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Abstract 1.

Region-based memory management is a popular scheme imsyste
software for better organization and performance. In tihese, a
developer constructs a hierarchy of regions of differefietitnes
and allocates objects in regions. When the developer dekete
region, the runtime will recursively delete all its subiegs and
simultaneously reclaim objects in the regions. The dewlopust
construct aonsistenplacement of objects in regions; otherwise, if
a region that contains pointers to other regions is not advayeted

beforepointees, an inconsistency will surface and cause dangling

pointers, which may lead to either crashes or leaks.

This paper presents a static analysis tBegionWiz that can
find such lifetime inconsistencies in large C programs usatg
gions. The tool is based on an analysis framework that genera
izes the relations and constraints over regions and olkgsatendi-
tional correlations. This framework allows a succinct fatimation
of consistency rules for region lifetimes, preserving mgnsafety
and avoiding dangling pointerRegionWiz uses these consistency
rules to implement an efficient static analysis to compugecihn-
ditional correlation and reason about region lifetime éstescy;
the analysis is based on a context-sensitive, field-seagbinter
analysis with heap cloning.

Experiments with applyindRegionWiz to six real-world soft-
ware packages (including the RC compiler, Apache web server
and Subversion version control system) with two differegion-
based memory management interfaces show RegtonWiz can
reason about region lifetime consistency in large C prograrhe
experiments also show thBegionWiz can find several previously
unknown inconsistency bugs in these packages.
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Introduction

Region-based memory management [21, 38, 6] is an alteenativ
scheme to explicit allocation and deallocation (emg1loc and
free) and automatic garbage collection [7, 41]. In this scheme, a
developer constructs a hierarchy of regions (a.k.a. padldjffer-

ent lifetimes and allocates objects in regions. Regiotitifes are
nested; when the developer deletes a region, the memoryg&ana
ment runtime will delete the region and its subregions r&iualy,
deallocating all the contained objects.

Regions expose a simpler interface than explicit allocatio
and deallocation to organize complex data structuresgsimo-
grammers can delete sets of objects instead of only indaidu
objects. It also preserves the safety of intra-region pemnend
reduces the risk of leaks and double frees. On the other lcand,
pared to garbage collection, it still enables fine-grainectol of
the lifetimes of objects via regions, which is usually reqdiin
performance-critical systems software such as operagatems
and servers. Furthermore, because the memory allocatats- of
ferent regions are usually independent of each other, dpeet
can separate related objects into the same region to exgatss
locality, avoid lock contention, and batch allocation arehltb-
cation. Hence, programs using regions can often achiewvterbet
performance [16, 17].

In practice, regions are popular in software that operates i
stages, such as compilers and network applications. A dtage
plication generally has an inherent hierarchical strigtuegion-
based memory management can match up with the structure via a
region hierarchy for better organization and performafkae.ex-
ample, a web server maintains a group of TCP connections, and
a TCP connection contains a series of HTTP requests. Thus, an
HTTP request is a “child” of a TCP connection, i.e., the refue
has a shorter lifetime. A developer can assign a region tadhe
nection and a subregion to the request, then allocate e®used
throughout the connection from the parent region and these u
during processing the request only from the subregion. BEveld
oper can delete either the subregion (if the request has freen
cessed), or the parent region (if the connection is closedhat
the runtime can further delete the subregions of the resusesd
reclaim all memory easily.

Figure 1 lists the pseudo code snippet of the web server deamp
above, with two region primitives: 1)new creates a subregion
of the given parent region, and 2jlloc allocates a object in the
given region. First, line 1 allocates a connection objegin in
regionr usingralloc. Later, line 3 creates a subregistibr using
rnew, takingr as its parent region. Then line 5 allocates a request
objectreq in subr, and line 6 assigns fieltkq . connection with
a pointer toconn. We omit further details of the hierarchy (e.g., the
parent region and other subregionspfor simplicity.

The connection-request example involves three relations:



1 conn

= ralloc(r); 1\ Subregion
2 ...
3 subr = rnew(r); r Qunership_
4 ... 7
|
5 req = ralloc(subr); @ Access
- subre---
6 reqg.connection = conn;

@r=nr

(d)r,<r,

(b) ry<r, (c) unspecified

Figure 1. The connection-request example.

¢ the subregionrelation over regions, specified by callsrteew,
e.g.,subr andr at line 3;

¢ the ownershiprelation over regions and objects, specified by
calls toralloc, e.g.,r andconn at line 1,subr andreq atline 5;

¢ theaccesgelation over objects, implied by field assignments of
inter-object pointers, e.greq andconn at line 6.

The access relation requires tlrat) should be reclaimebefore
conn to avoid the pointeteq. connection being dangling. Thus,
combined with the ownership relation, a safety requirenmthat
the regionsubr that ownsreq should have a shorter lifetime than
the regionr that ownsconn. Meanwhile, the developer specifies
the subregion relation thatubr is a subregion ofr, which is
consistent with the safety requirement. Otherwisesuibr is not
alwaysdeleted beforer, e.g.,subr is not a subregion aof or even
itis the parent ot, the pointetreq. connection may be dangling.

Therefore, the three relations arerrelatedand they must be

Figure 2. Four different subregion relations betwegrandr;.

multi-threaded programs with regions, because the deletider
of regions may vary due to scheduling and the bugs may noeappe
in each run. Several dynamic approaches have been propmsed t
preserve memory safety with regions at runtime [16, 17],tbey
cannot find inconsistencies that are on less-executed @tds gnd
that are sensitive to runtime environments such as scmggulor
can they solve the leaks caused by inconsistencies.

In this paper, we focus on static analysis techniques arskpte
a prototype tooRegionWiz that searches exhaustively for region
lifetime inconsistencies in source code. To the best of owmi-
edge, it is the first tool to address the problem in large C ranog
using regions. Specifically, the main contributions of ffaper are:
1) a unified framework of conditional correlation that may dfe
independent interest; 2) a formalization of the regiortilife con-
sistency problem as an instantiation; 3) an implementdtiahem-
ploys a context-sensitive, field-sensitive pointer arialysth heap
cloning and that performs a conditional correlation analfsr the

consistentthe specified subregion relation and the access relation region lifetime consistency problem in large C programs, a#)

implied by inter-object pointers constrain each other tia own-
ership map over regions and objects. We refer such cowelat
conditional correlation and develop a formalization of the consis-
tency problem in Section 3.

Dangling pointers caused by the inconsistencies can hagm th
correctness and robustness of software using regionstivety,
further use of the dangling pointers would lead to crashes. F
thermore, even a dangling pointer is never used and the grogr
does not crash, it may cause leaks as well. Consider the éxamp
in Figure 1 again. The developer might not caddr as a subre-
gion of r, e.g.,subr might be a subregion of the root region that
lives forever, or everr inappropriately takesubr as its parent
region. In such cases, the objeeiq that resides irsubr unnec-
essarilyconsumes memory even aftesnn is reclaimed, and the
developer cannot use this memory any more. More serioustyy s
objects of longer-than-necessary lifetime may lead to ediptable
memory consumption [5] especially if a function that consauch
buggy code resides in recursions or loops. Of course, thera@a
real “leaks” in region-based memory management as defingin
malloc-free scheme, because the runtime will delete all regions
eventually. In this paper, we use the term “leaks” to refesuoh
longer-than-necessary lifetime cases.

