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Abstract – With the continuously improving price-
performance ratio, building large, smart-brick based 
distributed storage system becomes increasingly attractive. 
The challenges, however, include not only reliability, 
adequate cost-performance ratio, online upgrades and so on, 
but also the system’s ability to achieve these goals in as self-
managing and self-adaptive a manner as possible. In this 
paper, we describe RepStore, a system that fulfills these 
goals. RepStore unites the self-organizing capability of P2P 
DHT and the completely autonomous, per-brick tuning 
mechanism to derive a scalable and cost-effective 
architecture.  
RepStore employs replication for active write-intensive data 
and erasure-coding for the rest, strives to achieve the best 
cost-performance balance automatically and transparent to 
application, and does so in a completely distributed manner. 
Our preliminary evaluations reveal that the system performs 
much as expected, achieving performance and reliability 
closer to a 3-way fully replicated system with only 60% of 
the cost. 

1. Introduction 
It is a long standing theme of the distributed system 

research community to replace high-end device with 
cluster of commodity components. To date, this design 
philosophy has flourished especially in NOW[1]-like 
clusters, powering world-wide Web engines as well as 
high-performance computing Grids.  

The same revolution is unfolding in the field of 
backend storage as well. Traditionally, this is a territory 
of high-end disk arrays. Combined with the iSCSI 
(SCSI over IP) protocol, the availability of hardware-
assisted TCP/IP offloading, and the increasingly 
improving price/performance ratio of commodity PCs, 
network attached storage made by the so-called smart 
storage bricks [3][8][11][12] is being actively 
researched and developed. These systems are 
disruptive technologies: they do not necessarily offer 
the same level of performance as the next higher 
ranked technologies right away, but deliver enough 
value to be adopted. As the component technologies 
continue to improve, eventually they will take an 
increasingly larger market share from disk array. The 
system described in this paper, RepStore, falls into this 
line of research. 

Smart brick based systems such as RepStore must 
accomplish a set of goals in order to be successful. 
They must be extremely reliable, while simultaneously 
offering adequate cost-performance ratio. Being built 

with LAN-ready bricks, the architecture should be 
scalable and flexible such that online capacity 
provisioning as well as incremental upgrade can be 
achieved. Furthermore, changing nature of workloads 
implies that the system needs to be self-adaptive. The 
ultimate challenge, however, is to do all the above in as 
self-managing a manner as possible, which is of 
paramount importance because human-based 
management is the largest factor in the TCO(total cost 
of ownership) of such system. 

Some of the above functionalities have been 
accomplished inside state-of-art disk array, one 
example is the self-adaptive capability of HP 
AutoRAID[24]. AutoRAID is hierarchical, using 
mirroring for write-intensive data and RAID5 for the 
rest. This is a single-box solution and uses metadata to 
control the placement of data among disks comprising 
the disk array. We believe that brick-based distributed 
storage should offer the same self-adaptive capability. 

RepStore leverages the recent advancement of the 
peer-to-peer technologies to derive many of its self-
managing characteristics. Layering over DHT 
(distributed hash table)[16][19][22][25], RepStore 
presents a large, abstract storage space that is 
populated by participating bricks. The self-organizing 
capability of DHT grants RepStore the potential to 
handle both failure and online provisioning gracefully. 
Just like HP AutoRAID, RepStore employs replication 
for active write-intensive data and erasure-coding for 
the rest, strives to achieve the best cost-performance 
tradeoff automatically and transparent to application, 
and does so in a completely distributed manner. 

We have completed the preliminary design and our 
detailed evaluation verifies that RepStore performs as 
expected. Using trace-driven simulation, our results 
show that we can achieve the same level of 
performance and reliability as a 3-way replicated 
storage, while with only 60% of the cost. Furthermore, 
the system is robust enough to deal with changes of 
workload. 

The remaining of this paper is organized as follows. 
Section-2 gives a brief introduction of P2P DHT. The 
main architecture of RepStore is described in Section-3. 
Section-4 performs workload studies to establish the 
foundation of the self-tuning aspect of RepStore. 
Performance data is presented in Section-5. We cover 
related works in Section-6 and conclude in Section-7. 



