
Efficient Reconstruction of Random Multilinear Formulas

Ankit Gupta ∗ Neeraj Kayal † Satya Lokam ‡

Abstract

In the reconstruction problem for a multivariate polynomial f , we have blackbox access to f and
the goal is to efficiently reconstruct a representation of f in a suitable model of computation. We give a
polynomial time randomized algorithm for reconstructing random multilinear formulas. Our algorithm
succeeds with high probability when given blackbox access to the polynomial computed by a random
multilinear formula according to a natural distribution. This is the strongest model of computation for
which a reconstruction algorithm is presently known, albeit efficient in a distributional sense rather than
in the worst-case. Previous results on this problem considered much weaker models such as depth-3
circuits with various restrictions or read-once formulas.

Our proof uses ranks of partial derivative matrices as a key ingredient and combines it with analysis
of the algebraic structure of random multilinear formulas. Partial derivative matrices have earlier been
used to prove lower bounds in a number of models of arithmetic complexity, including multilinear
formulas and constant depth circuits. As such, our results give supporting evidence to the general thesis
that mathematical properties that capture efficient computation in a model should also enable learning
algorithms for functions efficiently computable in that model.

1 Introduction

We study the problem of reconstructing a multivariate polynomial: given blackbox access to a hidden
polynomial f ∈ F[x1, . . . , xn] over a finite1 field F, reconstruct a representation of f in some suitable model
of computation. A reconstruction algorithm can adaptively query the blackbox to evaluate f on inputs of
its choice from Fn. Its efficiency is measured in terms of the number of queries and the running time. We
typically assume f itself to be efficiently computable in some model of computation, e.g., depth-3 circuits
of polynomial size, and also require the reconstruction algorithm to produce a succinct representation of f
in some (possibly different) model of computation. The most obvious representation of a multivariate poly-
nomial is its formula as a sum, weighted by coefficients from F, of monomials, i.e., a depth-2 ΣΠ formula.
In this case, the problem of reconstruction is more commonly referred to as interpolation: given blackbox
access to a polynomial, produce its representation as a sum of products. However, many interesting poly-
nomials, e.g., determinant, have exponentially long (in the number of variables) representations as a sum
of products, whereas as a straight line program or an arithmetic circuit, they can be represented much
more succinctly. The reconstruction problem demands such succinct representations as outputs and hence
is a generalization of the interpolation problem. In its most general formulation, e.g., produce (roughly)
the smallest arithmetic circuit for f , the reconstruction problem is extremely hard. If a circuit class C has
a deterministic reconstruction algorithm, it is easy to see that C also has a deterministic (blackbox) PIT
algorithm. On the other hand, a deterministic PIT implies superpolynomial size lower bounds against C
for an explicit polynomial. Hence, a deterministic reconstruction algorithm for C is at least as hard as
proving superpolynomial lower bounds against C. Thus, much of the research in this area focusses on
reconstructing polynomials efficiently computable by weaker variants of arithmetic circuits.
∗Microsoft Research India, t-ankitg@microsoft.com
†Microsoft Research India, neeraka@microsoft.com
‡Microsoft Research India, satya@microsoft.com
1Many of the definitions make sense for infinite fields as well.

1

Previous work on the reconstruction problem focussed on polynomials computable by constant depth
arithmetic circuits and read-once formulas. In particular, depth-2 circuits [KS01], i.e., interpolation prob-
lem, depth-3 circuits with bounded top fan-in and multilinear depth-3 formulas with bounded top fan-
in [Shp09, KS09]. See [SY10] for more details on previous work.

In this paper, we consider the model of multilinear formulas. An arithmetic formula, using + and
× operations, is multilinear if the formal polynomial computed by each of its subformulas is multilinear.
Our main result is a randomized reconstruction algorithm for a class of random multilinear formulas. The
algorithm uses as a blackbox a multilinear formula randomly chosen according to a natural distribution
(see Section 2 below for details). It succeeds with high probability w.r.t. its internal randomness and the
choice of the formula from the distribution. Its output is a multilinear formula of the same size as the
hidden formula; it is, in fact, the smallest multilinear formula computing the hidden polynomial. This is the
strongest model, and the first one of super-constant depth, in arithmetic complexity for which an efficient
(even in a randomized or distributional sense) reconstruction algorithm is shown. We further remark that
a slight variant of the problem of reconstructing multilinear formulas, even for depth three formulas, is
known to be NP-hard. Specifically, Hastad [H̊as90] showed that reconstructing the smallest set-multilinear
formula (an even weaker model than multilinear formulas) for a given set-multilinear polynomial is NP-
hard. This indicates that without some kind of a distributional assumption, it would be unrealistic to hope
for a reconstruction algorithm for multilinear formulas. Alternatively, it indicates that there is unlikely to
be a worst-case reconstruction algorithm for multilinear formulas.

From a broad perspective, reconstructing polynomials from arithmetic complexity classes is, in some
sense, analogous to learning concept classes of Boolean functions using membership and equivalence queries.
(see Chapter 5 of survey by Shpilka and Yehudayaoff [SY10] for justifying arguments for the analogy to
the Boolean world and, more generally, for previous work in this area.) While research on the theory
of learnability in the Boolean world has evolved into a mature discipline, thanks to fundamental notions
such as PAC learning due to Valiant, research on learnability in the arithmetic world has been gaining
momentum only in recent years.

A recurring theme in Boolean and arithmetic domains is that techniques used to prove lower bounds
for a model of computation are often helpful in designing learning algorithms for that model. At a very
high level, a lower bound proof identifies mathematical properties of a model of computation that capture
efficient computation in that model. Thus functions efficiently computable in that model should possess
the same or similar properties and they should also be useful in learning such functions. This thesis has
been borne out in the Boolean world by several examples, e.g., Fourier approximability of AC0 circuits is
useful in both lower bounds and learning algorithms. In the arithmetic world, we see a similar trend, but
there are still an abundant number of open questions suggested by this general theme.

Our results in this paper, and in this direction in general, are guided by, and provide supporting
evidence to, the thesis mentioned above. One of the key ingredients of our proof is the use of partial
derivative matrices of polynomials computed in a multilinear formula. We note that properties of partial
derivatives of a polynomial have been an important tool in proving lower bounds in a variety of models. In
particular, Raz [Raz09] used them to prove lower bounds on multilinear formulas and Raz and Shpilka used
them for lower bounds on constant depth circuits. Nisan [Nis91] also used them to prove lower bounds in
the noncommutative setting. Thus it is to be expected that properties of partial derivatives of polynomials
are useful in reconstruction algorithms. Indeed, Klivans and Shpilka [KS06] prove that whenever the space
of partial derivatives has polynomial dimension, one has polynomial time reconstruction algorithms. This
implies reconstruction algorithms for some restricted versions of depth-3 circuits and Arithmetic Branching
Programs (ABP’s) since their partial derivatives span low-dimensional spaces. This approach, however,
cannot be used for multilinear formulas since there are multilinear formulas whose partial derivatives
span spaces of exponential dimension. Nevertheless, Raz [Raz09] combines rank arguments about partial
derivative matrices and combinatorial arguments based on random restrictions to prove quasipolynomial
lower bounds on the multilinear formula complexity of the determinant and permanent polynomials. In
this paper, too, we exploit rank arguments about partial derivative matrices of polynomials computed

2

in a multilinear formula and combine them with additional structural properties of random multilinear
formulas to derive our reconstruction algorithm.

2 Definitions and Main Result

We recall that an arithmetic formula is a binary tree such that (i) each leaf is labeled by either a variable
from X = {x1, . . . , xn} or an element of the field F, (ii) each internal node is either + gate or × gate,
and (iii) The incoming edges of a + gate are also labeled by constants from F. A + gate computes the
linear combination of its inputs with coefficients given by the constants on the incoming edges of the gate.
A × gate computes the product of its inputs. Each gate v in the formula is naturally associated to a
polynomial pv ∈ F[X] computed at v. In particular, the polynomial computed at the root (output node)
is the polynomial computed by the formula. The size of a formula is the number of leaves in the tree. The
(multiplicative) depth of a node is the number of × gates on the path from that node to the root. The
depth of the formula is the maximum depth of a leaf. An arithmetic formula is said to be multilinear if
each gate in it computes a multilinear polynomial, i.e., in each of its monomials the power of every input
variable is at most one.

Definition 2.1. Syntactic Multilinear Formulas: Let Φ be an arithmetic formula over X = {x1, . . . , xn}.
Let Φv denote the subformula rooted at a node v and Xv be the set of variables that appear in Φv. Then,
Φ is said to be syntactic multilinear if for every product gate v = v1 × v2 of Φ, the sets Xvl and Xv2 are
disjoint.

Note that for any multilinear formula, there exists a syntactic multilinear formula of the same size that
computes the same polynomial (see [Raz09]). Hence, we often omit the word “syntactic” while referring
to multilinear formulas.

A Natural Distribution on the set of Multilinear Formulas:

Our reconstruction algorithm uses, as a blackbox, a random multilinear formula drawn according to a
distribution as defined below. Informally, this distribution constructs a binary tree with + and × gates at
alternating levels (with a + gate at the root). Each + gate computes a random linear combination of its
inputs over F. Moving down the tree, at each × gate, we partition the variables into two equal-sized sets
and recursively build a subformula rooted at each of this × gate. We stop the recursion when the number
of variables is small enough (we choose this to be about log3 n for technical reasons and ensure an error
probability of 1/poly(n).)

Note that balanced partitioning of variables at product gates is not a serious loss of generality. This
is because if an optimal formula for some polynomial is highly skewed with size s, we can use the depth
reduction argument of Valiant et al. for arithmetic circuits and obtain a balanced formula of size at most
sO(log s) and leaves labeled by variables and constants 1 and 0.

A formal definition of the distribution follows:
Let M(X,F) be the set of all possible syntactic multilinear formulas over the variable set X =

{x1, . . . , xn} and a (sufficiently large) finite field F. We propose the following method SAMPLE(X,F) to sam-
ple a random syntactic multilinear formula from the setM(X,F), thereby inducing a natural P-samplable
distribution D(X,F) on the set M(X,F). This distribution also depends on an integer parameter βn,
which we assume to be Θ(log3 n).
Sampling Method SAMPLE(X,F):

Step 1: Ψ← CONSTRUCT(X,+), where CONSTRUCT(X, op) is defined below.

