RepStore: A Self-Managing and Self-Tuning Storage Backend with Smart Bricks

Zheng Zhang, Shiding Lin, Qiao Lian and Chao Jin
Microsoft Research Asia
{zzhang, i-slin, i-glian, t-chjin}@microsoft.com

Abstract With the continuously improving price-
performance ratio, building large, smart-brick bdse
distributed storage system becomes increasinghadcive.
The challenges, however, include not only religpili
adequate cost-performance ratio, online upgradesd smon,
but also the system’s ability to achieve these goahs self-
managing and self-adaptive a manner as possiblethis
paper, we describe RepStore, a system that futfiése
goals. RepStore unites the self-organizing capgbif P2P
DHT and the completely autonomous, per-brick tuning
mechanism to derive a scalable and cost-effective
architecture.

RepStore employs replication for active write-irsiga data
and erasure-coding for the rest, strives to achithe best
cost-performance balance automatically and transpéarto
application, and does so in a completely distrilduteanner.
Our preliminary evaluations reveal that the systganforms
much as expected, achieving performance and réitiabi
closer to a 3-way fully replicated system with 0686 of
the cost.

1. Introduction
It is a long standing theme of the distributed eyst

research community to replace high-end device with managing

cluster of commodity components. To date, thisgtesi
philosophy has flourished especially in NOW/[1]-like
clusters, powering world-wide Web engines as well a
high-performance computing Grids.

The same revolution is unfolding in the field of
backend storage as well. Traditionally, this igfitory
of high-end disk arrays. Combined with the iSCSI
(SCSI over IP) protocol, the availability of hardea
assisted TCP/IP offloading, and the increasingly
improving price/performance ratio of commodity PCs,
network attached storage made by the so-caltedrt
storage bricks [3][8][11][12] is being actively
researched and developed. These
disruptive technologies: they do not necessarifgrof

with LAN-ready bricks, the architecture should be
scalable and flexible such that online capacity
provisioning as well as incremental upgrade can be
achieved. Furthermore, changing nature of workloads
implies that the system needs to be self-adaplite.
ultimate challenge, however, is to do all the abiovas
self-managing a manner as possible, which is of
paramount importance because human-based
management is the largest factor in the TCO(tarat ¢

of ownership) of such system.

Some of the above functionalities have been
accomplished inside state-of-art disk array, one
example is the self-adaptive capability of HP
AutoRAID[24]. AutoRAID is hierarchical, using
mirroring for write-intensive data and RAID5 foreth
rest. This is a single-box solution and uses mégatta
control the placement of data among disks comisin
the disk array. We believe that brick-based disted
storage should offer the same self-adaptive capabil

RepStore leverages the recent advancement of the
peer-to-peer technologies to derive many of it$- sel
characteristics. Layering over DHT
(distributed hash table)[16][19][22][25], RepStore
presents a large, abstract storage space that is
populated by participating bricks. The self-orgamgz
capability of DHT grants RepStore the potential to
handle both failure and online provisioning gradigfu
Just like HP AutoRAID, RepStore employs replication
for active write-intensive data and erasure-codiy
the rest, strives to achieve the best cost-perfocma
tradeoff automatically and transparent to applaati
and does so in a completely distributed manner.

We have completed the preliminary design and our
detailed evaluation verifies that RepStore perfoass

systems arexpected. Using trace-driven simulation, our rasult

show that we can achieve the same level of

the same level of performance as the next higherperformance and reliabilty as a 3-way replicated

ranked technologies right away, but deliver enough

storage, while with only 60% of the cost. Furtherejo

value to be adopted. As the component technologiesthe system is robust enough to deal with changes of

continue to improve, eventually they will take an
increasingly larger market share from disk arrage T
system described in this paper, RepStore, falts timt
line of research.

workload.

The remaining of this paper is organized as follows
Section-2 gives a brief introduction of P2P DHT.eTh
main architecture of RepStore is described in 8eedi

Smart brick based systems such as RepStore musBection-4 performs workload studies to establisgh th
accomplish a set of goals in order to be successful foundation of the self-tuning aspect of RepStore.

They must be extremely reliable, while simultandépus
offering adequate cost-performance ratio. Beindtbui

Performance data is presented in Section-5. Wercove
related works in Section-6 and conclude in Section-

2. Background: P2P DHT Tapestry[25]. RepStore is layered over a DHT called
XRing[26], which we have developed to target
environments where churn rate is low and is anlifiea
for RepStore.

