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Abstract-To address the emerging needs of applications that require access to and retrieval of multimedia objects, we are 
developing the Multimedia Analysis and Retrieval System (MARS) [29]. In this paper, we concentrate on the retrieval sulbsystem of 
MARS and its support for content-based queries over image databases. Content-based retrieval techniques have been extensively 
studied for textual documents in the area of automatic information retrieval [40], [4]. This paper describes how these techniques can 
be adapted for ranked retrieval over image databases. Specifically, we discuss the ranking and retrieval algorithms developed in 
MARS based on the Boolean retrieval model and describe the results of our experiments that demonstrate t h e  effectiveness of the 
developed model for image retrieval. 
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1 INTRODUCTION 
HILE advances in technology allow us to generate, W transmit, and store large amounts of digital images 

and video, research in content-based retrieval over multi- 
media databases is still at its infancy. Due to the difficulty in 
capturing the content of multimedia objects using tex- 
tual annotations and the nonscalability of the approach to 
large data sets (due to a high degree of manual effort re- 
quired in defining annotations), the approach based on 
supporting content-based retrieval over visual features 
has become a promising research direction. This is evi- 
denced by several prototypes 1421, [33], 1281, [29] and com- 
mercial systems [16], 111, built recently. Such an approach 
can be summarized as follows: 

1) Computer vision techniques are used to extract visual 
features from multimedia objects. Examples of visual 
features are: color, texture, and shape for images, and 
motion parameters for video. 

2 )  For a given feature, a representation of the feature and 
a notion of similarity between instances of the feature 
are determined. For example, color histogram can be 
used to represent the color feature, and the intersec- 
tion similarity (defined in Section 2 )  used to compute 
the similarity among color histograms. More than one 
representation is possible for a given feature. 
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3) Objects are represented as a collection of features and 
retrieval of objects is performed based on computing 
similarity in the feature space. The results are ranked 
based on the computed similarity values. 

Since automatically extracted visual features (e.g., color, 
texture etc.) are too low level to be usefull to the user’s in 
specifying their information needs directly, content-based 
retrieval using visual features requires development of ef- 
fective techniques to map higher-level user queries (e.g., 
retrieve images containing a field of yelllow flowers) to 
visual features. Mapping a user’s information need to a set 
of features extracted from textual documents has been ex- 
tensively studied in the information retriev a1 literature [40]. 
This article describes how we have generalized these ap- 
proaches for content-based retrieval over image features 
in the Multimedia Analysis and Retrieval Syatem (MARS). An 
overview of the system architecture is shown in Fig. 1. 

1.1 Information Retrieval Models 
Before we describe the retrieval approach used in MARS, 
we briefly review the retrieval process in modern informa- 
tion retrieval (IR) systems [40]. In an IR system, a document 
is represented as a collection of features (also referred to 
as terms). Examples of features include words in a docu- 
ment, citations, bibliographic references, etc. A user speci- 
fies his information need to the system iin the form of a 
query. Given a representation of the user’s information 
need and a document collection, the IR :system estimates 
the likelihood that a given document “itches the user’s 
information need. The representation of documents and 
queries, and the metrics used to compute the similarity 
among them constitute the retrieval model of the system. 
Existing retrieval models can be broadly classified into the 
following categories: 
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Boolean Models: Let {rl, r2, ..., rk}  be the set of terms 
in a collection. Each document is represented as a 
binary-valued vector of length k where the ith ele- 
ment of the vector is assigned true if r ,  is assigned 
to the document. All elements corresponding to 
features / terms not assigned to a document are set 
to false. A query is a Boolean expression in which op- 
erands are terms. A document whose set of terms 
satisfies the Boolean expression is deemed to be rele- 
vant to the user and all other documents are consid- 
ered not relevant. 
Vector-Based Models: Let (rl, r2, ..., rk] be the set of 
terms in a collection. Both documents and queries are 
represented as a vector of k dimensions where each 
element in the vector corresponds to a real-valued 
weight assigned to a term. Several techniques have 
been proposed to compute these weights, the most 
common being tf x idf weights [40], where tf refers to 
the term frequency in the document, and idf is a 
measure proportional to the inverse of its frequency 
in the collection. Also, many similarity measures be- 
tween the document and the query have been pro- 
posed [40], the most common being the cosine of the 
angle between the document and the query vectors. 
Probabilistic Retrieval Models: In these models the 
system estimates the probability of relevance of a 
document to the user’s information need specified as 
a query. Documents are ranked in decreasing order of 
relevance estimate. Given a document and a query, 
the system computes P(X I d, q )  which represents the 
probability that the document d will be deemed rele- 
vant to the user’s information need expressed as the 
query q. These probabilities are computed and used to 
rank the documents using Bayes’ theorem and a set of 
independence assumptions about the distribution of 
terms in the documents. 

Traditionally, commercial IR systems have used the 
Boolean model. Systems based on Boolean retrieval parti- 
tion the set of documents into either being relevant or not 
relevant and do not provide any estimate as to the relative 
importance of documents in a partition to the user’s infor- 
mation need. To overcome this problem, many variations of 
the term-weighting and probabilistic retrieval models that 
provide ranked retrieval have been proposed. The Boolean 
model has also been extended to allow for ranked retrieval 
in the text domain (e.g., the p-norm model [39]). Vector- 
based models and probabilistic retrieval models are in a 
sense related and provide comparable performance. 

o m  Image database 

1.2 Overview of the Retrieval Approach Used 

With the large number of retrieval models proposed in the 
IR literature, MARS attempts to exploit this research for content- 
based retrieval over images. An image is represented as a 
collection of low-level image features (e.g., color, texture, 
shape, and layout) extracted automatically using computer 
vision methods, as well as a manual text description of the 
image. A user graphically constructs a query by selecting 
certain images from the collection. A user may choose spe- 
cific features from the selected images. For example, using a 
point-and-click interface a user can specify a query to re- 
trieve images similar to an image A in color and similar to 
an image B in texture. A user’s query is then interpreted as 
a Boolean expression over image features. A Boolean re- 
trieval model (adapted for retrieval over images) is used to 
interpret the query and retrieve a set of images ranked 
based on their similarity to the selected feature. Boolean 
queries provide a natural interface for the user to formulate 
and refine conceptual queries to the system using lower-level 
image features. For example, high level concepts like fields 
of yellow flowers or a sunset by a lake can be expressed as a 
Boolean combination of lower level features. Such a map- 
ping of high to low level concepts can be provided explic- 
itly by the user or alternatively learned via user interaction 
by a relevance feedback mechanism [35], [37], [36]. Being 
able to support such conceptual queries is critical for the 
versatility of large image databases. 

To see how MARS adapts the Boolean model for image 
retrieval, consider first a query Q over a single feature F, 
(say color represented as a color histogram). Let H(I) be the 
color histogram of image I and H(Q) be the color histogram 
specified in the query and similari ty(H(I) ,  N( Q)) be the 
similarity between the two histograms. Similarity values 
are in the range [0, 11 with 1 being the best and 0 the worst. 
The simplest way to adapt the Boolean model for image 
retrieval is to associate a degree of tolerance S, with each fea- 
ture F, such that: 

I matches Q = true, if similarity(H(I), H(Q)) 2 4 
=false, if simiZarity(H(I), H(Q) )  < 4 

Given the above interpretation of a match based on a sin- 
gle feature F, an image I matches a given query Q if it sat- 
isfies the Boolean expression associated with Q. For exam- 
ple, let Q = v1 A v2, where vl is a color histogram, and v2 is 
a texture representation. Image I matches Q if its color 
and texture representations are within the specified toler- 
ances of vl and v2. 
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Although the above straightforward adaptation of Boo- 
lean retrieval can be used for retrieval in MARS, it has sev- 
eral potential problems. First, it is not clear how the degree 
of tolerance S,, for a given feature F,, should be determined. 
If an a priori value is set for S,, it may result in poor per- 
formance-two images I ,  and I ,  at similarity of S, + E and 
S, - E from a query Q, where E + 0, are very similar as far as 
their relevance to Q is concerned but would be considered 
as very different by the system. While 1, would be consid- 
ered relevant to the query, would not be considered as 
relevant. This problem may be alleviated by dynamically 
computing 6; for each query based on the image collection 
instead of using fixed a priori tolerance values for a given 
feature. However, the approach still suffers from the fun- 
damental restriction of the basic Boolean retrieval in that it 
produces an unranked set of answers. 