Step 2: Let W be the set of wires in Ψ incident to a + gate. Let Φ be the syntactic multilinear
arithmetic formula obtained by labeling each wi ∈ W by a randomly and independently chosen
ci ∈R F.

3

Step 3: return(Φ).

CONSTRUCT(X, op):

Case 1: |X| ≤ βn. Let Ψ be the formula with a + gate at the root that has wires incident to it from
each xi ∈ X.

Case 2: |X| > βn and op = ×. Partition X randomly into two equal sized sets X1, X2 and let
Ψ1 ← CONSTRUCT(X1,+), Ψ2 ← CONSTRUCT(X2,+). Let Ψ be the formula with a × gate at the root
and Ψ1,Ψ2 as its two children.

Case 3: |X| > βn and op = +. Let Ψ1 ← CONSTRUCT(X,×), Ψ2 ← CONSTRUCT(X,×). Let Ψ be the
formula with a + gate at the root and Ψ1,Ψ2 as its two children.

Step: return(Ψ).

We now state our main reconstruction result for multilinear formulas.

Theorem 2.2. Let Φ ∼ D(X,F) be a random multilinear formula sampled as above and let Φ̂ ∈ F[X] be
the polynomial computed by Φ. Then, there is an nO(1)-time randomized algorithm A which, given blackbox
access to Φ̂, constructs a syntactic multilinear formula ΦA of size at most size(Φ) and such that

Pr[Φ̂A 6= Φ̂] ≤ 2O(n)

|F|
+

1
nΩ(1)

,

where the probability is taken over the randomness in the choice of Φ and the internal randomness of A.

3 Basic Idea and approach

Suppose we have blackbox access to the output polynomial f of a random multilinear formula Φ. By
querying f at points of our choice, we want to recover Φ. How do we do so? We give an overview of our
approach to do this.
Determining the nature of the output gate: Let us Observe that if the output node were a × gate
then the output would be a reducible polynomial 2. The converse is not true in general. That is, it can
happen that the output gate is a + gate and f is reducible as well. At this point we invoke the assumption
that the formula Φ is chosen randomly and deduce that with high probability over the random choice of
Φ the output node is a × node if and only if f is reducible (Lemma B.3). Thus, we can use the blackbox
factoring algorithm of Kaltofen [Kal89] to determine whether f is reducible and this helps us answer our
first question. The next thing that we would like to do is get blackbox access to the two children. Once we
have that we can recursively do the reconstruction of the two subformulas. There are two cases depending
on the nature of the output gate.
Case I: Output node is a × gate. In this case we factor f using Kaltofen’s algorithm. Now it can
happen (in rare circumstances) that the number of factors of f is larger than the number of children of
the output node. For a generic (i.e. randomly chosen) formula Φ these two quantities will however be
equal (Lemma B.3) so that Kaltofen’s algorithm provides blackbox access to the two children of the output
node. We then recursively compute the formulas for the two children.
Case II: Output node is a + gate. In this case we need to go one level deeper. The two children of
the output node are × gates (except when we are in the base case) so that the output polynomial f is of
the form

f = A ·B + C ·D.
2If one of the children was a constant then the subtree rooted at that node can be discarded and we would have a smaller

formula computing the same polynomial

4

Our aim will be to obtain blackbox access to the four ‘grandchildren’ A,B,C and D. If we can do that
then we can recursively compute formulas for these polynomials and we would be done. At this point
we use the fact that we are dealing with (syntactic) multilinear formulas. It means that there exists a
partition of the set of variables into four (disjoint) subsets ū, v̄, x̄ and ȳ such that

f(ū, v̄, x̄, ȳ) = A(ū, v̄) ·B(x̄, ȳ) + C(v̄, x̄) ·D(ū, ȳ). (1)

In general this partition of the set of variables can be arbitrary in which case it becomes much more difficult
to find Φ. However, when Φ is random then with high probability all these sets are roughly of the same
size (Lemma 5.1). Now it turns out that we can exploit the ideas in the lower bound proof of Raz [] to
find this partition of the set of variables. Very roughly, the idea is that for the right partition the rank of
a certain related matrix will be very small whereas for every other partition the rank of this matrix will be
much larger. This is the one of the key technical arguments (Theorem 5.6) in our work and is described in
its proof sketch. For now assume that we know the subsets ū, v̄, x̄ and ȳ. Knowing these subsets, how do
we obtain blackbox access to f? The idea is that if in equation (1) we substitute each ū-variable and each
v̄-variable to some random values say ū = ā and v̄ = b̄ then A(ā, b̄) becomes a constant so that the degree
of (A ·B) drops down after this substitution (with high probability, this substitution does not change the
degree of C ·D). This means that the homogeneous part of largest degree of f(ā, b̄, x̄, ȳ) is a product of
the homogeneous parts of largest degrees of C(b̄, x̄) and D(ā, ȳ). Thus factoring the homogeneous part
of largest degree of f gives us blackbox access to the largest degree homogeneous parts of C(b̄, x̄) and
D(ā, ȳ). This idea can be extended suitably (see Lemma 5.5) to obtain blackbox access to the whole of
each polynomial A,B,C and D. This completes our brief overview of the reconstruction algorithm for
multilinear formulas.

4 Preliminaries and Notations

Lemma 4.1 (Chernoff’s bound). Let ζ1, . . . , ζn be independent uniform 0-1 random variables . Then,

Pr[(1− δ)n/2 ≤
∑
i

ζi ≤ (1 + δ)n/2] ≥ 1− 2 exp(−δ2n/8).

Lemma 4.2 (DeMillo-Lipton-Schwatz-Zippel). Let f ∈ F[x1, . . . , xn] be a non-zero polynomial of degree
d ≥ 0. Let S be a finite subset of F and let r1, . . . , rn be selected randomly from S. Then

Pr[f(r1, r2, . . . , rn) = 0] ≤ d

|S|

The above lemma automatically results in the following PIT algorithm which succeeds with probability
≥ 1− d

|S| .

Algorithm 1 (Blackbox PIT). Given blackbox access to a polynomial f ∈ F[x1, . . . , xn] of degree d, query
f(r1, r2, . . . , rn) to the blackbox for r1, . . . , rn ∈R S, where S is any finite subset of F. Conclude f = 0 iff
f(r1, r2, . . . , rn) = 0.

Kaltofen’s Blackbox Factoring: We state the multivariate blackbox factoring algorithm by Kaltofen [Kal89]
in context of multilinear polynomials,

Lemma 4.3 (Kaltofen’s Blackbox Factoring). There is a randomized polynomial-time algorithm that,
given blackbox access to a multilinear polynomial f ∈ F[x1, . . . , xn], with probability 1 − 2−Ω(n), outputs
blackboxes to all the irreducible factors of f .

Notation: [n] denotes the set {1, 2, . . . , n}. For a polynomial f , f [d] denotes the homogenous degree-d
part of f . Tuples would be denoted by placing a bar over a letter, e.g. x̄. For a tuple β̄ = (β1, . . . , βn), iβ̄
would denote the tuple (iβ1, . . . , iβn). For an arithmetic formula Φ, the polynomial computed at the root
is denoted by Φ̂.

5

5 Reconstructing Multilinear Formulas

5.1 Structural Properties of Multilinear Formulas from D(X, F)

Before we prove Theorem 2.2, we derive some structural properties of random multilinear formulas. Due
to space constraints, proofs of the lemmas here appear in Appendix A.

Our first lemma says for the variables in the subformula rooted at a + gate, the two partitions induced
by the children (× gates) of that gate intersect more or less “transversally,” i.e., each block of either
partition is split nontrivially (in fact in a rather balanced way) by the other partition. Moreover, a child
polynomial of a × gate (a grandchild of the + gate) here is not annihilated by zeroing out either subset of
its variables induced by the partition at the sibling product gate.

Lemma 5.1. Let Φ ∼ D(X,F). Then, for all nodes of Φ, the following hold with probability at least
1− 2O(n)

|F| −
1

nΩ(1) :

1. The polynomial computed by a node at (multiplicative) depth h is a homogenous polynomial of degree
n

βn2h
.

2. The polynomial computed at a + gate is of the form α.A(v̄, ū)B(x̄, ȳ) + β.C(v̄, x̄)D(ū, ȳ) where for
all p̄ ∈ {v̄, ū, x̄, ȳ}, |p̄| ≥ 1

8 |{v̄ ∪ ū ∪ x̄ ∪ ȳ}|.

3. In the above polynomial computed at a + gate, for all R ∈ {A,B,C,D}, say R(p̄, q̄), R(0̄, q̄) 6= 0 and
R(p̄, 0̄) 6= 0.

Given a multilinear polynomial f over two variable sets Y = {y1, . . . , ym} and Z = {z1, . . . , zn}, define
Mf as a 2m × 2n matrix whose (p, q) entry, p ⊆ Y and q ⊆ Z is the coefficient of the monomial pq in f .
The rank of Mf in this case is denoted by RankY Z(f). We will use the following properties of the partial
derivatives matrix.

Lemma 5.2 ([Raz09]). Given two multilinear polynomials f and g over the variable set Y ∪ Z,

1. RankY Z(f + g) ≤ RankY Z(f) + RankY Z(g),

2. RankY Z(f.g) = RankY Z(f).RankY Z(g) if f and g are polynomials on disjoint sets of variables, and

3. RankY Z(f) ≤ 2min(Y (f),Z(f)) where Y (f) and Z(f) are the number of Y and Z variables that occur
in f .

We next show that a random linear combination of two multilinear polynomials can only increase the
rank w.h.p.

Lemma 5.3. Let f and g be two multilinear polynomials over the variable set Y ∪ Z and field F. Then
for any S ⊂ F, and two independent random variables α, β,

Pr
α,β∈RS

[RankY Z(α.f + β.g) ≥ max{RankY Z(f),RankY Z(g)}] ≥ 1− 2min{|Y |,|Z|}

|S|
.

5.2 Simulating Blackbox Access to Subformulas

Our reconstruction algorithm will be recursive on the structure of the (unknown, random) multilinear
formula. Hence, we will need to simulate blackbox access to its components using blackbox access to the
polynomial/formula itself. The next lemma shows this for the homogenous component of a given degree
and the theorem below for the grandchildren of a + node.

