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1.Int roduct ion

Iterat ive decoding is a widely used technique in mod-
ern communications systems. The Low Density Par-
ity Check (LDPC) codes of Gallager were the earliest
codes for which iterat ive decoding techniques were de-
¯ned. These codes along with a simple iterat ive decod-
ing algorithm were int roduced in the r̄st part of this
art icle. Here we describe a probabilist ic iterat ive decod-
ing scheme, also proposed by Gallager, and show how
many modern iterative decoding algorithms are derived
from his basic scheme.

2. L DPC Codes

LDPC codes are codes which have sparse parity check
matrices. For a linear code where each codeword has n
symbols, of which k are message symbols, a parit y check
matrix is an (n ¡ k) £ n mat rix of linearly independent
rows. Each row of the matrix represents an indepen-
dent const raint that the symbols of the codeword must
sat isfy. For example, if a parity check mat rix for a bi-
nary code of length 5 with 3 message symbols has a row
11100, it represents the constraint that the r̄st three
bits of every codeword should sum to 0 modulo 2. A
binary parity check mat rix is said to be sparse if the
number of ones is small in comparison to the number
of zeros in the matrix. One can achieve sparseness by
restrict ing each row and column of the mat rix to have a
constant number of ones. An (n;c; r ) LDPC code is a bi-
nary linear code which has a sparse parity check mat rix
with c ones in each column and r ones in each row. For
a (c; r ) sparse parit y check mat rix, each variable part ic-
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Figure 1. A bipartite graph
representing an LDPC
code.

LDPC codes can
be viewed as

bipartite graphs
where one set of

nodes represents
codeword or

variable nodes and
the other set

represents
constraint nodes.

ipates in c parity check equat ions, while each equation
involves exactly r variables. LDPC codes can be viewed
as bipartite graphs where one set of nodes represents
codeword or variable nodes and the other set represents
constraint nodes. For binary codes the requirement im-
posed by each constraint is that the value of neighbours
of each constraint node must sum to 0 modulo 2. A
typical bipartite graph for an LDPC code is shown in
Figure 1.

These simple codes can be decoded very e± cient ly. We
will now describe Gallager's algorithm for probabilis-
tically decoding LDPC codes and carry out a formal
analysis.

3. Decoding L DPC Codes Probabi list ically

In his doctoral thesis Gallager introduced two low com-
plexity decoding operat ions for his low-density parity-
check codes. He also analysed the performance of his
codesfor a special classof low-density parity-check codes
{ those corresponding to graphs with high girth, where
the girth of a graph G is the length of a shortest cycle
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in G. The previous article described his `hard decision'
decoding algorithm where for binary codes, the entit ies
involved in the computation are the digit s 0 and 1. I t
is often the case that we have probabilit ies available for
received symbol values. In such cases it is pro¯table to
use `soft -decision' decoding algorithms so that we can
exploit the fact that the reliabil it ies of received symbols
are available.

We ¯rst dē ne the model of the channel used for com-
municat ion. We assume that the channel is used to
transmit binary information and denote by p(ajb), the
probability that an a 2 f 0;1g was received at the chan-
nel output , given that b 2 f 0;1g was its input . Thus,
if a = b, p(ajb) represents the probability of error-free
transmission. On the other hand if a 6= b, p(ajb) would
be the probability of a bit being ° ipped (possibly due to
channel noise). These probabilities const itute the chan-
nel model. Consider a codeword c consist ing of n sym-
bols over thechannel input alphabet , that ist ransmit ted
over this channel, and let y be the n symbol output of
the channel. The objective of probabilist ic decoding is
to determine a word x = (x1; : : : ; xn ) such that the fol-
lowing funct ion is maximized,

p(x i jy); 1 · i · n:

This kind of decoding st rategy is called the maximum
a posteriori probability (MAP) decoding strategy as it
at tempts to est imate each symbol of the codeword that
was t ransmitted, given the received vector. We will use
a simple result based on propert ies of generat ing func-
tions, for our analysis. We will ¯rst give this result be-
fore describing the decoding algorithm.