Unfortunately, it is difficult for developers to track suchre
sistency interprocedurally in large code base. For exangden
Figure 1, the code at line 5 and 6 may be in a functien given
a objectconn and a regiorsub as parameters. Consequentlyo
assumes that the caller must be careful about both allgrasiin
from an appropriate region and creatingr with a consistent par-
ent region. However, the parameters fao may be passed deep
along call paths, and the program points of allocatiagn and
creatingsubr may be far way fromfoo. Thus, caller code may
be unaware of the implicit constraint, or it may assume that
will keep a duplicated copy of the object referred by a patame
which could be true especially when the object is a stringeiin
ther case, the code is prone to inconsistencies that maijt iresu
dangling pointers.

Developers may discover inconsistencies that lead to esash

the evaluation with six real-world software packages of tegion-
based memory management interfaces.

The rest of the paper is organized as follows. Section 2 gines
overview of the analysis methodology. Section 3 defines tme ¢
cept of conditional correlation. Section 4 formalizes oedifetime
consistency based on conditional correlation and descetstatic
analysis algorithm. Section 5 presents our implementatitails.
Section 6 reports our experimental results. We surveyeelabrk
in Section 7 and conclude in Section 8.

2. Overview

In this section we present an overview of hBagionWiz reasons
about region lifetime consistency.

For two regionsri, r2, we writer; < ro if 71 is a subregion
of ro, andry = ro if 71, ro refers to the same region. Further, we
write 1 < 7o if r1 is a direct or indirect subregion aof, while
r1 £ 72 otherwise. The partial ordet. is the reflexive transitive
closure of the subregion relatien over regions.

Consider a simple case thatin regionrs holds a pointer t@;
in regionr;. There are four possible subregion relations between
r1 andr, in caller code, as illustrated in Figure 2.

a) r1, o refer to the same region, i.e;, = 72, SO01, 02 Share the
)
same lifetime, and the intra-region pointer is always safe.

(b) r2 is a subregion of, i.e.,r2 < 71, SO 02 Will be deleted
beforeoq, and the inter-region pointer is always safe.

(c) There is no subregion relation betweanandrs, i.e.,r1 £ r2
andry £ 71, so the inter-region pointer may be dangling-f
is deleted first.

(d) 1 is a subregion of, i.e.,r1 < ro, S001 Will be deleted first,
and the inter-region pointer will become dangling.

As in Figure 2,72 < 71 holds in (a) and (b), where the pointers
from o t0 0; are always safe. Meanwhile, the pointers frogto
o1 may be dangling in (c) and (d), where £ r1 andri may be
deleted before». To sum up, we have the following rules for two

after they surface at runtime. It is harder to find such bugs in objectso1, o2 in regionsry, r2, respectively.



1 o, = ralloc(r,);

2 if P r = ry; roy ry ""’
3if Qr =ry; T

4 r, = rnew(r); [

5 o0, = ralloc(r,); ro4--- e
6 0,.f = 03 2

Figure 3. An aliasing example.

Proposition 2.1. If o2 may access:, r2 < r1 musthold.

Proposition 2.2. If ro < rq holds, any pointer frona, that may
accesw; is alwayssafe.

With Proposition 2.1 one can reason about consistencyrgart
from objects. The relations of ownership and access contbiime-

ply thatr. < 1 must hold. However, the must-subregion require-

ment may be hard to prove in the presence of aliasing. Canaide
degradation case that, too, holds a pointer to., i.e.,o01, 02 can
access each other. To preserve memory safetyndo. under this
circumstance must reside in the same region. In other wibisls;
fices to show that the two variables andr. must always refer to
the same region. This approach requires a must-alias an@}s
which is generally difficult to perform [33].

Nevertheless, we cannot just show that < r; may hold
and conclude that region lifetime is consistent; the commise is
unsound and may lead to missing of inconsistencies. Cantide
code in Figure 3, where; may be a subregion of; if condition
Q evaluates true. However, the region lifetime in Figure 306 n
consistent because, < r; does not always hold;, can be a
subregion ofro when P evaluates true an@ evaluates false. In
this case there is no subregion partial order betweegndr,, so
that the pointeb,. f may be dangling.

RegionWiz takes the other approach to reason about consis-

tency by using Proposition 2.2. As statedyif < r; holds, we
can conclude that any pointer frosp to o, is always safe. Thus, it
suffices to show that for any two regionsy that have no subregion
partial orderz £ y, each object in: must not access any object in
y. By verifying the non-access property against region pues
have no subregion partial order, we can prove that regieftirtie
is consistent.

Take Figure 3 as example again. Note that we have just dis-
cussed that: < r; does not always hold. So the most conserva-

tive estimation of region pairs that have no subregion phstider
is the set{r; £ r;li # j;i,5 = 0,1,2}. To verify them, we can
find that forry £ r1, 02 in 72 may access; in r1, which violates
Proposition 2.2 and is a potential inconsistency.

To sum up, our tooRegionWiz reasons about region lifetime
consistency in the following steps:

1. start with region pairs that have no subregion partiaégrd
2. map regions to objects they own via the ownership relatiod
3. verify the non-access property against sets of objects.

In the example above, the chosen of region pairs that have no

subregion partial order may be too conservative:sifmay be a

Definition 3.1 (Conditional Correlation) Let A, B be two sets with
binary relationsf : A x A, g : B x B, and mapy : A — B. We
define aconditional correlation(f, ¢, g) over A, B as

(z,y) € f = (o(x),0(y) €9 (3.1

If {f,,g) holds for(z,y), it means thaty(z), p(y)) € g can
be proven under the assumption y) € f. In other wordsyp is a
relation-preservingnap fromA to B with respect tof andg.

Definition 3.2 (Consistent Conditional Correlatian)A condi-
tional correlation(f, ¢, g) is consistentover A, B if it holds for
all (z,y) € A x A.

Note that(f, ¢, g) always holds for(z,y) € (A x A)\f, so
it suffices to show that (3.1) holds fdr,y) € f to prove the
consistency of the conditional correlation.

We briefly describe the region lifetime consistency probksnm
an example of conditional correlation. Consider a set oforeg
R with the subregion relation, and a set of objeBtsvhere each
object may access some other objects.

e A = R is the set of regions;

¢ B = 29 is the powerset of objects;

e fisall region pairgri,r2) overA x A thatry £ ro holds;
® o maps a region to a set of objects that it owns;

e g is all object set pair$s1, s2) overB x B that each object in
$1 cannot access any objectdg;

By definition, we can see that the ownership relatids a relation-
preserving map with respect fbandg, and(f, ¢, g) is a condi-
tional correlation for reasoning about region lifetime sistency.
Now we consider how to perform a conditional correlation
analysis statically. Intuitively, as for a sound approxiima, if we
prove a conditional correlatiofF, ®, G) is consistent, wherd’
is a superset off, ® is a superset ofp, and G is a subset of
g, we can conclude thatf, ¢, g) is also consistent. Hence, to
perform a conditional correlation analysis, we can estéraatover-
approximation off, », and an under-approximation gf More
generally, we define an abstraction relatishover conditional
correlations.