The common terminology referring to a peer in
DHT is “node”, which we will adopt in this sectiom

the RepStore context, itWiII.beasmart brick. XRing uses QY) state to bring 1-hop lookup
There exist many different DHT proposals pertormance, iie. routing from any node to a paint
[16][19]22][25], but they all share a few common o space takes one network hop to the destination.

invariants. In DHT, nodes join a very large (elg0- XRin : ; - - :

. .) N g achieves this by first building a O(lprouting
bits) space with random ids and thus partitionsipgce a6 "calledingers using prefix-based routing scheme
unlfOfme. The id can be, for instance, MD5 OVer a mych like Pastry. A node then uses fingers to brasd
node’s IP ad(EIress. An prdered set Of_ nodes,. in, turn any membership change event (node addition and/or
allows a node’s responsib@neto be strlctl)_/ c_zlgfmed. deletion) that it has observed in its leafset. €hes
Let p be a nodexs predecessor. One definition of @ iications propagate with O(I0§ latency bound
pode S ZOneIs simply the space betwgen the I,DSOf ! and reach all nodes with extremely high reliability
immediate predecessor ID (non-inclusive) and its ow allowing every node to build another layer of ragti

ID. In other words:zongx) = (ID(p), ID(X)]. This is tapje that records all other nodes. We emphasiee he
essentially how consistent hashing [22] assign®gon hat O() state is not an issue: if each routing entry is

to DHT nodes (Figure 1). 32bytes, a 1M-node XRing will require 32MB memory

zone()=(1D(p), ID(X)] per node even if the routing table is kept comjeite
~ v AP A A A A A A memory. If each node is 100GB, this amounts to a
~ T §|<’ \f \TJ T \TJ ~ Y system with 100PB capacity, an extremely largeesyst
Ro(X) 3. RepStorearchitecture
) 2141 i

Figure 1: The simplest P2P DHT — a ring, the zone and the basic 3.1 Obj ective and System model

routing table that records r neighbors to each side. The target deployment context of RepStore is data

o:f onellmar?inebsl thehzonﬁ be.ing.;.ha.sbh bléct]et Ln @Ncenter and/or enterprise internal. The overarching
ordinary hash table, then the ring isliatributed hash ,yective of RepStore is to achieve the best cost-
table Given a key in the space, one can always resolve

. ; 4 . . - performance tradeoff, and does so with as little
which node is being responsible. This numericatepa o yministration oversight as possible. Specificajiyen

is what RepStore as well as other DHT-based storage, 15| storage capacity constraint (and hencel tota
systems use to present the upper-layer applicaioa parq\are cost), we would like the system to offes t

storage space. Objects are Keyed with randomizedl id oo response time automatically. Management of
the same length (e.g 160 bits), and dropped oréo th RepStore should involve very little other than

node that covers their keys. Therefore, storageyecommissioning failed components and adding new

utilizat_ion of all nodes are uniform (_s_tatistically ones in response to capacity and performance aeed,
speaking), as long as the storage capacities aetab o g,ch tasks should be performed online with

the same across nodes. When a new node arrivies at t minimum performance disturbance. To state it

system, it will split zone with the one who covéssid. differently, the ambition of RepStore is to reptedhe

Like;wige, whgn a no_de departs, its zone is tgk&'ﬁ ov functionality of HP AutoRAID, but to do it with afm
by its immediate neighbor. Thus, membership changeyt gmart storage bricks instead of inside a diskyar

in DHT only involve object redistribution amongstl) g gjgnificant challenge is that RepStore has to
nodes, and is ideal to implement a scalable anibfe 5.00mpjish this without any centralized control.

storage system. _ , For the time being, RepStore exposes an object
To harden the ring against system dynamism, €achiyierface and is posed as a storage layer thadmesf

nod_e records| _neighbors fo each side in the ponyeen high-end disk array and tape library, ofter
rudlmentary routing table that is commonly known aS high-availability guarantee no less than the diskya
leafset Neighbors exchange heartbeats to keep theiryqyever if outfitted by advanced technologies (e.g
leafsets up to date. A ring is the simplest _P2P PHT high-performance SAN., large NVRAM per drive etc),
whose lookup performance is K)(whereN is thg we would like RepStore to challenge disk array’'s
number of nodes in the system. Elaborate algorithmspe tormance as well. On the other hand, in terms of
built ‘upon the above concept achieves Qg capacity, with the continuously improving byte per

performance with O(ldy) states. Representative . ratio of commodity disk drives, the other
systems include Chord[22], CAN[16], Pastry[19] and

possibility is for RepStore to be the tape library
replacement. RepStoreapplications may include
distributed file system, volume manager or othew ne