To overcome the above discussed problems, we have 
adopted the following two extensions to the basic Boolean 
model to produce a ranked list of answers: 

Fuzzy Boolean Retrieval: The similarity between the 
image and the query feature is interpreted as the 
degree of membership of the image to the fuzzy set 
of images that match the query feature. Fuzzy set the- 
ory is used to interpret the Boolean query and the im- 
ages are ranked based on their degree of membership 
in the set. 
Probabilistic Boolean Retrieval: The similarity be- 
tween the image and the query feature is considered 
to be the probability that the image matches the user’s 
information need. Feature independence is exploited 
to compute the probability of an image satisfying the 
query which is used to rank the images. 

Unlike the basic Boolean model, both the fuzzy and 
probabilistic Boolean models provide ranked retrieval over 
the image collection. 

The rest of the paper is developed as follows. In Section 
2, we describe the set of image features used in MARS and 
the techniques used to measure the similarity between im- 
ages based on individual features. Section 3 discusses the 
techniques to normalize the low level features necessary to 
combine them with each other. Section 4 describes the Boo- 
lean retrieval models used and discusses issues related to 
their efficient implementation. Section 5 presents the ex- 
perimental results demonstrating the retrieval effectiveness 
of the developed models. Section 6 describes the related 
work. Finally, Section 7 offers concluding remarks and fu- 
ture work. 

2 IMAGE FEATURES USED IN MARS 
The retrieval performance of an image database is inher- 
ently limited by the nature and the quality of the features 
used to represent the image content. In this section, we 
briefly describe the image features used and the corre- 
sponding similarity functions for comparing images based 
on these features. The discussion is kept brief since the 
purpose of this section is only to provide a background 
for discussing issues related to normalization and ranked 
retrieval based on Boolean queries. Detailed discussion on 

the rationale and the quality of the chosen features can 
be found in [14], [48], [29], [31], [38]. The following features 
and their representation only describe features currently 
supported. The system allows for other features to also be 
incorporated: 

Color Features: The color feature is one of the most 
widely used visual features in image retrieval. Many 
approaches to color representation, such as color his- 
togram [47], color moments [46], color sets [44], have 
been proposed in the past few years. In this paper we 
chose the color histogram approach in the Hue, Satu- 
ration, Value (HSV) color space. The Red, Green, Blue 
(RGB) color space used for image storage is trans- 
formed into the HSV space where Hue and Saturation 
are polar coordinates indicating the tint (Hue) of the 
color and the intensity of the pigmentation (Satura- 
tion). The Value coordinate refers to the brightness of 
the color. The precise method of transformation is de- 
scribed in [17]. We chose the HSV color space for our 
color feature since: 

J the color histogram is easy to extract and its simi- 
larity is fast to compute; and 

J the HSV color space has decorrelated and uniform 
coordinates, better matching the human perception 
of color. 

Furthermore, since the V coordinate in the HSV space 
is easily affected by the lighting condition, we only 
use the HS coordinates to form a two-dimensional 
histogram. The H and S dimensions are divided into 
N and M bins, respectively, for a total of N x M bins. 
We chose N = 8, M = 4 for our tests. EIach bin contains 
the percentage of pixels in the image that have cor- 
responding H and S colors for that bin; note that 
the sum of all bins equals one. More details can be 
found in [47]. 

To measure the similarity between two color his- 
tograms, we use the intersection similarity which 
captures the amount of overlap between the two 
histograms: 

i=N 1=M 

similaritycolo, = min(Hl(i, j ) ,  H2(i, j ) )  (1) 

where H ,  and H2 are the two histograms; and N and 
M are the number of bins along the H and S coordi- 
nates. Since the histograms are normalized to add to 
one, this measure ranges from zero (not similar) to 
one (identical). The above intersectio n-based measure 
of similarity provides an accurate and efficient meas- 
ure of similarity between two images based on their 
color [42]. 
Texture Features: Texture refers to the visual patterns 
that have properties of homogeneity that do not result 
from the presence of only a single color or intensity 
[45]. It is an innate property of virtually all surfaces, 
including clouds, trees, bricks, hair, fabric, etc. Texture 
contains important information about the structural 
arrangement of surfaces and their relationship to the 
surrounding environment [23]. Because of its importance 

1=1 ]=1 
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and usefulness in pattern recognition and computer 
vision, extensive research has been conducted on 
texture representation in the past three decades, in- 
cluding the co-occurrence matrix-based representa- 
tion [23], Tamura et al. texture representation [49], and 
wavelet-based representation [43], [6], [26], [20], [25], 
[50]. Many research results have shown that the 
wavelet-based texture representation achieves good 
performance in texture classification [43]. Therefore, 
we chose the wavelet approach for texture represen- 
tation. In this approach, an input image is fed into a 
wavelet filter bank and is decomposed into decorre- 
lated subbands. Due to the orthogonality of the 
wavelet decomposition, each subband captures the 
property of some scale and orientation of the original 
image. A wavelet decomposition of an image results 
in four quadrants. This decomposition is recursively 
applied to the quadrant closest to the origin. Specifi- 
cally, we decompose an image into three wavelet lev- 
els; thus having 10 subbands; three each for the first 
two levels and four for the third level [6]. For each 
subband, we extract the standard deviation of the 
wavelet coefficients giving a 10-dimensional vector 
that represents the texture. 

The similarity between two texture feature vectors 
is defined as the Euclidean distance in this 10- 
dimensional feature space. To convert this distance in 
a 10-dimensional space to a similarity value, refer to 
Section 3. 

0 Shape Features: Shape of an object in an image is rep- 
resented by its boundary. A technique for storing the 
boundary of an object using a modified Fourier de- 
scriptor (MFD) is described in [38]. The Euclidean 
distance can be used to measure similarity between 
two shapes. Rui et al. [38] proposes a similarity meas- 
ure based on standard deviation that performs sig- 
nificantly better compared to the simple Euclidean 
distance. The proposed representation and similarity 
measure provide invariance to translation, rotation, 
and scaling of shapes, as well as the starting point 
used in defining the boundary sequence. 

0 Color Layout Features: Although the global color 
feature is simple to calculate and can provide reason- 
able discriminating power in retrieval, it tends to give 
too many false alarms when the image collection is 
large. Many research results suggested that using 
color layout (both color feature and spatial relations) 
is a better solution. To extract the color layout, the 
whole image is first split into k x k subimages. Then the 
2D color histograms are extracted from each subimage, 
similar to the procedure described earlier. 

The similarity between two images in terms of 
color layout feature is then defined as the average of 
the similarities of each subimage. 

* Textual Annotation Features: In addition to its visual 
content, each image may contain a textual description. 
This may come in the form of an image caption, a mu- 
seum description or closed caption decoding in video 
frames and can be manually added to the image. In 

our model, we use a vector space representation with 
a cosine similarity measure to support this feature. 

In our model, incorporating a new feature is simple. As 
will become clear, as long as all feature evaluation modules 
conform to a consistent interface, the addition of a module 
is almost instantaneous. Other image features are available, 
however we restrict ourselves to queries involving only the 
above features in this paper. 

Depending on the extracted feature, some normaliza- 
tion may be needed. The normalization process serves 
two purposes: 

1) It puts an equal emphasis on each feature element 
within a feature vector. To see the importance of this, 
notice that in the texture representation, the feature 
elements may be different physical quantities. Their 
magnitudes can vary drastically, thereby biasing the 
Euclidean distance measure. This is overcome by the 
process of zntra-feature normalization. 