Definition 3.3 (Conditional Correlation Analysis)Given two con-
ditional correlationg f, ¢, g) over A, B and(F, ®, G) overA’, B,
leta : A — A’, 3: B — B’ be two maps. We defingf, ¢, g) =
(F, @, G) if the following conditions are satisfied.

V(z,y) e AxA: (z,y) € f = (a(z),a(y)) € FF (3.2
VeeAseB:p(r)=s = P®(a(z)) =6(s) (3.3)
V(s,t) eBxB:(s,t) g9 = (B(s),8() ¢ G (34)

By definition, given two conditional correlationy, ¢, g) and
(F,®,G) such that(f, p, g) < (F,®,G), itis easy to show that
(f, ¢, g) holds if (F, ®, G) holds.

In general, to find an appropria{é’, ®, G) for a specific condi-
tional correlation(f, ¢, g) overA, B usually depends on the topolo-

subregion of more than one region due to aliasing, we have to gies or the shapes [18] of the two sets, e.g., are they trerestet]

verify its objects against those in all its ancestors for anso
approximation, which may yield a large mount of false wagsin
We will discuss improvements in Section 4.3.

3. Conditional Correlation

The region lifetime consistency problem correlates the sets,
i.e., regions and objects, and involves three relationsibfegjion,
ownership, and access. We generalize the correlation battveo
sets of objects as follows.

acyclic graphs, or cyclic graphs? In the region lifetimesistency
problem, we notice that the regions shape a tree while abjean
a graph. We will further discuss analysis techniques etiptpihe
property in Section 4.

4. Region Lifetime Consistency

In this section, we formalize the region lifetime consisteprob-
lem based on conditional correlation and discuss statitysisaal-
gorithms to reason about the consistency.



4.1 Language

To develop the formalization, we describe a weakly-typgdan-
guage. LeR be the set of regions aritibe the set of normal objects
allocated in regions. We use the term “object” to refer thainull,
aregionr € R, or a normal objeck € H. Each normal object may
have several field§ € F to access other objects. The language has
the following statements.

sz=x=null|lz=mewy |z=rallocy |z =y |z=y.f |
x.f=y|s1; s2|if ~ s1elsesy | while ~ s

A variable may be initialized tawull. A new subregion can be
created usingnew, given a parameter as the parent region. A new
normal object may be allocated in a given region usaitpc. If the
parameter given imew or ralloc is null, it means the root region,
denoted as\. In addition, the language has standard assignment,
load, store, composition, branching, and looping statésnaive
consider the subregion relation enforces the region dsletider,

so we do not model region deletion in the language.

Let O = R U H be the union of regions and normal objects,
so thato € O is a non-null objectO; = O U {_L} represents all
objects includinghull. We define the concrete contexts and effects
as follows.

p=V—->0_ (environment)
d:=HxF—-0_ (heap)
Ti=R xR (subregion)

¢ =R x0O (ownership)
c:=0x0 (access)

The environmenp maps a variable to an object. The héajpacks
the set of objects that each normal object can access vialds fin
addition, three effects record necessary information éasoning
about consistency as follows.

e r < r’in 7 records that is a subregion of’.
e > 0in ¢ records that region owns objecb.
e 0 — 0’ in o records that objeat can access objeef.

Sincenull can be used to refer to the root regitrnn rnew and
ralloc, we definep, : V — R in addition top for convenience.
Note thatp, is undefined for a normal object.

if p(x) =7

pr(@) = {A if p(z) = L

Figure 4 shows the big-step operational semantics of the lan
guage. A judgmeng, p,§ | o', 8, 7o, o, 0o means that after each
statement the environmenp and the heap change tg’ andé’,
respectively, and the statemergenerates new tuples, ¢o, oo in
relationsr, ¢, o, respectively. We explain each judgment in detail.

® (4.1) Variablez is initialized asnull.

* (4.2) A new regionr is created as a subregion of the parent
r’ referred byy, and is assigned te. A new subregion tuple
r < r’is generated imr.

¢ (4.3) A new normal object is allocated in region referred
by y, and is assigned t@. A new ownership tuple: > h is
generated irp.

¢ (4.4) Variablez is assigned with the object thatrefers to.

¢ (4.5) Variablex is assigned with the object that normal object
h can access via fieldl, whereh is referred byy.

¢ (4.6) Field f of normal objecth is assigned with the object
thaty refers to, whereh is referred byz. A new access tuple
h — p(y) is generated iw if y refers to a non-null object.

x=null,p,é | plx— 1],6,0,0,0 (4.1)
pr(y)=7r" rfresh m={r<r'} 4.2)
T = rnEWy7p76 4 P[CU = T]7577T07®70
p(y) =7 hfresh ¢o={r>h} 43
z = ralloc yapvél}p[m'_)h]ﬂ;[hflHJ—]7®7¢070 .
m:y,p,(ﬂlp[rHp(y)],5,®7®7(0 (4.4)
ply) =h
4.5
:17:y-fvpv(;up[x’_)5(h'f)]767®7®7® (*9)
plz)y=h oo =if p(y) = Lthendelse{h — p(y)}
‘Tf =Yps g U’ P 5[hf = p(y)]vwv (07 go
(4.6)

517P75@P,75/77717¢1:(71 327/),75/ U’pllv(s”y71—27¢270-2
15 82,0,0 4 p", 0", m Uma, 1 U 2,01 U

4.7)
/ !
: 817p,6l}p7(5,71';¢,/0' (48)
if ~ s1elsese, p,d | p,dé, 7 0,0
: 827p76l}p7677r;¢7/0 (49)
if ~ s1elsess, p,d | p,d0, 7 0,0
while ~ s, 0,6 U p,6,0,0,0 (4.10)

87p75 U’ p,7(5/,71'17¢170'1 while ~ 87/)/7 ¢ U’ p”75”7ﬂ-27¢27‘72

while ~ s,p,8 || p”’, 6", 71 Um2, ¢1 U 2,01 U o2
(4.11)

Figure 4. Operational semantics.

e (4.7) 7, ¢, and o are union of the tuples generated by two
composition statements.

* (4.8) (4.9)w, ¢, ando is the tuples generated by a branching
statement.

¢ (4.10) The loop is not executed.

e (4.11) 7, ¢, ando are union of the tuples generated during the
execution of the loop.

Example4.1 Consider the code in Figure 3. Assuming that
p(ro) = 70, p(r1) = 7, P,Q both evaluate true: line 1, ac-
cording to (4.3), allocates a normal objégt, assigng(o1) = h1,
and generates; > h1 in ¢; line 2, according to (4.4), (4.8), and
our assumption, assigp$r) = ~o; line 3, similar to line 2, assigns
p(r) = 71; line 4, according to (4.2), creates a new subregion
assigns(r2) = 2, and generateg, < ~1 in ; line 5, similar to
line 1, allocateshs, assigng(o2) = hs, and generates, &> hs in

¢; line 6, according to (4.6), assigiagh2.f) = h1 and generates
ho — hiino.

