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1.Introduction

Iterative decoding is a widely used technique in mod-
ern communications systems. The Low Density Par-
ity Check (LDPC) codes of Gallager were the earliest
codes for which iterative decoding techniques were de-
“ned. These codes along with a simple iterative decod-
ing algorithm were introduced in the rst part of this
article. Here we describe a probabilistic iterative decod-
ing scheme, also proposed by Gallager, and show how
many modern iterative decoding algorithms are derived
from his basic scheme.

2. LDPC Codes

LDPC codes are codes which have sparse parity check
matrices. For a linear code where each codeword has n
symbols, of which k are message symbols, a parity check
matrix isan (nj k) £ n matrix of linearly independent
rows. Each row of the matrix represents an indepen-
dent constraint that the symbols of the codeword must
satisfy. For example, if a parity check matrix for a bi-
nary code of length 5 with 3 message symbols has a row
11100, it represents the constraint that the rst three
bits of every codeword should sum to O modulo 2. A
binary parity check matrix is said to be sparse if the
number of ones is amall in comparison to the number
of zeros in the matrix. One can achieve sparseness by
restricting each row and column of the matrix to have a
constant number of ones. An(n;c;r) LDPC codeisabi-
nary linear code which has a sparse parity check matrix
with ¢ ones in each column and r onesin each row. For
a (c;r) sparse parity check matrix, each variable partic-
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Figure 1. A bipartite graph
representing an LDPC
code.

LDPC codes can
be viewed as
bipartite graphs
where one set of
nodes represents
codeword or
variable nodes and
the other set
represents
constraint nodes.
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ipates in c parity check eguations while each equation
involves exactly r variables. LDPC codes can be viewed
as bipartite graphs where one set of nodes represents
codeword or variable nodes and the other set represents
constraint nodes. For binary codes the requirement im-
posed by each constraint is that the value of neighbours
of each constraint node must sum to O modulo 2. A
typical bipartite graph for an LDPC code is shown in
Figure 1.

These simple codes can be decoded very et ciently. We
will now describe Gallager's algorithm for probabilis-
tically decoding LDPC codes and carry out a formal
analyss.

3. Decoding LDPC Codes Probabilistically

In his doctoral thesis Gallager introduced two low com-
plexity decoding operations for his low-density parity-
check codes. He also analysed the performance of his
codesfor a special class of low-density parity-check codes
{ those corregponding to graphs with high girth, where
the girth of a graph G isthe length of a shortest cyde
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in G. The previous article described his "hard decision’
decoding algorithm where for binary codes, the entities
involved in the computation are the digits 0 and 1. It
is often the case that we have probabilities available for
received symbol values. In such casesit is pro table to
use ‘soft-decision' decoding algorithms so that we can
exploit the fact that therdiabilities of received symbols
are available.

We r& de ne the model of the channel used for com-
munication. We assume that the channel is used to
transmit binary information and denote by p(ajb), the
probability that an a 2 f0;19 was received at the chan-
ne output, given that b 2 f0;1g9 was its input. Thus,
if a= b p(ajb) represents the probability of error-free
transmisson. On the other hand if a 6 b, p(ajb) would
be the probability of a bit being °ipped (possbly dueto
channel noise). T hese probabilities constitute the chan-
ne modd. Condder a codeword ¢ consisting of n sym-
bols over the channd input alphabet, that istransmitted
ove this channel, and let y be the n symbadl output of
the channd. The objective of probabilistic decoding is

lowing function is maximized,
p(xijy); 1+ i - n:

This kind of decoding srategy is called the maximum
a posteriori probability (MAP) decoding strategy as it
attemptsto esimate each symbol of the codeword that
was transmitted, given thereceved vector. We will use
a simple result based on properties of generating func-
tions, for our analyss. We will ~rst give thisresult be-
fore describing the decoding algorithm.