2 )  It maps the distance values of the query from each 
atomic feature into the range [0, 11 so that they can 
be interpreted as the degree of membership in the 
fuzzy model or relevance probability in the probabil- 
ity model. While some similarity functions naturally 
return a value in the range of [O, 11, e.g., the color 
histogram intersection; others do not, e.g., the Euchd- 
ean distance used in texture. In the latter case the 
distances need to be converted to the range of [0, 11 
before they can be used. This is referred to as znter- 
feature normalzzatzon. 

3.1 l n t r ~ - ~ ~ a t ~ r ~  ~ o r m a l i z ~ t ~ o ~  
This normalization process is only needed for features us- 
ing a vector-based representation, as in the case of the wave- 
let texture feature representation. 

For the vector-based feature representation, let F = 

VI, f a  ..., 4, ..., fN] be the feature vector, where N is the num- 

ber of feature elements in the feature vector and I,, 12, . . ., IM 
be the images. For image I,, we refer to the corresponding 

feature F as F ,  = Ifi,l,fi,2, ..., fi,] , ..., Since there are M 
images in the database, we can form a M x N feature 
matrix F = f i l l  where fi, is the jth feature element in fea- 
ture vector F,. Each column of F is a length-M sequence of 
the jth feature element, represented as Fl. The goal is to 
normalize the entries in each column to the same range so 
as to ensure that each individual feature element receives 
equal weight in determining the Euclidean distance be- 
tween the two vectors. 

Assuming the feature sequence Fl to be a Gaussian se- 
quence, we compute the mean mi and standard deviation 01 
of the sequence. We then normalize the original sequence to 
a N(0,l) sequence as follows: 
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Note that after the Gaussian normalization, the probabil- 
ity of a feature element value being in the range of [-I, 11 is 
68 percent. If we use 3 q  in the denominator, the probability 
of a feature element value being in the range of [-I, 11 is 
approximately 99 percent. In practice, we can consider all of 
the feature element values within the range of [-1, 11 by 
mapping the out-of-range values to either -1 or 1. 

3.2 Inter-Feature Normalization 
Intra-feature normalization ensures that equal emphasis is 
put on each feature element within a feature vector. On the 
other hand, inter-feature normalization ensures equal em- 
phasis of each feature within a composite query. The aim is 
to convert similarity values (or distance in some cases like 
wavelet) into the range [O, 11. 

The feature representations used in MARS are of various 
forms, such as vector-based (wavelet texture representa- 
tion), histogram-based (histogram color representation), 
irregular (MFD shape representation), etc. The distance 
computations of some of these features (e.g., color histo- 
gram) naturally yield a similarity value between 0 and 1 
and hence do not need additional normalization. Distance 
calculations in other features are normalized to produce 
values in the range [0,1] with the process described below. 

1) For any pair of images I ,  and I], compute the distance 
Do,]) between them: 

D(,,,) = W F ,  ,/ F', ) 

i , j= l ,  ..., M ,  
i + j  (3) 

where Fl and F are the feature representations of 

images 1, and I],  
I I1  

2) For the 
c,M - Mx(Y-1) 

possible distance values between any pair of images, 
treat them as a value sequence and find the mean m 
and standard deviation oof the sequence. Store m and 
oin the database to be used in later normalization. 

3) After a query Q is presented, compute the raw (unnor- 
malized) distance value between Q and the images 
in the database. Let sl, ..., sM denote the raw dis- 
tance values. 

4) Normalize the raw distance values as follows: 

(4) 

As explained in the intra-feature normalization section, 
this Gaussian normalization will ensure 99 percent of 
si to be within the range of [-I, 11. An additional shift 
will guarantee that 99 percent of distance values are 
within [0, 11: 

s,! + 1 s"= - 
' 2  (5) 

After this shift, in practice, we can consider all the 
values within the range of [0, 11, since an image 
whose distance from the query is greater than 1 is 
very dissimilar and can be considered to be at a dis- 
tance of 1 without affecting retrieval. 

5) Convert from distance values into similarity values. 
This can be accomplished by the following operation: 

similarity, = 1 - sy (6)  
At the end of this normalization, all similarity values 
for all features have been normalized to the same 
range [0, 11 with the following interpretation: 1 means 
full similarity (exact match) and 0 denotes maximum 
dissimilarity. 

4 RETRIEVAL MODELS USED IN MARS 
This section discusses how we support Boolean queries 
based on the simple feature similarity values. We support 
two mechanisms for generating the ranking of Boolean 
queriesthe first is based on a fuzzy interpretation of 
similarity and the second is based on a probabilistic inter- 
pretation. In the discussion below, we will use the following 
notation. Images in the collection are denoted by I,, 12, ..., 
I,. Features over the images are denoted by F,, F2, ..., F ,  
where F,  denotes both the name of the feature as well as the 
domain of values that the feature can take. The jth instance 
of feature F, corresponds to image 1, and ILS denoted by&. 
For example, say F1 is the color feature which is represented 
in the database using an HS histogram. In that case, Fl is 
also used to denote the set of all the color histograms, and 

is the color histogram for image 5. Query variables are 

denoted by U,, u2, . . ., v, I uk E F ,  so each uk refers to an in- 
stance of a feature F ,  (an &). Note that Ft(l l )  = & During 
query evaluation, each uk is used to rank images in the col- 
lection based on the feature domain of f , (F , ) ,  that is D{S do- 
main. Thus, vk can be thought of being a list of images from 
the collection ranked based on the similarity of uk to all in- 
stances of F,. For example, say F2 is the sfet of all wavelet 

texture vectors in the collection, if v k  = f2,1j, then nk can be 
interpreted as being both, the wavelet texture vector corre- 
sponding to image 5 and the ranked list of all 

with SF being the similarity function that applies to two 

texture values. A query Q(ul, v2 . . ., U,) is viiewed as a query 
tree whose leaves correspond to single feature variable 
queries. Internal nodes of the tree correspond to the Boo- 
lean operators. Specifically, nonleaf nodes are of one of 
three forms: A(?I~, u2 ..., un), a conjunction of positive liter- 

als; A ( z ~ ~ ,  v2, . . ., up, lup+l . . ., +,), a conjunction consisting 
of both positive and negative literals; and v(vl, ~ 2 ,  ..., U,), 

which is a disjunction of positive literals, Notice that we 
do not consider an unguarded negation lor a negation in 
the disjunction (that is, p 2 l), since it does, not make much 
sense. Typically, a very large number of entries will satis- 
fy a negation query virtually producing the universe of 
the collection [3]. We therefore allow negation only when 

2 
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it appears within a conjunctive query to rank an en- 
try on the positive feature discriminated by the negated 
feature. The following is an example of a Boolean query: 
Q ( q ,  v2) = (ul =fl,5) A (v2 =f2,6) is a query where u1 has a 
value equal to the color histogram associated with im- 
age I, and v2 has a value of the texture feature associated 
with 16. Thus, the query Q represents the desire to retrieve 
images whose color matches that of image I ,  and whose 

texture matches that of image 16. Fig. 2 shows an ex- 

v ((v3 =f3,8) A -,(vg = f l , 9 ) )  in its tree representation. 

Operators: And, Or, Not 
Basic features and representations: 
Color histogram, color moment, wavelet texture, . . . 

Fig. 2. Sample query tree. 

While the Boolean retrieval model provides a mechanism 
for computing a similarity of match for all images given 
a query, for the approach to be useful, techniques must 
be developed to retrieve the best N matches efficiently with- 
out having to rank each image. Such a technique consists 
of two steps: 

e Retrieve images in rank order based on each feature 
variable v, in the query. 

e Combine the results of the single feature variable queries 
to generate a ranked retrieval for the entire query. 

The first step is discussed in Section 4.3. The second step 
is elaborated upon in Section 4.4 for the background, and in 
Sections 4.5 and 4.6 for the fuzzy model and Sections 4.7 
and 4.8 for the probabilistic model. 

