinism, we cannot dy-
namically adapt to unpredictable latency variations. Thus,
there is a fundamental tension between determinism and re-
sponsiveness.

We observe that there are in fact many sources of nonde-
terminism that quickly nullify deterministic execution even
in the completely sequential game. Examples include user
input, network packet timing, and random number genera-
tors. Thus, we decided to adjust our goal from ’deterministic
execution’ to ’deterministic record and replay’. By recording
and replaying all sources of nondeterminism we can recover
some of the benefits of determinism, such as a better de-
bugging experience. Note that record/replay of revisions is
much easier than record/replay of standard shared-memory
programs[23] because there are only a few ordering facts that
need to be recorded.

4.3 Quantitative Evaluation
In this section we analyze the performance characteristics
of revisions in the parallelized SpaceWars3D game (Fig. 8,
right). We are particularly interested in the following ques-
tions:

• What is the overhead of executing tasks inside revisions?
This question is significant because in a revision, every
read of a shared location must look up the correct version,
and every first write to a shared location must create a
copy.
• What is the overhead of forking and joining revisions? In

particular, is it expensive to resolve conflicts during join?
• What is the memory overhead of maintaining replicas of

the shared state?
• Did the gameplay experience improve? Specifically, (a)

how much did the frame rate increase, and (b) did we suc-
cessfully eliminate the freezes caused by the automatic
periodic save?

4.3.1 Methodology
The evaluation methodology devised for the experiments
takes advantage of the ability to record and replay a game as
pointed out in Section 4.2.2. As the first step, we record 2500
frames of a network game session with two players chas-
ing each other but without any asteroids being destroyed.
We call such game session a typical execution. We exclude
asteroid explosions from our initial experiments since they
agressively decrease the number of frames executed per sec-
ond (see Section 4.3.4 for an analysis with varying number
of asteroids). We also disabled auto-save when recording.

After the game is saved, we replay it and examine only
the last 2000 frames. The first 500 frames are skipped so
that the runtime system can be appropriately warmed up.
Notice that when replaying a game to collect the results only
one machine is actually used. Although no network packages
are sent during replay, we do record the packages received
and replay them appropriately. Unless stated otherwise, all
results are reported as the mean of five replays.

Time measurements are performed with the high-resolution
performance counter provided by Windows, which is ac-
curate within 383 nanoseconds in our workstation. While
collecting timing information we only kept the game appli-
cation opened in order to reduce external interferences.

All experiments were conducted on a 4-core machine, an
HP Z400 workstation running a 64-bit version of Windows
7 Enterprise, with 6GB of DDR3 RAM, a NVIDIA Quadro
FX580 512MB graphics card, and a quad-core 2.66GHz
Intel Xeon W3520 processor 3.

3 Although hyperthreading is supported (totalizing 8 logical cores), this
feature was disabled during our measurements.
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Figure 9. Average frame time breakdown. The overall slow-
down due to revisions in sequential mode (on the right) is
only 5% when compared to the pure sequential execution
(on the left).

4.3.2 Revisions Overhead
To quantify the overhead of revisions in SpaceWars3D we
recorded a typical execution of the game using 800 asteroids.
This number was chosen because it provided a reasonable
frame rate on our workstation (around 54 FPS in the single-
threaded case).

We then replay the game and compare the results for two
distinct execution modes: (i) sequential, and (ii) sequential
with revisions. Scenario (i) serves as the sequential baseline
to which revisions are compared. In scenario (ii), we enforce
a sequential execution of the revisions by running them
synchronously and performing the join operations at the end
of the frame. This mode allows us to accurately quantify the
single-thread overhead incurred by revisions for each game
task (see Fig. 9 and 10).

As can be seen from Fig. 9, the revisioning framework
only caused a slowdown of 5% if compared to the sequential
execution. Two observations are worth mentioning. Firstly,
the collision detection task (ColDet) accounts for approx-
imately 82% of the total execution time per frame. This
task, therefore, is the main target for parallelization as dis-
cussed in more detail in Section 4.3.4. Secondly, revisions
incur an extra overhead since it is necessary to perform a
join operation for each revision forked. Note, however, that
this overhead contributed only 1.2% of the total execution
time, showing that for the game application the join costs
are mostly negligible.