Lemma 5.4. Let F be a field with at least d+1 elements and let f ∈ F[x1, . . . , xn] be a degree d polynomial.
Given blackbox access to f we can simulate blackbox access to f [r]’s, where f [r] denotes the homogenous
degree-r part of f .

6

Proof of this lemma appears in Section A.3.

Theorem 5.5. Let {{v̄}, {ū}, {x̄}, {ȳ}} be a partition of {x1, . . . , xn} and f(v̄, ū, x̄, ȳ) = A(v̄, ū)B(x̄, ȳ) +
C(v̄, x̄)D(ū, ȳ) be a non-zero polynomial such that,

1. A,B,C,D are homogenous multilinear polynomials over the indicated variable sets,

2. either deg(AB) 6= deg(CD) or deg(A) = deg(B) = deg(C) = deg(D),

3. for all R ∈ {A,B,C,D}, say R(p̄, q̄), R(0̄, q̄) 6= 0 and R(p̄, 0̄) 6= 0.

4. for all p̄ ∈ {v̄, ū, x̄, ȳ}, |p̄| ≥ δn, for some δ > 0

Then there is an nO(1)-time randomized algorithm that, given blackbox access to f and the partition
{{v̄}, {ū}, {x̄}, {ȳ}}, constructs blackboxes for A,B,C,D with probability at least 1− nO(1)

|F| −
1

2Ω(n) .

Proof Sketch: A detailed proof appears as algorithm TRICKLEDOWN in Appendix A.4.
Using Lemma 5.4 and the randomized algorithm for blackbox Polynomial Identity Testing (PIT), we

can determine the degrees i for which f [i] 6= 0. By (1) and (2), note that there can be at most two such
i. Suppose there are two, say i and j. Using PIT, test if f [i](v̄, ū, 0̄, 0̄) = 0; if yes, then f [i] = AB and
f [j] = CD. Otherwise, it is the other way around. Now, we can use Kaltofen’s algorithm, and PIT on
restrictions of factors of f [i] to determine A and B. For example, if h(v̄, ū, x̄, ȳ) is one such factor and
h(0̄, 0̄, x̄, ȳ) is 0, then h is a factor of A; else it is a factor of B. We can similarly construct blackboxes for
C and D.

Thus the difficult case is when there is a single nonzero f [i] and deg(A) = deg(B) = deg(C) =
deg(D) =: d. Note that f(v̄, ū, 0̄, 0̄) = C(v̄, 0̄)D(ū, 0̄). It follows that using Kaltofen and PIT as before, we
can construct blackboxes for C(v̄, 0̄) and D(ū, 0̄) (but not for full C and D). Similarly, we can construct
blackboxes for C(0̄, x̄) and D(0̄, ȳ). We can also immediately determine the degree d as d = deg(C) =
log
(
C(2ᾱ,0̄)
C(ᾱ,0̄)

)
for a randomly chosen ᾱ ∈ F|v̄|.

Suppose now, we want to determine C(ᾱ, β̄) for ᾱ ∈ F|v̄|, β̄ ∈ F|x̄|. Choose a random γ ∈R F|ȳ| and for
g ∈ {A,B,C,D, f}, denote by ĝ the restriction of g by fixing x̄ to β̄ and ȳ to γ̄. Then, we can see that

f̂(v̄, ū)
[2d]

= Ĉ [d](v̄)D̂[d](ū) (since B̂ becomes a constant and ÂB̂ contributes only to lower degree terms of
f̂). Using Kaltofen and PIT and blackbox for f̂ [2d], we can construct blackboxes for Ĉ [d](v̄) and D̂[d](ū).
Note that we want Ĉ(ᾱ) and that

Ĉ(v̄) = Ĉ [d](v̄) + . . .+ Ĉ [1](v̄) + C(0̄, β̄) and D̂(ū) = D̂[d](ū) + . . .+ D̂[1](ū) +D(0̄, γ̄). (2)

Recall that we already have blackboxes for C(0̄, x̄) andD(0̄, ȳ). We now need to get blackboxes Ĉ [d−1], . . . , Ĉ [1]

and similarly for D̂. To this end, consider the following equations:

f̂(v̄, ū)
[2d−1]

= Ĉ [d](v̄)D̂[d−1](ū) + Ĉ [d−1](v̄)D̂[d](ū),

f̂(v̄, 2ū)
[2d−1]

= 2d−1Ĉ [d](v̄)D̂[d−1](ū) + 2dĈ [d−1](v̄)D̂[d](ū).

Since we already have blackboxes for Ĉ [d], D̂[d], and f̂ [2d−1], we can solve these equations to get blackboxes
for Ĉ [d−1] (by setting ū randomly) and D̂[d−1] (by setting v̄ randomly). Using similar, but somewhat more
involved, equations, we obtain blackboxes for Ĉ [i](v̄) and D̂[i](v̄) for 1 ≤ i ≤ d − 2 (see Appendix A.4 for
details). Using these in equation (2), we get blackbox for Ĉ(v̄) and hence can evaluate Ĉ(ᾱ).

A similar argument can be used to gain blackbox access A, B, and D. �

7

5.3 The Reconstruction Algorithm RECONSTRUCT(OΦ̂, X, F, m)

We are now ready to present the reconstruction algorithm for random multilinear formulas.
Input: oracle OΦ̂ for polynomial Φ̂ computable by a multilinear formula Φ sampled using
SAMPLE(X,F) where X = {x1, . . . , xn} and size m of the seed partition3(m = Θ(log n)).
Output: multilinear formula Ψ such that |Ψ| ≤ |Φ| and Ψ̂ = Φ̂, or else FAIL.

Step 1 Determining linearity : For any xi ∈ X, fi = Φ̂|xi=1 − Φ̂|xi=0 is the coefficient polynomial of xi in
Φ̂. For all fi’s, using blackbox PIT on fi|xj=1 − fi|xj=0, determine if fi depends on xj . If for all xi
with a non-zero fi, fi does not depend on X, then Φ̂ is linear and in this case simply interpolate Φ̂
exactly and output a Σ-circuit for it.

Step 2 Reducible Φ̂: Using Kaltofen’s factoring algorithm construct oracles for irreducible factors hi’s, of Φ̂.
If Φ̂ is irreducible proceed to the next step. Else using blackbox PIT, as described in the previous
step, determine the variable sets of these factors. Recursively using RECONSTRUCT, construct formulas
Ψi’s for hi’s. If RECONSTRUCT fails on any hi output FAIL. Else, output a formula with × gate at the
root and Ψi’s as its children.

Step 3 Determining a seed partition: Let Φ̂ = A(v̄, ū)B(x̄, ȳ) + C(v̄, x̄)D(ū, ȳ). Randomly choose an m-
sized subset S of X. In Φ̂, instantiate the variables in X \ S to random values over F to get
Φ̂S = AS(v̄S , ūS)BS(x̄S , ȳS) +CS(v̄S , x̄S)DS(ūS , ȳS) and interpolate it in nO(1) time. Iterate over all
possible partitions {{v̄′′}, {ū′′}, {x̄′′}, {ȳ′′}} of S such that the size of each set in them is at least γm
(for a small enough γ) and let {{v̄′}, {ū′}, {x̄′}, {ȳ′}} be a partition such that Rank{v̄′}{ȳ′}(Φ̂S |v̄′,ȳ′) ≤
2 and Rank{ū′}{x̄′}(Φ̂S |ū′,x̄′) ≤ 2 where Φ̂S |v̄′,ȳ′ is Φ̂S with variables in S \ {v̄′, ȳ′} instantiated to
random values in F and similarly for Φ̂S |ū′,x̄′ . This can be done in nO(1) time, having interpolated
Φ̂S , as there are 2O(logn) such possible partitions and the partial derivative matrix on O(log n)
variables is of size at most 2O(logn).

Step 4 Extending the seed partition {{v̄′}, {ū′}, {x̄′}, {ȳ′}}: For all xi ∈ X \ S do the following. Let
Si = S ∪ {xi}. In Φ̂, instantiate the variables in X \ Si to random values over F to get Φ̂Si and
interpolate it in 2O(logn) time. Iterate over the following 4 partitions of Si, {{v̄′, xi}, {ū′}, {x̄′}, {ȳ′}},
{{v̄′}, {ū′, xi}, {x̄′}, {ȳ′}}, {{v̄′}, {ū′}, {x̄′, xi}, {ȳ′}}, {{v̄′}, {ū′}, {x̄′}, {ȳ′, xi}} and determine the par-
tition {{v̄′′}, {ū′′}, {x̄′′}, {ȳ′′}} such that,
Rank{v̄′′}{ȳ′′}(Φ̂Si |v̄′′,ȳ′′) ≤ 2 and Rank{ū′′}{x̄′′}(Φ̂Si |ū′′,x̄′′) ≤ 2 where Φ̂Si |v̄′′,ȳ′′ is Φ̂Si with variables
in Si \ {v̄′′, ȳ′′} instantiated to random values in F. Attach xi to the appropriate block of the seed
partition. This can be done in 2O(logn) time.

Step 5: Using TRICKLEDOWN algorithm and the above determined partition {{v̄}, {ū}, {x̄}, {ȳ}} of X con-
struct oracles for A,B,C,D. Then, recursively using RECONSTRUCT, construct formulas ΨR’s for
R ∈ {A,B,C,D}. If RECONSTRUCT fails on for any of them output FAIL. Else, let ΨAB be the for-
mula with × gate at the root and ΨA, ΨB as its children. Output a formula Ψ with + gate at the
root and ΨAB, ΨCD as its children.

This completes the description of the algorithm RECONSTRUCT. Algorithm A of Theorem 2.2 is now essen-
tially RECONSTRUCT, returning Ψ using blackbox calls to Φ̂. (If RECONSTRUCT outputs FAIL, A outputs a
random multilinear formula.) The bound on the running time of A is obvious. For correctness, it’s crucial
to show that the partition determined by steps 3 and 4 is, w.h.p., the original partition of Φ. We do this
in the next section. This will complete the proof of Theorem 2.2. �

3size of the seed partition is kept unchanged while recursing.

8

5.4 Uniqueness of the Seed Partition

In this section, we discuss Steps 3 and 4 of the RECONSTRUCT method and show that for a large F, w.h.p.,
these steps determine the needed partition correctly.