Consder a bit sequence of length m with the i'" bit
having a probability pi of being equal to a 1. Let us
assumethat thebits areindependently distributed (that
is, for every j 6 Kk, the probability of the jt" bit being
equal to a 0=1 has no bearing on the probability of the
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k'™ bit being equal to a 0=1). For such a sequence, the
probability that the m bit sequence contains an even
number of ones is computed in the following manner.
The coet cient of x' in the expression

"
(@i p)+ pix)

i=1

is the probability that the length m sequence containsi
ones. The expresson

yn
(Li p)i px)

i=1

di®ers from the previous one only in the sign of the
coet cdents of the odd terms. Therefore, the expresson

Qi"l1((1i pi) + QX)+QE1((1i p) i pix)

2

contains only terms of even degree, and the coet cient
of x' in this expression denotes the probability that the
sequence has i ones. Thus the probability that the m
bit sequence contains an even number of ones is given
b
’ 1+ %" @ 2p)
2

and the probability that the sequence has an odd num-
ber of onesis given by

1j Q?L(li 2p)
2 :

Now, suppose we restrict ourseves to sequences of m
bits(call this set S) whose individual bits add up tozero
modulo2. ThereforeS = f(xa;::::xm) 2 fO; g™ : T,
Xi = 09. Given a randomly chosen sequence x 2 S, isit
possble to determine the probability that a particular
bit, say the d" bit x4, is a one? We dencte this con-

ditional probability by p(xq = 1jM), where M denctes
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the event fx 2 Sg. Using Bayes rule, we have

p(M jxd = 1)pd
p(M)

This means that in order to compute p(xq = 1jM), we
" rst compute the probability that x 2 S conditioned on
the event that the d™ bit xq, isaone, that is, p(M jxq =
1). Thiscan be computed by calculating the probability
that the remaining mj 1 bits contain an odd number of
ones. From our previous discussion, we know how to
compute this probability and thisis given by
1i Ql- i.m;iea(1i 2pi):
2

In the context of binary error-correcting codes, spec -
cally linear block codes, a parity check equation consist -
ing of m variables is satis ed if and only if these vari-
ables add up to a zero modulo 2, or in other words it
has an even number of ones. Consider an (n;c;r) LDPC
code C we know that each variable representing code-
word components participatesin exactly c parity checks.
Now assume that each of these checks can be indepen-
dently satis ed. Also assume that we have as channel
output, the word r. Then the probability p(xq = 1jr)
can be easly computed. Denote by pi(xa = 1jr), the
probability that x4 = 1 and satis esthei'" parity check
equation. By the earlier independence assumption, we
have

p(xa = M) =

(1)

- w -
p(xa = 1jr) = pi(Xa = Ir):
1

Now each p(Xq = 1jr); 1+ i - c can be computed as
follows For the sake of clarity, let usfocus on the parity
check equation i = 1. If Xq isto have a value one, then
therest of therj 1variablesparticipatingin parity check
equation (1) mus contain an odd number of ones. Let

yyve

In the context of
binary error-
correcting codes,
specifically linear
block codes, a parity
check equation
consisting of m
variables is satisfied
if and only if these
variables add up to a
zero modulo 2, or in
other words it has an
even number of ones.
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of length m = r j 1. Let pi be the probability that yi
is equal to a one This is the probability that thei'™"
transmitted bit is equal to one conditioned on the value
of the i'" received bit, and can be easily computed as
follows,

p(xijri) = P p(riixi)p(x;)
xi 2f 0:1g p(rijxi)p(xi)

where x;;r; are the i" components of the transmitted
and received words respectively. p(rijxi) is a property
of the channd in question, and p(xi) = 3, since we as-
sumethat codeword components are each equiprobably
distributed. T herefore, we can now appeal to (1) to com-
pute p(Xq = 1jr), whichin turn, can be used to compute
the desired value of p(x¢ = 1jr). Theaboveobservations
can be formally stated in the form of atheorem due to
Gallager.

Theorem 1. Let pg be the probability that the transmit-
ted it xq in position disa 1 conditional on the received
bit, and let pi be the same probahility for the I'" hit in
the i'" parity check equation in which xq participates.
Let the bits be independent of each other and let S be
the event that the transmitted bits satisfy j parity check
constraintson d. Let Y denote the set of received sym-
bols. Then

. .. Qq
Pixg= GY;Sg| _ 1ipy* 1+ Ci(di 20),
Plxa = 4fY;Sgl  pa _, 1i ~9 7(Li 2pu)’

4. Probabilistic Decoding

Probabilistic decodingisan iterative decoding technique
used to decode codeset ciently. Consider an (c;r) LDPC
code C as described in Section 2. This code can be rep-
resented diagrammatically in the form of a parity check
treerooted at somevariable (recall that a variablerepre-
sentsa codeword component), say X4, asshownin Figure
2. Edgesin the tree represent parity check constraints.
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r—1 other digits in the first padty—check

c parity checks and

For example, there is an edge e from the root of the
tree (representing variable xq) to a node u at depth 1
(assuming that the root is at depth 0) if and only if
Xq participatesin the parity check equation represented
by e The other variables which take part in the par-
ity check equation represented by e are associated with
u, which is essentially a ‘supernode. As an example, in
Figure 2, consder the rg (leftmost) edge from theroot.
This edge represents a parity check equation involving
variables xq (the root) and variables (1;1); (1;2); (1;3)
(the supernode). This sructure is repeated for subn-
odes (variables) in each supernode, thusresultingin the
parity check tree shown in Figure 2.