4.2 Problem Formulation

Now we formulate the region lifetime consistency problemtfe
language. Let the partial ordef” be the reflexive transitive closure
of the subregion relatior. In addition, we extend the ownership
relation ¢ to the reflexive closure™ to capture the inconsistency
that a normal object in; can access regiaf if r1 £ ro. To prove
consistency, it suffices to show that for any regiang that have
no partial orderz £ y, i.e., (z,y) ¢ =t, each object iy~ (z)
must not access any object ¢ (y). In the words, the following
set must be empty.

{(01,02)(01,02) € 7 : 01 € ¢~ (x)A02 € 6= (Y)A(x,y) & 7"}
(4.12)



To simplify (4.12), extend the access relati®rio o* over the
powerset of objects as follows.

0" = {(s1,s2)]s1,52 € 2° AJo1 € 51,02 € 59 : (01,00) € o}

Applying o* to (4.12), it suffices to prove the following propo-
sition holds for consistency.

V(@y) ¢n (67 (x), 67 () ¢ o

Let 7T, o denote the complement of ", o*, respectively. We
rewrite the above proposition as follows.

V(z,y) ent: (¢~ (2),6~(y) €~ (4.13)

(3.1) and (4.13) combine to show that the region lifetime-con
sistency problem is an instantiation of conditional catien.

Definition 4.1 (Region Lifetime Consistency)(z+, $~,5*) is a
conditional correlation oveR and2®.

Example4.2 Continue with Figure 3. Example 4.1 already shows
that it generates the tuples in the three relations {y> < v1},

¢ : {y1 > h1,y2 > hao}, ando : {ha — hi}. So there are five
region pairs intt: vo £ v1, 7 £ Y2, M1 % 70,71 £ 72, and

v2 % ~o. Further,= maps them to corresponding object pow-
erset pairs({yo}, {71, h1}), ({10}, {12, h2}), ({71, k1 }, {70}).
({71, h1}, {72, ha}), and({~2, h2}, {10}), respectively. Itis easy
to show that all the pairs are &t in the case that botP, Q evalu-
ate true, so the region lifetime here is consistent.

4.3 Static Analysis

Consider a static analysis algorithm that computes alistffects

I1, &, andX: for , ¢, ando, respectively, such that+, ¢=, 0*) <
(II+, ®=, £*) holds. As we have discussed in Section 3, a sound
algorithm should estimate an over-approximationtdf, ¢=, and

an under-approximation @f*, that is, an under-approximation of
m, and an over-approximation &f, .

We briefly describe a standard Anderson-style analysisIfi3].
addition to the three abstract effedfis ¢, and ¥, the algorithm
estimates two abstract contexts: abstract environrileahd ab-
stract heap\. Using abstract locations instead of fresh objects, it is
straightforward to compute abstract contexts and effectsitial-
ization, region creation, normal object allocation, assignt, load,
store, and composition statements for the toy languageralph
with the semantics. For branching statements, the algorjttins
the abstract contexts and effects on both paths by unionsbfeat
contexts and effects. For looping statements, it iterat¢isn@ach-
ing a fixed point. We omit the details for brevity. Intuitiyelthe
algorithm estimateHl, ®, andX as an over-approximation af, ¢,
ando, respectively, either flow-sensitive or flow-insensitive.

Example4.3. Consider Figure 3 again. Similar to Example 4.1,
assuming thal’(ro) = {7y}, I'(r1) = {71}: line 1 generates
(01, h1)inT andy: > hy in ®; line 2 generateér, vo) in T'; line 3
generategr,v1) in ', so nowI'(r) = {v0,71}; line 4 generates
(r2,72) inT andy2 < 70,72 < 71 inII; line 5 generateéoz, ha)
inT" and~2 > h2 in ®; line 6 generateghs. f, h1) in A andhy —
h1 in X. Here~o, 71, h1, ho are abstract locations; the abstract
effects arell : {72 < v0,72 < M}, ® : {71 > h1,72 > ha},
andX : {hz —» hl}.

Note thatll is an over-approximation af. However, we need
an under-approximation. As we have discussed in Sectiogi2gu

1 if ~ p = rnew(...); - -

else p = rnew(..); ) @ B ) @
2 q = rnew(p); | |
3 o, = ralloc(p); ~ E}
4 o, = ralloc(q); @ @
5 0,.f = 053 (a) (b)

Figure 5. An intra-region pointer example.

regionr to be a subregion of several regions s, . . ., ry, rather
than a unique parent in semantics. In such cases, regioms&or
join-semilattice, where the root regiok is the top. We consider
the parent region of as the join of all its possible parent regions
V1, i, and replace them with the tupte< \/7"_, r; in IL.

Example4.4. Continue with Example 4.3. Assume that the parent
of either o or ~; is the root regionA. The algorithm finally
generatedI : {y; < Ali = 0, 1,2}, so that there are six region
pairs inTI+ to be verified, as discussed in Section 2.

The algorithm can be flow-insensitive, thus we adopt more pre
cise pointer analysis techniques [22] while preservindadity.

We should distinguish effects (e.g., the subregion, owriprand
access relations) in individual contexts (e.g., call patss we
need context-sensitivity [14]. Furthermore, we shouldcizaly
track what each field of an object refers to, so we also use-field
sensitivity. In addition, we should be able to distinguisfiedent
instances of objects that are created at the same call sitenlalif-
ferent call paths, thus heap cloning or specializationiiscat for
precision [36] RegionWiz implements a flow-insensitive, context-
sensitive, field-sensitive analysis with heap cloning.

However, the algorithm comes at a price. Consider the exampl
in Figure 5. Line 1 creates eitheg or r1; line 2 creates a subregion
r2, taking the region that refers to as its parent. Wherrefers to
eitherr;,7 = 0,1, o1 is in r; andry is also a subregion of;.
Sinceos is inrz, the region lifetime is always consistent. Our flow-
insensitive algorithm will conservatively yield an impise result
as shown in Figure 5(a) and report a false warning, becatizisit
to capture the fact that the parentsef and the owner ob, are
always the same region.

A possible approach is to introduce an indirect level. Refine
the relations of subregiom and ownershipp as«’ : R x V
and¢’ : V x O, respectively, wher& is the set of variables. A
new static analysis algorithm that computes def-use indion
for each variable can yield a more precise result, as shov#igin
ure 5(b). The new subregion tupleris <’ p, while the new own-
ership tuples arg >’ 01, ¢ >’ 02. In this case it suffices to verify
against (region) variable pairs , v if there exists regiomr that
variablevs may refer to such that £’ v1. A practical implemen-
tation can adopt techniques such as IPSSA [29], an unsound bu
effective approach. We defer it to future work.

5. Implementation

Our prototype tooRegionWiz currently supports two region-based
memory management interfaces used in real-world C programs
RC regions [17] and Apache Portable Runtime (APR) pools.[23]
We use the interface of APR pools as an example, which is widel
adopted by various software packages such as Apache wedr serv
and Subversion version control system. Figure 6 lists path®

such imprecise subregion edges can be unsound and will missinterface.

region pairs that should be verifiedlibt, e.g.,y2 < 71.