To gain further insight into the performance of revisions
we present the normalized execution time for each Space-
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Figure 10. Normalized execution time for each task in
SpaceWars3D. At the bottom, the number of versioned reads
and writes performed by each task. Baseline for normaliza-
tion is the sequential execution.
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Figure 12. The frame rate drops as more asteroids are added
to the game. With 1300 asteroids, the sequential version is
mostly unplayable (22 FPS), whereas concurrent revisions
still provide smooth gameplay (61 FPS) on a quad-core
machine.

Wars3D task in Fig. 10, along with the number of versioned
reads and writes issued by each one. Notice that for the tasks
dominated by reads (Renderer and ColDet) the overhead
is mininum. This clearly shows that our current implementa-
tion is quite effective for read-based workloads. The remain-
ing tasks suffer from versioned writes in different degrees,
most notably UpWrl (almost 2x). However, since these tasks
do not have a huge impact in the overall execution time, their
cost is not a major concern in SpaceWars3D. For workloads
where writing to versioned types dominates, we would ex-
pect higher overhead.

4.3.3 Memory Consumption
Every time a revision writes to a versioned object, the revi-
sioning subsystem needs to create a clone in order to enforce
isolation. It is therefore important to quantify the overhead
of maintaining replicas of the shared state.

Table 1 presents the number of bytes of managed mem-
ory allocated by SpaceWars3D after a replay. We show



Figure 11. An illustration of a typical task scheduling for an individual frame on our quad-core machine. The extra cost
incurred by the revisioning subsystem is represented by slightly longer-running tasks and the join operations.

# asteroids Sequential Revisions Overhead
800 1,162,588 1,578,660 1.36
900 1,199,388 1,654,100 1.38

1000 1,236,196 1,734,200 1.40
1100 1,277,092 1,814,296 1.42
1200 1,324,932 1,914,504 1.44
1300 1,361,732 1,991,304 1.46
1400 1,398,532 2,068,104 1.48
1500 1,435,332 2,144,904 1.49

Table 1. Comparison between allocated managed memory
with and without revisions (approximate value in bytes), for
a varying number of asteroids.

the best available approximation as retrieved from a call
to the .NET garbage collector method GetTotalMemory 4,
for both the sequential version and revisions. As expected,
the total amount of memory allocated increases as more as-
teroids are added to the game. The overhead of revisions
slightly increases when compared to the sequential version
due to more versioned objects being read/written.

4.3.4 Parallel Performance
We now proceed to analyze the performance of the game
when executing the revisions concurrently on our quadcore
machine. This performance depends on exactly how tasks
are scheduled in each frame, which can vary quite a bit (our
runtime does not perform the scheduling itself, but relies on
an off-the-shelf dynamic task scheduler). We show a typical
frame schedule in Fig. 11. Time proceeds from left to right,
and the bars indicate when a task begins and ends. We also
show bars for all the joins performed. Note that the bars do

4 We allow the system to collect garbage and finalize objects before return-
ing the number of bytes allocated.

not show which tasks are currently scheduled vs. waiting to
be scheduled, thus there are sometimes more than 4 tasks
active at a time even though there are only 4 cores.

The schedule shown corresponded to parameters under
which we achieved an average speedup of 2.6x relative to
the sequential baseline.

How good is a speedup of 2.6x on 4 cores? Not bad for
the circumstances. As we can see, the frame rate is limited
mostly by the render task, which takes about 95.5% of the
total frame time and can not be parallelized. Thus, even if
everything else took zero time our speedup could not be
better than 2.6 ∗ 100/95.5 = 2.72.

