
RepStore: A Self-Managing and Self-Tuning Storage Backend with Smart Bricks

Zheng Zhang, Shiding Lin, Qiao Lian and Chao Jin
Microsoft Research Asia

{zzhang, i-slin, i-qlian, t-chjin}@microsoft.com

Abstract – With the continuously improving price-
performance ratio, building large, smart-brick based
distributed storage system becomes increasingly attractive.
The challenges, however, include not only reliability,
adequate cost-performance ratio, online upgrades and so on,
but also the system’s ability to achieve these goals in as self-
managing and self-adaptive a manner as possible. In this
paper, we describe RepStore, a system that fulfills these
goals. RepStore unites the self-organizing capability of P2P
DHT and the completely autonomous, per-brick tuning
mechanism to derive a scalable and cost-effective
architecture.
RepStore employs replication for active write-intensive data
and erasure-coding for the rest, strives to achieve the best
cost-performance balance automatically and transparent to
application, and does so in a completely distributed manner.
Our preliminary evaluations reveal that the system performs
much as expected, achieving performance and reliability
closer to a 3-way fully replicated system with only 60% of
the cost.

1. Introduction
It is a long standing theme of the distributed system

research community to replace high-end device with
cluster of commodity components. To date, this design
philosophy has flourished especially in NOW[1]-like
clusters, powering world-wide Web engines as well as
high-performance computing Grids.

The same revolution is unfolding in the field of
backend storage as well. Traditionally, this is a territory
of high-end disk arrays. Combined with the iSCSI
(SCSI over IP) protocol, the availability of hardware-
assisted TCP/IP offloading, and the increasingly
improving price/performance ratio of commodity PCs,
network attached storage made by the so-called smart
storage bricks [3][8][11][12] is being actively
researched and developed. These systems are
disruptive technologies: they do not necessarily offer
the same level of performance as the next higher
ranked technologies right away, but deliver enough
value to be adopted. As the component technologies
continue to improve, eventually they will take an
increasingly larger market share from disk array. The
system described in this paper, RepStore, falls into this
line of research.

Smart brick based systems such as RepStore must
accomplish a set of goals in order to be successful.
They must be extremely reliable, while simultaneously
offering adequate cost-performance ratio. Being built

with LAN-ready bricks, the architecture should be
scalable and flexible such that online capacity
provisioning as well as incremental upgrade can be
achieved. Furthermore, changing nature of workloads
implies that the system needs to be self-adaptive. The
ultimate challenge, however, is to do all the above in as
self-managing a manner as possible, which is of
paramount importance because human-based
management is the largest factor in the TCO(total cost
of ownership) of such system.

Some of the above functionalities have been
accomplished inside state-of-art disk array, one
example is the self-adaptive capability of HP
AutoRAID[24]. AutoRAID is hierarchical, using
mirroring for write-intensive data and RAID5 for the
rest. This is a single-box solution and uses metadata to
control the placement of data among disks comprising
the disk array. We believe that brick-based distributed
storage should offer the same self-adaptive capability.

RepStore leverages the recent advancement of the
peer-to-peer technologies to derive many of its self-
managing characteristics. Layering over DHT
(distributed hash table)[16][19][22][25], RepStore
presents a large, abstract storage space that is
populated by participating bricks. The self-organizing
capability of DHT grants RepStore the potential to
handle both failure and online provisioning gracefully.
Just like HP AutoRAID, RepStore employs replication
for active write-intensive data and erasure-coding for
the rest, strives to achieve the best cost-performance
tradeoff automatically and transparent to application,
and does so in a completely distributed manner.

We have completed the preliminary design and our
detailed evaluation verifies that RepStore performs as
expected. Using trace-driven simulation, our results
show that we can achieve the same level of
performance and reliability as a 3-way replicated
storage, while with only 60% of the cost. Furthermore,
the system is robust enough to deal with changes of
workload.

The remaining of this paper is organized as follows.
Section-2 gives a brief introduction of P2P DHT. The
main architecture of RepStore is described in Section-3.
Section-4 performs workload studies to establish the
foundation of the self-tuning aspect of RepStore.
Performance data is presented in Section-5. We cover
related works in Section-6 and conclude in Section-7.