An object stored inside RepStore is identified hy a
OID of 160bits. The OID can be assigned by RepStore
applications such as volume manager, or is a hesh o

ones. These applications can be layered on onethe object's content to implement an immutable
common RepStore instance if desired, since RepStorearchival system. This ensures that all bricks wilve

is agnostic to what gets stored inside.

We assume a failure-stop model, and that failure is
rare and independent. In reality, these assumptoms
true only to a certain extent, for instance indindt
disk drive crash.

3.2. Architecture and protocol

RepStore approaches its goal by leveraging the self
organizing properties of P2P DHT and embeds within
each brick self-monitoring and feedback-loop based
optimization mechanisms to tune storage towardgbet
cost-performance balance. Unlike other brick-based
systems, RepsStore is stringed together by usinqRi
as the underlying one-hop DHT routing infrastruetur
As discussed earlier, using P2P DHT as the bottom-
layer lends us with the desired property of self-
organizing as well as ease of online provisioning.

3.21. Addressing space and data layout
oD | ” I [object
~__ ————— :| Checksum
X:ROOtBnW O® Node
Y fan) fan)
v ¥ Y

Figure 2: Data layout for RepStore. ES and RS denote Erasure-
coded and Replicated set, respectively. Four sets are shown (a, b
¢, and d). We depict how set may be in either replication or
erasure coding.

same storage utilization. This property may nodhbl

bricks have different capacities. In this case,idea of

virtual node can be borrowed: a physical brick is

broken down into a number of virtual bricks of =efil

size, and then each joins XRing separately.

To achieve the best cost-performance tradeoff, a
RepStore object is stored in either one of the two
coding schemasreplication and erasure coding. For
replication,r identical replicas are stored, wheris an
odd integer. With erasure coding, an object is
combined withm-1 other objects, and then generates
m check objects. Therefore, the storage overhead of
replication and erasure coding is and n/m
respectively. We choose the three parametemsand
n such that the HA guarantee for a given piece ¢td da
is about the same to tolerate the same number of
concurrent brick failures. The default value that use
is 3, 4 and 7 (refer to [27] for the calculationdafault
parameters).

These two coding schemas provide different
performance characteristics, as will be explained
shortly. RepStore manages the coding schema of any
object automatically. In order to achieve full
transparency with minimum performance impact,
RepStore adopts a data layout as depicted in Fgure
Briefly speaking:

» m objects whose OIDs differ with only the last logy(
bits are grouped together into a set, setkey o€hvhi
is the OID with last logt) bits being zero.

The brick that owns the setkey in the total storage
space is called theoot brick of objects in the set.
The request to objects will be forwarded to roathor
and the last log) bits of OID decides its offset in
the set.

A replicated set, oRS in short, is spread in
consecutive bricks, starting from the root brick.

RepStore presents an abstract storage space of An erasure coded set, OES is spread inn

160bits, and each brick joins RepStore using then¥R
join protocol with a random id. As a result, theato
space is (statistically speaking) uniformly paotigd,

as in any such DHT-based storage system(pond[17],
PAST[20]). A brickx owns a portion of the total space,
called itszone.Specifically,x.zone= (predx).id, x.id],
where predx) is the brick whose id immediately
proceeds that of. Using XRing's routing function, any
brick can lookup any key in the space — and hence
reach any other brick, by one network hop.

consecutive bricks, again starting from the roatkor

Normally, thei-th (i..[0..n-1]) brick away from the

root brick stores théth object in the set, with the

last n-m bricks store the checked objects. However,
repair done in response to online provisioning

(adding new brick) or decommissioning may change

that order.