Consider a bit sequence of length m with the i th bit
having a probability pi of being equal to a 1. Let us
assume that thebits are independent ly distributed (that
is, for every j 6= k, the probability of the j t h bit being
equal to a 0=1 has no bearing on the probability of the

It is often the case
that we have
probabilities
available for
received  symbol
values. In such
cases it is profitable
to use ‘soft-decision’
decoding algorithms
so that we can
exploit the fact that
the reliabilities of
received symbols
are available.
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kth bit being equal to a 0=1). For such a sequence, the
probability that the m bit sequence contains an even
number of ones is computed in the following manner.
The coe± cient of x i in the expression

mY

i = 1

((1 ¡ pi ) + pi x)

is the probability that the length m sequence contains i
ones. The expression

mY

i = 1

((1 ¡ pi ) ¡ pi x)

di®ers from the previous one only in the sign of the
coe± cients of the odd terms. Therefore, the expression

Q m
i = 1 ((1 ¡ pi ) + pi x) +

Q m
i= 1 ((1 ¡ pi ) ¡ pi x)

2

contains only terms of even degree, and the coe± cient
of x i in this expression denotes the probability that the
sequence has i ones. Thus the probability that the m
bit sequence contains an even number of ones is given
by

1 +
Q m

i = 1(1 ¡ 2pi )
2

and the probability that the sequence has an odd num-
ber of ones is given by

1 ¡
Q m

i= 1(1 ¡ 2pi )
2

:

Now, suppose we rest rict ourselves to sequences of m
bits(call this set S) whose individual bits add up to zero
modulo 2. ThereforeS = f (x1; : : : ; xm ) 2 f 0; 1gm :

P m
i = 1

x i = 0g. Given a randomly chosen sequence x 2 S, is it
possible to determine the probability that a part icular
bit , say the dth bit xd, is a one? We denote this con-
dit ional probability by p(xd = 1jM ), where M denotes
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In the context of
binary error-
correcting codes,
specifically linear
block codes, a parity
check equation
consisting of m
variables is satisfied
if and only if these
variables add up to a
zero modulo 2, or in
other words it has an
even number of ones.

the event f x 2 Sg. Using Bayes rule, we have

p(xd = 1jM ) =
p(M jxd = 1)pd

p(M )

This means that in order to compute p(xd = 1jM ), we
¯rst compute the probability that x 2 S conditioned on
the event that the dth bit xd, is a one, that is, p(M jxd =
1). This can be computed by calculat ing the probability
that the remaining m¡ 1 bits contain an odd number of
ones. From our previous discussion, we know how to
compute this probability and this is given by

1 ¡
Q

1· i · m ; i 6= d(1 ¡ 2pi ):
2

(1)

In the context of binary error-correct ing codes, speci¯-
cally linear block codes, a parity check equat ion consist -
ing of m variables is sat is̄ ed if and only if these vari-
ables add up to a zero modulo 2, or in other words it
has an even number of ones. Consider an (n; c; r ) LDPC
code C; we know that each variable representing code-
word componentsparticipates in exact ly c parity checks.
Now assume that each of these checks can be indepen-
dent ly sat is̄ ed. Also assume that we have as channel
output, the word r . Then the probability p(xd = 1jr )
can be easily computed. Denote by pi (xd = 1jr ), the
probability that xd = 1 and sat is̄ es the i t h parity check
equat ion. By the earlier independence assumpt ion, we
have

p(xd = 1jr ) =
cY

i= 1

pi (xd = 1jr ):

Now each pi (xd = 1jr ); 1 · i · c can be computed as
follows. For the sake of clarity, let us focus on the parity
check equat ion i = 1. If xd is to have a value one, then
therest of ther ¡ 1 variablesparticipat ing in parity check
equat ion (1) must contain an odd number of ones. Let
usdenote theser ¡ 1 variables as a sequence (y1; : : : ; ym )
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of length m = r ¡ 1. Let pi be the probability that yi

is equal to a one. This is the probability that the i th

transmit ted bit is equal to one condit ioned on the value
of the i th received bit, and can be easily computed as
follows.

p(x i jr i ) =
p(r i jx i )p(x i )P

x i 2 f 0;1g p(r i jx i )p(x i )

where x i ; r i are the i th components of the t ransmit ted
and received words respectively. p(r i jx i ) is a property
of the channel in quest ion, and p(x i ) = 1

2, since we as-
sume that codeword components are each equiprobably
distributed. Therefore, wecan now appeal to (1) to com-
pute pi (xd = 1jr ), which in turn, can be used to compute
the desired value of p(xd = 1jr ). Theaboveobservat ions
can be formally stated in the form of a theorem due to
Gallager.