2. Background: P2P DHT
The common terminology referring to a peer in

DHT is “node”, which we will adopt in this section. In
the RepStore context, it will be a smart brick.

There exist many different DHT proposals
[16][19][22][25], but they all share a few common
invariants. In DHT, nodes join a very large (e.g. 160-
bits) space with random ids and thus partition the space
uniformly. The id can be, for instance, MD5 over a
node’s IP address. An ordered set of nodes, in turn,
allows a node’s responsible zone to be strictly defined.
Let p be a node x’s predecessor. One definition of a
node’s zone is simply the space between the ID of its
immediate predecessor ID (non-inclusive) and its own
ID. In other words: zone(x) ≡ (ID(p), ID(x)]. This is
essentially how consistent hashing [22] assigns zones
to DHT nodes (Figure 1).

Figure 1: The simplest P2P DHT – a ring, the zone and the basic

routing table that records r neighbors to each side.

If one imagines the zone being a hash bucket in an
ordinary hash table, then the ring is a distributed hash
table. Given a key in the space, one can always resolve
which node is being responsible. This numerical space
is what RepStore as well as other DHT-based storage
systems use to present the upper-layer application as a
storage space. Objects are keyed with randomized id of
the same length (e.g 160 bits), and dropped onto the
node that covers their keys. Therefore, storage
utilization of all nodes are uniform (statistically
speaking), as long as the storage capacities are about
the same across nodes. When a new node arrives at the
system, it will split zone with the one who covers its id.
Likewise, when a node departs, its zone is taken over
by its immediate neighbor. Thus, membership change
in DHT only involve object redistribution amongst O(1)
nodes, and is ideal to implement a scalable and flexible
storage system.

To harden the ring against system dynamism, each
node records l neighbors to each side in the
rudimentary routing table that is commonly known as
leafset. Neighbors exchange heartbeats to keep their
leafsets up to date. A ring is the simplest P2P DHT,
whose lookup performance is O(N), where N is the
number of nodes in the system. Elaborate algorithms
built upon the above concept achieves O(logN)
performance with O(logN) states. Representative
systems include Chord[22], CAN[16], Pastry[19] and

Tapestry[25]. RepStore is layered over a DHT called
XRing[26], which we have developed to target
environments where churn rate is low and is an ideal fit
for RepStore.

XRing uses O(N) state to bring 1-hop lookup
performance, i.e. routing from any node to a point in
the space takes one network hop to the destination.
XRing achieves this by first building a O(logN) routing
table, called fingers, using prefix-based routing scheme
much like Pastry. A node then uses fingers to broadcast
any membership change event (node addition and/or
deletion) that it has observed in its leafset. These
notifications propagate with O(logN) latency bound
and reach all nodes with extremely high reliability,
allowing every node to build another layer of routing
table that records all other nodes. We emphasize here
that O(N) state is not an issue: if each routing entry is
32bytes, a 1M-node XRing will require 32MB memory
per node even if the routing table is kept completely in
memory. If each node is 100GB, this amounts to a
system with 100PB capacity, an extremely large system.

3. RepStore architecture

3.1. Objective and system model

The target deployment context of RepStore is data
center and/or enterprise internal. The overarching
objective of RepStore is to achieve the best cost-
performance tradeoff, and does so with as little
administration oversight as possible. Specifically, given
a total storage capacity constraint (and hence total
hardware cost), we would like the system to offer the
best response time automatically. Management of
RepStore should involve very little other than
decommissioning failed components and adding new
ones in response to capacity and performance need, and
all such tasks should be performed online with
minimum performance disturbance. To state it
differently, the ambition of RepStore is to replicate the
functionality of HP AutoRAID, but to do it with a farm
of smart storage bricks instead of inside a disk array.
The significant challenge is that RepStore has to
accomplish this without any centralized control.