Let Φ be a random multilinear formula sampled using SAMPLE(X,F) and let Φ̂ = A(v̄, ū)B(x̄, ȳ) +
C(v̄, x̄)D(ū, ȳ). In Step 3 of the RECONSTRUCT method, one chooses an m-sized subset S of X randomly
and, in Φ̂, instantiates the variables in X \S to random values over F to get Φ̂S = AS(v̄S , ūS)BS(x̄S , ȳS) +
CS(v̄S , x̄S)DS(ūS , ȳS). Using Chernoff’s bound it easily follows that w.h.p sizes of the sets v̄S , etc., are
Ω(m). Let Y = S and Z = X \ S. In the SAMPLE method, partitioning the set Y ∪ Z at a × gate
(where |Y | ≤ |Z|) into two equal-sized sets {ā}, {b̄} can be viewed as follows: label the yi’s in Y with
independent uniform 0-1 values, including the yi’s with label 0 in {ā} and label 1 in {b̄}, and finally, place
the Z variables randomly to make |ā| = |b̄|. It is now easy to see that in the above expression of Φ̂S , the
polynomials AS , BS , CS , DS are close in distribution to a multilinear formula sampled using the following
sampling method on their respective variable sets.
Sampling Method SAMPLE2(X,F):

Step 1: Ψ← CONSTRUCT2(X,+).

Step 2: Let W be the set of wires in Ψ incident to a + gate. Let Φ be the syntactic multilinear
arithmetic formula obtained by labeling each wi ∈ W by a randomly and independently chosen
ci ∈R F.

Step 3: return(Φ)

where CONSTRUCT2(X, op):

Case 1: X = {xi}. Let Ψ be the formula with a + gate at the root that has one wire incident to it
from xi and one from the field element 1.

Case 2: op = ×. Label each xi ∈ X with independent uniformly chosen 0-1 values. Include
the xi’s labeled 0 in a set X1 and the rest in X2. If some Xi is empty then repeat. Let Ψ1 ←
CONSTRUCT2(X1,+), Ψ2 ← CONSTRUCT2(X2,+). Let Ψ be the formula with a × gate at the root and
Ψ1,Ψ2 as its two children.

Case 3: op = +. Let Ψ1 ← CONSTRUCT2(X,×), Ψ2 ← CONSTRUCT2(X,×). Let Ψ be the formula with
a + gate at the root and Ψ1,Ψ2 as its two children.

Step: return(Ψ)

Theorem 5.6 (Uniqueness of Partition). Let {{ā}, {b̄}} and {{c̄}, {d̄}} be partitions of {ȳ}∪ {z̄} and |ā|,
|b̄|, |c̄|, |d̄|, |ȳ|, |z̄| are all Ω(m). Let A(ā), B(b̄), C(c̄), D(d̄) be polynomials independently computed by
random multilinear formulas sampled using SAMPLE2 over the indicated variable sets and field F. Then for
independent α, β ∈R F,

Pr[Rank{ȳ}{z̄}(α ·AB + β · CD) ≤ 2] ≤ 2O(m)

|F|
+

1
2Ω(m)

,

unless

1. either {ȳ} = {ā} & {z̄} = {b̄} or {ȳ} = {b̄} & {z̄} = {ā}, and

2. either {ȳ} = {c̄} & {z̄} = {d̄} or {ȳ} = {d̄} & {z̄} = {c̄}

9

Before we sketch a proof of Theorem 5.6 (full proof appears in Appendix B), let’s see how it is used
in the proof of Theorem 2.2. In Step 3 of RECONSTRUCT, we consider the ranks of the partial derivative
matrices for Φ̂S |v̄′,ȳ′ and Φ̂S |ū′,x̄′ w.r.t. partitions {v̄′, ȳ′} and {ū′, x̄′}, respectively. First, note that if v̄′

etc are the correct partition of S, i.e., in ΦS , vS = v̄′ etc., then both the above matrices have rank at most
2. We use Theorem 5.6 to show that, w.h.p., the only partition of S (into four parts) that satisfy these two
rank conditions is the correct partition. Indeed, by the discussion preceding Theorem 5.6, we can see that
AS |v̄′,ȳ′ , BS |v̄′,ȳ′ , CS |v̄′,ȳ′ , and DS |v̄′,ȳ′ can be viewed as samples from SAMPLE2 on the variable set {v̄′, ȳ′}
(assigning S \ {v̄′ ∪ ȳ′} to random values). Similarly for AS |ū′,x̄′ , etc., on {ū′, x̄′}. Now, Theorem 5.6 says
if Rank{v̄′}{ȳ′}(Φ̂S |v̄′,ȳ′) ≤ 2, then, w.h.p., the variables that AS |v̄′,ȳ′ etc. depend on must each be either
v̄′ and ȳ′. Thus, w.l.o.g., we must have v̄S = v̄′ and ȳS = ȳ′. By a similar argument applied to Φ̂S |ū′,x̄′ ,
we can conclude that ūS = ū′ and x̄S = x̄′. Note that since AB and CD are defined on two independent
partitions of X, it is unlikely that A and C depend on the same set of variables. Applying this argument
repeatedly for the seed partition augmented with xi, we can also see that Step 4 associates each xi with
correct block of the seed partition. This concludes the proof that Steps 3 and 4 determine the correct
partition for Φ.
Proof sketch for Theorem 5.6: Appendix B is dedicated to a detailed proof of this theorem. We first
show, in Lemma B.1, that a random linear combination αf + βg has rank ≤ 2 w.r.t. a partition (Y, Z) of
the underlying variable set only under very special conditions. The most natural of these is when f and
g are both of rank 1, i.e., f(Y, Z) = f1(Y) · f2(Z) and g(Y, Z) = g1(Y) · g2(Z). The other (degenerate)
conditions arise when at least one of f or g has rank 2 and can be categorized into a small number of special
cases. The second part of the proof is to show that when f = AB and g = CD and A, B, C, and D are
samples from SAMPLE2, the degenerate conditions are satisfied with very low probability. This will imply
AB and CD must satisfy the natural condition and hence their supports must satisfy (1) and (2). For the
second part, we use two main arguments about a random formula according to SAMPLE2 on m variables: (i)
it must have rank at least two, w.h.p., for any nontrivial partition of its variables (Irreducibility Lemma,
Lemma B.3) and (ii) for any partition (Y, Z) with |Y |, |Z| ≥ Ω(m), it must contain many monomials
in Z variables whose coefficients (which are polynomials in Y) must also contain many monomials in Y
variables (Lemma B.4). By (i), we only need to consider when, say f , is of rank-2 w.r.t. some partition
(not necessarily (Y,Z)). This, combined with any of the degeneracy conditions, implies that the number
of statistically independent monomials in Y variables in the coefficient of a suitably chosen Z-monomial
in g must be small (since they are determined by linear combinations given by the degeneracy conditions
of a small number of coefficients of f ’s factors). But this contradicts (ii) since (by Lemma B.2) there must
be many independent monomials in Y variables. �

References

[H̊as90] Johan H̊astad. Tensor rank is np-complete. J. Algorithms, 11(4):644–654, 1990.

[Kal89] Erich Kaltofen. Factorization of polynomials given by straight-line programs. In Randomness and
Computation, pages 375–412. JAI Press, 1989.

[KS01] Adam Klivans and Daniel A. Spielman. Randomness efficient identity testing of multivariate
polynomials. In STOC, pages 216–223, 2001.

[KS06] Adam R. Klivans and Amir Shpilka. Learning restricted models of arithmetic circuits. Theory of
Computing, 2(1):185–206, 2006.

[KS09] Zohar Shay Karnin and Amir Shpilka. Reconstruction of generalized depth-3 arithmetic circuits
with bounded top fan-in. In IEEE Conference on Computational Complexity, pages 274–285,
2009.

10

[Nis91] Noam Nisan. Lower bounds for non-commutative computation. In Proceedings of the twenty-third
annual ACM symposium on Theory of computing, STOC ’91, pages 410–418, New York, NY,
USA, 1991. ACM.

[Raz09] R. Raz. Multi-linear formulas for permanent and determinant are of super-polynomial size. Journal
of the Association for Computing Machinery, 56(2), 2009.

[Shp09] Amir Shpilka. Interpolation of depth-3 arithmetic circuits with two multiplication gates. SIAM
J. Comput., 38(6):2130–2161, 2009.

[SY10] Amir Shpilka and Amir Yehudayoff. Arithmetic circuits: A survey of recent results and open
questions. Foundations and Trends in Theoretical Computer Science, 5(3-4):207–388, 2010.

11

A Proofs for Section 5

A.1 Proof of Lemma 5.1

Lemma restated: Let Φ ∼ D(X,F). Then, for all nodes of Φ, the following hold with probability at
least 1− 2O(n)

|F| −
1

nΩ(1) :

1. The polynomial computed by a node at (multiplicative) depth h is a homogenous polynomial of
degree n

βn2h
.

2. The polynomial computed at a + gate is of the form α.A(v̄, ū)B(x̄, ȳ) + β.C(v̄, x̄)D(ū, ȳ) where for
all p̄ ∈ {v̄, ū, x̄, ȳ}, |p̄| ≥ 1

8 |{v̄ ∪ ū ∪ x̄ ∪ ȳ}|.

3. In the above polynomial computed at a + gate, for all R ∈ {A,B,C,D}, say R(p̄, q̄), R(0̄, q̄) 6= 0
and R(p̄, 0̄) 6= 0.

Proof. (1) The proof is by induction on depth. The polynomial computed at a + gate at depth h has the
form g(Xh) = α.A(ā)B(b̄) + β.C(c̄)D(d̄) where A,B,C,D are sampled using SAMPLE on their respective
variable sets and |ā| = |b̄| = |c̄| = |d̄| = |Xh|/2 where |Xh| = n/2h. Also, ā, b̄ are disjoint and c̄, d̄ are
disjoint. By induction, if A,B,C,D are homogenous polynomials of degree d/2 then, with probability
1− 1/|F|, g would be a degree-d homogenous polynomial. We have the following expression where deg(m)
denotes the degree of a node at depth h with a variable set of size m and by construction deg(βn) = 1.

deg(m) = 2.(deg(m/2)) . . . = 2t. deg(m/2t)

Hence, deg(m) = m/βn. As for a node at depth h we have m = n/2h, part (1) follows. The probability
bound follows from union bound.