This layout is particularly helpful to store
conventional disk blocks for a volume manager, ¢iou
other alternatives exist as well. For examplehandase
of a file system, a file can be broken down into m

fragments, and same layout arrangement as above igueues at the disk drives, further degrading
used for all fragments. performance.
3.2.2. Access protocol Therefore, the main thrust of RepStore is self-
An access to an object always starts from its root optimizing to constantly tune towards the best -cost
brick. This is how changing code schema is made performance tradeoff. This is accomplished by tiragk
transparent to applications, since the root brisk i the workingset and using replication to code thé ho
determined by the setkey, which relies on OID only. and write-intensive data and erasure coding fordkée
The root brick also functions as the serializatmint How necessary statistics are gathered and when the
for operations that would manipulate state and/or tuning is triggered is the focus of Section-4. Rdtgss,
coding of the set, and hence gives us a much simple self-tuning employs one primitive that first create
design. new set with the target coding schema, and then
Request arrives at the root brick by using theesetk initiates a transaction that allow the old set ® b
as the lookup key to route through XRing. This khal garbage collected later. The root brick is resgdasi
always succeed (since the DHT space does not havdor coordinating all the above processes. Our carre
hole) and with high probability be done with one implementation admits read access while these @sang
network hop. What happens next depends on theare ongoing but defer write requests. A more adednc
operation as well as the coding schema of the tbjec implementation will allow write to proceed
* Replicated object. Read will retrieve the objectnir concurrently as well, similar to online volume
the set and return right away. Write employs a 2- migration.
phase commit to update the other replicas. 3.24. Failure-handling and online provisioning
 Erasure-coded object. The root brick keeps a map The brick membership in RepStore may change as a
which tells what brick among the bricks is result of taking out dead (or old) brick and/or mdd
responsible for which objects in the set. The nsap i new ones. The ability to do both online allows the
built and maintained on-demand: the first timegshe system to grow gradually with new breed of bricks.
is formed, and subsequently updated when changes herefore, this part of design is integral to RepSs
occur in the brick membership (we will describesthi self-managing capability.
shortly). Thus, a read request is forwarded to the The basic principle is to ensure that the replirati
brick that keeps the requested object. A write set and erasure-coded set adhere to their invariant
operation will retrieve all the check objects adlae Due to space limitation, we refer readers to our
the object being updated, and then update allehih technical report for more details [27] and will piglive
again using a 2-phase protocol. This amounta-to & brief outline here.
m+1 reads and-m+1 writes. o P
What we just described is failure-free cases. Feslu oy
are handled by operating over the redundancy atbrd L
by the coding schemas, which we will not discuss
further here and will refer to our full report[27].
3.23. Sef-tuning
Having described the operation, it is now easye® s
how the two coding schemas afford us with the
flexibility to play with the cost-performance traufé
We have already described that we have chosen
parameters such that the two offer the same léugPo
The capacity overhead of replication versus erasure

t ycrashin
z takeover

_ . Figure 3: Handling failure and addition in RepStore.
code isr versusn/m, for instance 3:(7/4). On the other The HA invariants include two conditions:

hand, the two differ dramatically on performancec® 1. A set is stored starting from its root brick (i.e.
a read request arrives at the root brick, eithelirap the brick that owns the setkey).

schema entails one disk access, but erasure coded o For a replication set and erasure-coded set, they
object may require one more network hop if the abje are spread in consecutivendn bricks (refer to

is not in the root brick. As in RAID, erasure coded Figure 3), respectively.

objects are more expensive serving writesi-2¢1) Membership change is a basic service provided by

read and writes. Whereas a replicated object 0”|YXRing, since XRing is a one-hop-anywhere DHT.
requiresr writes. More disk accesses will build longer \whether the repair is done right away is a polasge.

Enforcing the first invariant is straightforwarch |
case of new brick join, sets that should be roated
are copied over. If it is for a brick crash, thédret
neighbor brick on the right now becomes the new roo
brick for any sets that were rooted at the depavtéexk.
Note that each brick can calculate what sets avedo
at it completely independently.

When this is done, the second invariant
reinstituted. This will involver and n bricks for

is

the total number of objects ever accessed in ttieeen
trace. V(w)[j] is 1 if the j-th object is accessed in
window i, and O otherwise. Theeighted workingset
vector V*(w;) differs from V(w;) only in that each
element records the number of accesses to the
associated object, instead of a binary flag. Théhawe
with which we understand the workingset change is
through looking at correlations of these vectorsr F
instance, to understand the change between window

replicated sets and erasure-coded sets, respgctivel and j, we can compute the normalized dot product
Whatever the course, there is always one brick whobetweerv(w) andV(w;), or betwee/*(w;) andV*(w)

should now host some data of the set affected. iShis
performed through the root brick, which instrudte t
copy (for brick addition) or reconstruction of &pé of
data (for brick deletion) to that new brick. Forickr
addition, there is also one brick gets excludednfro
storing some data of affected sets, and the rdok br
instructs that brick to garbage collect these datevell.
Figure 3 shows the end results of an exemplankbric

for a different perspective.