We will now describe the probabilistic algorithm by il-
lustrating how the variable x4 is decoded. As mentioned
earlier, thisalgorithm runsiteratively. To start with, in
the rdg iteration, only bitsinthe rg levd of the parity
check set tree are involved in decoding xq. Recall that
these bits correspond to the variables that are engaged
in the c parity checks that xq participates in. Thus we
are limiting our attention to the c constraints that Xg
IS participating in. We are interested in computing the
likelihood ratio (LR) of xq, de ned by 7,:=75) » v being
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Figure 2. Parity check set
tree for an (n,j,k) LDPC
code.
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the received word. The computation of the LR for xq
where the probabilities are conditioned on only the re-
ceved bits at leve one of the parity check tree then
follows directly from Gallager's Theorem 1. Note that
this is an approximation to what is required (asin the
exact solution, the probabilities are conditioned on all
the digits of the received word), where the degree of ap-
proximation depends on the number of iterations of the
agorithm. In the second iteration we use the receved
bitsin the rst two levels of the tree for decoding Xa.
As a consequence, bits that are nat directly involved in
the parity check equation (at level one) for x4 are also
used to decode x4. Here we rst consider the bits in
the rst level of the tree, and examine the ci 1 parity
checks connected to each bit, excluding the parity check
involving Xq4. Using these ¢j 1 constraints, we compute
the probability that the bit in the rst level of the tree
is a one conditioned on the received bits in the second
level of the tree. We now use these new probabilities
for bitsin the rst level of the tree and recompute the
probability the LR for xq. The subsequent iterations of
thedecoding algorithm proceed in thisinductive manner
until the LR gives a de nite indication as to what the
bit x4 should be decoded to. In other words, LR > 1
implies that xq is most likely a 0, otherwise, xq¢ = 1.

Now that we know how to decode a sngle bit, we can
repeat this procedure for other bits, thus decoding the
whole codeword. But this would result in a lot of re-
peated computations. An et cient procedure to achieve
the same, could be formulated as follows. For each bit,
say X we computea set of probabilities, where each prob-
ability is conditioned on the received digits involved in
any g 1parity checks(notethat x must be apart of these
parity checks). It iseasy to seethat this set of probabil-
ities has cardinality c. To compute the likdihood of an
arbitrary variable x, the probability we use is the one
obtained by omitting the parity check involving x. The
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correctness of the decoding procedure depends on the
assumption that the parity check constraints can be sat-
is ed independent of each other. This assumption does
nat hold if thegraph representingthe code hascycles. In
ite of this limitation, this decoding procedure works
extremey well in practice. Like the hard-decision de-
coding algorithm, the soft-decision decoding algorithm
jugt described can beimplemented as a message passng
decoder.

5. Later Work

The algorithm just described is an instance of a belief
propagation algorithm. Belief propagation is an exact
algorithm invented by Judea Pearl that solves proba-
bilistic reasoning problems of singly connected networks,
that is, those without cydes. By an exact algorithm we
mean one that nds exact solutions as opposed to ap-
proximate solutions. Here what we want to measure at
each node is the likelihood of a variable being a zero
or a one Once we have computed the beliefs at all
variable nodes we can make a decision on each bit and
thus decode the code Informally, the message passng
scheme proceeds as follows. Every node sends a proba-
bility vector to each of its neighbours. Suppose Y has
two neighbours X and Z. The node X sends a mes-
sage to Y which, roughly speaking, is the information
X knows about thestateof Y but Y doesnot. Thenode
Y combines this information with its own information
and sends a message to Z with the information that X
and Y know but which Z does not. Similarly Y takes
the message from Z and after adding its own informa-
tion sends a message to X. T his procedure is carried
out for all nodes in paralld and if there are no cycles
the messages reach a deady date. The belief at Y is
then obtained by combining the seady state messages
from X and Z and the local evidence at Y. The need
for having a cyde free graph is o that evidence is not
multiply counted after going around a cycle. While us-
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Since all bipartite
graphs for Gallager
codes have fixed
degree nodes and
the expected girth of
a random graph of
fixed degree
increases
logarithmically in the
number of nodes in
the graph, a tree-like
neighbourhood
assumption is true
with high probability
with increasing
number of nodes,
thus ensuring that
Gallager's algorithm
gives the correct
answer with high
probability.