For the time being, RepStore exposes an object
interface and is posed as a storage layer that performs
between high-end disk array and tape library, offering
high-availability guarantee no less than the disk array.
However, if outfitted by advanced technologies (e.g.
high-performance SAN, large NVRAM per drive etc),
we would like RepStore to challenge disk array’s
performance as well. On the other hand, in terms of
capacity, with the continuously improving byte per
dollar ratio of commodity disk drives, the other

x

p q
zone(x)=(ID(p), ID(x)]

R0(x)

2l+1

possibility is for RepStore to be the tape library
replacement. RepStore applications may include
distributed file system, volume manager or other new
ones. These applications can be layered on one
common RepStore instance if desired, since RepStore
is agnostic to what gets stored inside.

We assume a failure-stop model, and that failure is
rare and independent. In reality, these assumptions are
true only to a certain extent, for instance individual
disk drive crash.

3.2. Architecture and protocol

RepStore approaches its goal by leveraging the self-
organizing properties of P2P DHT and embeds within
each brick self-monitoring and feedback-loop based
optimization mechanisms to tune storage towards better
cost-performance balance. Unlike other brick-based
systems, RepStore is stringed together by using XRing
as the underlying one-hop DHT routing infrastructure.
As discussed earlier, using P2P DHT as the bottom-
layer lends us with the desired property of self-
organizing as well as ease of online provisioning.
3.2.1. Addressing space and data layout

Object

Checksum

x y z u v w s t

ES(a) 2 3 4 1 5 6 7

2 3 4 1 5 6 7 ES(b)

y x z u v w
RS(c)

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

RS(d)

OID

u=RootBrick(J||00)

OID

x=RootBrick(K||00)

K

J

Node

Figure 2: Data layout for RepStore. ES and RS denote Erasure-

coded and Replicated set, respectively. Four sets are shown (a, b
c, and d). We depict how set may be in either replication or

erasure coding.

RepStore presents an abstract storage space of
160bits, and each brick joins RepStore using the XRing
join protocol with a random id. As a result, the total
space is (statistically speaking) uniformly partitioned,
as in any such DHT-based storage system(pond[17],
PAST[20]). A brick x owns a portion of the total space,
called its zone. Specifically, x.zone≡ (pred(x).id, x.id],
where pred(x) is the brick whose id immediately
proceeds that of x. Using XRing’s routing function, any
brick can lookup any key in the space – and hence
reach any other brick, by one network hop.

An object stored inside RepStore is identified by an
OID of 160bits. The OID can be assigned by RepStore
applications such as volume manager, or is a hash over
the object’s content to implement an immutable
archival system. This ensures that all bricks will have
same storage utilization. This property may not hold if
bricks have different capacities. In this case, the idea of
virtual node can be borrowed: a physical brick is
broken down into a number of virtual bricks of a fixed
size, and then each joins XRing separately.

To achieve the best cost-performance tradeoff, a
RepStore object is stored in either one of the two
coding schemas: replication and erasure coding. For
replication, r identical replicas are stored, where r is an
odd integer. With erasure coding, an object is
combined with m-1 other objects, and then generates n-
m check objects. Therefore, the storage overhead of
replication and erasure coding is r and n/m,
respectively. We choose the three parameters r, m and
n such that the HA guarantee for a given piece of data
is about the same to tolerate the same number of
concurrent brick failures. The default value that we use
is 3, 4 and 7 (refer to [27] for the calculation of default
parameters).

These two coding schemas provide different
performance characteristics, as will be explained
shortly. RepStore manages the coding schema of any
object automatically. In order to achieve full
transparency with minimum performance impact,
RepStore adopts a data layout as depicted in Figure 2.
Briefly speaking:
• m objects whose OIDs differ with only the last log(m)

bits are grouped together into a set, setkey of which
is the OID with last log(m) bits being zero.

• The brick that owns the setkey in the total storage
space is called the root brick of objects in the set.
The request to objects will be forwarded to root brick
and the last log(m) bits of OID decides its offset in
the set.

• A replicated set, or RS in short, is spread in r
consecutive bricks, starting from the root brick.