We processed two traces: the cello disk trace from
HP[21] and RES file system trace from Berkeley[18].
Cello trace is gathered at server side of a tinmasipa
system at disk block level for a one month period.
Berkeley RES trace is collected from client sidelaf
HP 7000 workstations on file level for half a ye¥re
have investigated different time window; the result

crash and addition. Since the repair is serialized presented here uses the window size of a day.

through the root brick, the all brick-to-object map
updated for the set being repaired.

The more complex part is to allow concurrent
access to data when repairs are being made. That is
a problem for read access because the read prasocol
fault-tolerant to begin with assuming enough
redundancy exists to reconstruct the data. Car¢ lbeus
taken to handle write. Our approach is to trigder t
repair of set being written right away.

4. Workload analysis

As discussed earlier, RepStore tries to achieve the
best cost-performance tradeoff by devoting higher

storage overhead to write-intensive workingset. thisr
to work, the necessary conditions must be thath&) t
workingset is generally small and B) it does chabige
changes relatively infrequently. Without meeting th
first condition, mixing coding schemas with diffate

cost/performance tradeoffs can not possibly work.

Likewise, without the second, tuning is either not

necessary or brings too much overhead and wipes out

the benefits.

Past research work on storage systems have verified

that the working set size is usually small [21].u%h
condition A is generally met. Intuitively, conditioB
should hold as well. However, empirical evident are
lacking. Here, we present the methodology as well a
the results that support both conditions.

Let a trace of application 1/0 access be divideth wi
a fixed time window. Further, let vectdf{(w;) record
unique objects accessed in theéh window w;. V(w;),
called theworkingset vectqris thus a representation of
workingset in the-th window. The size of the vector is

0.9

— Weighted WorkingSet Content
--- WorkingSet Content

[
™

%Set
>~

~

Correlation of Workin:
o o o o
w o

=
N
%

0.1

0 10 15 20
Days Blstance

Figure 4: Workingset correlation curves for the Berkeley trace on
a daily granularity. Solid line is for active workingset.

0.9

— Weighted WorkingSet Content

08 -—- WorkingSet Content
73
Yo7
£
o6l ~_
[
5058 0 TTTEmmmeeald
=
L
T 04
o
8 0.3

0.2

0.1 : : :

0 2 12 14 16

6 8 10
Days Distance
Figure 5: Workingset correlation curves for the cello trace on a

daily granularity. Solid line is for active workingset.

For a given trace, we compute the correlation
betweerv(w) andV(wi.4), whered is 1, 2, 4, 8... tillK.
K is 32 and 16, for the Berkeley and cello trace,
respectively. We average through all possilita each

value ofd and present & points curve, called the

correlation curve We then repeat the same but use the

weighted workingset curve*(w;) instead. The results

are presented in Figure 4 and Figure 5, for Beykele
and cello respectively.

Focus first on the Berkeley case. The correlation
curve for the workingset vector is flat and low,
indicating that the daily footprint is rather ramdo
across time. The active workingset, representethby
correlation curve of the weighted workingset vectsr
rather different. It is very high for smadl and then
decreases when gets larger. Recall thad is the
distance between two vectors. This clearly sugghats
the active workingset does change over time, and
changes slowly (i.e. hourly tuning will be suffioig
The cello trace shares with the Berkley trace ® th
extent that correlation of the active workingset is
stronger and that it also decreases with longee tim
span, but the curve is flatter and that the coticeieof
unweighted workingset is pretty high (>0.5) as well

Confirming with prior findings, the size of a daily
workingset is about 10% and 15%, for Berkeley and
cello respectively. Furthermore, 90% of the accesse
are to the 8% and 1% of the daily workingset. These
combined with the analysis over the correlatiorvesr
indicate that the RepStore approach is likely to be
effective.

5. Experiments

In what follows, we will collectively call the tdta
capacity dedicated to replicated data and erasadeet
data as hot space and cold space respectively.
Intuitively, the performance will continue to riss hot
space increases, until a “knee” after which theitebs
no more significant improvement. The larger the hot
space, on the other hand, means higher storage cos
whereas when the hot space is below some critical
value, changing coding schema may be triggered too
often such that we will see a negative performadmitce
to the point that we might as well freeze the sysigo
a static configuration. Thus, adequate tuning poikc
necessary.