2. Background: P2P DHT 
The common terminology referring to a peer in 

DHT is “node”, which we will adopt in this section. In 
the RepStore context, it will be a smart brick. 

There exist many different DHT proposals 
[16][19][22][25], but they all share a few common 
invariants.  In DHT, nodes join a very large (e.g. 160-
bits) space with random ids and thus partition the space 
uniformly. The id can be, for instance, MD5 over a 
node’s IP address. An ordered set of nodes, in turn, 
allows a node’s responsible zone to be strictly defined. 
Let p be a node x’s predecessor. One definition of a 
node’s zone is simply the space between the ID of its 
immediate predecessor ID (non-inclusive) and its own 
ID. In other words: zone(x) ≡ (ID(p), ID(x)]. This is 
essentially how consistent hashing [22] assigns zones 
to DHT nodes (Figure 1).  

 
Figure 1: The simplest P2P DHT – a ring, the zone and the basic 

routing table that records r neighbors to each side. 

If one imagines the zone being a hash bucket in an 
ordinary hash table, then the ring is a distributed hash 
table. Given a key in the space, one can always resolve 
which node is being responsible. This numerical space 
is what RepStore as well as other DHT-based storage 
systems use to present the upper-layer application as a 
storage space. Objects are keyed with randomized id of 
the same length (e.g 160 bits), and dropped onto the 
node that covers their keys. Therefore, storage 
utilization of all nodes are uniform (statistically 
speaking), as long as the storage capacities are about 
the same across nodes. When a new node arrives at the 
system, it will split zone with the one who covers its id. 
Likewise, when a node departs, its zone is taken over 
by its immediate neighbor. Thus, membership change 
in DHT only involve object redistribution amongst O(1) 
nodes, and is ideal to implement a scalable and flexible 
storage system. 

To harden the ring against system dynamism, each 
node records l neighbors to each side in the 
rudimentary routing table that is commonly known as 
leafset. Neighbors exchange heartbeats to keep their 
leafsets up to date. A ring is the simplest P2P DHT, 
whose lookup performance is O(N), where N is  the 
number of nodes in the system. Elaborate algorithms 
built upon the above concept achieves O(logN) 
performance with O(logN) states. Representative 
systems include Chord[22], CAN[16], Pastry[19] and 

Tapestry[25]. RepStore is layered over a DHT called 
XRing[26], which we have developed to target 
environments where churn rate is low and is an ideal fit 
for RepStore.  

XRing uses O(N) state to bring 1-hop lookup 
performance, i.e. routing from any node to a point in 
the space takes one network hop to the destination. 
XRing achieves this by first building a O(logN) routing 
table, called fingers, using prefix-based routing scheme 
much like Pastry. A node then uses fingers to broadcast 
any membership change event (node addition and/or 
deletion) that it has observed in its leafset. These 
notifications propagate with O(logN) latency bound 
and reach all nodes with extremely high reliability, 
allowing every node to build another layer of routing 
table that records all other nodes. We emphasize here 
that O(N) state is not an issue: if each routing entry is 
32bytes, a 1M-node XRing will require 32MB memory 
per node even if the routing table is kept completely in 
memory. If each node is 100GB, this amounts to a 
system with 100PB capacity, an extremely large system. 

3. RepStore architecture 

3.1. Objective and system model  

The target deployment context of RepStore is data 
center and/or enterprise internal. The overarching 
objective of RepStore is to achieve the best cost-
performance tradeoff, and does so with as little 
administration oversight as possible. Specifically, given 
a total storage capacity constraint (and hence total 
hardware cost), we would like the system to offer the 
best response time automatically. Management of 
RepStore should involve very little other than 
decommissioning failed components and adding new 
ones in response to capacity and performance need, and 
all such tasks should be performed online with 
minimum performance disturbance. To state it 
differently, the ambition of RepStore is to replicate the 
functionality of HP AutoRAID, but to do it with a farm 
of smart storage bricks instead of inside a disk array. 
The significant challenge is that RepStore has to 
accomplish this without any centralized control. 