Once efficient ranked retrieval based on a single feature 
has been achieved, the ranked lists are normalized and then 
the normalized ranked lists are merged into a ranked set of 
images corresponding to a query. The normalization proc- 
ess used was described in Section 3. To merge the normal- 
ized ranked lists, a query Q(vl, v2, .../ U,) is viewed as a 
query tree whose leaves correspond to single feature vari- 
able queries and the internal nodes correspond to Boolean 
operators. The query tree is evaluated as a pipeline from the 
leaves to the root. Each node in the tree exposes to its par- 
ent a ranked list of images, where the ranking corresponds 

to the degree of membership (in the fuzzy model), or the 
measure of probability (in the probabilistic model). We say 
it exposes, because the key point is that each node produces 
the next best result strictly on demand. For example, in the 
fuzzy model, a node N in a tree exposes to its parent a 
ranked list of 

(I, similarityQ N ( I)) 
where QN corresponds to the query associated with the 
subtree rooted at node N. The algorithms used to create the 
nodes ranked list of images from its children depend upon 
the retrieval model used. 

In a query, one feature can receive more importance than 
another according to the user’s perception. The user can 
assign the desired importance to any feature by a pro- 
cess known as feature weighting. Traditionally, retrieval sys- 
tems [16], [I] use a linear scaling factor as feature weights. 
Under our Boolean model, this is not desirable. It has 
been noted (131 that such linear weights do not scale 
to arbitrary functions used to compute the combined simi- 
larity of an image. The reason is that the similarity com- 
putation for a node in a query tree may be based on op- 
erators other than a weighted summation of the similarity 
of the children. For example if the fuzzy model is used, 
and the node is A, the similarity computation is done as 

similarity, = min(cr x S,, ,b x S, ) 

If F ,  carries a weight a, Fl a weight ,Band the above method 
is used, then 

similarity, = min(a: x S, I ,h x S, ) 

will be in the range [0, min(cz, p)] which is distinct from 
[0, 11 in general. Fagin and Wimmers [13] present a way 
to extend linear weighting to the different components for 
arbitrary scoring functions as long as they satisfy certain 
properties. We are unable to use their approach since 
their mapping does not preserve orthogonality properties 
on which our later algorithms rely. Instead, we use a map- 
ping function from [O,1] + [0, I] of the form 

t 1 

1 1 

I 
~ 

similarity’ = similaYitywelghf , o < w < (7) 

which preserves the range boundaries [0, 11 and boosts 
or degrades the similarity in a smooth way. Sample map- 
pings are shown in Fig. 3. This method preserves most of 
the properties explained in [13], except it is undefined for 
a weight of 0. In [13], a weight of 0 means the node can 
be dismissed. Here, lim,,,gh,~osimilarity’ = 0 for similarity E 

[0, 1). A perfect similarity of 1 will remain at 1. This map- 
ping is performed at each link connecting a child to a par- 
ent in the query tree. 

Each leaf node in the query tree corresponds to a selection 
operation on a single feature. For example, in Fig. 2, the leaf 
nodes correspond to selection operations based on color, 
texture and shape features (the selection predicates being 
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Fig. 3. Various samples for similarity mappings. 

color = 4, texture = 8, shape = 8, etc.). This selection corre- 
sponds to ranking the collection of vectors based on their 
similarity to the query vector. A selection operation has a 
query feature vector FQ and a similarity (or distance) func- 
tion S as arguments and iteratively returns the image whose 
corresponding feature vector next best matches the given 
query vector F,. A simple way to implement the selection 
operation is a sequential file scan over the collection of 
feature vectors. However, the 1 / 0  cost of the sequential 
scan operation increases linearly with the size of the fea- 
ture database and hence may be expensive for large data- 
bases. The efficiency of the leaf node evaluation can be im- 
proved by using appropriate indexing mechanisms that 
support nearest neighbor search over multidimensional 
feature vectors. Several indexing mechanism suited for 
multimedia features (referred to as the F-index or the feature 
index [15]) have been proposed recently (e.g., R-trees [22], 
R+-trees [41], Re-trees [2], k-d-B-trees [34], hB-trees [ 111, 
TV-trees [27], SS-trees [52], vp-trees [8] ,  M-trees [9]). Any 
such indexing mechanism can be used for indexing the 
feature vectors. We have developed a hybrid multidimen- 
ional index mechanism that combines the advantages of the 
two broad classes of multidimensional index structures, 
namely the space partitioning (kd-tree-based) index struc- 
tures and the object clustering (bounding region-based) 
ones. The hybrid data structure scales very well to high 
dimensionality, large database sizes and arbitrary distance 
measures. The hybrid tree provides efficient support for 
range queries as well as nearest neighbor queries on the 
indexed feature based on any distance function specified by 
the user [5]. For example, MARS currently uses the inter- 
section distance for color histograms and the Euclidean 
distance for the texture feature but more complex distance 
measures can be supported. In this paper, we concentrate 
on developing techniques for evaluating Boolean query 

91 1 

0 6  0 8  1 
similarity 

nodes and hence do not elaborate on indexing techniques to 
improve leaf node evaluation any further. I:n the rest of the 
paper, we assume the presence of appropriate indexing 
mechanisms which provide efficient support for nearest 
neighbor search over multidimensional data and hence 
ranked retrieval at the leaf nodes. 

4.4 Background on Evaluation Algorithms 
This section defines some background concepts to be used 
in the following sections. As described above, a Boolean 
query produces a ranked list of (I, similarityQ(I)) based on 
the similarity of each image I to the query Q. Our evalua- 
tion model for the rest of the paper is as follows: 

Each node N defines a subquery rooted at node N de- 
noted by QW 

Each node N returns a list of p, = I,, similarity;! ( , ( N I ) )  
to its parent where: 
J i = 1, 2, ..., n is the sequence number in which 

the ps are returned and n is the number of im- 
ages in the collection. 

J j is an image number (id) and is unrelated to i. 
J QN is the query subtree rooted at node N. 
J similarity;? ( I , )  is the similarity value of image j 

to the subquery rooted at QW 

N 

J foranytwo 
p,  = ( I ] ,  simizarityb ( I ] ) )  

and 
p, = (r,., similarity: (r,.)) 

if i < k then 
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holds. That is, any p returned as an answer for 
the subquery QN will have higher similarity 
than any pair returned later for the same 
subquery. In other words, ps are returned in 
sorted order by similarity. 

* Evaluation of a subquery rooted at QN produces a se- 
quence of p’s. A cursor is maintained in this sequence 
to support the concept of current element; this se- 
quence with cursor is called a stream. 

e The notion of best element of a stream at any point is 
defined as the next 

pI  = (~~,simillirity~ ( I , ) )  

that would be obtained from a stream satisfying the 
above criteria. 

* A stream of p s will support the operations 
J PeekNext (or just Peek) that returns the best 

element of the stream without removing it from 
the stream. 

J GetNext that returns the best element of the stream 
and removes it from the stream. 

J Probe(Il, QN)  that performs random access to im- 
age j and returns a 

N )  
p = I.,similarityQ ( I i )  

I ( 1  

that is, the image id and similarity pair corre- 
sponding to image j based on the subquery Qw 
Not all operators will require this support, we 
however define it for all as a convenience. 

Our Boolean model defines operators that work on such 
streams. The algorithms defined in the following sections 
assume binary operators. wary operators can be imple- 
mented by either nesting binary operators (using the asso- 
ciativity property) or extending the algorithms to cope with 
n input streams. Extension of binary to n-ary operators is 
straightforward in all cases. 

Given that the operators discussed are binary, and the 
inputs are streams as defined above, we can create a two- 
dimensional representation where each axis corresponds to 
similarity values from one stream. Fig. 4 depicts such a sce- 
nario. In this figure, the horizontal axis corresponds to 
stream A and the vertical axis to stream B. Points on this 
graph correspond to images whose similarity in stream A 
defines its A-axis coordinate and the similarity in B defines 
its B-axis coordinate. For instance, the point shown corre- 
sponds to image I with similarity values a’ and b’ in the re- 
spective streams. 