• An erasure coded set, or ES, is spread in n
consecutive bricks, again starting from the root brick.
Normally, the i-th (i..[0..n-1]) brick away from the
root brick stores the i-th object in the set, with the
last n-m bricks store the checked objects. However,
repair done in response to online provisioning
(adding new brick) or decommissioning may change
that order.
This layout is particularly helpful to store

conventional disk blocks for a volume manager, though
other alternatives exist as well. For example, in the case
of a file system, a file can be broken down into m

fragments, and same layout arrangement as above is
used for all fragments.
3.2.2. Access protocol

An access to an object always starts from its root
brick. This is how changing code schema is made
transparent to applications, since the root brick is
determined by the setkey, which relies on OID only.
The root brick also functions as the serialization point
for operations that would manipulate state and/or
coding of the set, and hence gives us a much simpler
design.

Request arrives at the root brick by using the setkey
as the lookup key to route through XRing. This shall
always succeed (since the DHT space does not have
hole) and with high probability be done with one
network hop. What happens next depends on the
operation as well as the coding schema of the object:
• Replicated object. Read will retrieve the object from

the set and return right away. Write employs a 2-
phase commit to update the other replicas.

• Erasure-coded object. The root brick keeps a map
which tells what brick among the n bricks is
responsible for which objects in the set. The map is
built and maintained on-demand: the first time the set
is formed, and subsequently updated when changes
occur in the brick membership (we will describe this
shortly). Thus, a read request is forwarded to the
brick that keeps the requested object. A write
operation will retrieve all the check objects as well as
the object being updated, and then update all of them,
again using a 2-phase protocol. This amounts to n-
m+1 reads and n-m+1 writes.
What we just described is failure-free cases. Failures

are handled by operating over the redundancy afforded
by the coding schemas, which we will not discuss
further here and will refer to our full report[27].
3.2.3. Self-tuning

Having described the operation, it is now easy to see
how the two coding schemas afford us with the
flexibility to play with the cost-performance tradeoff.
We have already described that we have chosen
parameters such that the two offer the same level of HA.
The capacity overhead of replication versus erasure
code is r versus n/m, for instance 3:(7/4). On the other
hand, the two differ dramatically on performance. Once
a read request arrives at the root brick, either coding
schema entails one disk access, but erasure coded
object may require one more network hop if the object
is not in the root brick. As in RAID, erasure coded
objects are more expensive serving writes: 2(n-m+1)
read and writes. Whereas a replicated object only
requires r writes. More disk accesses will build longer

queues at the disk drives, further degrading
performance.

Therefore, the main thrust of RepStore is self-
optimizing to constantly tune towards the best cost-
performance tradeoff. This is accomplished by tracking
the workingset and using replication to code the hot
and write-intensive data and erasure coding for the rest.
How necessary statistics are gathered and when the
tuning is triggered is the focus of Section-4. Regardless,
self-tuning employs one primitive that first creates a
new set with the target coding schema, and then
initiates a transaction that allow the old set to be
garbage collected later. The root brick is responsible
for coordinating all the above processes. Our current
implementation admits read access while these changes
are ongoing but defer write requests. A more advanced
implementation will allow write to proceed
concurrently as well, similar to online volume
migration.
3.2.4. Failure-handling and online provisioning

The brick membership in RepStore may change as a
result of taking out dead (or old) brick and/or adding
new ones. The ability to do both online allows the
system to grow gradually with new breed of bricks.
Therefore, this part of design is integral to RepStore’s
self-managing capability.

The basic principle is to ensure that the replication
set and erasure-coded set adhere to their invariants.
Due to space limitation, we refer readers to our
technical report for more details [27] and will only give
a brief outline here.

x y z u v w s t

ES(a) 2 3 4 1 5 6 7

x z u v w s t

3 4 5 1 6 7 2

2 3 4 1 5 6 7

x r z u v w s t r joining

y crashing
z takeover

ES(a)

ES(a)

Figure 3: Handling failure and addition in RepStore.

The HA invariants include two conditions:
1. A set is stored starting from its root brick (i.e.

the brick that owns the setkey).
2. For a replication set and erasure-coded set, they

are spread in consecutive r and n bricks (refer to
Figure 3), respectively.

Membership change is a basic service provided by
XRing, since XRing is a one-hop-anywhere DHT.
Whether the repair is done right away is a policy issue.

Enforcing the first invariant is straightforward. In
case of new brick join, sets that should be rooted at it
are copied over. If it is for a brick crash, then the
neighbor brick on the right now becomes the new root
brick for any sets that were rooted at the departed brick.
Note that each brick can calculate what sets are rooted
at it completely independently.