For the time being, RepStore exposes an object 
interface and is posed as a storage layer that performs 
between high-end disk array and tape library, offering 
high-availability guarantee no less than the disk array. 
However, if outfitted by advanced technologies (e.g. 
high-performance SAN, large NVRAM per drive etc), 
we would like RepStore to challenge disk array’s 
performance as well. On the other hand, in terms of 
capacity, with the continuously improving byte per 
dollar ratio of commodity disk drives, the other 
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possibility is for RepStore to be the tape library 
replacement. RepStore applications may include 
distributed file system, volume manager or other new 
ones. These applications can be layered on one 
common RepStore instance if desired, since RepStore 
is agnostic to what gets stored inside. 

We assume a failure-stop model, and that failure is 
rare and independent. In reality, these assumptions are 
true only to a certain extent, for instance individual 
disk drive crash. 

3.2. Architecture and protocol 

RepStore approaches its goal by leveraging the self-
organizing properties of P2P DHT and embeds within 
each brick self-monitoring and feedback-loop based 
optimization mechanisms to tune storage towards better 
cost-performance balance. Unlike other brick-based 
systems, RepStore is stringed together by using XRing 
as the underlying one-hop DHT routing infrastructure. 
As discussed earlier, using P2P DHT as the bottom-
layer lends us with the desired property of self-
organizing as well as ease of online provisioning. 
3.2.1. Addressing space and data layout 
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Figure 2: Data layout for RepStore. ES and RS denote Erasure-

coded and Replicated set, respectively. Four sets are shown (a, b 
c, and d). We depict how set may be in either replication or 

erasure coding.  

RepStore presents an abstract storage space of 
160bits, and each brick joins RepStore using the XRing 
join protocol with a random id. As a result, the total 
space is (statistically speaking) uniformly partitioned, 
as in any such DHT-based storage system(pond[17], 
PAST[20]). A brick x owns a portion of the total space, 
called its zone. Specifically, x.zone≡ (pred(x).id, x.id], 
where pred(x) is the brick whose id immediately 
proceeds that of x. Using XRing’s routing function, any 
brick can lookup any key in the space – and hence 
reach any other brick, by one network hop. 

An object stored inside RepStore is identified by an 
OID of 160bits. The OID can be assigned by RepStore 
applications such as volume manager, or is a hash over 
the object’s content to implement an immutable 
archival system. This ensures that all bricks will have 
same storage utilization. This property may not hold if 
bricks have different capacities. In this case, the idea of 
virtual node can be borrowed: a physical brick is 
broken down into a number of virtual bricks of a fixed 
size, and then each joins XRing separately. 

To achieve the best cost-performance tradeoff, a 
RepStore object is stored in either one of the two 
coding schemas: replication and erasure coding. For 
replication, r identical replicas are stored, where r is an 
odd integer. With erasure coding, an object is 
combined with m-1 other objects, and then generates n-
m check objects. Therefore, the storage overhead of 
replication and erasure coding is r and n/m, 
respectively. We choose the three parameters r, m and 
n such that the HA guarantee for a given piece of data 
is about the same to tolerate the same number of 
concurrent brick failures. The default value that we use 
is 3, 4 and 7 (refer to [27] for the calculation of default 
parameters). 

These two coding schemas provide different 
performance characteristics, as will be explained 
shortly. RepStore manages the coding schema of any 
object automatically. In order to achieve full 
transparency with minimum performance impact, 
RepStore adopts a data layout as depicted in Figure 2. 
Briefly speaking: 
• m objects whose OIDs differ with only the last log(m) 

bits are grouped together into a set, setkey of which 
is the OID with last log(m) bits being zero. 

• The brick that owns the setkey in the total storage 
space is called the root brick of objects in the set. 
The request to objects will be forwarded to root brick 
and the last log(m) bits of OID decides its offset in 
the set. 

• A replicated set, or RS in short, is spread in r 
consecutive bricks, starting from the root brick. 