(2) The polynomial computed at a + gate at depth h has the form g(Xh) = A(ā)B(b̄) + C(c̄)D(d̄)
where ā, b̄, c̄, d̄ satisfy the properties stated in part (1). Now, let {v̄} = {ā} ∩ {c̄}, {ū} = {ā} ∩ {d̄},
{x̄} = {b̄} ∩ {c̄}, {ȳ} = {b̄} ∩ {d̄}. As the partition, {{c̄}, {d̄}} is chosen independent of {{ā}, {b̄}} fix
{ā} = Y and {b̄} = Z. Now choosing a random {{c̄}, {d̄}} can be viewed as labeling the yi’s in Y with
independent uniform 0-1 values. Then including the yi’s, with label 0, in {c̄} else in {d̄}. Then, placing
the Z variables randomly to make the sizes of both sets equal. Hence, |v̄| = |{c̄}∩Y | = ζ1 + ζ2 + . . .+ ζ|Y |
where ζi’s are i.i.d 0-1 r.v.’s and |ū| = |{d̄} ∩ Y | = |Y | − |{c̄} ∩ Y |. Using Chernoff’s bound, we have

Pr[|v̄| < |Y |/4 OR |ū| < |Y |/4] ≤ 2−δ|Y |,

for some constant δ > 0 (e.g., δ = 1/128). As, |x̄| = |{c̄} ∩ Z| = |c̄| − |{c̄} ∩ Y | = |Y | − |{c̄} ∩ Y | it follows
that,

Pr[|v̄| < |Y |/4 OR |ū| < |Y |/4 OR |x̄| < |Y |/4 OR |ȳ| < |Y |/4] ≤ 2 · 2−δ|Y | ≤ 1
2βn)

≤ 2−Ω(log3 n),

as in SAMPLE(X,F), the variable set at any node of Φ is of size at least βn = Θ(log3 n). Now, as there are
nO(1) number of nodes, the stated probability bound follows from the union bound.

(3) From part (2), polynomial computed at a + gate is of the form α.A(v̄, ū)B(x̄, ȳ) +β.C(v̄, x̄)D(ū, ȳ)
where for all p̄ ∈ {v̄, ū, x̄, ȳ}, |p̄| ≥ 1

8 |{v̄ ∪ ū ∪ x̄ ∪ ȳ}| and A,B,C,D are sampled using SAMPLE on their
respective variable sets. For this part to follow it is enough to show that, in a polynomial g computed by
a random formula sampled using SAMPLE on a n-sized variable set Y ∪̇Z, with the stated probability, there
is a monomial only on the Y variables. Also, w.l.o.g., |Y | ≤ |Z| and |Y | is at least n/8. Proof will be
by induction on the depth of g. Let g = A′(ā′)B′(b̄′) + C ′(c̄′)D′(d̄′). Note that the number of monomials
in only Y variables in A′B′ is product of the number of such monomials in A′ and in B′. Moreover, the
probability that in some step of the induction, these monomials will be canceled is at most 2O(n)

|F| . Let
δ := 1/ log n. Now using Chernoff’s bound,

Pr[|{ā′} ∩ Y | < |Y |(1− δ)/2 OR |{b̄′} ∩ Y | < |Y |(1− δ)/2] ≤ 2−c·δ
2·|Y |, (3)

12

for some constant c > 0.
In the worst case, |{ā′} ∩ Y | = |Y |(1− δ)/2. Applying induction and assuming worst case every time

we partition, we have the following bound for the number of monomials, denoted M(|Y ′ ∪ Z ′|, |Y ′|), in
only Y ′ variables, in a polynomial over a set Y ′∪̇Z ′ with |Y ′| = min{|Y ′|, |Z ′|}, computed by a random
formula:

M(n, |Y |) ≥ (M(n/2, |Y |(1− δ)/2)2 . . . ≥
(
M(n/2h, |Y |(1− δ)h/2h)

)2h

For 2h ≤ n/βn, we have |Y |(1 − δ)h/2h ≥ 1, and M(n, |Y |) ≥ M(βn, 1). Since, by construction, for
|Y ′∪Z ′| = βn the formula will be a linear form with at least one term in |Y ′|-variables, the lemma follows.
Also we have ensured that at every step of induction |Y ′| ≥ |Y |(1 − δ)h/2h = Ω(βn). Using this and
δ = 1/ log n in inequality (3), the probability bound also follows. �

A.2 Proof of Lemma 5.3

Lemma restated: Let f and g be two multilinear polynomials over the variable set Y ∪ Z and field F.
Then for any S ⊂ F, and two independent random variables α, β,

Pr
α,β∈RS

[RankY Z(α.f + β.g) ≥ max{RankY Z(f),RankY Z(g)}] ≥ 1− 2min{|Y |,|Z|}

|S|
.

Proof is an immediate consequence of the following lemma.

Lemma A.1. Let M1 and M2 be two r × r matrices over a field F, such that M1 has a full rank. Then
for any S ⊂ F, and two independent random variables α, β,

Pr
α,β∈RS

[α.M1 + β.M2 has full rank] ≥ 1− r

|S|
.

Proof. The matrix α.M1 + β.M2 has a full rank iff it has a non-zero determinant. Using induction on r,
one can easily see that det(α.M1 + β.M2) is a degree r polynomial in α with coefficient of αr equal to
det(M1) and hence non-zero as M1 has full rank. For any choice of β, the said degree r polynomial in α
can have at most r roots. Hence the probability that det(α.M1 + β.M2) = 0 is at most r/|S|. �

A.3 Proof of Lemma 5.4

Lemma restated: Let F be a field with at least d+ 1 elements and let f ∈ F[x1, . . . , xn] be a degree d
polynomial. Given blackbox access to f we can simulate blackbox access to f [r]’s, where f [r] denotes the
homogenous degree-r part of f .

Proof. To determine f [r](β̄) for a given β̄ ∈ Fn query f(β̄), f(2β̄), . . . , f((d+ 1)β̄) to the oracle, where for
β̄ = (β1, . . . , βn), iβ̄ denotes (iβ1, . . . , iβn). Then we have,

f(iβ̄) = i0f [0](β̄) + if [1](β̄) + . . . + idf [d](β̄),

or, 
f(β̄)
f(2β̄)

...
f((d+ 1)β̄)

 =


1 1 . . . 1d

1 2 . . . 2d
...

...
. . .

...
1 d+ 1 . . . (d+ 1)d



f [0](β̄)
f [1](β̄)

...
f [d](β̄)

 .

As the above coefficient matrix of f [r](β̄)’s is a vandermonde matrix(and hence invertible), f [r](β̄) can be
easily determined. �

13

A.4 Algorithm TRICKLEDOWN

Theorem 5.5 restated: Let {{v̄}, {ū}, {x̄}, {ȳ}} be a partition of {x1, . . . , xn} and f(v̄, ū, x̄, ȳ) =
A(v̄, ū)B(x̄, ȳ) + C(v̄, x̄)D(ū, ȳ) be a non-zero polynomial such that,

1. A,B,C,D are homogenous multilinear polynomials over the indicated variable sets,

2. either deg(AB) 6= deg(CD) or deg(A) = deg(B) = deg(C) = deg(D),

3. for all R ∈ {A,B,C,D}, say R(p̄, q̄), R(0̄, q̄) 6= 0 and R(p̄, 0̄) 6= 0.

4. for all p̄ ∈ {v̄, ū, x̄, ȳ}, |p̄| ≥ δn, for some δ > 0

Proof. The proof follows from the algorithm TRICKLEDOWN below.
Input: The partition {{v̄}, {ū}, {x̄}, {ȳ}} and an oracle for A(v̄, ū)B(x̄, ȳ)+C(v̄, x̄)D(ū, ȳ) where A,B,C,D
are polynomials satisfying the above stated properties.
Output: Blackboxes for A,B,C,D.
Algorithm: TRICKLEDOWN

Step 1: Using blackbox for f = AB + CD, construct blackboxes for f [i]’s for all i ∈ [n].

Step 2: For i ∈ [n], using blackbox PIT, determine if f [i] 6= 0. If there is only one such i then proceed to
the next step. Otherwise let f [i], f [j] be non-zero. For f [i](v̄, ū, x̄, ȳ), determine using blackbox PIT,
if f [i](v̄, ū, 0̄, 0̄) is 0. If yes, conclude f [i] = AB and f [j] = CD, else the other way. Using Kaltofen’s
factoring algorithm, construct blackboxes for irreducible factors of A(v̄, ū)B(x̄, ȳ). For each factor
h(v̄, ū, x̄, ȳ), determine, using blackbox PIT, if h(0̄, 0̄, x̄, ȳ) is 0. If yes, conclude it is a factor of A
else B. Similarly, construct blackboxes for C and D.

Step 3: Determining degrees of A,B,C,D. Using Kaltofen’s factoring algorithm, gain blackbox access to
irreducible factors of f(v̄, ū, 0̄, 0̄) = C(v̄, 0̄)D(ū, 0̄). For each factor h, determine, using blackbox
PIT, if h becomes the zero polynomial after instantiating v̄ to 0̄. If yes it is a factor of C(v̄, 0̄)
else D(ū, 0̄). Similarly, construct blackboxes for C(0̄, x̄) and D(0̄, ȳ). Having constructed blackboxes
for C(v̄, 0̄) and D(ū, 0̄), conclude d = deg(C) = log

(
C(2ᾱ,0̄)
C(ᾱ,0̄)

)
for a randomly chosen ᾱ ∈ F|v̄|, and

similarly for D, A, B.

Step 4: Constructing blackbox for C. To determine C(ᾱ, β̄), for any ᾱ ∈ F|v̄|, β̄ ∈ F|x̄|, substitute x̄ = β̄ and
ȳ = γ̄ for γ̄ ∈R F|ȳ|. Then,

f(v̄, ū, β̄, γ̄) = A(v̄, ū)B(β̄, γ̄)︸ ︷︷ ︸
only degree deg(A) terms

+ C(v̄, β̄)D(ū, γ̄)︸ ︷︷ ︸
terms can have degree > deg(A)

= A(v̄, ū)B(β̄, γ̄) + Ĉ(v̄)D̂(ū).

Let g[d] denote the homogenous degree-d part of g. Then,

Ĉ(v̄) = Ĉ [d](v̄) . . .+ Ĉ [1](v̄) + C(0̄, β̄) and D̂(ū) = D̂[d](ū) . . .+ D̂[1](ū) +D(0̄, γ̄).