When this is done, the second invariant is
reinstituted. This will involve r and n bricks for
replicated sets and erasure-coded sets, respectively.
Whatever the course, there is always one brick who
should now host some data of the set affected. This is
performed through the root brick, which instructs the
copy (for brick addition) or reconstruction of a piece of
data (for brick deletion) to that new brick. For brick
addition, there is also one brick gets excluded from
storing some data of affected sets, and the root brick
instructs that brick to garbage collect these data as well.
Figure 3 shows the end results of an exemplary brick
crash and addition. Since the repair is serialized
through the root brick, the all brick-to-object map is
updated for the set being repaired.

The more complex part is to allow concurrent
access to data when repairs are being made. This is not
a problem for read access because the read protocol is
fault-tolerant to begin with assuming enough
redundancy exists to reconstruct the data. Care must be
taken to handle write. Our approach is to trigger the
repair of set being written right away.

4. Workload analysis
As discussed earlier, RepStore tries to achieve the

best cost-performance tradeoff by devoting higher
storage overhead to write-intensive workingset. For this
to work, the necessary conditions must be that A) the
workingset is generally small and B) it does change but
changes relatively infrequently. Without meeting the
first condition, mixing coding schemas with different
cost/performance tradeoffs can not possibly work.
Likewise, without the second, tuning is either not
necessary or brings too much overhead and wipes out
the benefits.

Past research work on storage systems have verified
that the working set size is usually small [21]. Thus,
condition A is generally met. Intuitively, condition B
should hold as well. However, empirical evident are
lacking. Here, we present the methodology as well as
the results that support both conditions.

Let a trace of application I/O access be divided with
a fixed time window. Further, let vector V(wi) record
unique objects accessed in the i-th window wi. V(wi),
called the workingset vector, is thus a representation of
workingset in the i-th window. The size of the vector is

the total number of objects ever accessed in the entire
trace. V(wi)[j] is 1 if the j-th object is accessed in
window i, and 0 otherwise. The weighted workingset
vector V*(wi) differs from V(wi) only in that each
element records the number of accesses to the
associated object, instead of a binary flag. The method
with which we understand the workingset change is
through looking at correlations of these vectors. For
instance, to understand the change between window i
and j, we can compute the normalized dot product
between V(wi) and V(wj), or between V*(wi) and V*(wj)
for a different perspective.

We processed two traces: the cello disk trace from
HP[21] and RES file system trace from Berkeley[18].
Cello trace is gathered at server side of a timesharing
system at disk block level for a one month period.
Berkeley RES trace is collected from client side of 13
HP 7000 workstations on file level for half a year. We
have investigated different time window; the results
presented here uses the window size of a day.

Figure 4: Workingset correlation curves for the Berkeley trace on

a daily granularity. Solid line is for active workingset.

Figure 5: Workingset correlation curves for the cello trace on a

daily granularity. Solid line is for active workingset.

For a given trace, we compute the correlation
between V(wi) and V(wi+d), where d is 1, 2, 4, 8… till K.
K is 32 and 16, for the Berkeley and cello trace,
respectively. We average through all possible i for each
value of d and present a K points curve, called the
correlation curve. We then repeat the same but use the
weighted workingset curve V*(wi) instead. The results
are presented in Figure 4 and Figure 5, for Berkeley
and cello respectively.

Focus first on the Berkeley case. The correlation
curve for the workingset vector is flat and low,
indicating that the daily footprint is rather random
across time. The active workingset, represented by the
correlation curve of the weighted workingset vector, is
rather different. It is very high for small d and then
decreases when d gets larger. Recall that d is the
distance between two vectors. This clearly suggests that
the active workingset does change over time, and
changes slowly (i.e. hourly tuning will be sufficient).
The cello trace shares with the Berkley trace to the
extent that correlation of the active workingset is
stronger and that it also decreases with longer time
span, but the curve is flatter and that the correlation of
unweighted workingset is pretty high (>0.5) as well.

Confirming with prior findings, the size of a daily
workingset is about 10% and 15%, for Berkeley and
cello respectively. Furthermore, 90% of the accesses
are to the 8% and 1% of the daily workingset. These,
combined with the analysis over the correlation curves,
indicate that the RepStore approach is likely to be
effective.