By increasing the number of asteroids, we change the pro-
portion of the program that can be parallelized and achieve
better speedups (Fig. 12), up to 3.03 for 1500 asteroids. We
believe that even better speedups are possible with our li-
brary, for the following reason. Assuming a workload that
is fully parallelizable except for the joins which amount to
about 1.5%, Amdahl predicts a maximal speedup on 4 cores
of (1/(1 − 0.985 + 0.985/4) = 3.83, so once we account
for the average execution overhead of 5% the best possible
speedup is still 3.83 ∗ 0.95 = 3.64. In this example, we do
not achieve such good speedups even if we increase the num-
ber of asteroids to increase the proportion of parallelizable
work. We are not sure why, but observe an unexpected slow-
ness of the render task for which we believe some form of
contention (outside of our runtime library) to be responsible.

Besides speeding up the average frame rate, our paral-
lelization also improved the responsiveness: unlike in the se-
quential version of the game, the periodic automatic save had
no perceptible effect on the gameplay.



class Versioned〈T〉 : Versioned {
Map〈int,T〉 versions;
...
}

class Revision {
Segment root;
Segment current;
...
}

class Segment {
int version;
int refcount;
Segment parent;
List〈Versioned〉 written;
...
}

Figure 13. A quick overview of the classes our algorithm is
built on, and how they relate.

Versioned〈int〉 x = 0;
Versioned〈int〉 y = 0;

Revision r = rfork {
y = 1;b

rfork { ... }
x = y;c

}

x = 2;a

rjoin r;
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Figure 14. Example revision diagram.

5. Implementation
We now describe how we actually implemented revisions
and isolation types. The key design principles of our algo-
rithm are:

• The (amortized) cost of a Get or Set operation on a
versioned object must be very efficient, as it is called
every time a revision accesses shared data.
• To save time and space, we must not copy data eagerly

(such as on every fork), but lazily and only when nec-
essary (that is, when the write may invalidate somebody
else’s snapshot).
• We must release copies that are no longer needed as soon

as possible.

In this section we first describe our algorithm that satisfies
these requirements, starting with a stripped-down version
in pseudo object-oriented code. Then we describe various
extensions and optimizations that we used to implement our
C# library.

5.1 The Essential Algorithm
See Fig. 13 for a quick overview of the three classes we use
and how they relate. We give detailed listings of these classes
in Figures 16, 17 and 18, but first discuss the high-level idea.
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Figure 15. The state of our implementation for the example
in Figure 14, right before the rjoin r statement. For illustra-
tion purposes, We show the Segment objects superimposed
on the respective segments of the revision diagram.

Revision objects represent revisions as defined earlier. Re-
call that in revision diagrams, revisions are the vertical
lines, which consist of one or more line segments sepa-
rated by forks or joins. Revision objects are created when
a revision is forked, and released after a revision is joined.
Each revision object has a current segment (the currently
last segment of this revision) and a root segment (the line
segment right above the fork that created this revision).

Segment objects correspond to vertical line segments in the
revision diagrams, and are uniquely identified by their
version number (the field version). Segment objects form
a tree (by parent pointer). Segment objects are created
when line segments are added (each fork creates two
new segments, each join creates one new segment), and
are released when refcount reaches zero. Segment objects
also maintain a list of all Versioned objects5 that were
written to in this segment.

Versioned objects contain a versions map that stores sev-
eral versions of the data, indexed by version numbers. It
stores for each line segment the last value written to this

5 The Versioned〈T〉 class derives from the Versioned class so we can
create a homogenous list of non-generic versioned objects.



object in that segment, or the special value ⊥ to signify
that there was no write to this object in that segment.

In the next few subsections, we are going to discuss
several aspects of our implementation in more detail. First
though, we show a small example program and its revision
diagram in Fig. 14, which will serve as a running illustration
example. We labeled some of the segments with a, b, and
c, and assume they will have version numbers 1, 2, and
3 respectively. To explain the design of the algorithm, we
now discuss the state of our implementation right before the
rjoin r statement. At that point, we have two Revision objects
and five Segment objects, and they are related as shown in
Fig. 15. At the same point of time, the versions map for the
variable x is {0 7→ 0, 1 7→ 2, 3 7→ 1}, and the map for y is
{0 7→ 0, 2 7→ 1}. As we can see, only the last writes to a
value are in the versions map; i.e. even though y is read in the
c edge, there is no entry for version 3 in the versions map of
y.