We have studied a variety of different policies.eDu
to the space limitation, we only report the polidgU-

W (Least-Recent-Used-Write) which is used in HP
AutoRAID. In RepStore, this tuning algorithm is
employed in each brick for all the sets that rootito
based on its local statistics. Specifically:

Nothing is done upon a read request.

Upon a write request, if the set is already repdida
update its recency; otherwise it is re-coded into
replication set. In the latter case, tuning isgeiged.

At the tuning time, if the size of hot space excead
given quota (e.g. not more than 5% of total unique
blocks can be in replication form), the oldest terit
set is re-coded back into erasure.

Obviously, this policy tilts heavily towards the
active and write-intensive workingset. This makes

sense because write to erasure-coded set is more
expensive in terms of number of 1/O, minimizing ;i

in turn, will reduce queue length buildup at disk/es.
However, as we shall see, it pays a penalty fod rea
requests.

All performance results are based on replaying the
cello trace against an event-driven simulator that
models RepStore’s protocols in sufficient detefiimce
the total footprint of the trace is small (10GB)ia
number of bricks is only 32. The parameters for the
coding schema are=3, m/r=4/7. Thus, a set consists
of 4 blocks. Also, sets are randomly distributed to
bricks. We assume network latency is negligibled an
the main cost is disk latency which we set6ass
Requests to a disk are served in sequence. Tiathisr
simplistic, however we believe the results shoudd b
accurate enough to draw the conclusion.

5.1

The first group of experiments is to measure the
number of disk accesses, average latency of rexjuest
with different settings of hot space size. We use t
trace file in 920504 of cello, in which the workg® of
that day amounts to more than 25% of the total
footprint.

Overall performance

LRUW cello-920504

—#— Read

—<— Write

—— All

--{ =& Cost of tuning

S

sk ac

ERS

t

Accumulated number of di

2 4
Percentage of data coded in replication
Figure 6: Number of disk access versus percentage of data coded
in replication.

Figure 6 shows how the number of disk IO changes
with the hot space size. As expected, the LRU-W
affects mostly the accesses corresponding to waitels
tuning (i.e. the cost of tuning; shown as “tuning’the
figure), both decreases as hot space increasethand
knee is 6% (i.e. 6% of data is coded in replicgtia
which point the algorithm has captured the write-
intensive blocks in the active workingset. The bem
of accesses corresponding to read request, ortltee o
hand, hardly changes. Disk accesses due to tasog
decrease. The exception is when the hot space g%
which point there is no tuning because all objects
erasure coded.

Figure 7 takes a different perspective by counting
number of 10 per request type. When hot space is 0%
all data are erasure coded. So, each write request
involves 7 times of disk 10. The algorithm effeety

codes write-intensive blocks in active workingsas,
the same number drops rapidly down to 3 (the sfze o
replicated set) while adding space for replicatathd

In cello, a read request typically accesses a numbe
consecutive blocks. Since

read-intensive data are

configuration and examine how the system performs
along the temporal dimension.

5.2.
Next group of experiments takes a one-month cello

Robustness and responsiveness

mostly erasure-coded and are coded with replicationtrace (May 1992) as input to test the efficacy lud t

only when it is written, the number of IO per read
decreases very slowly (from 3.92 to 3.16), which
roughly indicates that, at that point, 26% of read
requests hits in hot space, i.e. 74% of read dada a
never written (for that day at least). As for tupicost,

the total access is composed of one access reads th

object, and 7 for writing the new erasure-coded set
The original set will be garbage collected lateicke

time so their effective cost is zero.
LRUW cello-920504

—+#— Disk IO per read request
—— Disk 10 per write request ||
—&— Disk read per tune
—a— Disk write per tune

Disk |0 per operation

Percentage of%iata codead in reph(?anon
Figure 7. Disk |10 per operation versus percentage of data coded
in replication.
Obviously, this policy heavily tunes towards
minimizing total number of 10, especially for write
The question is whether it pays off for the final

performance measure, namely the latency.