5. Experiments
In what follows, we will collectively call the total

capacity dedicated to replicated data and erasure-coded
data as hot space and cold space, respectively.
Intuitively, the performance will continue to rise as hot
space increases, until a “knee” after which there will be
no more significant improvement. The larger the hot
space, on the other hand, means higher storage cost;
whereas when the hot space is below some critical
value, changing coding schema may be triggered too
often such that we will see a negative performance hit –
to the point that we might as well freeze the system into
a static configuration. Thus, adequate tuning policy is
necessary.

We have studied a variety of different policies. Due
to the space limitation, we only report the policy LRU-
W (Least-Recent-Used-Write) which is used in HP
AutoRAID. In RepStore, this tuning algorithm is
employed in each brick for all the sets that root on it
based on its local statistics. Specifically:
• Nothing is done upon a read request.
• Upon a write request, if the set is already replicated,

update its recency; otherwise it is re-coded into
replication set. In the latter case, tuning is triggered.

• At the tuning time, if the size of hot space exceeds a
given quota (e.g. not more than 5% of total unique
blocks can be in replication form), the oldest written
set is re-coded back into erasure.
Obviously, this policy tilts heavily towards the

active and write-intensive workingset. This makes

sense because write to erasure-coded set is more
expensive in terms of number of I/O, minimizing which,
in turn, will reduce queue length buildup at disk drives.
However, as we shall see, it pays a penalty for read
requests.

All performance results are based on replaying the
cello trace against an event-driven simulator that
models RepStore’s protocols in sufficient details. Since
the total footprint of the trace is small (10GB), total
number of bricks is only 32. The parameters for the
coding schema are: r= 3, m/n=4/7. Thus, a set consists
of 4 blocks. Also, sets are randomly distributed to
bricks. We assume network latency is negligible, and
the main cost is disk latency which we set as 6ms.
Requests to a disk are served in sequence. This is rather
simplistic, however we believe the results should be
accurate enough to draw the conclusion.

5.1. Overall performance

The first group of experiments is to measure the
number of disk accesses, average latency of requests
with different settings of hot space size. We use the
trace file in 920504 of cello, in which the workingset of
that day amounts to more than 25% of the total
footprint.

Figure 6: Number of disk access versus percentage of data coded

in replication.

Figure 6 shows how the number of disk IO changes
with the hot space size. As expected, the LRU-W
affects mostly the accesses corresponding to writes and
tuning (i.e. the cost of tuning; shown as “tuning” in the
figure), both decreases as hot space increases and the
knee is 6% (i.e. 6% of data is coded in replication), at
which point the algorithm has captured the write-
intensive blocks in the active workingset. The number
of accesses corresponding to read request, on the other
hand, hardly changes. Disk accesses due to tuning also
decrease. The exception is when the hot space is 0%, at
which point there is no tuning because all objects are
erasure coded.

Figure 7 takes a different perspective by counting
number of IO per request type. When hot space is 0%,
all data are erasure coded. So, each write request
involves 7 times of disk IO. The algorithm effectively

codes write-intensive blocks in active workingset, as
the same number drops rapidly down to 3 (the size of
replicated set) while adding space for replicated data.
In cello, a read request typically accesses a number of
consecutive blocks. Since read-intensive data are
mostly erasure-coded and are coded with replication
only when it is written, the number of IO per read
decreases very slowly (from 3.92 to 3.16), which
roughly indicates that, at that point, 26% of read
requests hits in hot space, i.e. 74% of read data are
never written (for that day at least). As for tuning cost,
the total access is composed of one access reads the
object, and 7 for writing the new erasure-coded set.
The original set will be garbage collected later at idle
time so their effective cost is zero.

Figure 7. Disk IO per operation versus percentage of data coded

in replication.

Obviously, this policy heavily tunes towards
minimizing total number of IO, especially for writes.
The question is whether it pays off for the final
performance measure, namely the latency.

Figure 8. Average latency per request versus different size of hot

space percentage of data coded in replication.