5.1.1 Accessing Versioned Data
To access versioned data, we use the public Get and Set

methods in Fig. 16. These methods first consult the thread-
local static field Revision.currentRevision (see Fig. 17) to au-
tomatically find the correct revision for the current thread.

The Get method then returns the current value associated
with a particular revision. It cannot just return the content of
versions[r.current.version] since only the last write is stored
in this map. If the revision has not written to this particular
object, we need to follow the parent chain to find the last
write.

The Set method sets the current value for a particular
revision. It first looks to see if the entry for the current
segment is uninitialized. If so, it adds this versioned object to
the written list of the segment, before writing the new value
to the map.

5.1.2 Fork
The Fork operation (Fig. 17) starts with creating a fresh
revision r for the forked off branch. We first create a new
revision using our current segment as its root, and then create
a new current segment. For example, in Fig. 15 we create
segments with version numbers 1 and 2. After creating a
new revision r, we create a new concurrent task that assigns
the new revision to the thread local currentRevision. Here we
assume that Task.StartNew starts a new concurrent task with
the provided action delegate (anonymous function). Light-
weight concurrent tasks based on work stealing are provided
by .NET 4.0; on other frameworks we can use any similar
kind of way to start concurrent threads [22, 25, 27]. Finally,
the new revision r is returned such that it can be joined upon
later.

class Versioned {
void Release();
void Collapse(Revision main, Segment parent);
void Merge(Revision main, Revision joinRev, Segment join);
}

public class Versioned〈T〉 : Versioned {
Map〈int,T〉 versions; // map from version to value

public T Get() { return Get(Revision.currentRevision); }
public void Set(T v) { Set(Revision.currentRevision, v); }

T Get(Revision r) {
Segment s = r.current;
while (versions[s.version] = ⊥) {

s = s.parent;
}
return versions[s.version];

}

void Set(Revision r, T value) {
if (versions[r.current.version] = ⊥) {

r.current.written.Add(this);
}
versions[r.current.version] = value;

}

void Release( Segment release ) {
versions[release.version] = ⊥;
}

void Collapse( Revision main, Segment parent ) {
if (versions[main.current.version] = ⊥) {

Set(main, versions[parent.version]);
}
versions[parent.version] = ⊥;
}

void Merge(Revision main, Revision joinRev, Segment join) {
Segment s = joinRev.current;
while (versions[s.version] = ⊥) {

s = s.parent;
}
if (s = join) { // only merge if this was the last write

Set(main, versions[join.version]);
}
}
}

Figure 16. The Versioned class.

5.1.3 Join
The Join operation (Fig. 17) first waits till the associated con-
current task of the revision is done. Note that if an exception
is raised in the concurrent task, it is re-raised in the call to
Wait and in that case we will not merge any changes. When
Wait succeeds, the actual written objects in the join revision
are merged.



public class Revision {
Segment root;
Segment current;
Task task;
threadlocal static Revision currentRevision;

Revision( Segment root, Segment current ) {
this.root = root;
this.current = current;
}

public Revision Fork( Action action ) {
Revision r;
r = new Revision(current, new Segment(current));
current.Release(); // cannot bring refcount to zero
current = new Segment(current);
task = Task.StartNew( delegate (){

Revision previous = currentRevision;
currentRevision = r;
try { action(); }
finally { currentRevision = previous; }
});
return r;
}

public void Join(Revision join) {
try {

join.task.Wait();
Segment s = join.current;
while (s 6= join.root) {

foreach (Versioned v in s.written) {
v.Merge(this,join,s);
}
s = s.parent;
}
}
finally {

join.current.Release();
current.Collapse(this);
}
}
}

Figure 17. The Revisioned class.