Generally, the subregion relationshould form a tree, where
each region (except for the root regidr) has one and only one
parent. A static analysis algorithm may conservativelyneste

Similar tornew, apr_pool_create creates a new subregion of
a given parent region (or the root if given null); the suboegcan
be retrieved by dereferencing the first parameterp, a pointer
to pointer. A functionapr_palloc, similar toralloc, allocates a



/* region creation (rnew) */
apr_status_t
apr_pool_create(apr_pool_t **newp, apr_pool_t *parent) ;
/* object allocation (ralloc) */
void * apr_palloc(apr_pool_t *p, apr_size_t size);
void * apr_pcalloc(apr_pool_t *p, apr_size_t size);
/* region deletion */
void apr_pool_clear(apr_pool_t *p);
void apr_pool_destroy(apr_pool_t *p);
/* cleanup registration */
typedef apr_status_t (*cleanup_t)(void *data);
void apr_pool_cleanup_register(apr_pool_t *p,
const void *data, cleanup_t plain_cleanup, ...);

Figure 6. Part of APR pools interface.

specified size of memory in a given regiatpr_pcalloc further
fills the newly allocated memory with zero.

A region can be cleared usirgpr_pool_clear or deleted us-
ing apr_pool_destroy; the runtime will operate on all its de-
scendants. Moreover, APR enables to register cleanupifmsabn
regions viaapr_pool_cleanup_register. For example, the de-
veloper opens a file descriptor usingen and registers a cleanup
function that callsclose to delete the file descriptor on a region.
When the region is cleared or deleted, the runtime will tigthe
cleanup function to close the file descriptor, so that it casidare-
source leaks. In this way, APR manages systems resourdesasuc
file descriptors usingpen-close similarly to memory in regions.
Interested readers may refer to APR documentation forlddtai-
formation.

Now we describe the implementation details RégionWiz.

It consists of four phases: 1) call graph construction, 2)-co
text cloning, 3) conditional correlation computation, af)dpost
processing. It mostly follows the standard steps in cloftiaged
context-sensitive pointer analysis [40], with additiosapports for
heap cloning [36].

5.1 Call Graph Construction

The first phase constructs an initial context-insensitiat graph
in a standard way as a basis for further computation. We built
back-end plug-in for thé>hoenix compiler framework [31], and
transparently inserted the plug-in into the compiler phiésteto
extract instructions of the intermediate representatiB for pro-
grams. Each instruction consists of destination operamgspde,
and source operands.

// time_t t = time(0);
1 t142 = CALL &_time, O
2 _t = ASSIGN t142

// struct tm * (*mytime) (const time_t *timer);
// mytime = localtime;

3 _mytime = ASSIGN &_localtime
// int week = mytime(&t)->tm_wday;

4 t143 = CALL _mytime, &_t
5 t144 = ADD t143, 24
6 _week = ASSIGN [t144]x*

In the example above, line 1 is a direct CALL instruction tadu
tion time; line 3 assigns a function pointer to variahigtime;
line 4 indirectly invokes the function pointer and assigh43 with
the resulting structurem; to access its fieldm. tm_wday, line 5
adds the pointer with offset 24, which is machine-dependiat 6
deferences the value.

The algorithm for call graph construction is expressed as Da
alog rules and solved using theldbddb deductive database [24]
over such IR instructions. Let be the set of IR instructions and
F be the set of functions. The resulting call graph is in thenfor

call : I x F, the set of call edgesuli(i, f) means that the target
of instruction: (that should be a CALL instruction) is functigh
RegionWiz computes:all from direct, indirect, and implicit calls.

The target function of a direct call can be simply extractedf
the first source operand of the CALL instruction, such aslitieat
callstime in the example above.

An indirect call requires to resolve the first source operahd
a CALL instruction to determine what functions the variabiay
refer to. To do soRegionWiz estimates the setF’ : V x F for
each variable, wher¥ is the set of variables. For an initialization
instruction such as line 3 in the example above, it is sttéagh
ward to add(mytime, localtime) into setvF. RegionWiz fur-
ther propagates function pointer values along variablgasgnts
intraprocedually and call-return instructions (e.g.,goaeters and
return values) interprocedurally, and iterates to addtade, func-
tion) pairs into sev F' until it converges.

An implicit call such as system callback requires expertino
edge. For example, if there is a call instructiorto function
apr_thread_create with the entry functionfoo as its parame-
ter, the system will create a thread that invokes at runtime.
Thus, in addition to the direct ca(, apr_thread_create), Re-
gionWiz also adds the implicit calli, foo) into setcall for a more
complete call graph. Current implementation supports sodad
creation functions provided by Windows API, libc, and APR.

Moreover,RegionWiz identifies the main entry for a program
(usually themain function in C) and performs a reachability analy-
sis to prune the instructions in those functions that aremealled
directly or indirectly from the main entry.

5.2 Context Cloning

RegionWiz transforms the context-insensitive call graptil to a
context-sensitive call grapbe : C x I x C x F via cloning;
cc(ceo, 1, c1, f) is a call edge that instructiohin contextc, calls
function f in contextc;. The transformation first reduces strongly
connected components imll into single nodes, finds a topolog-
ical order, and then numbers individual call paths as aaltian-
texts, following the standard algorithm [40]. Each contextber
for a function represents a unique call path that reachdsitiztion
from the main entry. Since the number of contexts is expaalent
RegionWiz stores the relationc using a finite domain implemen-
tation inBuDDy [28], a binary decision diagram (BDD) package.

Now we have a context-sensitive call graghwhere each call
to function f in contextc is identified as a unique pa(e, f). Thus,
for each call to region creation functions (e #pr_pool_create)
or object allocation functions (e.gpr_palloc), (c, f) can repre-
sent a region or object instance. Our subsequent computasies
such pairs to identify regions and objects.

In addition, variablev is identified as(c, v), so that we can
compute points-to set for each variable in individual cargesuch
asvR(c,v,rc,rf) for variablev in contextc that may refer to
region instancgrc, rf). The propagation for computing the set
works as follows. For intraprocedural statements such sigras
mentve = w1, add (¢, v2,re,rf) into vR if (c,v1,re,rf) isin
vR. Interprocedurally, for CALL instruction, (c1, i, cz, f) in cc,
assumingy is thek-th variable of instruction in caller code and
ve IS the k-th parameter of the target functiohin callee code,
add (cz,v2,re,rf) into vR if (c1,v1,7re,rf) is in vR; in addi-
tion, assumings is assigned with the return value of instruction
andv, is the source operand of a RETURN instructionfinadd
(c1,v3,re,rf) into vR if (c2,va,re,rf) is in vR. The computa-
tion iterates until it converges.

5.3 Conditional Correlation Computation

This phase is the core part of our analysis to compute theicond
tional correlation over regions and objects.



5.3.1 Effect Computation

The computation for the effects iterates as described itic3e8.2

for a whole program. It is usually the most time-consuming.pa
For calls to region creation functions (e.gpr_pool_create)

we estimate R, the set of regions that each variable may point to,

and the subregion relation over regions.

e vR : C x V x C x F is the points-to relation for regions;
vR(c, v, re, rf) means that variable in contextc may point to
region(re, rf).

e subregion : C x F x C x F is the subregion relation
over regions;subregion(rco, r fo, rc1, r f1) means that region
(rco, T fo) may be a subregion df-c1, 7 f1).