Since streams are traversed in rank order of similarity, 
we obtain coordinates in sorted order from each stream. In 
the figure, a and b show the current similarity values of the 
best element currently in the streams (the cursor contents). 
Since all images from stream A with similarity values in 
the range [a, 11 and all from stream B with similarity values 
in the range [b, 11 have been read already, we can construct 
a rectangle bounded by the points (a, b) and (1, 1) such 
that for all images in the rectangle, the similarity values 

0 a’ a 
Stream A 

Fig. 4. A sample OABB rectangle. 

corresponding to both streams have been observed. We re- 
fer to this rectangle as the Observed Area Bounded Box (OABB). 
Another interpretation of OABB is that it is the current inter- 
section of the images observed so far in both streams. Pro- 
jecting OABB onto the A axis yields another rectangle 
(called zA) that contains only images whose A Coordinate is 
known, but its b coordinate is unknown; OABB and ZA do 
not overlap. The same is true for the projection of OABB 
onto the B axis (the rectangle is called nB). nA U nB de- 
notes the images of which we have partial knowledge of 
their location in this 2D space (i.e., exactly one coordinate 
known). Thus any image of which we have complete 
knowledge (both similarity values seen) must lie in OABB. 

The following sections make use of these definitions to 
explain the functioning of the algorithms. 

4.5 Fuzzy Boolean Model 
Let Q(v,, vz, ..., v,) be a query and I be an image. In the 
fuzzy retrieval model, a query variable v, is considered to 
be a fuzzy set of images and the relevance of any image I to 
Q with respect to v, is interpreted as the degree of member- 
ship of I in that fuzzy set. 

With the above interpretation of the similarity measure 
between the image feature and the feature specified in the 
query, a Boolean query Q is interpreted as an expression in 
fuzzy logic and fuzzy set theory is used to compute the 
degree of membership of an image to the fuzzy set repre- 
sented by the query Q. Specifically, the degree of member- 
ship for a query Q is computed as follows: 

*nd 

Or 

Not SQ=7Q,(I) = l-sQl(I) 

sQ=QIAQ, (1)  = minjsQl ( I ) ,  sQ, (1))  

sQ=QlVQ, (1)  = max(sQl ( I ) /  sa2 (11) 

Consider for example a query Q: 
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The degree of membership of an image I in the fuzzy set 
corresponding to Q can be determined as follows: 

The value S, ( I )  in (9) is determined using the appropri- 

ate similarity or distance measure for the feature z, and ap- 
propriately normalized. Once the membership value of the 
image in the fuzzy set associated with the query is deter- 
mined, these values are used to rank the images, where a 
higher value of S&) represents a better match of the image 
I to the query Q. 

4.6 Fuzzy Model Evaluation Algorithms 
In this section, we present the algorithms used to compute 
the nodes in the query tree for the fuzzy Boolean retrieval 
model. For simplicity we restrict ourselves to compute only 
binary nodes. That is, we assume that the query node Q has 
exactly two children, A, and B. Algorithms are presented 
for the following three cases: Q = A A B, Q = A A 7B,  and 
Q = A v B. As described in Section 4, we only develop algo- 
rithms for positive conjunctive, negated conjunctive queries 
with a positive term and disjunctive queries. 

I 

In describing the algorithms the following notation is used. 
An image I is represented by a pair of components 

( I ,  similarityQ(I)), denoted by the key (Limage) and 
the degree of membership (Ldegree). The key identi- 
fies the image id and the degree of membership de- 
scribes the similarity of match between the query 
feature and the database entries. 
A and B are assumed to be streams as defined in 
Section 4.4. 
Associated with each query node Q are three sets S,, 
Sb, and S,,,. Initially each of these sets are empty. The 
query node Q extracts images from the child streams 
(that is, A and B )  and may buffer them into S, and Sb 
(these represent the nA and nB rectangles from Fig. 4, 
respectively). The set S,,, acts as a buffer of the images 

for the query node Q. Once a query node Q is able to 
establish the degree of membership of image I for Q 
(that is, degree&)), it places I in &,,(the result set). 
Thus, Idegree refers to the degree of membership of I 
according to Q, where I E S,,,. 

The following three subsections describe the algorithms. 
For clarity purposes, when describing the algorithms we 
omit some critical error and boundary checking which 
needs to be considered in any implementation. 

4.6.1 Conjunctive Query with Positive Subqueries 
The algorithm shown in Fig. 6 computes ihe list of images 
ranked on their degree of membership to the query Q = 

A A B, given input streams A and B which are ranked 
based on the degree of membership of imztges in A and B. 

The operation performed in a binary olperator node can 
be viewed as a function S(x E [0, 11, y E [0, 11) -+ [0, 11. As 
an aid to explain the algorithm, we use contour plots that 
show the value of S(x, y). These plots depict lines along 
which the value of S is the same over different parameters, 
so called is0 similarity curves. In reality there are infinitely 
many such curves; the figures only show a few. The highest 
values of S (degree of membership) are in the white areas, 
the darker the region, the lower the value. Fig. 5a) shows 
the plot that corresponds to the fuzzy and operator. 

Imagine an overlay of Fig. 4 on top of Fig. 5a. As 
OABB grows, whole is0 similarity curves are completely 
contained in OABB. Given the geometry of the curves, we 
notice that for any OABB defined as the rectangle bound- 
ed by (a, b)-(1, l), there is a curve of minimum similarity 
along the square (c, c)-(1, 1) where c = niax(a, b). Images 
contained in this square are completely determined and are 
safe to be returned as answers. As an example, Il is con- 
tained in the first such square to appear. This is indeed the 
best image. Discriminating between I2 and I3 is more diffi- 
cult. They both yield similar degrees of membership. Once 
the OABB has grown to contain both images, a decision as 
to the ranking is done. I4 does not participate in this process 
since l2 and I3 are definitely better than 1-2. The algorithm 
relies on this fact, but grows the OABEI by exactly one 
image at a time, thus the next lower i s 0  similarity curve 

(a) (b) (cl 

Fig. 5. Contour graphs for fuzzy operators. Whiter is higher, darker is lower similarity value: (a) fuzzy and operator, (b) fuzzy and not operator, 
(c) fuzzy or operator. 
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Algorithm GetNextAnd-Fuzzy(A, B) 
;returns: next best image inAandB 
while (TRUE) 

1, = Peek (A), I b  = Peek (B) 
if I,.degree > l,.degree then 

1, = GetNext(A) 

if &.image E Sb then ;image already seen in B 
sa = sa U 1, 

l b  = image Sb[I,.image] 
exit loop 

exit if 
else 
if Ib.degree > I,.degree then 

I b  = GetNext(B) 

if lb.image E sa then ; image already seen in A 
S b  = S b  U I b  

1, = image S,[Ib.image] 
exit loop 

end if 
end if 

end while 
; reached upon finding a common image ins, and& 
1.image = I,.image 
I.degree = min (&.degree, &.degree) 

return I 
s a  = - Sb = Sb - Ib, s y e ,  = s,, U I 

flag = true 
while flae 

1 Ia=GetNext(A) Ib=GetNext(B) 
Sa=Sa v Ia Sb=Sb U Ib 

I .image=Ia .image 
I.degree=min(Ia.degree,Ib.degree) 
Sa=Sa - Ia,Sb=Sb - Ib 
5’resESre.v v I 
return I 

(a) 

Fig. 6. Algorithm returning the next best for the fuzzy andcase: (a) pseudocode, and (b) flow graph. 

is exposed and the latest image to join OABB is the next 
answer. At each stage, the best image out of the sources A 
and B is chosen and added to sets S,(nA) and Sb(nB) which 
function as buffers of images already observed from the 
corresponding stream. When an image is found that was 
already observed in the other stream, the loop is terminated 
and this is the next best image according to the query node 
Q (it just joined the rectangle OABB, thus encompassing 
the next is0 similarity curve that has an image). Notice that 
IS, U Sbl will never exceed the size of the feature collection. 
The resulting image is returned with the degree equal to the 
minimum degree of the image in both streams and lastly 
recorded in the result set. 