In a while loop, we visit each segment from join.current

upto its root. If we look at our example in Figure 15, joining
on r would visit the segments with versions 3 and 2. Indeed,
together the written lists of those segments contain all objects
that need to be merged back. For each segment, we iterate
over all written objects and call their Versioned〈T〉.Merge

method with three arguments: the main revision, the joined
revision, and the current segment. When we look at the
implementation of that method in Figure 16 we see that it
first finds the first segment that wrote to this object. Only if
the merged segment join is the same will we do a merge. If
the merged segment is not equal, it means that that segment
did not do the last write to that object and we should not

class Segment {
Segment parent;
int version;
int refcount;
List〈Versioned〉 written;
static int versionCount = 0;

Segment( Segment parent ) {
this.parent = parent;
if (parent 6= null) parent.refcount++;
written = new List〈Versioned〉();
version = versionCount++;
refcount = 1;
}

void Release() {
if (--refcount = 0) {

foreach (Versioned v in written) {
v.Release(this);
}
if (parent 6= null) parent.Release();
}
}

void Collapse( Revision main ) {
// assert: main.current = this
while (parent 6= main.root ∧ parent.refcount = 1) {

foreach (Versioned v in parent.written) {
v.Collapse(main,parent);
}
parent = parent.parent; // remove parent
}
}
}

Figure 18. The Segment class. For the purpose of reference
counting, we assume that ++ and -- are atomic operations.

merge older versions. If this happens to be the last write, we
merge by simply overwriting the value in the main revision
(if it exists).

Finally, the Join function releases the reference count
on the joined revision, and calls Collapse on our current
segment. We describe these situations in more detail in the
following two sections.

5.1.4 Releasing Segments
Each Segment object (Fig. 18) maintains a refcount to keep
track of how many parent and current fields are pointing at
that segment (it does not count the root fields). The Release

method is called by revisions to decrease the reference count,
and whenever the reference count drops to zero, we can
release any objects referenced by this version.

Since only written objects are stored in the versions map
of Versioned〈T〉, the objects referenced by the version of
the segment are exactly those that are in its written list.
The Release method calls the Versioned〈T〉.Release method



on each of the objects in its written list and then releases its
parent segment. When we look at the Versioned〈T〉.Release

method in Figure 16 we see that it simply clears the entry for
that object in the versions map. In our example in Figure 15
the segment with version 3 will be released and the versions

map of x will become {0 7→ 0, 1 7→ 1} after the join. Note
that the map for y becomes {0 7→ 0, 1 7→ 1, 2 7→ 1} since
the segment for version 2 is not released as the inner forked
revision could potentially still refer to that version of y.

5.1.5 Collapsing Segments
The Collapse method (Fig. 18) is only ever called on some
current segment and it is the case that main.current = this

when this method is called from Revision.Join. The Collapse

method tries to merge the parent segment into the current
segment. In particular, when we join on some revision, we
might find that our parent segment has a reference count of
1 and that we are the only one holding on to it. By collapsing
with that segment we both reduce the chain of segments
(which improves reads), but more importantly, we might
release older versions of objects that are never referenced
again. The Collapse operations ensures that we do not leak
memory over time.

Collapse visits the parent recursively while the reference
count is 1. For each written object in the parent we call
Versioned〈T〉.Collapse on that object with the current revi-
sion and the parent segment. After visiting each written ob-
ject, we overwrite the parent field with the parent of the par-
ent, effectively removing the parent segment (which is now
collapsed into the current revision). The implementation of
Versioned〈T〉.Collapse is shown in Figure 16. If the current
revision has not written this object yet, we set it to the value
of the parent revision. Finally, the parent version is cleared
releasing its reference.

5.2 Additional Isolation Types
Our presentation of the algorithm includes the single iso-
lation type Versioned〈T〉 only. This type is actually called
VersionedValue〈T〉 in our library, which contains a variety of
isolation types. For example, the type CumulativeValue〈T〉
enables users to specify a specific merge function. This
merge function needs to know the original snapshot value,
which our implementation can access by following the
Revision.root pointer of the revision being joined.