Note that f(v̄, ū, β̄, γ̄)[2d] = C [d](v̄)D[d](ū). Using Kaltofen’s algorithm, obtain blackboxes for Ĉ [d](v̄)
and D̂[d](ū) using blackbox for f(v̄, ū, β̄, γ̄)[2d]. As Kaltofen’s algorithm gives blackboxes for irre-
ducible factors of C [d](v̄)D[d](ū) and any such factor depends on either v̄ or ū, to find out if h(v̄, ū)
depends on ū use blackbox PIT on h(v̄, 0̄).

Step 5: Constructing blackboxes for Ĉ [i](v̄) and D̂[i](ū) for i ∈ [d− 1] . Having gained blackboxes for Ĉ [d](v̄)
and D̂[d](ū) we note that,

f(v̄, ū, β̄, γ̄)[2d−1] = Ĉ [d](v̄)D̂[d−1](ū) + Ĉ [d−1](v̄)D̂[d](ū) (4)

=⇒ f(v̄, 2ū, β̄, γ̄)[2d−1] = 2d−1Ĉ [d](v̄)D̂[d−1](ū) + 2dĈ [d−1](v̄)D̂[d](ū) (5)

=⇒ 1
2d−1

f(v̄, 2ū, β̄, γ̄)[2d−1] = Ĉ [d](v̄)D̂[d−1](ū) + 2Ĉ [d−1](v̄)D̂[d](ū) (6)

14

From (3)− (1) we have,

Ĉ [d−1](v̄) =
1

D̂[d](ū)

[
1

2d−1
f(v̄, 2ū, β̄, γ̄)[2d−1] − f(v̄, ū, β̄, γ̄)[2d−1]

]

As we have blackbox access to f [2d−1] and D̂[d](ū), we have blackbox access to Ĉ [d−1](v̄) after in-
stantiating ū randomly to avoid making the denominator vanish in the above equation. Similarly we
have blackbox access to D̂[d−1](ū). In general, after constructing blackboxes for Ĉ [r](v̄),D̂[r](ū) for
all r ∈ [d′ + 1 : d], blackbox for Ĉ [d′](v̄) can be constructed as follows

f(v̄, ū, β̄, γ̄)[d+d′] = Ĉ [d′](v̄)D̂[d](ū) +

(
d−1∑

i=d′+1

Ĉ [i](v̄)D̂[d+d′−i](ū)

)
+ Ĉ [d](v̄)D̂[d′](ū)

f(v̄, 2ū, β̄, γ̄)[d+d′]

2d′
= 2d−d

′
Ĉ [d′](v̄)D̂[d](ū) +

(
d−1∑

i=d′+1

2d−iĈ [i](v̄)D̂[d+d′−i](ū)

)
+ Ĉ [d](v̄)D̂[d′](ū)

Subtracting the two equations we have,

Ĉ [d′](v̄) =
2d
′

(2d − 2d′)D̂[d](ū)

[
f(v̄, 2ū, β̄, γ̄)[d+d′]

2d′
− f(v̄, ū, β̄, γ̄)[d+d′] −

d−1∑
i=d′+1

(2d−i − 1)Ĉ [i](v̄)D̂[d+d′−i](ū)

]

Hence, using the above procedure blackboxes for Ĉ [d′](v̄), for all d′ ∈ [d], can be constructed. Also,
using the blackbox for C(0̄, x̄) constructed in Step 3 determine C(0̄, β̄). This completes our blackbox
for C(v̄, β̄).

Step 6: Repeat the above 3 steps similarly with the correct parameters to construct blackboxes for A,B and
D.

�

15

B Uniqueness of the Seed Partition

In this section, we discuss Steps 3 and 4 of the RECONSTRUCT method and show that for a large F, w.h.p.,
these steps determine the needed partition correctly. Before we discuss these steps we first present some
technical lemmas which would be helpful to us in estimating the success probability of the said steps.
Proofs of these lemmas appear after the proof of Theorem B.5. Throughout this paper LI stands for
“Linearly Independent” and LD for “Linearly Dependent.”

Lemma B.1. Let f and g be two multilinear polynomials over a n-sized variable set Y ∪ Z and field F.
Then for any S ⊂ F, and two independent random variables α, β

Pr
α,β∈RS

[RankY Z(α.f + β.g) > 2] ≥ 1− 2n

|S|

unless f and g have one the following forms,

1. f = f1(Y)f2(Z) and g = g1(Y)g2(Z)

2. f = f1(Y)f2(Z) + f3(Y)f4(Z) (f1, f3 are LI, f2, f4 are LI) and either g = [a.f1(Y) + b.f3(Y)]g2(Z)
or g = g1(Y)[a.f2(Z) + b.f4(Z)]

3. f = f1(Y)f2(Z) + f3(Y)f4(Z) (f1, f3 are LI, f2, f4 are LI) and g = [a.f1(Y) + b.f3(Y)]g2(Z) +
[c.f1(Y) + d.f3(Y)]g4(Z) (g2, g4 are LI and ad 6= bc)

4. f = f1(Y)f2(Z) +f3(Y)f4(Z) and g = [a.f1(Y) + b.f3(Y)]g2(Z) + g3(Y)[c.f2(Z) +d.f4(Z)] (f1, f3, g3

are LI, f2, f4, g4 are LI and ac = −bd)

and their analogous cases, where fi’s and gi’s are any multilinear polynomials on their indicated variable
sets and a, b, c, d ∈ F.

Lemma B.2. Let S be a set of multilinear monomials over {r1, r2, . . . , rn} where ri’s are independent
r.v.’s and each ri ∈R F∗. Then for every M ∈ S there exists a set SM ⊂ S such that

1. |SM | ≥ log |S| − 1 and

2. SM ∪ {M} is a set of independent uniform r.v.’s over F∗.

Placement of random field elements on the wires of a random multilinear formula in
SAMPLE(X, F) method where X = {x1, x2, . . . , xn}:

While sampling a multilinear formula from the set M(X,F) we first sampled a formula without any
field elements using the method CONSTRUCT and later placed field elements, chosen independently and
uniformly from F, on its wires. Also note that, distinct wires originating from any of the xi’s, have distinct
independent uniform r.v.’s on them. For instance consider a multilinear formula on X and that every
xi has at most one wire originating from it. Let the formula be

∑N
k=1 αk.Mk where Mi’s are multilinear

monomials. Now for all xi’s, if we place a r.v. ri on the wire from xi then a term like α.x1x3xn becomes
α.r1r3rn.x1x3xn. Hence essentially, the coefficient of a multilinear monomial M on X, is of the form αM .Mr

where Mr is the multilinear monomial Πxi∈Mri and each αM is independent of ri’s. By Lemma B.2, for
every monomial M there is a set of logN monomials containing M such that the set of coefficients of
these monomials is mutually independent. Also, it is easy to note that this is true, even after instantiating
variables to random values over F.

16

Instantiating n − m variables to random field elements in Step 3 of the RECONSTRUCT

method:

Let Φ be a random multilinear formula sampled using SAMPLE(X,F) and let Φ̂ = A(v̄, ū)B(x̄, ȳ) +
C(v̄, x̄)D(ū, ȳ). In Step 3 of the RECONSTRUCT method, one chooses a m-sized subset S of X randomly
and ,in Φ̂, instantiates the variables in X\S to random values over F to get Φ̂S = AS(v̄S , ūS)BS(x̄S , ȳS) +
CS(v̄S , x̄S)DS(ūS , ȳS). Using Chernoff’s bound it easily follows that w.h.p sizes of the sets r̄S ’s are Ω(m).
Let Y = S and Z = X\S. In the SAMPLE method, partitioning a set Y ∪ Z on a × gate(where |Y | ≤ |Z|)
into two equal sized sets {ā}, {b̄} can be viewed as labelling the yi’s in Y with independent uniform 0-1
values. Then including the yi’s, with label 0, in {ā} else in {b̄}. Then, placing the Z variables randomly
to make the sizes of both sets equal. Hence in the above expression of Φ̂S , the polynomials AS , BS , CS , DS

are close in distribution to a multilinear formula sampled using the following sampling method on their
respective varibale sets.
Sampling Method : SAMPLE2(X,F):

Step 1: Ψ← CONSTRUCT2(X,+)

Step 2: Let W be the set of wires in Ψ incident to a + gate. For each wi ∈W place ci on wi to get
a formula Φ, where each ci ∈R F and ci’s are sampled independently.

Step 3: return(Φ)

where CONSTRUCT2(X, op):

Case 1: X = {xi}. Let Ψ be the formula with a + gate at the root that has one wire incident to it
from xi and one from the field element 1.

Case 2: op = ×. Label each xi ∈ X with independent uniformly chosen 0-1 values. Include
the xi’s labeled 0 in a set X1 and the rest in X2. If some Xi is empty then repeat. Let Ψ1 ←
CONSTRUCT2(X1,+), Ψ2 ← CONSTRUCT2(X2,+). Let Ψ be the formula with a × gate at the root and
Ψ1,Ψ2 as its two children.

Case 3: op = +. Let Ψ1 ← CONSTRUCT2(X,×), Ψ2 ← CONSTRUCT2(X,×). Let Ψ be the formula with
a + gate at the root and Ψ1,Ψ2 as its two children.

Step: return(Ψ)

Lemma B.3 (Irreducibility Lemma). Let fR be the polynomial computed by a random multilinear formula
over the variables set X = {x1, x2, . . . , xm} and field F sampled using SAMPLE2. The probability that there
exists a proper partition {Y,Z} of X such that RankY Z(fR) = 1 is at most 2O(m)

|F| .