Theorem 1. Let pd be the probability that the transmit-
ted bit xd in position d is a 1 conditional on the received
bit, and let pi l be the same probability for the l th bit in
the i th par ity check equation in which xd par ticipates.
Let the bits be independent of each other and let S be
the event that the transmitted bits satisfy j par ity check
constraints on d. Let Y denote the set of received sym-
bols. Then

P[xd = 0jf Y; Sg]
P[xd = 1jf Y; Sg]

=
1 ¡ pd

pd

jY

l= 1

1 +
Q k¡ 1

l= 1 (1 ¡ 2pi l )
1 ¡

Q k¡ 1
l= 1 (1 ¡ 2pi l )

:

4. P robabilist ic Decoding

Probabilistic decoding isan iterative decoding technique
used to decodecodese± ciently. Consider an (c; r ) LDPC
code C as described in Sect ion 2. This code can be rep-
resented diagrammat ically in the form of a parity check
treerooted at somevariable (recall that a variablerepre-
sentsa codeword component ), say xd, as shown in Figure
2. Edges in the t ree represent parity check const raints.



45RESONANCE  February  2004

GENERAL   ARTICLE

Figure 2. Parity check set
tree for an (n,j,k) LDPC
code.

For example, there is an edge e from the root of the
tree (representing variable xd) to a node u at depth 1
(assuming that the root is at depth 0) if and only if
xd part icipates in the parity check equat ion represented
by e. The other variables which take part in the par-
ity check equat ion represented by e are associated with
u, which is essentially a `supernode' . As an example, in
Figure 2, consider the¯rst (leftmost) edgefrom theroot .
This edge represents a parit y check equation involving
variables xd (the root ) and variables (1; 1); (1; 2); (1; 3)
(the supernode). This st ructure is repeated for subn-
odes (variables) in each supernode, thus resulting in the
parit y check tree shown in Figure 2.

We will now describe the probabilistic algorithm by il-
lustrating how the variable xd is decoded. As ment ioned
earlier, this algorithm runs iteratively. To start with, in
the ¯rst iteration, only bits in the ¯rst level of the parity
check set tree are involved in decoding xd. Recall that
these bits correspond to the variables that are engaged
in the c parity checks that xd part icipates in. Thus we
are limiting our attention to the c const raints that xd

is participating in. We are interested in computing the
likelihood rat io (LR) of xd, dē ned by p(xd= 0jy )

p(xd= 1jy ) , y being
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the received word. The computation of the LR for xd

where the probabilit ies are condit ioned on only the re-
ceived bits at level one of the parity check t ree then
follows direct ly from Gallager's Theorem 1. Note that
this is an approximation to what is required (as in the
exact solution, the probabilit ies are conditioned on all
the digit s of the received word), where the degree of ap-
proximat ion depends on the number of iterations of the
algorithm. In the second iterat ion we use the received
bits in the ¯rst two levels of the t ree for decoding xd.
As a consequence, bits that are not direct ly involved in
the parity check equation (at level one) for xd are also
used to decode xd. Here we ¯rst consider the bits in
the r̄st level of the t ree, and examine the c¡ 1 parity
checks connected to each bit, excluding the parity check
involving xd. Using these c¡ 1 constraints, we compute
the probabilit y that the bit in the ¯rst level of the tree
is a one conditioned on the received bits in the second
level of the t ree. We now use these new probabilit ies
for bits in the ¯rst level of the tree and recompute the
probability the LR for xd. The subsequent iterations of
thedecoding algorithm proceed in this induct ivemanner
unt il the LR gives a dē nite indication as to what the
bit xd should be decoded to. In other words, LR >> 1
implies that xd is most likely a 0, otherwise, xd = 1.

Now that we know how to decode a single bit , we can
repeat this procedure for other bits, thus decoding the
whole codeword. But this would result in a lot of re-
peated computat ions. An e± cient procedure to achieve
the same, could be formulated as follows. For each bit ,
say x wecomputea set of probabilities, where each prob-
ability is condit ioned on the received digit s involved in
any c¡ 1 parit y checks(notethat x must be a part of these
parit y checks). I t is easy to see that this set of probabil-
it ies has cardinality c. To compute the likelihood of an
arbit rary variable x, the probability we use is the one
obtained by omitt ing the parit y check involving x. The
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Belief propagation is
an exact algorithm
invented by Judea
Pearl that solves
probabilistic
reasoning problems
of singly connected
networks, that is,
those without cycles.

correctness of the decoding procedure depends on the
assumpt ion that the parity check constraints can be sat -
is̄ ed independent of each other. This assumpt ion does
not hold if thegraph represent ing thecode hascycles. In
spite of this limitat ion, this decoding procedure works
extremely well in practice. Like the hard-decision de-
coding algorithm, the soft -decision decoding algorithm
just described can be implemented as a message passing
decoder.