Figure 8 shows that the overall performance in
terms of latency is rather adequate. With 3% data
coded in replication, the latency for write and overall
requests are reduced to 43% and 46% comparing with
all erasure-coding, respectively.

From Figure 6, Figure 7 and Figure 8, we find that,
when we code 6% of data in replication, which
corresponds to a capacity saving of 40% comparing to
a 3-way replication, the overall performance in terms of
latency is very close to optimal. We will now take this

configuration and examine how the system performs
along the temporal dimension.

5.2. Robustness and responsiveness

Next group of experiments takes a one-month cello
trace (May 1992) as input to test the efficacy of the
tuning algorithm over a long run.

Figure 9: Average latency of read requests.

Figure 9 shows that the read performance after
tuning is much better than that of fully erasure mode,
though about 10% worse than optimal. This is because
the tuning algorithm cares about write requests much
more than read ones. It would be interesting to perform
some optimization for read requests, e.g. cache the data
in root brick or use some more sophisticated tuning
policy.

Figure 10. Average latency of write requests.

Figure 10 shows that the write performance after
tuning is very close to that of fully replicated mode.
This, in turn, means that the system is rather responsive.
However, there are a few days that the algorithm does
not work that well, we are in the process of
understanding the cause.

6. Related work
One of the main P2P DHT applications has been

wide-area distributed storage service, with pioneer
works including OceanStore[15], Pond[17], CFS[7],
PAST[20] and Pastiche[6]. Though recent work of [4]
argues that, due to unpredictable nature of WAN
connectivity, some fundamental compromises have to

be made. RepStore defines its architecture for
enterprise-internal, and aims at pushing the state of art
for P2P DHT-based storage backend by dramatically
reducing the management overhead while retaining the
best cost-performance tradeoff. Being layered over
XRing without assuming the availability of IP-level
multicast, however, there is nothing preventing
RepStore from being deployed in a wide-area context.
In fact, we believe that the lessons gained by designing
a robust and adaptive storage in a controlled, LAN-
based environment will be invaluable before taking that
ambitious step into wide-area.

The philosophy of designing a storage system with a
sparsely populated storage space starts from Petal[14]
and Frangipani[23]. In the brick-based system,
NASD[11], FAB[8], IceCube[13], and Google File
System[10] all aim at building extremely scalable brick
cluster with high throughput. However, reducing
management overhead in a self-optimized and self-
tuned manner is not their particular focus.

The idea that storage should be self-adaptive starts
from the exemplary work of HP AutoRAID and
IStore[5]. These are single-box solutions. RepStore
replicates the functionality of HP AutoRAID while
expanding it to a brick-based distributed storage
without any centralized metadata. The objective of self-
managing storage farm has been well articulated in
Self-*[9], WiND[3] and Hippodrome[2]. We believe
that the approach of RepStore where we leverage the
self-scaling and self-managing property of P2P DHT is
an interesting alternative.

7. Conclusion and future work
While building smart-brick based storage backend is

potentially cost-effective, it is of paramount importance
to have an architecture that not only is reliable, scalable
and flexible, but also delivers these goals in a self-
managing and self-tuning manner. We believe that
leveraging the self-organizing strength of P2P DHT is
an interesting and important alternative. RepStore is
our attempt to utilize the advent of P2P technology to
derive a more practical system.

Acknowledgement

The authors wish to thank the anonymous reviewers
and their insightful feedback, and all members of the
System Research Group of MSR-Asia for their support.

8. Reference
[1] T.E. Anderson, D.E. Culler, D. A. Patterson, et al, “A case for

networks of workstations: NOW”, IEEE Micro, Feb. 1995.
[2] E. Anderson, M. Hobbs, K. Keeton, et al, “Hippodrome: running

circles around storage administration”, USENIX FAST'02,
Monterey, CA.

[3] A. Arpaci-Dusseau, R. Arpaci-Dusseau, et al, “Manageable
Storage via Adaptation in WiND”, 2001 IEEE CCGrid'01,
Brisbane, Australia.

[4] C. Blake, R. Rodrigues, “High Availability, Scalable Storage,
Dynamic Peer Networks: Pick Two”, HotOS 2003.