For calls to object allocation functions (e.gpr-palloc) we
similarly estimatevH, the set of objects that each variable may
point to, and the ownership relation between regions anelotdj

e vH : C x V x C x F is the points-to relation for objects;
vH (c,v, he, hf) means that variable in contextc may point
to object(hc, hf).

e ownership : C x F x C x F is the ownership relation be-
tween regions and objectswnership(re,rf, he, hf) means
that region(rc, r f) may own objec(hc, hf).

We further compute the sékap on each store statemett>f
= y thatz can accesg via field f. Since C is a weakly-typed
language, we use offset values instead of symbolic namdiefds.

e heap : C x F x N x C x F'is the set for heap over objects;
heap(co, fo,m,c1, f1) means that objecfco, fo) contains a
pointer at the offset that can access obje@ti, f1).

We do not compute a separate access relatieap is sufficient.

5.3.2 Inconsistency Computation

WEe filter candidate region pairs that have no subregionadantiler,
and verify the non-access property against each pair.

e regionPair : C'x F x C'x F'is the set of region pairs that may
have no subregion partial ordeegion Pair(rco, v fo, 1, 7 f1)
means thatrco, 7 fo) £ (re1, 7 f1).

e objectPuair : C x F' x N x C x F'is the resulting inconsistent
object pairs;objectPair(co, fo,n, c1, f1) means that object
(co, fo) contains a possible dangling pointer at field offset
to object(ci, f1).

The computation ofegionPair is based on the conservative way
to estimate parent regions described in Section 4.3. lragstt-
forward to compute the resulbject Pair based on-egionPair,
ownership, andheap according to (4.12) and (4.13).

5.4 Post Processing

As a static analysis tool may generate a large amount of nwgsni
it is necessary to process the reported warnings and aidiogeve
to locate and inspect the suspicious code.

First, since the resultbject Pair is over context-sensitive ob-
ject pairs, the size is usually quite large because the bppcs
can be inconsistent in many similar contexts. We condensi&xb
sensitive object pairs to context-insensitive instruttjairs (-
pairs) for further inspection.

Besides, we rank reported warninggegionWiz does not com-
pute def-use information, as we have discussed in Sect®rsd it
may report warnings on intra-region pointers that shouldlaays
safe. To filter them our current implementation applies areky
ing heuristic: for an inconsistent object pair, if their avmegions
never have the subregion relation, we rank them high in theltre

| KLOC | exe | brief description

rcc 37 1 | RC compiler

apache 2.2.6 42 9 | web server and utilities
freeswitch 1.0b1 109 1 | telephony platform shell
jxta-c 2.5.2 114 1 | P2P framework shell
Iklftpd 5 1 | FTP server

subversion 1.4.5 240 9 | version control system

Figure 7. Benchmarks. The “exe” column lists the number of
executables in each packages. The rcc package uses RCsregion
Other software packages are based on APR, where the cod# size
APR (~ 200 KLOC) does not count.

| high-ranked (cause) inconsistency (cause)

rcc 1(1) 1(1)
apache 1(1) 0(0)
Iklftpd 2(2) 2(2)
subversion 21 (6) 9(4)
total 25 (10) 12 (7)

Figure 8. Numbers of high-ranked warnings and inconsistencies,
as well as their unique causes.

5.5 Limitations

RegionWiz supports pointers to pointers, since they are typ-
ical in C functions for retrieving newly created objectsg.e.
apr_pool_create. It also handles unsafe typecasts including casts
between integers and pointers, and uses low-level offsegéns
rather than symbolic field names for structures and unidnss. |
unsound for more complex pointer operations such as artitbme

RegionWiz tracks thread creations as implicit calls, but it may
still miss some call edges due to other implicit callbacksir
the operating systems or underlying libraries. It trackscfion
pointers but may still fail to resolve some call sites duedmplex
pointer operations or dynamic loading of shared librariEse
currentPhoenix version does not emit all information generated
by the front-end, s®egionWiz may miss some indirect call edges.
These limitations will result in an incomplete call graph.

Besides, our post processing is unsound. Developers mag foc
on high-ranked warnings and miss lower-ranked inconsigtsn

6. Experiments

We have applied our prototype toBegionWiz to six software
packages, as listed in Figure 7. Among them rcc uses RC rggion
while others use APR pools. All packages in the experimeetew
the latest stable releases (if possible), so we did not éxpece
would be many inconsistencies. Development versions am@ mo
likely to have serious inconsistencies; interested resacken search
their repository logs for fixes.

RegionWiz reported 230 warnings of instruction pairs for in-
consistent objects and ranked 25 of them high (10 uniqueesus
We examined them and found 12 inconsistencies (7 uniquesgus
as shown in Figure 8.

6.1 Case Study

Figure 9 illustrates an inconsistency case between a hbhkh ta
and an iterator in Subversion. The hash table should havegzio
lifetime than the iterator. On the contrary, in Figure 9(z@ hash
table resides in subregiosubpool; in Figure 9(b) the iterator
hi is allocated in the paremtool, which is inconsistent. Though
the inconsistency does not lead to crash, the longer-tbaassary
lifetime is a potential memory leak.



/* libsvn_subr/xml.c:svn_xml_make_open_tag_v */
apr_pool_t *subpool = svn_pool_create(pool);
apr_hash_t *ht = svn_xml_ap_to_hash(ap, subpool);
svn_xml_make_open_tag_hash(str, pool, ..., ht);
svn_pool_destroy (subpool) ;

(a) A hash tablat is allocated insubpool.

/* libsvn_subr/xml.c:svn_xml_make_open_tag_hash */
for (hi = apr_hash_first(pool, ht); hi; ...)

(b) Retrieve an iteratari for the hash tablat.
/* apr/tables/apr_hash.c: apr_hash_first */

if (pool)

hi = apr_palloc(pool, sizeof (*hi));
else

hi = &ht->iterator;
hi->ht = ht;

(c) If the given regiorpool is not null, a new iteratati is allocated
in pool; otherwisehi uses a field oht intrusively. The iterator
can access the hash table xia->ht.

Figure 9. An inconsistency between a hash table and its iterator.
The iteratorhi allocated in parenpool holds a possible dangling
pointerhi->ht to the hash tablat allocated insubpool.

Note that the code in Figure 9(a) allocates the hash table in

a subregion and deletes the subregion before exit; the ajme
should have intended to free all temporary memory, but thenin
tion fails due tohi that inconsistently resides gool. The devel-
opers might argue that using a separate subregion could be mo
likely to be thread safe (see Section 6.4 for further disom3sbut
hi is allocated in the parepbol, which contradicts the argument.
To fix the bug, the call tGvn_xml_make_open_tag hash in Fig-
ure 9(a) can passubpool instead ofpool. Alternatively, the call
to apr_hash_first in Figure 9(b) can pass null instead pfol
as the first parameter; in Figure 9(c) iteratiarwill share the same
region as the hash table.

Another type of inconsistency relates to strings. The wayni
generated for rcc is such a case that an object holds a painter
a string while their owner regions have no subregion paotidér.
We omit the code for brevity since it involves about 10 fuoos.