ing Gallager's algorithm if the number of message pass-
ing rounds is small, there will be no multiple copies of
the same node in the unwrapped graph and we may
consider the bipartite graph as a tree. However thisis
not the case when there are a large number of decod-
ing rounds. To make the analysis ample, Gallager gave
explidt congructions of graphs whose girth logarithmi-
cally increased with the number of variable nodes. Since
all bipartite graphs for Gallager codes have xed degree
nodesand the expected girth of arandom graph of xed
degree increases logarithmically in the number of nodes
in the graph, a tree-like neighbourhood assumption is
true with high probability with increasing number of
nodes, thus ensuring that Gallager's algorithm givesthe
correct answer with high probability.

Gallager codes were generalised by Sipser and Spid-
man in 1996 to expander codes represented by expander
graphs An expander graphisagraph in which every set
of vertices has an unusually large number of neighbours.
Ther congruction used the fact that there exis graphs
that expand by a constant factor but have only a linear
number of edges. They showed that they could obtain
asymptotically good, linear codes that had linear time
decoding algorithms. Generalizations were also made
in 2001, by Luby, Mitzenmacher, Shokrollahi and Spid-
man, to randomly construct irregular graphs, that is,
those where the degrees of variable or constraint nodes
were not congant. The error correcting capability for
irregular graphs was shown to be strictly greater than
that possible using codes with regular bipartite graphs.
In 2001 Richardson and Urbanke showed that one could
correctly compute to arbitrary precison, the average
probability of bit error even if the graph has cydes, by
jug calculating the probability of error when the graph
does not have cycdes. Thus an accurate analysis of the
performance of such codes is possble even in the pres-
ence of cycles. In fact it was shown in 2001 by Richard-
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son, Shokrollahi and Urbankethat one could come very
closeto the Shannon limit of the channel using irregular
low-density parity check codes.

We thus see that low-density parity-check codes, in-
vented by Robert Gallager forty years ago have been
shown to have remarkable potential for error correction
usngrelatively simple decoding schemes. The construc-
tion and analyss of such codes is an impressive theo-
retical achievement. On the practical side they have
immense potential in applications that require the use
of long codes. The Tornado Codes described inthe rst
part of thisarticle are one example of low-dengty parity-
check codes that correct erasures and are used to miti-
gatethe eRects of packet loss over digital networks. Un-
doubtedly other applications will use these codes in the
years to come.

Suggested Reading

[1] A'S Madhu and Aditya Nori, Decoding Codes on Graphs: Low Density
Parity Check Codes, Resonance, Vol. 8, No. 9, pp.49-59, 2003.

[2] Robert G Gallager, Low Density Parity Check Codes, Ph.D. thesis, MIT,
1963.

[3] M Sipser, D A Spielman, Expander Codes, IEEE Transactions on
Information Theory, Vol.42, No.6, pp. 1710 -1722, 1996.

[4] Stephen B Wicker, Saejoon Kim, Fundamentals of Codes, Graphs, and
Iterative Decoding, Kluwer International Series in Engineering and
Computer Science, 2003.

[5] T J Richardson, M A Shokrollahi, R L Urbanke, Design of Capacity
Approaching Low-Density-Parity-Check Codes, IEEE Transactions on
Information Theory, Vol. 47, No.2, pp. 619-637, 2001.

[6] T J Richardson, R L Urbanke, The Capacity of Low-Density Parity-
Check Codes Under Message-Passing Decoding, IEEE Transactions on
Information Theory, Vol.47, No.2, pp. 599-618, 2001.

[71 M G Luby, M Mitzenmacher, M A Shokrollahi and D A Spielman,
Improved Low-Density Parity-Check Codes Using Irregular Graphs,
IEEE Transactions on Information Theory, Vol.47, No.2, pp 585-598,
2001.

[8] J Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference, Morgan Kaufmann Publishers, San Mateo, CA,
1988.

%’ .

Address for Correspondence
A S Madhu and Aditya Nori
Department of Computer
Science and Automation
Indian Institute of Science
Bangalore 560012, India.
Email: madhu@csa.iisc.ernet.in

aditya@csa.iisc.ernet.in

=
H]

RESONANCE | February 2004 "

49