For reference values, we implement VersionedObject〈T〉
and CumulativeObject〈T〉, which version all fields of an ob-
ject as a whole (cf. Fig. 6). To access such objects, Get and
Set are not appropriate, but we use similar operations

T GetForRead( Revision r );
T GetForWrite( Revision r );

where GetForRead is used to get a readonly reference to an
object, while GetForWrite is used to get a mutable version
of the object. Ideally, if natively supported by a language,

the use of these operations could be hidden and inserted
automatically by the compiler.

Beyond those isolation types, our library also supports
the cumulative collection classes CumulativeList〈T〉 and
CumulativeSet〈T〉 with their natural merge functions, and
a VersionedRandom class that serves as a deterministic pseu-
dorandom generator.

5.3 Optimization
We employ a number of optimizations:

• We use a specialized mostly lock-free implementation for
the versions map. It uses arrays that may be resized if
necessary.
• To further speed up the Get operation, we maintain a

cache that contains the version and corresponding index
of the last read or write to this object. It is implemented as
a 32 bit word that contains a version number in the lower
16 bits, and an index in the upper 16 bits. By keeping it
the size of a word, we can atomically read and write this
cache without using locks.
• When forking a new revision, we first check if the current

segment contains any writes. If not, it can stay the current
segment, and we can use its parent as the parent of the
new segment.
• When merging objects, we can distinguish many special

cases that can be handled a bit faster. In our optimized
implementation, the Versioned〈T〉.Merge function is the
most complicated part, consisting of eight separate cases.
Partly the complexity is due to the application of merge
functions for cumulative objects, and partly because we
release slots directly during the merge and try to reuse
and update slots in-place whenever possible.

6. Conclusion and Future Work
We have presented a novel programming model based on re-
visions and isolation types. First, we explained what guaran-
tees it provides, using revision diagrams as the basic means
of reasoning. Then we demonstrated how an example game
application can take advantage of this model. Finally, we
elaborated on how to build an efficient runtime library.

Our results show that revisions and isolation types pro-
vide an elegant yet efficient mechanism for executing differ-
ent tasks within a reactive or interactive application.

As future work, we would like to apply revisions and iso-
lation types to more general settings, such as applications
that execute some tasks on the GPU, applications that run on
many-core processors without full shared-memory guaran-
tees, or applications that run in the cloud.

Acknowledgments
We thank Tom Ball, Ben Zorn, and Tim Harris for helpful
comments and discussions.



References
[1] S. Aditya, Arvind, L. Augustsson, J.-W. Maessen, and

R. Nikhil. Semantics of pH: A Parallel Dialect of Haskell.
In Paul Hudak, editor, Proc. Haskell Workshop, La Jolla, CA
USA, pages 35–49, June 1995.

[2] E. Allen, D. Chase, C. Flood, V. Luchangco, J.-W. Maessen,
S. Ryu, and G. Steele Jr. Project fortress: A multicore lan-
guage for multicore processors. In Linux Magazine, Septem-
ber 2007.

[3] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and
P. O’Neil. A critique of ANSI SQL isolation levels. In
Proceedings of SIGMOD, pages 1–10, 1995.

[4] T. Bergan, O. Anderson, J. Devietti, L. Ceze, and D. Gross-
man. Coredet: A compiler and runtime system for determin-
istic multithreaded execution. In Architectural Support for
Programming Languages and Operating Systems (ASPLOS),
2010.

[5] E. Berger, T. Yang, T. Liu, and G. Novark. Grace: Safe mul-
tithreaded programming for c/c++. In Object-Oriented Pro-
gramming, Systems, Languages, and Applications (OOPSLA),
2009.

[6] G. Blelloch, S. Chatterjee, J. Hardwick, J. Sipelstein, and
M. Zagha. Implementation of a portable nested data-parallel
language. Journal of Parallel and Distributed Computing,
21(1):4–14, April 1994.