LRUW cello-020504
100 , :

T
—#— Read
—— Write
—— Al

o
=1

@
=1

N
=

Average latency (ms)

20

0 2 4 6 3 10
Percentage of data coded in replication
Figure 8. Average latency per request versus different size of hot

space percentage of data coded in replication.
Figure 8 shows that the overall performance in

terms of latency is rather adequate. With 3% data

coded in replication, the latency for write and male

tuning algorithm over a long run.

cello-920501-920531, Hot space size=6.0%
]]] —#— Replication

—+— Erasure

—=— Tuning

22

s)

m
[
=}

=3

@

o N b

Average latency of read requests (|

@

@

1[]5315
Figure 9: Average latency of read requests.

Figure 9 shows that the read performance after
tuning is much better than that of fully erasuredmo
though about 10% worse than optimal. This is bezaus
the tuning algorithm cares about write requestshmuc
more than read ones. It would be interesting tdoper
some optimization for read requests, e.g. cachddke
in root brick or use some more sophisticated tuning
policy.
cello-920501-920531, Hot space size=6.0%

—#— Replication
—+— Erasure
—=— Tuning

= =) o
=3 S =l

.
I=

Average latency of write requests

[
o

Igf;te 2=0 2=5 3b
Figure 10. Average latency of write requests.

Figure 10 shows that the write performance after
tuning is very close to that of fully replicated deo
This, in turn, means that the system is ratheraesige.
However, there are a few days that the algorithmsdo
not work that well, we are in the process of

understanding the cause.

5 10

requests are reduced to 43% and 46% comparing withg Related work

all erasure-coding, respectively.

From Figure 6, Figure 7 and Figure 8, we find that,
when we code 6% of data in replication, which
corresponds to a capacity saving of 40% companng t
a 3-way replication, the overall performance imgiof
latency is very close to optimal. We will now tatkes

One of the main P2P DHT applications has been
wide-area distributed storage service, with pioneer
works including OceanStore[15], Pond[17], CFS[7],
PAST[20] and Pastiche[6]. Though recent work of [4]
argues that, due to unpredictable nature of WAN
connectivity, some fundamental compromises have to

be made. RepStore defines its architecture forl3l
enterprise-internal, and aims at pushing the sttt

for P2P DHT-based storage backend by dramatically[4]
reducing the management overhead while retainiag th
best cost-performance tradeoff. Being layered overls]
XRing without assuming the availability of IP-level
multicast, however, there is nothing preventing (6]
RepStore from being deployed in a wide-area context
In fact, we believe that the lessons gained bygihasj [71
a robust and adaptive storage in a controlled, LAN-
based environment will be invaluable before takhmeat
ambitious step into wide-area. 9]

The philosophy of designing a storage system with a
sparsely populated storage space starts from P4}all
and Frangipani[23]. In the brick-based system
NASD[11], FAB[8], IceCube[13], and Google File
System[10] all aim at building extremely scalabtilb
cluster with high throughput. However, reducing
management overhead in a self-optimized and self-
tuned manner is not their particular focus.

The idea that storage should be self-adaptivesstart
from the exemplary work of HP AutoRAID and
IStore[5]. These are single-box solutions. RepStore[14]
replicates the functionality of HP AutoRAID while 45
expanding it to a brick-based distributed storage
without any centralized metadata. The objectiveetf
managing storage farm has been well articulated in[m
Self-*[9], WIND[3] and Hippodrome[2]. We believe
that the approach of RepStore where we leverage the

' [10]

[11]

[12]
[13]

[16]

self-scaling and self-managing property of P2P DET [18]
an interesting alternative.
7. Conclusion and futurework (19]

While building smart-brick based storage backend is
potentially cost-effective, it is of paramount initance
to have an architecture that not only is reliabtglable
and flexible, but also delivers these goals in B se
managing and self-tuning manner. We believe that[21]
leveraging the self-organizing strength of P2P DT
an interesting and important alternative. RepSisre
our attempt to utilize the advent of P2P technolagy
derive a more practical system.

[20]

[22]

[23]
Acknowledgement [24]
The authors wish to thank the anonymous reviewers
and their insightful feedback, and all membershaf t
System Research Group of MSR-Asia for their support [25]

8. Reference
[26]
[1] T.E. Anderson, D.E. Culler, D. A. Patterson, et“al,case for
networks of workstations: NOW”", IEEE Micro, Feb.9B®
[2] E. Anderson, M. Hobbs, K. Keeton, et al, “Hippodeamunning [27]

circles around storage administration”,
Monterey, CA.