The inconsistency does not lead to crash because the twor owne 3

regions are never deleted. However, the object should rueax
client code never deletes the region that owns the stringti@b
way could be to duplicate the string in the object’'s owneiaeg

Temporary inconsistencies that violate the consistenoyage
tics within a scope of code are “benign”. Figure 10 illustsagn
example. Objeclock is allocated inpool, andlock->set may
be assigned with a temporary hash table allocatedhiipool via
a call toapr_hash _make. Our tool reported a warning for the case
since it violates the semantics defined in Section 3, thoatgr |
lock->set isreassigned withssociated->set beforesubpool
is deleted.

A more precise analysis with path sensitivity may help tmeli
inate the temporary inconsistency. Particularly, the ysialmay
have to prove that objediock is alwaysallocated in a parent re-
gion pool in either branch ofirite_lock, thatlock->set is set
to a hash table allocated in a subregiatbpool under the condi-
tion P that bothlevels_to_lock!=0 andassociated hold, that
lock->set is reassigned withssociated->set under the condi-
tion Q thatassociated holds (independent dfevels_to_lock),
and thatP impliesQ.

Generally, temporary inconsistencies make code thatvesgol
complicated branch conditions more error-prone. Deve®pave
to carefully handle assignments of objects of differenttiihes
in various code branches. Nevertheless, a better way taiamga

/* libsvn_wc/lock.c:do_open */
svn_wc_adm_access_t *lock;
apr_pool_t *subpool = svn_pool_create(pool);
if (write_lock)

lock = adm_access_alloc(..., pool);
else

lock = adm_access_alloc(..., pool);
if (levels_to_lock != 0) {

if (associated)

lock->set = apr_hash_make (subpool);
if (associated) { ...
lock->set = associated->set;
}
}
if (associated)
lock->set = associated->set;

svn_pool_destroy (subpool) ;

Figure 10. A (slightly simplified) temporary inconsistency ex-
ample. Objectlock is allocated inpool (in either branch of

write_lock). Its field lock->set is temporarily assigned with a
hash table, which is allocated Bubpool; the field is later reas-

signed withassociated->set.

code could be updating object fields only when necessarydial av
temporary inconsistencies and reduce the risk of crastiekeaks.

In our experience, region lifetime inconsistency usually i
volves several functions and deep call paths, thus it regquir
precise interprocedural analysis as we have employed.

6.2 False Warnings

Since our analysis is mostly flow-insensitive, we expecteste
would be corresponding false warnings. We looked 205 lower-
ranked warnings. Most of them are false; we found 1 tempadrary
consistency there. So our simple heuristic described iti®es.4
effectively pruned most false warnings. However, to eliatinthe
false warnings (3 unique causes) in high-ranked ones welfthat
all of them require extra effort in addition to flow sensityvi

Here is an example.

1 /* libsvn_subr/error.c:make_error_internal */
2 if (child)
pool = child->pool;
4 else

if (apr_pool_create(&pool, NULL))

abort();

new_error = apr_pcalloc(pool,
new_error->child = child;

L)

0 N oo

At first glance, line 5 creates a separate regonl and line 7
allocates objectew_error in the region; at line 8 the object seems
to hold a possible dangling pointer thild. In fact, pool is a
separate new region only #hild is null; in this case pointer
new_error->child is assigned with null. Otherwiggool refers
to child->pool at line 3; becauseew_error shares the same
region withchild, pointernew_error->child is intra-region and
always safe. In either case, the region lifetime is consiste

To eliminate such false warnings, we may apply heuristics si
ilar to lock-unlock pairs computation in RacerX [15] for eade-
tection, or employ a path-sensitive analysis [12, 43] tokifaranch
conditions. We leave it as future work.

6.3 Quantitative Results

Figure 11 shows our experimental results in detail. For ea&h
cutable, we measure the analysis time, the total numbeegadirs

R and normal object8l, and the sizes of the three relations sub-
region, ownership, and heap (access). We also count theeramb
of region pairs that have been verifid-pairs) and suspicious ob-



| time | R H ] sub. own. heap R-pair  O-pair | I-pair high
rcc 19m21s 10 2536 9 1577 746940 70 1 1 1
ab 49s 11 111 10 53 24 92 0 0 0
htdbm 51s 3 15 2 12 10 4 0 0 0
rotatelogs 51s 3 21 2 17 21 4 0 0 0
httxt2dbm 56s 4 80 3 27 45 8 0 0 0
htcacheclean 1m21s 13 242 12 162 230 120 0 0 0
htdigest 1m27s 3 293 2 264 315 4 0 0 0
htpasswd 1m50s 3 406 2 338 343 4 0 0 0
flood 2mO06s 6 324 5 62 97 24 0 0 0
httpd 34m04s 19 4546 18 2341 2273 319 410 9 1
freeswitch 14m55s 20 3174 46 3065 2499 360 456 4 0
jxta-c 58m24s 17 5007 16 27 10 256 0 0 0
Ikiftpd 2m34s 7 622 6 622 565 34 6 2 2
diff 16m29s 427 1941 680 64833 4274 181477 260 13 1
diff3 19m30s 424 1865 535 25135 2766 178930 189 13 1
diff4 21m24s 425 1877 538 25147 2781 179767 190 13 1
svndumpfilter 44m46s| 6517 28378 6870 2069908 29153 42458253 4072 15 2
svnadmin 53m20s| 7274 31620 8326 3881275 39133 52896514 7741 23 2
svnlook 1h00m57s| 8194  35638| 8760 4846261 37928 67125232 5289 23 2
svnsync 1h21m43s| 8123 36589| 10863 5003865 62491 65965730 7896 24 3
svnserve 15h09m41ls| 47480 195255 93771 158244795 31451] 2254148642 43874 57 3
svn 25h59mb53s| 53754 238521 542402 897921834 2806719872889375908 134798 31 6

Figure 11. Experimental results. All experiments were conducted oaraes with Intel Xeon 2.0 GHz and 32 GB of RAM. The “time”
column lists the analysis time for each executaldi, “ H” are the numbers of regions and normal objects, respegti@action 5.2). “sub.”,
“own.”, and “heap” are the sizes of thewregion, ownership, andheap relations, respectively (Section 5.3.1R-pair” is the number
of region pairs to be verified andJ-pair” is the number of reported inconsistent object passdion 5.3.2). f-pair” is the number of
context-insensitive instruction pairs @fFpairs and “high” is the number of high-rankéepairs (Section 5.4).

ject pairs that have been detect@dffairs). The context-insensitive ~ APU_DECLARE(apr_xml_parser *)
instruction pairs {-pairs) and high-ranked pairs are useful for fur- 2Pr-xml_parser_create(apr_pool_t *pool) {
ther inspection. The time for call graph construction daztscount apr-x“‘f;ParfeiMzP:rser 2 api_lgggﬁ;f(mol, e
since they are relatively small compared to the analysis.tim ﬁ;ﬁsgﬁolxilgmp'IZ;iS:fefizoil par;;el.‘. .