[5] A. Brown, D. Oppenheimer, K. Keeton, et al, "ISTORE:
Introspective Storage for Data-Intensive Network Services",
HotOS-VII, Rio Rico, Arizona, March 1999.

[6] L.P. Cox, C.D. Murray, and B.D. Noble, “Pastiche: Making
Backup Cheap and Easy”, OSDI '02, Boston, MA, Sep., 2002.

[7] F. Dabek, M.F. Kaashoek, D. Karger, et al, “Wide-area
cooperative storage with CFS”, SOSP 2001.

[8] S. Frolund, A. Merchant, Y. Saito, et al, “FAB: enterprise storage
systems on a shoestring”, HOTOS, May 2003, Kauai, Hawaii.

[9] G.R. Ganger, J.D. Strunk, A.J. Klosterman, “Self-* Storage:
Brick-based Storage with Automated Administration”, Published
as Carnegie Mellon University Technical Report, CMU-CS-03-
178, August 2003.

[10] S. Ghemawat, H. Gobioff, S.T. Leung, “The Google File System”,
19th ACM SOSP, Bolton Landing, NY, USA, 2003.

[11] G.A.Gibson, Nagle, D.F., Amiri, K., Butler, et al. “A Cost-
Effective, High-Bandwidth Storage Architecture”, ASPLOS,
October, 1998.

[12] J. Gray, “Storage Bricks Have Arrived”, invited talk FAST 2002.
[13] IBM. IceCube: storage server for the Internet age.

http://www.almaden.ibm.com/StorageSystems/autonomic_storag
e/CIB/

[14] E.K. Lee and C.A. Thekkath, “Petal: Distributed Virtual Disks”,
ASPLOS 1996.

[15] J. Kubiatowicz, D. Bindel, Y. Chen, et al, “OceanStore: An
Architecture for Global-Scale Persistent Storage”, ASPLOS 2000.

[16] S. Ratnasamy, P. Francis, M. Handley, et al, “A Scalable Content-
Addressable Network“, ACM SIGCOMM 2001.

[17] S. Rhea, P. Eaton, D. Geels, et al, “Pond: the OceanStore
Prototype”. Proceedings of the 2nd USENIX FAST '03, March
2003.

[18] D. Roselli, J.R. Lorch and T.E. Anderson, “A comparison of file
system workloads”, USENIX Annual Technical Conference, San
Diego, CA, June 2000.

[19] A. Rowstron and P. Druschel, "Pastry: Scalable, distributed
object location and routing for large-scale peer-to-peer
systems", IFIP/ACM Middleware, Heidelberg, Germany,
November, 2001.

[20] A. Rowstron and P. Druschel, "Storage management and caching
in PAST, a large-scale, persistent peer-to-peer storage utility",
18th ACM SOSP'01, Lake Louise, Alberta, Canada.

[21] C. Ruemmler and J. Wilkes, “A trace-driven analysis of disk
working set sizes”, HP Laboratories Technical Report HPL-OSR-
93-23 (April 1993).

[22] I. Stoica, R. Morris, D. Karger, et al, “Chord: A Scalable Peer-to-
peer Lookup Service for Internet Applications”, ACM
SIGCOMM 2001, San Deigo, CA.

[23] C.A. Thekkath, T. Mann, and E.K. Lee, “Frangipani: A Scalable
Distributed File System”, ACM SOSP 1997.

[24] J. Wilkes, R. Golding, C. Staelin, et al, “The HP AutoRAID
hierarchical storage system”, ACM TOCS Volume 14 , Issue
1, 1996.

[25] B.Y. Zhao, J. Kubiatowicz, and A.D. Josep, “Tapestry: An
infrastructure for fault-tolerant wide-area location and routing”,
Tech. Rep. UCB/CSD-01-1141, UC Berkeley, EECS, 2001.

[26] Z. Zhang, Q. Lian, Y. Chen, et al, “XRing: Achieving High-
Performance Routing Adaptively in Structured P2P”, Submitted
for publication.

[27] Z. Zhang, S. Lin, Q. Lian, et al, “RepStore: A Self-Managing and
Self-Tuning Storage Backend with Smart Bricks”, Microsoft
Research, technical report, MSR-TR-2004-21.