• An erasure coded set, or ES, is spread in n 
consecutive bricks, again starting from the root brick. 
Normally, the i-th (i..[0..n-1]) brick away from the 
root brick stores the i-th object in the set, with the 
last n-m bricks store the checked objects. However, 
repair done in response to online provisioning 
(adding new brick) or decommissioning may change 
that order. 
This layout is particularly helpful to store 

conventional disk blocks for a volume manager, though 
other alternatives exist as well. For example, in the case 
of a file system, a file can be broken down into m 



fragments, and same layout arrangement as above is 
used for all fragments. 
3.2.2. Access protocol 

An access to an object always starts from its root 
brick. This is how changing code schema is made 
transparent to applications, since the root brick is 
determined by the setkey, which relies on OID only. 
The root brick also functions as the serialization point 
for operations that would manipulate state and/or 
coding of the set, and hence gives us a much simpler 
design. 

Request arrives at the root brick by using the setkey 
as the lookup key to route through XRing. This shall 
always succeed (since the DHT space does not have 
hole) and with high probability be done with one 
network hop. What happens next depends on the 
operation as well as the coding schema of the object: 
• Replicated object. Read will retrieve the object from 

the set and return right away. Write employs a 2-
phase commit to update the other replicas. 

• Erasure-coded object. The root brick keeps a map 
which tells what brick among the n bricks is 
responsible for which objects in the set. The map is 
built and maintained on-demand: the first time the set 
is formed, and subsequently updated when changes 
occur in the brick membership (we will describe this 
shortly). Thus, a read request is forwarded to the 
brick that keeps the requested object. A write 
operation will retrieve all the check objects as well as 
the object being updated, and then update all of them, 
again using a 2-phase protocol. This amounts to n-
m+1 reads and n-m+1 writes.  
What we just described is failure-free cases. Failures 

are handled by operating over the redundancy afforded 
by the coding schemas, which we will not discuss 
further here and will refer to our full report[27]. 
3.2.3. Self-tuning 

Having described the operation, it is now easy to see 
how the two coding schemas afford us with the 
flexibility to play with the cost-performance tradeoff. 
We have already described that we have chosen 
parameters such that the two offer the same level of HA. 
The capacity overhead of replication versus erasure 
code is r versus n/m, for instance 3:(7/4). On the other 
hand, the two differ dramatically on performance. Once 
a read request arrives at the root brick, either coding 
schema entails one disk access, but erasure coded 
object may require one more network hop if the object 
is not in the root brick. As in RAID, erasure coded 
objects are more expensive serving writes: 2(n-m+1) 
read and writes. Whereas a replicated object only 
requires r writes. More disk accesses will build longer 

queues at the disk drives, further degrading 
performance.  

Therefore, the main thrust of RepStore is self-
optimizing to constantly tune towards the best cost-
performance tradeoff. This is accomplished by tracking 
the workingset and using replication to code the hot 
and write-intensive data and erasure coding for the rest. 
How necessary statistics are gathered and when the 
tuning is triggered is the focus of Section-4. Regardless, 
self-tuning employs one primitive that first creates a 
new set with the target coding schema, and then 
initiates a transaction that allow the old set to be 
garbage collected later. The root brick is responsible 
for coordinating all the above processes. Our current 
implementation admits read access while these changes 
are ongoing but defer write requests. A more advanced 
implementation will allow write to proceed 
concurrently as well, similar to online volume 
migration.  
3.2.4. Failure-handling and online provisioning 

The brick membership in RepStore may change as a 
result of taking out dead (or old) brick and/or adding 
new ones. The ability to do both online allows the 
system to grow gradually with new breed of bricks. 
Therefore, this part of design is integral to RepStore’s 
self-managing capability. 

The basic principle is to ensure that the replication 
set and erasure-coded set adhere to their invariants. 
Due to space limitation, we refer readers to our 
technical report for more details [27] and will only give 
a brief outline here. 
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Figure 3: Handling failure and addition in RepStore.  

The HA invariants include two conditions: 
1. A set is stored starting from its root brick (i.e. 

the brick that owns the setkey). 
2. For a replication set and erasure-coded set, they 

are spread in consecutive r and n bricks (refer to 
Figure 3), respectively. 

Membership change is a basic service provided by 
XRing, since XRing is a one-hop-anywhere DHT. 
Whether the repair is done right away is a policy issue. 