Lemma B.4. Let {Y, Z}, with |Y | ≤ |Z|, be a partition of variable set X = {x1, . . . , xm} such that
both |Y |, |Z| are at least γm for some γ > 0 and δ be a sufficiently large integer constant . Let f be the
polynomial computed by a random multilinear formula sampled using SAMPLE2(X,F). Then, with probability
1− 2O(m)

|F| −
1

2γm/18 log2 δ

1. there are at least δ distinct monomials multilinear in Z variables such that coefficients of these are
polynomials in Y each containing at least δ monomials and

2. RankY Z(f) > 2.

Theorem B.5 (Uniqueness of Partition). Let {{ā}, {b̄}} and {{c̄}, {d̄}} be partitions of {ȳ}∪{z̄} and |ā|,
|b̄|, |c̄|, |d̄|, |ȳ|, |z̄| are all Ω(m). Let A(ā), B(b̄), C(c̄), D(d̄) be polynomials independently computed by

17

random multilinear formulas sampled using SAMPLE2 over the indicated variable sets and field F. Then for
independent α, β ∈R F,

Pr[Rank{ȳ}{z̄}(α.AB + β.CD) ≤ 2] ≤ 2O(m)

|F|
+

1
2Ω(m)

unless,

1. either {ȳ} = {ā} & {z̄} = {b̄} or {ȳ} = {b̄} & {z̄} = {ā}, and

2. either {ȳ} = {c̄} & {z̄} = {d̄} or {ȳ} = {d̄} & {z̄} = {c̄}

Proof. As the partition {{ȳ}, {z̄}} is clear in this context we would denote Rank{ȳ}{z̄} by Rank. From
Lemma 5.3, if any of A, B, C, D has Rank greater than 2, then indeed the above probability bound holds.
Now if for some r̄ ∈ {ā, b̄, c̄, d̄} we have both |{r̄} ∩ {ȳ}| = Ω(m) and |{r̄} ∩ {z̄}| = Ω(m) then by Lemma
B.4, with the above probability, its respective random formula will have Rank greater than 2. W.l.o.g let
|{ā} ∩ {ȳ}| = Ω(m) and hence |{b̄} ∩ {z̄}| = Ω(m). If either (1) or (2) doesn’t hold then at least one of
ā, b̄, c̄, d̄ is such that it has at least one variable from both ȳ and z̄. W.l.o.g let z1 ∈ {ā}. Using the
Irreducibility lemma, we have Rank(A) ≥ 2 with the above probability. Now if some yi ∈ {b̄} then again
the Irreducibility lemma would imply Rank(B) ≥ 2 and hence Rank(AB) ≥ 4. Hence let {b̄}∩{ȳ} = φ. In
the worst case {ā} ∩ {z̄} = {z1} (this will be easy to see from the following arguments) and hence w.l.o.g
we have {ā} = {ȳ, z1} and {b̄} = {z2, . . .}. Let A(ȳ, z1) = a1(ȳ)a2(z1) + a3(ȳ)a4(z1) with a1, a3 Linearly
Independent (LI) and a2, a4 LI be a fixed representation of A. From Lemma B.1, the only way left for
α.AB+β.CD to have Rank at most 2 are the following cases and we show that for any fixed A and B the
following will not hold with the stated probability,

Case 2: C(c̄)D(d̄) = [p.a1(ȳ) + q.a3(ȳ)]U(z̄) or C(c̄)D(d̄) = U(ȳ)[p.a2(z1) + q.a4(z1)]B(z2, . . .) for some
multilinear polynomial U possibly dependent on C and D and p, q ∈ F.
If any of c̄ or d̄ has a variable of both ȳ and z̄ then by the Irreducibility lemma its Rank will be at
least 2 and hence CD couldn’t be equal to the RHS. Hence w.l.o.g {c̄} = {ȳ}, {d̄} = {z̄} and therefore
C(ȳ) = p.a1(ȳ)+q.a3(ȳ). Here although p and q are possibly dependent on C, a1 and a3 are dependent only
on A and hence are fixed. As a1, a3 are LI there exist two monomials M1 and M2 such that specifying the
coefficients of M1 and M2 in p.a1(ȳ) + q.a3(ȳ) completely determine p and q and hence all its coefficients.
But from Lemma B.4 we have that with the stated probability, there are 16 monomials in C and hence
for any two monomials M1 and M2 in C, from Lemma B.2, there is a third one such the coefficient of
this monomial is independent of that of the other two and hence w.h.p fixing the coefficients of these two
monomials do not determine the LHS completely.
Similarly, the other case results in D(z̄) = [p.a2(z1) + q.a4(z1)]B(z2, . . .) with a2, a4, B fixed and again the
same argument follows.

Case 3: C(c̄)D(d̄) = [p.a1(ȳ) + q.a3(ȳ)]U1(z̄) + [r.a1(ȳ) + s.a3(ȳ)]U2(z̄) or
C(c̄)D(d̄) = U1(ȳ)[p.a2(z̄1) + q.a4(z1)]B(z2, . . .) + U2(ȳ)[r.a2(z̄1) + s.a4(z1)]B(z2, . . .) for some multilinear
polynomials U1 and U2 possibly dependent on C and D. For the first subcase, from Lemma B.4 we have
that w.h.p., on LHS there is a monomial Mz in {z̄} variables such the coefficient of Mz is a polynomial
g(ȳ) having at least 16 monomials. Now comparing the coefficients of Mz on both sides we have, g(ȳ) =
(p.a1(ȳ) + q.a3(ȳ))u1 + (r.a1(ȳ) + s.a3(ȳ))u2 where p, q, r, s, u1, u2 ∈ F are possibly dependent on LHS but
a1 and a3 are fixed. This further implies that g(ȳ) = (p.u1 + r.u2)a1(ȳ) + (q.u1 + s.u2)a3(ȳ) and again the
same argument as in the previous case follows.
Similarly for the other subcase we compare the coefficients of the monomial in {ȳ} such that its coefficient
is the polynomial having maximum number of monomials in {z̄}.

Case 4: C(c̄)D(d̄) = [p.a1(ȳ) + q.a3(ȳ)]U1(z̄) + U2(ȳ)[r.a2(z̄1) − pr
q .a4(z1)]B(z2, . . .) for some multilinear

polynomials U1 and U2 possibly dependent on C and D.
For the first subcase, from Lemma B.4 we have that w.h.p on LHS there is a monomial M1 in {z̄} variables

18

such the coefficient of M1 is a polynomial ∆1g1(ȳ) having δ monomials and where ∆1 is a uniform r.v. over
F that depends only on the r.v.’s placed on the wires of variables in M1. Similarly let M2 be any another
monomial in {z̄} variables with coefficient ∆2g2(ȳ) where ∆2 is independent of ∆1. Now comparing the
coefficients of M1 and M2 on both sides we have,

∆1g1(ȳ) = [p.a1(ȳ) + q.a3(ȳ)]u1 + U2(ȳ)ψ1(p, q, r) , ∆2g2(ȳ) = [p.a1(ȳ) + q.a3(ȳ)]u2 + U2(ȳ)ψ2(p, q, r)

where p, q, r, u1, u2 ∈ F are possibly dependent on LHS, a1 and a3 are fixed and ψ1 and ψ2 are fixed
functions of p, q, r. Eliminating U2(ȳ) we have,

∆1g1(ȳ)ψ2(p, q, r)−∆2g2(ȳ)ψ1(p, q, r) = ψ2(p, q, r)[p.a1(ȳ) + q.a3(ȳ)]u1 − ψ1(p, q, r)[p.a1(ȳ) + q.a3(ȳ)]u2

But as p, q, r can depend on ∆1 and ∆2 the LHS may not have a large number of monomials and
hence we cannot apply the previous argument directly. Here we note that we can compare the coeffcients
of many monomials in {z̄} as from Lemma B.4 w.h.p there will be a at least δ such monomials. Hence we
compare the coefficients of the monomials in {z̄} on LHS such that there corresponding ∆’s are mutually
independent and are independent to ∆1. From Lemma B.2, there exists a set of log δ such monomials and
hence we get log δ equations of the form,

∆igi(ȳ) = [p.a1(ȳ) + q.a3(ȳ)]ui + U2(ȳ)ψi(p, q, r)

where ψi’s are fixed functions and ∆i’s are mutually independent. Eliminating U2(ȳ) from pairs of equations
((1), (i)) we get log δ − 1 equations of the form,

∆1g1(ȳ)ψi(p, q, r)−∆igi(ȳ)ψ1(p, q, r) = ψi(p, q, r)[p.a1(ȳ) + q.a3(ȳ)]u1 − ψ1(p, q, r)[p.a1(ȳ) + q.a3(ȳ)]ui

As p, q, r can produce at most 8 uniform pairwise independent r.v.’s over F, among log δ ∆i’s (for a
large enough δ) there is a ∆j which is mutually independent to p, q, r and hence to all ψi’s. Hence w.h.p
the LHS of the following equation will have at least δ monomials and hence our previous argument will
follow

∆1.g1(ȳ)ψj(p, q, r)−∆j .gj(ȳ)ψ1(p, q, r) = ψj(p, q, r)[p.a1(ȳ) + q.a3(ȳ)]u1 − ψ1(p, q, r)[p.a1(ȳ) + q.a3(ȳ)]uj

�

B.1 Proof of Lemma B.1

Proof. As the partition {Y,Z} is clear in this context we would denote RankY Z by Rank. We now show
that if none of the listed cases(and their analogs) hold then the stated probability bound holds. From
Lemma 5.3 if any of f or g has Rank greater than 2 then indeed with above probability Rank(α.f+β.g) > 2.
Hence Case 1 occurs when both f, g have Rank 1. In rest of the cases at least one of f, g has Rank 2,
w.l.o.g we assume f has Rank 2. Case 2 occurs when Rank(g) is 1. Note that if Case 2 doesn’t hold then,
for g = g1(Y)g2(Z), both f1, f3, g1 would be LI and f2, f4, g2 would be LI and hence Rank of their sum
would be 3 with probability at least 1− 2/|S|. For Case 2 clearly the following sum has Rank at most 2,

α.f + β.g = α[f1(Y)f2(Z) + f3(Y)f4(Z)] + β[a.f1(Y) + b.f3(Y)]g2(Z)
= f1(Y)[α.f2(Z) + β.a.g2(Z)] + f3(Y)[α.f4(Z) + β.b.g2(Z)]

Cases 3 and 4 arise when Rank(g) is also 2. Again from the previous argument, for g = g1(Y)g2(Z) +
g3(Y)g4(Z), if both f1, f3, g1 are LI and f2, f4, g2 are LI then Rank of their sum would be 3 with probability
at least 1 − 2/|S| and similarly for g3, g4. Hence, for Rank of the sum to be 2, in both the summands in
g, at least one of the factors must be Linearly Dependent (LD) on its counterparts in f . Therefore, this
results in Case 3 and 4. In Case 3 the following sum has Rank at most 2,

α.f + β.g = α[f1(Y)f2(Z) + f3(Y)f4(Z)] + β[{a.f1(Y) + b.f3(Y)}g2(Z) + {c.f1(Y) + d.f3(Y)}g4(Z)]
= f1(Y)[α.f2(Z) + β.a.g2(Z) + β.c.g4(Z)] + f3(Y)[α.f4(Z) + β.b.g2(Z) + β.d.g4(Z)]