[7] C. Blundell, E. Lewis, and M. Martin. Deconstructing trans-
actions: The subtleties of atomicity. In Workshop on Dupli-
cating, Deconstructing, and Debunking (WDDD), 2005.

[8] R. Bocchino, V. Adve, D. Dig., S. Adve, S. Heumann, R. Ko-
muravelli, J. Overbey, P. Simmons, H. Sung, and M. Vakilian.
A type and effect system for deterministic parallel java. In
Object-Oriented Programming, Systems, Languages, and Ap-
plications (OOPSLA), 2009.

[9] S. Burckhardt and D. Leijen. Semantics of concurrent revi-
sions (full version). Technical Report MSR-TR-2010-94, Mi-
crosoft, 2010.

[10] J. Danaher, I. Lee, and C. Leiserson. The jcilk language for
multithreaded computing. In Synchronization and Concur-
rency in Object-Oriented Languages (SCOOL), San Diego,
California, October 2005.

[11] J. Devietti, B. Lucia, L. Ceze, and M. Oskin. DMP: Determin-
istic shared-memory multiprocessing. Micro, IEEE, 30(1):40
–49, jan.-feb. 2010.

[12] C. Flanagan and M. Felleisen. The semantics of future and its
use in program optimization. In Rice University, pages 209–
220, 1995.

[13] M. Frigo, P. Halpern, C. E. Leiserson, and S. Lewin-Berlin.
Reducers and other cilk++ hyperobjects. In Symposium on
Parallel Algorithms and Architectures (SPAA), pages 79–90,
2009.

[14] M. Frigo, C. Leiserson, and K. Randall. The implementation
of the Cilk-5 multithreaded language. In Programming Lan-
guage Design and Impl. (PLDI).

[15] T. Harris, A. Cristal, O. Unsal, E. Ayguadé, F. Gagliardi,
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A. Revision Calculus
For reference and to remove potential ambiguities, we now
present a formal calculus for revisions and isolation types. It
is based on a similar calculus introduced by prior work on
AME (automatic mutual exclusion) [26].

Before looking at the calculus, let us introduce a few
notations we use to work with partial functions. For sets
A, B, we write A ⇀ B for the set of partial functions
from A to B. For f, g ∈ A ⇀ B, a ∈ A, b ∈ B, and
A′ ⊂ A, we adopt the following notations: f(a) = ⊥ means
a /∈ domf , f [a 7→ b] is the partial function that is equivalent
to f except that f(a) = b, and f ::g is the partial function
that is equivalent to g on dom g and equivalent to f on
A \ dom g. In our transition rules, we use patterns of the
form f(a1 : b1) . . . (an : bn) (where n ≥ 1)) to match
partial functions f that satisfy f(ai) = bi for all 1 ≤ i ≤ n.

We show the syntax and semantics of our calculus con-
cisely in Fig. 19. The syntax (top left) represents a standard
functional calculus, augmented with references. References
can be created (ref e), read ( !e) and assigned (e := e). The
result of a fork expression rfork e is a revision identifier from
the set Rid, and can be used in a rjoin e expression (note that
e is an expression, not a constant, thus the revision being
joined can vary dynamically).

To define evaluation order within an expression, we syn-
tactically define execution contexts (Fig. 19 right column, in
the middle). An execution context C is an expression “with
a hole”, and as usual we let C[e′] be the expression obtained
from C by replacing the hole with e′.

The operational semantics (Fig. 19, bottom) describes
transitions of the form s →r s′ which represent a step by
revision r from global state s to global state s′. Consider first
the definition of global states (Fig. 19, top right). A global
state is defined as a partial function from revision identifiers
to local states: there is no shared global state. The local state
has three parts (σ, τ, e): the snapshot σ is a partial function
that represents the initial state that this revision started in,
the local store τ is a partial function that represents all the

locations this revision has written to, and e is the current
expression.

The rules for the operational semantics (Fig. 19, bottom)
all follow the same general structure: a transition s →r s′

matches the local state for r on the left, and describes how
the next step of revision r changes the state.