Enforcing the first invariant is straightforward. In 
case of new brick join, sets that should be rooted at it 
are copied over. If it is for a brick crash, then the 
neighbor brick on the right now becomes the new root 
brick for any sets that were rooted at the departed brick. 
Note that each brick can calculate what sets are rooted 
at it completely independently. 

When this is done, the second invariant is 
reinstituted. This will involve r and n bricks for 
replicated sets and erasure-coded sets, respectively. 
Whatever the course, there is always one brick who 
should now host some data of the set affected. This is 
performed through the root brick, which instructs the 
copy (for brick addition) or reconstruction of a piece of 
data (for brick deletion) to that new brick. For brick 
addition, there is also one brick gets excluded from 
storing some data of affected sets, and the root brick 
instructs that brick to garbage collect these data as well. 
Figure 3 shows the end results of an exemplary brick 
crash and addition. Since the repair is serialized 
through the root brick, the all brick-to-object map is 
updated for the set being repaired. 

The more complex part is to allow concurrent 
access to data when repairs are being made. This is not 
a problem for read access because the read protocol is 
fault-tolerant to begin with assuming enough 
redundancy exists to reconstruct the data. Care must be 
taken to handle write. Our approach is to trigger the 
repair of set being written right away. 

4. Workload analysis 
As discussed earlier, RepStore tries to achieve the 

best cost-performance tradeoff by devoting higher 
storage overhead to write-intensive workingset. For this 
to work, the necessary conditions must be that A) the 
workingset is generally small and B) it does change but 
changes relatively infrequently. Without meeting the 
first condition, mixing coding schemas with different 
cost/performance tradeoffs can not possibly work. 
Likewise, without the second, tuning is either not 
necessary or brings too much overhead and wipes out 
the benefits.  

Past research work on storage systems have verified 
that the working set size is usually small [21]. Thus, 
condition A is generally met. Intuitively, condition B 
should hold as well. However, empirical evident are 
lacking. Here, we present the methodology as well as 
the results that support both conditions. 

Let a trace of application I/O access be divided with 
a fixed time window. Further, let vector V(wi) record 
unique objects accessed in the i-th window wi. V(wi), 
called the workingset vector, is thus a representation of 
workingset in the i-th window. The size of the vector is 

the total number of objects ever accessed in the entire 
trace. V(wi)[ j] is 1 if the j-th object is accessed in 
window i, and 0 otherwise. The weighted workingset 
vector V*(wi) differs from V(wi) only in that each 
element records the number of accesses to the 
associated object, instead of a binary flag. The method 
with which we understand the workingset change is 
through looking at correlations of these vectors. For 
instance, to understand the change between window i 
and j, we can compute the normalized dot product 
between V(wi) and V(wj), or between V*(wi) and V*(wj) 
for a different perspective. 

We processed two traces: the cello disk trace from 
HP[21] and RES file system trace from Berkeley[18]. 
Cello trace is gathered at server side of a timesharing 
system at disk block level for a one month period. 
Berkeley RES trace is collected from client side of 13 
HP 7000 workstations on file level for half a year. We 
have investigated different time window; the results 
presented here uses the window size of a day.  

 
Figure 4: Workingset correlation curves for the Berkeley trace on 

a daily granularity. Solid line is for active workingset. 

 
Figure 5: Workingset correlation curves for the cello trace on a 

daily granularity. Solid line is for active workingset. 

For a given trace, we compute the correlation 
between V(wi) and V(wi+d), where d is 1, 2, 4, 8… till K. 
K is 32 and 16, for the Berkeley and cello trace, 
respectively. We average through all possible i for each 
value of d and present a K points curve, called the 
correlation curve.  We then repeat the same but use the 
weighted workingset curve V*(wi) instead. The results 
are presented in Figure 4 and Figure 5, for Berkeley 
and cello respectively. 



Focus first on the Berkeley case. The correlation 
curve for the workingset vector is flat and low, 
indicating that the daily footprint is rather random 
across time. The active workingset, represented by the 
correlation curve of the weighted workingset vector, is 
rather different. It is very high for small d and then 
decreases when d gets larger. Recall that d is the 
distance between two vectors. This clearly suggests that 
the active workingset does change over time, and 
changes slowly (i.e. hourly tuning will be sufficient). 
The cello trace shares with the Berkley trace to the 
extent that correlation of the active workingset is 
stronger and that it also decreases with longer time 
span, but the curve is flatter and that the correlation of 
unweighted workingset is pretty high (>0.5) as well. 