4.6.2 Conjunctive Query with Negative Subquery 
We next present the algorithm for computing the query Q = 

A A 7B; it is presented in Fig. 7. Fig. 5b shows the contour 
plot that corresponds to this query. A strategy similar to the 

B in reverse order was possible. This implies a furthest 
neighbor query that is not supported. The positive term is 
used to guide the search and the negative subquery used to 
determine the final degree of membership. The OABB thus 
only considers entries from stream A and never grows in 
the B stream (which is never constructed). Probe is then 
used to complete the degree of membership of an image. As 
an example, image I ,  is best if it is located early in stream A 
and its similarity to the query feature that corresponds to B 
is very low. 

This algorithm contains an auxiliary set S,,, to hold im- 
ages retrieved from stream A and whose final degree of 
membership is established, but resulted lower than the 

previous subsection could be used if traversing the stream 

membership degree in A. These images need to be delayed 
until such time that it is safe to return them. For each itera- 
tion of the loop, there are three possibilities: 

* Sa,, # 0 A Peek(A).degree 5 MaximumDegree(S,,,) the 
best image in the auxiliary set has higher membership 
degree than than the top image from A. In this case, 
the result is clear (return top image form S,,,), since 
min is used, no better image will come from A. 

* (S,,, = 0 v Peek(A).degree > MaximumDegree(S,,,)) A 

Peek(A).degree S Probe(Peek(A).image, +.degree there 
is no better candidate on hold and the degree of the 
best image from A is lower (and thus determines the 
answer) than the probe on the negative subquery. The 
answer is the best image from A. 

* (S,,, = 0 v Peek(A).degree > MaximumDegree(S,,,)) A 

Peek(A).degree > Probe(Peek(A).image, 7B).degree there 
is no better candidate on hold and the degree of the 
best image from A is higher than the probe on the 
negative subquery. The final membership degree is 
determined by the probe and the image is sent to the 
auxiliary set to wait until it is safe to return it. 

The loop iterates until a result is found. 

4.6.3 Disjunctive Query 
The algorithm shown in Fig. 8 computes the set of images 
ranked on their degree of membership to the query Q = 

A v B, given input streams A and B which are ranked based 
on the degree of membership of images in A and B. 

Fig. 5c shows the contour plot for the disjunctive fuzzy 
operator. By overlaying Fig. 4 on Fig. 5c it can be seen that 
any OABB intersects is0 similarity curves (unless it is the 
whole space). This means no curve will be contained in any 
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Algorithm Get NextAnd-Not-Fuz zy(A, B) 
;returns: next best image inAand notB 
while (TRUE) 

1, = Peek (A) 
if sa,, # 0 A ladegree < MaximumDegree(SauX) then 

1 = image from sa,, with maximum degree 

exit loop 

1, = GetNext(A) ; consume from A 
&.image = la.image 
&.degree = Probe(Ia, 4) 
if ladegree I I,.degree then 

saux = Saux - 1 

else 

I = I ,  
exit loop 

else 

end if 
= I b  

end if 
end while 
Sm = sres  U 1 
return 1 

flag = true 
wlule flag 

Ia=Max( Sres) 
Sres=Sres - I 
flag-false 

Ia=GetNext(&) 
Ib.image=Ia.image 
Ib.degree=Prolbe(Ia,-J3) 

return I 

(a) 

Fig. 7. Algorithm returning the next best for the fuzzy andnot case: (a) pseudocode, (b) flow graph. 

Algorithm Get Next Or-Fuz zy(A, B )  
;returns: next best image i n A o r B  
flag = TRUE 
while (flag) 

1, = Peek (A), l b  = Peek ( B )  
if ladegree > Ib.degree then 

else 

end if 
flag = FALSE 
if 1.image E sre, then 
end if 

end while 
Sres Sm U 1 
return I 

I = GetNext(A) 

1 = GetNext(B) 

flag = TRUE 

Iade ee I my/ 
Sres= I flag=false I=Ia I Sres v Ib 

I I I=GetNext(A)l I=GetNext(B) I 

Sreturned= 
Sreturned U I 
flag==false 

I return I I 

(a) 

Fig. 8. Algorithm returning the next best for the fuzzy orcase: (a) pseudocode, (b) flow graph. 

OABB, so unless the whole collection is retrieved, no defi- 
nite ranking exists. This results in two options, 

1) return only those images in the OABB, and 
2) follow a different strategy. 

In the first case, to return 12, the OABB would cover most of 
the collection, including 14, but l4 which is in OABB much 
earlier than any of l2 or l3 is worse than 11, 12, and 13. 

Fortunately, we can follow a different strategy instead. 
By exploiting the properties of the max operator, 11, I2 and l3 
have the same membership degree, they only rely on one 
(the maximum) of their membership degrees in subqueries 
and thus can safely ignore the other. Since images with 
better membership degrees are examined first, this is suffi- 
cient to determine the final membership degree. 

The algorithm essentially consists of a merge based on 
the degree of membership value but makes sure that an 
image that was already returned is ignored as a result (du- 
plicate removal). This accomplishes the desired max be- 
havior of the degree function associated with the disjunc- 
tion in the fuzzy model. 

4.7 Probabilistic Boolean Model 
Let Q ( q ,  q, . . ., un) be a query and I a n  image. In the prob- 
abilistic Boolean model, the similarity 

s, (t(0 V I )  

between the query variable vl and the corresponding fea- 
ture in the image is taken to be the probability of the image 
1 matching the query variable v], denoted by P(z; I I). These 
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probability measures are then used to compute the prob- 
ability that I satisfies the query Q(vl, v2, ..., vn) (denoted by 
P(Q(vl, v2 . . ., v,) I I ) )  which is in turn used to rank the im- 
ages. To enable computation of P(Q(v,, v2, . . ., v,) I I ) ,  an as- 
sumption of independence is made. That is, we assume that 
for all variables 'ut, vl following holds: 

(10) 
Developing a term and feature dependence model and in- 
corporating it may improve retrieval performance further 
and is an important extension to our current work. 

Once the probability of match is known for a basic 
feature, we next need to estimate the probability that 
the image satisfies the Boolean query Q(v,, vz, ..., vn), 
denoted by P(Q I I ) .  If Q is a disjunction (Q = Q1 v Q2), fol- 
lowing the laws of probability, P(Ql v Q211) can be esti- 
mated as follows: 

P(v, A VI I I )  = P(Vl  I I )  x P(Vl I I )  

p(Qi v Q2 I I )  = p(Qi I I )  + P(Qz I 4 - ~ ( Q I  * Q2 I I )  (11) 
Since all probabilities are conditioned on the image I ,  we 
will omit this for brevity from now on. Similarly, P(,Q) can 
be computed as follows: 

p(7Qi) = 1 -P(Qi) (12) 

(13) 
Our retrieval results (see Section 5) show that even if 

query terms are considered as independent, the resulting 
retrieval performance is quite good. It should be noted 
that although 

To compute conjunction queries, i.e., Q = Q1 A Q2 we use 

p(Qi A Q2) = p(Qd x P(Qd 

s, (WJ nuk) 
has the same value for the fuzzy and probabilistic models, 
their interpretation is different and yields different results 
(see Section 5). 

4.8 Probabilistic Model Evaluation ~ l g ~ r j t ~ ~ s  
In this section, we present the algorithms used to compute 
the nodes in the query tree in the case of the proba- 
bilistic Boolean retrieval model. For simplicity we restrict 
ourselves to compute only binary nodes. That is, we as- 
sume that the query node Q has exactly two children, A and 
B. As for the fuzzy model, algorithms are only developed 
for the following three cases: Q = A A B, Q = A A 4 3 ,  and 
Q = A v B .  

Based on Section 4 7, the probability is computed at the 
internal nodes according to the equations below and is re- 
stricted to lie in [0, 11. 

And SQ=QlnQ2 (1) = SQ, (4 x SQ2 (1) 

Or S@Q,"Q, (1) = SQ1 (1) + SQ, (1) - SQ1 (1) x SQ, (1) 

Not sQ=7Q, ( I )  = - sQ, ( I )  

In describing the algorithms the following notation is used: 
An image I is represented by a pair of components 
( I ,  similarity&)), composed by the key (Limage) which 
identifies the image id, and the similarity which 
identifies the probability that the image satisfies the 
query (I.prob). 