The first three rules (apply, if-true, if-false) reflect stan-
dard semantics of application and conditional. They affect
only the local expression. The next three rules (new, get, set)
reflect operations on the store. Thus, they affect both the lo-
cal store and the local expression. The (new) rule chooses
a fresh location (we simply write l /∈ s to express that l
does not appear in any snapshot or local store of s). The last
two rules reflect synchronization operations. The rule (fork)
starts a new revision, whose local state consists of (1) a snap-
shot that is initialized to the current state σ ::τ , (2) a local
store that is the empty partial function, and (3) an expression
that is the expression supplied with the fork. Note that (fork)
chooses a fresh revision identifier (we simply write r /∈ s to
express that r is not mapped by s, and does not appear in any
snapshot or local store of s). The rule (join) updates the lo-
cal store of the revision that performs the join by merging the
snapshot, master, and revision states (in accordance with the
declared isolation types), and removes the joined revision. It
can only proceed if the revision being joined has executed
all the way to a value (which is ignored).

As usual, we define the step relation → to be the union
of the local step relations →r. We call a global state s an
initial state if it is of the form s = {(r, (ε, ε, e)}. We call a
sequence of steps s0 → s1 → · · · → sn an execution if s0
is an initial state, and maximal if there exists no s′ such that
sn → s′.

We refer readers that are interested in additional details to
our Tech Report [9] where we discuss various properties of
variations of this calculus, such as determinacy, and that the
revision diagrams are semilattices.



Syntactic Symbols
v ∈ Value = c | l | r | λx.e
c ∈ Const = unit | false | true
l ∈ Loc
r ∈ Rid
x ∈ Var
e ∈ Expr = v | x

| e e | (e ? e : e)
| ref e | !e | e := e
| rfork e | rjoin e

State
s ∈ GlobalState = Rid ⇀ LocalState

LocalState = Snapshot× LocalStore× Expr
σ ∈ Snapshot = Loc ⇀ Value
τ ∈ LocalStore = Loc ⇀ Value

Execution Contexts
C = [ ]
| C e | v C | (C ? e : e)
| ref C | !C | C := e | l := C
| rjoin C

Operational Semantics
(apply) s(r : 〈σ, τ, C[λx.e v]〉) →r s[r 7→ 〈σ, τ, C[[v/x]e]〉]
(if-true) s(r : 〈σ, τ, C[(true ? e : e′)]〉) →r s[r 7→ 〈σ, τ, C[e]〉]
(if-false) s(r : 〈σ, τ, C[(false ? e : e′)]〉) →r s[r 7→ 〈σ, τ, C[e′]〉]

(new) s(r : 〈σ, τ, C[ref v]〉) →r s[r 7→ 〈σ, τ [l 7→ v], C[l]〉] if l /∈ s
(get) s(r : 〈σ, τ, C[!l]〉) →r s[r 7→ 〈σ, τ, C[(σ::τ)(l)]〉] if l ∈ dom σ::τ
(set) s(r : 〈σ, τ, C[l := v]〉) →r s[r 7→ 〈σ, τ [l 7→ v], C[unit]〉]

(fork) s(r : 〈σ, τ, C[rfork e]〉) →r s[r 7→ 〈σ, τ, C[r′]〉][r′ 7→ 〈σ::τ, ε, e〉] if r′ /∈ s
(join) s(r : 〈σ, τ, C[rjoin r′]〉)(r′ : 〈σ′, τ ′, v〉) →r s[r 7→ 〈σ,merge(σ′, τ, τ ′), C[unit]〉][r′ 7→ ⊥]

where merge(σ′, τ, τ ′)(l) =

 τ(l) if τ ′(l) = ⊥
τ ′(l) if τ ′(l) 6= ⊥ and l is of type versioned〈T 〉
f(σ′(l), τ(l), τ ′(l)) if τ ′(l) 6= ⊥ and l is of type cumulative〈T, f〉

Figure 19. Syntax and Semantics of the revision calculus.