5. L at er Wor k

The algorithm just described is an instance of a belief
propagation algorithm. Belief propagat ion is an exact
algorithm invented by Judea Pearl that solves proba-
bilistic reasoning problems of singly connected networks,
that is, those without cycles. By an exact algorithm we
mean one that ¯nds exact solutions as opposed to ap-
proximate solutions. Here what we want to measure at
each node is the likelihood of a variable being a zero
or a one. Once we have computed the beliefs at all
variable nodes we can make a decision on each bit and
thus decode the code. Informally, the message passing
scheme proceeds as follows. Every node sends a proba-
bility vector to each of it s neighbours. Suppose Y has
two neighbours X and Z. The node X sends a mes-
sage to Y which, roughly speaking, is the information
X knows about thestateof Y but Y doesnot. Thenode
Y combines this informat ion with it s own information
and sends a message to Z with the information that X
and Y know but which Z does not . Similarly Y takes
the message from Z and after adding its own informa-
tion sends a message to X . T his procedure is carried
out for all nodes in parallel and if there are no cycles
the messages reach a steady state. The belief at Y is
then obtained by combining the steady state messages
from X and Z and the local evidence at Y . The need
for having a cycle free graph is so that evidence is not
multiply counted after going around a cycle. While us-
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Since all bipartite
graphs for Gallager

codes have fixed
degree nodes and

the expected girth of
a random graph of

fixed degree
increases

logarithmically in the
number of nodes in

the graph, a tree-like
neighbourhood

assumption is true
with high probability

with increasing
number of nodes,
thus ensuring that

Gallager’s algorithm
gives the correct
answer with high

probability.

ing Gallager's algorithm if the number of message pass-
ing rounds is small, there will be no multiple copies of
the same node in the unwrapped graph and we may
consider the bipartite graph as a t ree. However this is
not the case when there are a large number of decod-
ing rounds. To make the analysis simple, Gallager gave
explicit const ruct ions of graphs whose girth logarithmi-
cally increased with the number of variable nodes. Since
all bipartite graphs for Gallager codes have ¯xed degree
nodesand the expected girth of a random graph of ¯xed
degree increases logarithmically in the number of nodes
in the graph, a tree-like neighbourhood assumpt ion is
true with high probability with increasing number of
nodes, thus ensuring that Gallager's algorithm gives the
correct answer with high probability.

Gallager codes were generalised by Sipser and Spiel-
man in 1996 to expander codes represented by expander
graphs. An expander graph is a graph in which every set
of vert ices has an unusually large number of neighbours.
Their const ruct ion used the fact that there exist graphs
that expand by a constant factor but have only a linear
number of edges. They showed that they could obtain
asymptotically good, linear codes that had linear t ime
decoding algorithms. Generalizations were also made
in 2001, by Luby, Mitzenmacher, Shokrollahi and Spiel-
man, to randomly construct irregular graphs, that is,
those where the degrees of variable or constraint nodes
were not constant . The error correcting capabilit y for
irregular graphs was shown to be st rictly greater than
that possible using codes with regular bipartite graphs.
In 2001 Richardson and Urbanke showed that one could
correctly compute to arbitrary precision, the average
probability of bit error even if the graph has cycles, by
just calculating the probability of error when the graph
does not have cycles. Thus an accurate analysis of the
performance of such codes is possible even in the pres-
ence of cycles. In fact it was shown in 2001 by Richard-
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son, Shokrollahi and Urbanke that one could come very
close to the Shannon limit of the channel using irregular
low-density parity check codes.

We thus see that low-density parity-check codes, in-
vented by Robert Gallager forty years ago have been
shown to have remarkable potent ial for error correction
using relat ively simple decoding schemes. The const ruc-
tion and analysis of such codes is an impressive theo-
ret ical achievement . On the pract ical side they have
immense potent ial in applicat ions that require the use
of long codes. The Tornado Codes described in the r̄st
part of thisart icle areoneexample of low-density parity-
check codes that correct erasures and are used to miti-
gate the e®ects of packet loss over digital networks. Un-
doubtedly other applications will use these codes in the
years to come.