A and B are assumed to be streams as defined in 
Section 4.4. 
Associated with each query node Q are three sets Sa, 

sb, and SFes. Initially each of these sets are empty. The 
query node Q extracts images from the child streams 
(that is, A and B) and may buffer them into S, and sb 
(these represent the nA and zB rectangles from Fig. 4, 
respectively). The set S, acts as a buffer of the images 
for the query node Q. Once a query node Q is able to 
establish the probability of match of image I for Q 
(that is, probability&)), it places I in S, (the result set). 
Thus, I.prob refers to the probability that image I 
matches the query Q. 

The following three subsections describe the algo- 
rithms used to implement the above shown operations in 
an efficient manner. For clarity purposes, when describing 
the algorithms below we omit some critical error and 
boundary checking which needs to be considered in any 
implementation. 

4.8.1 Conjunctive Query with Positive Subqueries 
The algorithm in Fig. 10 computes the set of images ranked 
on their probability of match to the query Q = A A B, given 
input streams A and B which are ranked based on their 
matching probability of images in A and B. 

It is interesting to note that an algorithm similar to the 
one proposed in Section 4.6.1 will not work properly. To 
understand this, observe Fig. 9a and recall the OABB sug- 
gested in Section 4.4. The rectangle will contain a region 
with images that have been observed in both streams, yet 
the distribution of probability is complex within this rec- 
tangle. This requires a modified algorithm that returns im- 
ages only when it is safe to do so. Similarly to the fuzzy 
case, there is a minimum value is0 similarity curve com- 
pletely covered by any OABB. The probability value for this 
curve is defined by its intersection with the axes. So, for an 
OABB bounded by (a, b)-(1, l), all images with known 
probability of more than the maximum of a and b are safe to 
be returned. Note however that the OABB will also contain 
images with known final probability less than this amount, 
these are retained in an auxiliary set. Images in this auxil- 
iary set become safe to return when the OABB covers a suf- 
ficiently low is0 probability curve such that its probability 
is lower or equal to that of the now safe image. As an ex- 
ample, consider Fig. 9a. There are four images in the whole 
collection. I ,  is the first to be included in an OABB. When 
this happens, I ,  is partially known in n A. Even though 
OABB contains only one image with known final probabil- 
ity, it cannot yet be returned since it does not lie on an is0 
probability curve completely covered by OABB. Then I ,  
will be included in OABB, but it also cannot yet be re- 
turned. The curve just below I ,  intersects with a vertical line 
drawn from 13. Until this is cleared, I1 and thus I2 cannot be 
returned. When I4 is added, the highest is0 probability 
curve that is lower than I,, I2 and I3 is clear of the projection 
of I4 onto the axes, thus it is safe to return all of I,, Iz, and I3 
at this stage. 
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Fig. 9. Contour graphs for probabilistic operators: (a) probabilistic and operator, (b) probabilistic and not operator, and (c) probabilistic or operator. 
Whiter is higher, darker is lower similarity value. 

Algorithm GetNext And-Probabi 1 i ty(A, B )  
;returns: next best image in AandB 
flag = TRUE 
while (flag) 

la = Peek (A), Ib = Peek (B) 
if sa,, # 0 A Max(l,.prob, Ib.prOb) < 

MaximumProbabi 1 i ty( sa,,) then 
I=image fromS,,,with maximum probability 

flag = FALSE 

if la.prob > 1b.prob then 

sa,, = sa,, - I 

else 

I ,  = GetNext(A) 

if I ,  E S b  then 
sa = sa U I ,  

I = la 
l b  = image from Sb equivalent to la 

Lprob = la.prob X Ib.prob 
sa = sa-lu Sb = Sb-Ib, sa,, = sa,, U I 

end if 

; symmetric code to then branch 
else 

end if 
end if 

end while 
Sres = s,s U 1 

return I 

flag = true 
while flag 

\Sam # 0 A Max(A.prob,B.prob) / 

I=Max(Sawc) 
S a m  =Sam - I 
flaefalse 

Ia=GetNext(A) 
Sa=Sa U Ia 

I=Ia 
I.prob=Ia.prob* 

Sa=Sa-Ia 
Sb=Sb-Ib 

Sres=Sres U I 
return I 

like 
Yes 
branch 
on the 
other 
stream 

Fig. 10. Algorithm that implements the andoperator for the probabilistic case: (a) pseudocode, (b) flow graph. 

The algorithm first tests if there is a safe image in the 
auxiliary set to return and does so if there is one. Other- 
wise, it extracts the next best image from the better of A or 
B and tries to include it in OABB by finding it to be in the 
intersection. If unsuccessful, it is stored in one of the sets 
corresponding to ZA or z B. The loop iteratively checks for 
safety and fetches images until a safe image can be re- 
turned. Note that unlike in the fuzzy case, the only way to 
exit the loop is by an image being safe as defined above. Of 
course in the fuzzy algorithms, returned images were also 
safe, but the safety criteria is so simple, that multiple loop 
exists exist. 

An optimization on this algorithm is to slightly modify 
the safety criteria. The criteria described above is simple to 
understand: an image is not safe until ,311 the region of 
higher probability has been seen. The danger of not fol- 
lowing this strategy is that for some images, only one prob- 
ability has been retrieved, and the other is unknown. The 
above safety criteria is pessimistic in that it assumes that 
the other probability could be any value, while it is in fact 
bounded by the top probability in the stream where the 
image has not yet been retrieved. If I,.prob requires I,.prob, 
and IkprobB to compute Ik.prob = Ik.prob2+ x Ik.probB, then 
an upper bound on the probability of image Ik  is: 
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Algorithm GetNextAnd-Not-Probability(A,B) 
;returns: next best image in A and notB 
flag = TRUE 
while (flag) 

I, = Peek (A) ; best from A 
if Saux# 0 A I,.prob < MaximumProbability(S,,,) then 
I=image from Sfluxwith maximum probability 
Sam = Sam - I 
flag = FALSE 

I = GetNext(A) 
Ib.prob = Probe(& YB) 
I,.prob = Ia.prob x Ib.prob 

else 

sa,, = sa,, U I 
end if 

end while 

return I 
SE, = s, U I 

I flag = true I 
while flag I 

I=Max(Saux) Ia=GetNext(A) 
Saux =Sam - I I.image=Ia.image 
flag=false I.prob=Probe(Ia, 43) 

I.prob=I.prob*Ia.prob 
S a m  = Saux U I 

Saux = S a m  U I 
return I 

Fig. 11. Algorithm that implements the andnot operator for the probabilistic case: (a) pseudocode, (b) flow graph. 

Peek(A).prob x Ik.probg if Ik. probs is known, or (14) 

Peek(B).prob x 1,. probA if Ik .  probA is known 

This more sophisticated criteria is not incorporated in 
Fig. 10, instead the simpler criteria described above is 
included. 

4.8.2 Conjunctive Query with Negative Subquery 
We next develop the algorithm for computing the query 
Q = A A 43; it is shown in Fig. 11. The algorithm is different 
compared to the one developed for the conjunctive query 
with no negative subquery. As described for the fuzzy 
model, a similar method to the conjunctive query with only 
positive subqueries could be used if traversing the B stream 
in inverse was feasible. This is however not the case. This 
algorithm follows the safety criteria specified in the previ- 
ous subsection, however only the stream for A is used in 
computing the probability of images according to A A -4. 
Images are retrieved from the input stream A in rank order. 
For a given image I its probability with respect to the 
subquery 4 3  is evaluated by performing a probe on image I 
and evaluating its probability of match. Once the probabil- 
ity of match of an image I according to 4 has been estab- 
lished, we can determine its final probability according to 
the query Q, and the image is inserted into an auxiliary set 
that is used to verify the safety criteria. An image is only 
returned if it successfully passes the safety test, thus every 
returned image was in the auxiliary set. Effectively, every 
image retrieved from A results in a probe to B. 