19

In Case 4 the following sum has Rank at most 2 if ac = −bd,

αf + βg = α[f1(Y)f2(Z) + f3(Y)f4(Z)] + β[{a.f1(Y) + b.f3(Y)}g2(Z) + g3(Y){c.f2(Z) + d.f4(Z)}]
= f1(Y)[αf2(Z) + β.a.g2(Z)] + f3(Y)[αf4(Z) + β.b.g2(Z)] + βg3(Y)[c.f2(Z) + d.f4(Z)]

The condition ac = −bd arises as the coefficients α.f2(Z) +β.a.g2(Z), α.f4(Z) +β.b.g2(Z) and β.c.f2(Z) +
β.d.f4(Z) of f1(Y), f3(Y) and g3(Y) respectively have to be LD for Rank to be 2. �

B.2 Proof of Lemma B.2

Proof. A multilinear monomial over {r1, r2, . . . , rn} can be represented uniquely as an element of Fn2 . For
example, r2r3rn−1 can be represented as the n-tuple (0, 1, 1, 0, . . . , 0, 1, 0). The multilinear monomials in
a set are not mutually independent iff their corresponding set of n-tuples is linearly dependent over F2.
If for a monomial M ∈ S there are at most log |S| − 2 mutually independent monomials in S, that are
independent to M , then the n-tuples corresponding to all the monomials in S can be written as a linear
combination of log |S| − 1 tuples over F2. This is a contradiction as a set of log |S| − 1 tuples can have
at most |S|/2 distinct linear combinations over F2. Finally, as a multilinear monomial is a product of
independent r.v.’s uniform over F∗, it is easy to see that it is uniform over F∗. �

B.3 Proof of Irreducibility Lemma B.3

Proof. A multilinear polynomial g(X)(dependent on each xi) is reducible iff there exists a proper partition
{{ȳ}, {z̄}} of X such that RankY Z(g) = 1. The proof is by induction on |X|. In the base case if
|X| = {x1} then, by SAMPLE2, we have fR = a1x1 + a0 where a0, a1 ∈R F. Clearly fR depends on
x1 with probability at least 1 − 1/|F| and is irreducible. If |X| = {x1, x2} then, by SAMPLE2, we have
fR = α(a1x1+a0)(b1x2+b0)+β(c1x1+c0)(d1x2+d0) where independent a0, a1, b0, b1, c0, c1, d0, d1, α, β ∈R F.
For Rank{x1}{x2}(fR) to be 1, for all non-zero previous constants, it should be the case that a1.c0 = a0.c1

or b1.d0 = b0.d1. This holds with probability at most 10/|F|.
For |X| = m, let fR = αA(ā)B(b̄) + βC(c̄)D(d̄) where {{ā}, {b̄}} and {{c̄}, {d̄}} are partitions of X.

As induction hypothesis we assume that A, B, C, D have Rank at least 2 w.r.t all proper partitions
of their indicated variable sets. This also implies that they depend on every variable in their respective
variable sets as if not, the partition of their variable set into ones which appear in the polynomial and the
ones which do not would result in Rank 1 w.r.t this proper partition. Let {Y, Z} be a proper partition
of X. If either of RankY Z(AB) > 1 or RankY Z(CD) > 1 then, from Lemma 5.3, the probability that
RankY Z(fR) = 1 is at most 2O(m)

|F| . So from now assume that RankY Z of both AB and CD is 1.
Note that if {{ā}, {b̄}} 6= {Y, Z} then both {ā}∩Y and {ā}∩Z are non-empty and thus {{ā}∩Y, {ā}∩Z}

is a non-trivial partition of {ā}. By induction hypothesis, this would imply that RankY Z(A(ā)) > 1 which
would further imply, from Lemma 5.3, that RankY Z(fR) = 1 with probability at most 2O(m)

|F| (B vanishes
with probability at most 1/|F| as by construction it has a constant term). Hence, we can assume that
{{ā}, {b̄}} = {Y, Z}. Similarly, we can assume that {{c̄}, {d̄}} = {Y,Z}. Hence w.l.o.g we are left with the
case when fR = αA(Y)B(Z) + βC(Y)D(Z). Clearly, for RankY Z(fR) to be 1, for non-zero α, β, it should
happen that ∃γ1, γ2 ∈ F s.t. A(Y) = γ1C(Y) and B(Z) = γ2D(Z). Note that at least one of |Y | and |Z|
is at least 2. Let |Y | ≥ 2. Then, by SAMPLE2, with probability at least 1 − 2O(m)

|F| , A(Y) is of the form
A = a0 + a1.MY + . . . where MY is a monomial in Y variables, a0, a1 ∈R F and a0, a1 are indpendent. Let
C(Y) = c0 + c1.MY + For A(Y) = γ1C(Y) and non-zero a0, it should be the case that a1.c0 = a0.c1

and c0 is non-zero. This holds with probability at most 2/|F|. �

B.4 Proof of Lemma B.4

Proof. From the sampling method SAMPLE2(X,F) it is easy to see that, f = α.A(ā)B(b̄) + β.C(c̄)D(d̄)
where {{ā}, {b̄}} and {{c̄}, {d̄}} are randomly chosen partitions of X and α, β ∈R F. Also, A,B,C,D are

20

polynomials computed by multilinear formulas over their respective variable sets, sampled independently
using SAMPLE2 method. Hence, |{ā}∩Y | = Y1 +Y2 + . . .+Y|Y | where Yi’s are i.i.d 0-1 r.v.’s and |{b̄}∩Y | =
|Y | − |{ā} ∩ Y |. Using Chernoff’s bound,

Pr[|{ā} ∩ Y | < |Y |/4 OR |{b̄} ∩ Y | < |Y |/4] ≤ 2−|Y |/8

Similarly, it follows that

Pr[min{|{ā} ∩ Y |, |{ā} ∩ Z|} < |Y |/4 OR min{|{b̄} ∩ Y |, |{b̄} ∩ Z|} < |Y |/4] ≤ 2−|Y |/9

(1) Note that as A and B are multilinear polynomials on disjoint sets of variables, products of distinct
pair of monomials in A and B are distinct monomials in AB. Hence, if both A and B have at least δ
monomials in Z variables such that their coefficients are polynomials in Y variables each containing at
least δ monomials then AB would have at least δ2 such monomials in Z. Also, as α, β ∈R F the probability,
using union bound, that any of these monomials would be canceled by a monomial from CD is at most
2m

|F| . In the worst case, min{|{ā} ∩ Y |, |{ā} ∩ Z|} = min{|{b̄} ∩ Y |, |{b̄} ∩ Z|} = |Y |/4. Now, applying
induction and assuming the worst case each time we partition, we have the following expression where
∆(|Y ′ ∪ Z ′|, |Y ′|) denotes the number of monomials (multilinear in Z ′) in a polynomial computed by a
random formula over a set Y ′ ∪Z ′ with |Y ′| = min{|Y ′|, |Z ′|}, such that their coefficients are polynomials
in Y ′ each containing at least ∆(|Y ′ ∪ Z ′|, |Y ′|) monomials.

∆(m, |Y |) ≥ (∆(m/2, |Y |/4))2 . . . ≥
(

∆(m/2h, |Y |/4h)
)2h

.

For 2h ≤ log δ, ensuring |Y |/4h ≥ |Y |/ log2 δ and applying union bound on the failure probability each time
we partition(we partition O(m) times), we have with probability at least 1−2−γm/18 log2 δ− 2O(m)

|F| , we have
∆(m, |Y |) ≥ (∆(m/ log δ, γm/ log2 δ))log δ. Hence, all we need to show is that, ∆(m/ log δ, γm/ log2 δ) ≥ 2.
This is easy to see as in the worst case, the formula sampled over variable set Y ∪ Z with both |Y |, |Z| =
Ω(m) will be of the form f ′ = α.A′(Y)B′(Z) + β.C ′(Y)D′(Z) where α, β ∈R F. Again, with the above
stated probability one can show that there will be at least two monomials in each A′,B′,C ′,D′ and the
argument follows.

(2) Using the same argument from above we have, f = α.A(ā)B(b̄)+β.C(c̄)D(d̄). As from Lemma 5.3 with
probability 1 − 2O(m)

|F| , RankY Z(f) ≥ RankY Z(AB) = RankY Z(A).RankY Z(B), we just need to show that

RankY Z(A) > 1. Again with probability 1−2−Ω(γm), A has the form α′A′(ā′)B′(b̄′)+β′C ′(c̄′)D′(d̄′) where
for all r̄′ there are Ω(m) elements of both Y and Z. From part (1) with probability 1−2−Ω(γm)− 2O(m)

|F| there
are at least 2 monomials in each A′,B′,C ′,D′ over Z variables such that there coefficients are polynomials
over Y variables with at least 2 monomials. Hence, there is a monomial over Z variables in A′B′(and
similarly in C ′D′) such that its coefficient is a polynomial over Y variables with at least 4 monomials. If
RankY Z(A) is 1 then coefficients of these 2 monomials are multiples of each other. Let these coefficients be
h1(Y) and h2(Y). Now as discussed above, coefficients of the monomials in h1(Y) have as their components
multilinear monomials over a set of r.v.’s {r1, . . . , r|Y |}. Similarly, coefficients of the monomials in h2(Y)
have as their components multilinear monomials over a set of r.v.’s {s1, . . . , s|Y |}. Hence with probability
at least 1− 1/|F|, h1(Y) and h2(Y) are LI and the lemma follows. �

21

	Introduction
	Definitions and Main Result
	Basic Idea and approach
	Preliminaries and Notations
	Reconstructing Multilinear Formulas
	Structural Properties of Multilinear Formulas from D(X,F)
	Simulating Blackbox Access to Subformulas
	The Reconstruction Algorithm RECONSTRUCT(O,X,F,m)
	Uniqueness of the Seed Partition

	Proofs for Section 5
	Proof of Lemma 5.1
	Proof of Lemma 5.3
	Proof of Lemma 5.4
	Algorithm TRICKLEDOWN

	Uniqueness of the Seed Partition
	Proof of Lemma B.1
	Proof of Lemma B.2
	Proof of Irreducibility Lemma B.3
	Proof of Lemma B.4