As reported [24], BDD variable order can greatly affect effi- - - Clea;mp_Pars;r, YR
ciency ofbddbddb. We randomly tried a few orders and picked
a not-so-bad one. 18 out of 22 experiments can finish within an ¥
hour. However, as calling contexts grow, the numbers of aibje )
(R and H) increase fast and lead to a large amount of relations (a) apr_xml_parser_create in Apache.
and region pairs to be verified. The most time-consuming rexpe

return parser;

svn_xml_parser_t *

iment, svn, takes more than one day to finish, which at first we svn_xml_make_parser(..., apr_pool_t *pool) {
thought could not produce a result. Notably, it yields mdrant 2 svn_xml_parser_t *svn_parser;
billions R-pairs and thus complicates the computation. The result apr_pool_t *subpool;
suggests that reducing calling contexts is an importanofao im- XML_Parser parser = XML_ParserCreate(NULL);
prove scalability. WhileRegionWiz uses call paths as contexts, we /% #hk ve zzdl’zzg gzn;iozigtpzzgsizml;
?hrztQ\é?jélgaélrgglgpﬁargfgﬁ gcc))r:ltt:;(ttésenSItIVIty fopi@grams ### to the callbacks and clear it periodically. */
' subpool = svn_pool_create(pool);
svn_parser = apr_pcalloc(subpool, ...); ...
6.4 Discussion return svn_parser;

It is arguable that few inconsistencies imply good code twac ¥

Our tool reported few to none inconsistencies for Apache tha (D) svn_xml make_parser in Subversion.
manages regions in an elaborate way [23], while there wezerdo . . . .
of warnings for Subversion. As an example, let's compare XML Figure 12. Two XML parser creation APlimplementations.
parser creation APl implementations provided by the twdpges.

Both implementations return a newly created parser objeced

on the popular Expat library (in EXp@HL_ParserCreate creates On the other hand, Figure 12(b) shows the Subversion coeunter
a new instance andML_ParserFree frees it, similar toopen- partsvn_xml _make_parser. It does not register any callback for
close for file descriptors). XML_ParserFree, SO to deletepool in client code will lead to

As shown in Figure 12(appr_xml_parser_create in Apache leaks (though they provide a separate parser deletion Mri)e
allocates the parser object from the givesvl, creates an Expat  importantly, it createsubpool of the givenpool, and allocates
instance, and registers a cleanup funcié@eanup_parser (code the parser object iBubpool rather than irpool as Apache code
not list here). If client code deletegol, the runtime will trigger does. The region usage is debatable. Interestingly, asrsimolaig-

the cleanup function that invoke®ML_ParserFree to free the ure 12(b), the developers themselves put a comment thaeownc
Expat instance. the issue in the code.



First, as we have discussed in Section 1, one advantage of re-cloning-based work [40, 4, 39] did not clone the heap; theysater

gions is that developers can gather relevant objects inaime se-
gion and batch allocation and deallocation for better perémce.
However, becausevn_xml_make parser allocates the object in a
separate subregion, the memory allocator of which is inddget,
client code loses fine-grained control and cannot take thipe
mance advantage.

Moreover, since the memory allocator of the subregion is-ind
pendent, one may argue that the usage provides better tméstyl
and concurrency, as some developers responded; the pansese
subpool independent opool that might be shared with another
thread without locks. However, it isot the XML parser API’s
responsibility to take care of the multi-threading issune parser
does not create any thread. It is the client code that shoatthge
threads and regions because only the client code has thdddgev
to determine whetheggsool is shared among threads and which re-
gion the parser object should reside.

Because the parser igvn_xml make_parser iS created in
subpool, any object that is created ool and that can access
the parser involves an inconsistency, such as ohjeggy in the
following code.

/* libsvn_wc/log.c:run_log */
struct log_runner *loggy = apr_pcalloc(pool,
parser = svn_xml_make_parser(..., pool);

L)

loggy->parser = parser;

RegionWiz reports a warning for every such use.

7. Related Work

these sites in a context-insensitive way. We feel that héapng

is necessary for our analysis, but the numbers of contextey us
call paths are too large in some cases. The Chord race deftg8o
uses object sensitivity [32] for a smaller number of corgéntlava
programs. We are investigating more appropriate contexdite
ity for C programs. In addition to the cloning-based apphace
may also adopt other context-sensitive pointer analysik éap
cloning [35, 26].

Besides, our analysis algorithm is mostly solved Hxdb-
ddb [24], the BDD-based deductive database. Since BDD is often
a key component to achieve scalability in context-seresiéimaly-
sis [27, 40, 44], we are interested in a parallel BDD impletagon
that can help to build more efficient analysis tools.

To achieve a lower false-positive rate, we may employ more
precise path-sensitive analysis techniques, such as IPZ3And
SAT-based approaches [42, 9].

8. Conclusion

Region-based memory management is widely used in systdtns so
ware, but it is prone to lifetime consistency that can caas®ting
pointers. We formalize the problem based on the conceptrafieo
tional correlation, which may be of independent interest. Ndve
built a prototype tooRegionWiz to detect such inconsistencies in
source code and applied it to real-world applications. ltsieful to
find inconsistency bugs in practice.

We would like to further investigate more precise and sdelab
analysis techniques for computing conditional correlat®esides,
we are working on extensions to support analysis of openrpmg
such as libraries. Our future work also includes to studyeoth

Regions have long been an underlying abstraction for memory conditional correlations, such as locks and memory looatio

management [5], such as in ML [38, 1], real-time Java [8, 10, 1
and C [25]. The abstraction is also useful for detecting ngrec
rors [20, 13]. Some C dialects support regions via languaggne
sions. Cyclone [19] enables developers to add region atioasan
a restricted discipline to source code. It infers regiors@arforms
type checking to statically detect dangling pointers. C@) gnd
RC [17] support more flexible region usages. They maintdier+e
ence counts for regions at runtime; a region will not be deldftit
is still referenced by inter-region pointers from outsid¢hile use-
ful, dynamic techniques for safe regions do not fix bugs geher
objects still reside inconsistently in regions, and resesiin the re-
gions cannot be reclaimeBegionWiz can find these bugs before
deployment and usually provide a higher coverage.

Correlations that capture consistency constraints betwse
sets of objects pervade in software systems. MUVI [30] mfer
multi-variables that should be updated consistently, edpuffer
and its length, and detects violations in source code. Asratio-
table example is the correlation between locks and memag-lo
tions for race detection, which is an inspiration of our wdRlac-
erX [15] employs heuristics to detect races and dead locksilin
lions lines of systems codedcksmITH[37] infers the correlation
for C programs and formalizes the problem as a constraintues
tion. Chord [33, 34] further introduces a disjoint reacliabanal-
ysis for Java; proving race-free is formalized as a conudlitionust
not aliasing problem based on analyzing the heap. Ownetgbis
for real-time Java [8, 11], based on the concept of encatisn)a
can also be used to prove conditional correlation for retifetime
consistency, though not necessary [34]. Besides, they ovia-
ership between objects; our ownership relation is betwegions
and objects, which is more natural for region interfacefiacRC
regions and APR pools.

RegionWiz adopts a cloning-based context-sensitive pointer
analysis [40] with heap cloning [36] to distinguish diffatecall
paths to region creation and object allocation sites. Mostipus
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