USENIX FART

A. Arpaci-Dusseau, R. Arpaci-Dusseau, et al, “Mazde
Storage via Adaptation in WIND”, 2001 IEEE CCGrii'0
Brisbane, Australia.

C. Blake, R. Rodrigues, “High Availability, ScalablStorage,
Dynamic Peer Networks: Pick Two”, HotOS 2003.

A. Brown, D. Oppenheimer, K. Keeton, et al, "ISTQRE
Introspective Storage for Data-Intensive Networkrvi®es",
HotOS-VII, Rio Rico, Arizona, March 1999.

L.P. Cox, C.D. Murray, and B.D. Noble, “Pastiche:alihg
Backup Cheap and Easy”, OSDI '02, Boston, MA, S2p02.

F. Dabek, M.F. Kaashoek, D. Karger, et al, “Wideaar
cooperative storage with CFS”, SOSP 2001.

S. Frolund, A. Merchant, Y. Saito, et al, “FAB: ergrise storage
systems on a shoestring”, HOTOS, May 2003, Kauaiyaii.

G.R. Ganger, J.D. Strunk, A.J. Klosterman, “Sel§torage:
Brick-based Storage with Automated AdministratioRYblished
as Carnegie Mellon University Technical Report, Gi¢8-03-
178, August 2003.

S. Ghemawat, H. Gobioff, S.T. Leung, “The Googlie Hystem”,
19th ACM SOSP, Bolton Landing, NY, USA, 2003.
G.A.Gibson, Nagle, D.F., Amiri, K., Butler, et &lA Cost-
Effective, High-Bandwidth Storage Architecture”, RBSOS,
October, 1998.

J. Gray, “Storage Bricks Have Arrived”, invitedk&tAST 2002.
IBM. IceCube: storage server for the Internet
http://www.almaden.ibm.com/Storage Systems/autonosticag
e/CIB/

E.K. Lee and C.A. Thekkath, “Petal: Distributed tdal Disks”,
ASPLOS 1996.

J. Kubiatowicz, D. Bindel, Y. Chen, et al, “Oceam®t An
Architecture for Global-Scale Persistent StorageSPLOS 2000.
S. Ratnasamy, P. Francis, M. Handley, et al, “Al@#a Content-
Addressable Network“, ACM SIGCOMM 2001.

S. Rhea, P. Eaton, D. Geels, et al, “Pond: the GBtese
Prototype”. Proceedings of the 2nd USENIX FAST '08rch
2003.

D. Roselli, J.R. Lorch and T.E. Anderson, “A conipan of file
system workloads”, USENIX Annual Technical ConferenSan
Diego, CA, June 2000.

A. Rowstron and P. Druschel, "Pastry: Scalable tridisted
object location and routing for large-scale peepeer
systems”, IFIP/ACM Middleware, Heidelberg, Germany,
November, 2001.

A. Rowstron and P. Druschel, "Storage managemetcanhing
in PAST, a large-scale, persistent peer-to-peeragéo utility”,
18th ACM SOSP'01, Lake Louise, Alberta, Canada.

C. Ruemmler and J. Wilkes, “A trace-driven analysfsdisk
working set sizes”, HP Laboratories Technical Repti?L-OSR-
93-23 (April 1993).

I. Stoica, R. Morris, D. Karger, et al, “Chord: A&able Peer-to-
peer Lookup Service for Internet Applications”, ACM
SIGCOMM 2001, San Deigo, CA.

C.A. Thekkath, T. Mann, and E.K. Lee, “FrangipafiScalable
Distributed File System”, ACM SOSP 1997.

J. Wilkes, R. Golding, C. Staelin, et al, “The HRtARAID
hierarchical storage system”, ACM TOCS Volume 14ssue
1, 1996.

B.Y. Zhao, J. Kubiatowicz, and A.D. Josep, “TapgstAn
infrastructure for fault-tolerant wide-area locatiand routing”,
Tech. Rep. UCB/CSD-01-1141, UC Berkeley, EECS, 2001

Z. Zhang, Q. Lian, Y. Chen, et al, “XRing: AchiegirHigh-
Performance Routing Adaptively in Structured P28Upmitted
for publication.

Z. Zhang, S. Lin, Q. Lian, et al, “RepStore: A Sdinaging and
Self-Tuning Storage Backend with Smart Bricks”, hoft
Research, technical report, MSR-TR-2004-21.

age.