Confirming with prior findings, the size of a daily 
workingset is about 10% and 15%, for Berkeley and 
cello respectively. Furthermore, 90% of the accesses 
are to the 8% and 1% of the daily workingset. These, 
combined with the analysis over the correlation curves, 
indicate that the RepStore approach is likely to be 
effective. 

5. Experiments 
In what follows, we will collectively call the total 

capacity dedicated to replicated data and erasure-coded 
data as hot space and cold space, respectively. 
Intuitively, the performance will continue to rise as hot 
space increases, until a “knee” after which there will be 
no more significant improvement. The larger the hot 
space, on the other hand, means higher storage cost; 
whereas when the hot space is below some critical 
value, changing coding schema may be triggered too 
often such that we will see a negative performance hit – 
to the point that we might as well freeze the system into 
a static configuration. Thus, adequate tuning policy is 
necessary. 

We have studied a variety of different policies. Due 
to the space limitation, we only report the policy LRU-
W (Least-Recent-Used-Write) which is used in HP 
AutoRAID. In RepStore, this tuning algorithm is 
employed in each brick for all the sets that root on it 
based on its local statistics. Specifically: 
• Nothing is done upon a read request. 
• Upon a write request, if the set is already replicated, 

update its recency; otherwise it is re-coded into 
replication set. In the latter case, tuning is triggered. 

• At the tuning time, if the size of hot space exceeds a 
given quota (e.g. not more than 5% of total unique 
blocks can be in replication form), the oldest written 
set is re-coded back into erasure. 
Obviously, this policy tilts heavily towards the 

active and write-intensive workingset. This makes 

sense because write to erasure-coded set is more 
expensive in terms of number of I/O, minimizing which, 
in turn, will reduce queue length buildup at disk drives. 
However, as we shall see, it pays a penalty for read 
requests. 

All performance results are based on replaying the 
cello trace against an event-driven simulator that 
models RepStore’s protocols in sufficient details. Since 
the total footprint of the trace is small (10GB), total 
number of bricks is only 32. The parameters for the 
coding schema are: r= 3, m/n=4/7. Thus, a set consists 
of 4 blocks. Also, sets are randomly distributed to 
bricks. We assume network latency is negligible, and 
the main cost is disk latency which we set as 6ms. 
Requests to a disk are served in sequence. This is rather 
simplistic, however we believe the results should be 
accurate enough to draw the conclusion.  

5.1. Overall performance 

The first group of experiments is to measure the 
number of disk accesses, average latency of requests 
with different settings of hot space size. We use the 
trace file in 920504 of cello, in which the workingset of 
that day amounts to more than 25% of the total 
footprint.  

 
Figure 6: Number of disk access versus percentage of data coded 

in replication.  

Figure 6 shows how the number of disk IO changes 
with the hot space size. As expected, the LRU-W 
affects mostly the accesses corresponding to writes and 
tuning (i.e. the cost of tuning; shown as “tuning” in the 
figure), both decreases as hot space increases and the 
knee is 6% (i.e. 6% of data is coded in replication), at 
which point the algorithm has captured the write-
intensive blocks in the active workingset.  The number 
of accesses corresponding to read request, on the other 
hand, hardly changes.  Disk accesses due to tuning also 
decrease. The exception is when the hot space is 0%, at 
which point there is no tuning because all objects are 
erasure coded. 

Figure 7 takes a different perspective by counting 
number of IO per request type. When hot space is 0%, 
all data are erasure coded. So, each write request 
involves 7 times of disk IO. The algorithm effectively 



codes write-intensive blocks in active workingset, as 
the same number drops rapidly down to 3 (the size of 
replicated set) while adding space for replicated data.   
In cello, a read request typically accesses a number of 
consecutive blocks. Since read-intensive data are 
mostly erasure-coded and are coded with replication 
only when it is written, the number of IO per read 
decreases very slowly (from 3.92 to 3.16), which 
roughly indicates that, at that point, 26% of read 
requests hits in hot space, i.e. 74% of read data are 
never written (for that day at least). As for tuning cost, 
the total access is composed of one access reads the 
object, and 7 for writing the new erasure-coded set. 
The original set will be garbage collected later at idle 
time so their effective cost is zero.  

 
Figure 7. Disk IO per operation versus percentage of data coded 

in replication.  

Obviously, this policy heavily tunes towards 
minimizing total number of IO, especially for writes. 
The question is whether it pays off for the final 
performance measure, namely the latency. 

 
Figure 8. Average latency per request versus different size of hot 

space percentage of data coded in replication. 

Figure 8 shows that the overall performance in 
terms of latency is rather adequate. With 3% data 
coded in replication, the latency for write and overall 
requests are reduced to 43% and 46% comparing with 
all erasure-coding, respectively.  

From Figure 6, Figure 7 and Figure 8, we find that, 
when we code 6% of data in replication, which 
corresponds to a capacity saving of 40% comparing to 
a 3-way replication, the overall performance in terms of 
latency is very close to optimal. We will now take this 

configuration and examine how the system performs 
along the temporal dimension.  

5.2. Robustness and responsiveness 

Next group of experiments takes a one-month cello 
trace (May 1992) as input to test the efficacy of the 
tuning algorithm over a long run. 

 
Figure 9: Average latency of read requests.  

Figure 9 shows that the read performance after 
tuning is much better than that of fully erasure mode, 
though about 10% worse than optimal. This is because 
the tuning algorithm cares about write requests much 
more than read ones. It would be interesting to perform 
some optimization for read requests, e.g. cache the data 
in root brick or use some more sophisticated tuning 
policy. 

 
Figure 10. Average latency of write requests.  

Figure 10 shows that the write performance after 
tuning is very close to that of fully replicated mode. 
This, in turn, means that the system is rather responsive. 
However, there are a few days that the algorithm does 
not work that well, we are in the process of 
understanding the cause. 

6. Related work 
One of the main P2P DHT applications has been 

wide-area distributed storage service, with pioneer 
works including OceanStore[15], Pond[17], CFS[7], 
PAST[20] and Pastiche[6]. Though recent work of [4] 
argues that, due to unpredictable nature of WAN 
connectivity, some fundamental compromises have to 



be made. RepStore defines its architecture for 
enterprise-internal, and aims at pushing the state of art 
for P2P DHT-based storage backend by dramatically 
reducing the management overhead while retaining the 
best cost-performance tradeoff. Being layered over 
XRing without assuming the availability of IP-level 
multicast, however, there is nothing preventing 
RepStore from being deployed in a wide-area context. 
In fact, we believe that the lessons gained by designing 
a robust and adaptive storage in a controlled, LAN-
based environment will be invaluable before taking that 
ambitious step into wide-area. 

The philosophy of designing a storage system with a 
sparsely populated storage space starts from Petal[14] 
and Frangipani[23]. In the brick-based system, 
NASD[11], FAB[8], IceCube[13], and Google File 
System[10] all aim at building extremely scalable brick 
cluster with high throughput. However, reducing 
management overhead in a self-optimized and self-
tuned manner is not their particular focus. 

The idea that storage should be self-adaptive starts 
from the exemplary work of HP AutoRAID and 
IStore[5]. These are single-box solutions. RepStore 
replicates the functionality of HP AutoRAID while 
expanding it to a brick-based distributed storage 
without any centralized metadata. The objective of self-
managing storage farm has been well articulated in 
Self-*[9], WiND[3] and Hippodrome[2]. We believe 
that the approach of RepStore where we leverage the 
self-scaling and self-managing property of P2P DHT is 
an interesting alternative.  

7. Conclusion and future work 
While building smart-brick based storage backend is 

potentially cost-effective, it is of paramount importance 
to have an architecture that not only is reliable, scalable 
and flexible, but also delivers these goals in a self-
managing and self-tuning manner. We believe that 
leveraging the self-organizing strength of P2P DHT is 
an interesting and important alternative. RepStore is 
our attempt to utilize the advent of P2P technology to 
derive a more practical system.  
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