4.8.3 Disjunctive Query 
Finally, to compute a disjunctive query node, we need the 
algorithm shown in Fig. 12. Disjunctive queries are hard to 
compute in this case. Consider Fig. 9c, images I,, 12, and I3 
have very similar probabilities. In the fuzzy case, the is0 
similarity curves were parallel to the axes and we could 
exploit the max behavior. This is not possible here. In addi- 
tion, notice that no is0 probability curve will be contained 
in any OABB (unless everything is read in). Two distinc- 
tions exist with the fuzzy version: 

1) The' final probability does depend on all the query 
terms, while in the fuzzy model, only the best one is 
relevant. 

2) Is0 probability curves are not even piecewise parallel 
to the axes. 

Since image I may have a higher probability in one 
stream than another, we would need to store it until a pos- 
sibly much worse (and, much later) match occurs from the 
other stream. Indeed, to return I,, both I2 and I3 need to be 
included in the OABB. Potentially, this results in a very 
large initial overhead (latency) to find the first few results. 
To overcome this limitation, once an image is seen for the 
first time, its full probability is established with appropri- 
ate probes. 

To follow the algorithm, the notion of safety is used 
again. When is it safe to return I ,  given that we only have 
partial knowledge for I2 and 13? Probes are used to establish 
missing probabilities and a final probability score is com- 
puted. Images are then stored into an auxiliary set until 
they can safely be returned. 

Images can safely be returned when their known 
probability is larger than the best to come. All images in 
S,,, can be partitioned into those with probability above 
(safe set)  and below (unsafe set) the value Peek(A).prob 
+ Peek(B).prob - Peek(A).prob x Peek(B).prob. Those in the 
safe partition necessarily have higher probability than those 
in the unsafe partition, but also any combination of images 
that remain to be considered in streams A and B would fall 
into the current unsafe partition. Images from the safe set 
can now be returned in rank order. The algorithm grows 
S,,, one by one and at each stage verifies for safety. The safe 
set may contain at most one element, if present it is re- 
turned as an answer and removed from the safe set. 

The algorithm assumes that probing is possible on 
subqueries. So far, only algorithms based on negation have 
required this and then only for the negation operator. If 
probing on subqueries is expensive, an alternate algorithm 
(not shown here) can be constructed as in the conjunctive 
query case. When one component probability of an image Ik 
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Algorithm GetNextOr-Probability (A, B )  
;returns: next best image i n A o r B  
flag = TRUE 
while (flag) 

1, = Peek (A), Ib = Peek (B) 
if sa,, # 0 A Ia.prob + Ib.prob - Ia.prob x Ib.prob I 

MaximumProbabi li ty(S,,,)then 
I =  image fromS,,,with maximum probability 
Sa,, = Sflux - I 
flag = FALSE 

if I,.prob > Ib.prob then 
else 

I ,  = GetNext(A) 

if I , # @  Sb  then ; do a probe 
sa = sa U 1, 

lb = probe(B, &.id) 
Limage - &.image 
I.prob - I,.prob + Ib.prob - Ia.prob x Ib.prob 
Sa,, = S a m  U I 

end if 
else 
; symmetric code to then branch 
end if 

end if 
end while 

return I 
SE, = s,, U I 

flag = true 
while flag 

A.prob+B.prob-A.prob*B.prob 

Saw =Sam - I Ia=GetNext(A) 
flag=false Sa-Sa U Ia 

branch 
Ib=Probe[B,Ia. irnage] 
I.image=Ia.image 
I.prob= 
Ia.prob+Ib.prob- 
Ia.prob+Ib.prob 

SawSaux U I 

on the 
other 
stream 

Sres=Sres U I 
return I 

Fig. 12. Algorithm that implements the or operator for the probabilistic case: (a) pseudocode, (b) flow graph. 

is known, an upper bound on the final probability can be 
established by: 

upper(&) = Peek(A).prob + Ik.probB 
- Peek(A).prob x lk. probB 

if lkprobB is known, or 

upper(1,) = Peek(B).prob + Ik.pro6A 

- Peek(B).prob x Ik.probA 

if lk.probA is known (15) 

And the known probability component is a lower bound 
(lower(&)). Based on the known bounds for lb instead of 
waiting to complete its final probability, it is estimated as its 
lower bound (lower(1,)). Once no upper bound (upper($)) of 
any unsolved image can exceed lower(lk), and no combina- 
tion of any images left in A and B can exceed lower(lk), then 
Ik  is safe to return and is returned with probability lower&). 

4.9 Comparison of Algorithms to Other Work 
Recently, Fagin [12] proposed an algorithm to return the top 
k answers for queries with monotonic scoring functions that 
has been adopted by the Garlic multimedia information 
system under development at the IBM Almaden Research 
Center [lo]. A function F is monotonic if F(x,, ..., x,) 2 

F ( x ; ,  ..., xk) for x, 5 xi for every i. Note that the scoring 
functions for both conjunctive and disjunctive queries for 

both the fuzzy and probabilistic Boolean models satisfy the 
monotonicity property. In [12], each stream i is accessed in 
sorted order based on the degree of membership to form a 
ranked set X,, and a set L = n,x, that contains the intersec- 
tion of the objects retrieved from all streams. Once L con- 
tains k objects (to answer a top k query), all objects in U,X, 
are used to perform probes on whichever streams they were 
not read from. This essentially complete:$ all the informa- 
tion for the objects in the union and enables a final definite 
scoring and ranking of all objects in U,X,, then the top k are 
the final answer. This algorithm works in the general case, 
and is tailored in [12] to some specific scoring functions. 
This algorithm relies on reading a number of objects from 
each stream until it has k in the intersection. Then it falls 
back on probing to enable a definite decision. In contrast, 
our algorithms are tailored to specific functions that com- 
bine object scoring (here called fuzzy and probabilistic 
models). Our algorithms follow a demand driven data flow 
approach [19]. Instead of asking for the top k objects, only 
the next best element is requested and returned. This fol- 
lows a fine grained pipelined approach. According to the 
cost model proposed in [12], the total database access cost 
due to probing can be much higher (compared to the 
total cost due to sorted access. Only our algorithms in- 
volving negation require probing. We used probing in Sec- 
tion 4.8.3 for convenience, but sketched an alternate algo- 
rithm that does not require probing. Our demand driven 
approach reduces the wait time of intermediate answers in 
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a temporary file or buffer between operators in the query 
tree. This model is efficient in its time-space product mem- 
ory costs [19]. On the other hand, in Garlic, the data items 
returned by each stream must wait in a temporary file until 
the completion of the probing and sorting process. Also, in 
the query processing model followed in MARS, the opera- 
tors are implemented as iterators which can be efficiently 
combined with parallel query processing [18]. 

Another approach to optimizing query processing over 
multimedia repositories has been proposed in [7] .  It pres- 
ents a strategy to optimize queries when user’s specify 
thresholds on the grade of match of acceptable objects as 
filter conditions. It uses the results in [12] to convert top-k 
queries to threshold queries and then process them as filter 
conditions. It shows that under certain conditions (uniquely 
graded repository), this approach is expected to access no 
more objects than the strategy in [12]. Like the former ap- 
proach, this approach also requires temporary storage of 
intermediate answers and sorting before returning the an- 
swers to the user. Furthermore, while the above approaches 
have mainly concentrated on the fuzzy Boolean model, we 
consider both the fuzzy and probabilistic model in MARS. 
This is significant since the experimental results illustrate 
that the probabilistic model consistently outperforms the 
fuzzy model in terms of retrieval performance (discussed in 
Section 5). 

XPERIMENTAL RESULTS 
We have conducted extensive experiments of varied data 
sets to measure the performance of the retrieval models and 
query processing algorithms developed. This section pres- 
ents the results of our experiments. First we briefly describe 
the parameters used to measure retrieval performance fol- 
lowed by a description of the data sets. Finally, we present 
the results along with our observations. 

5.1 Evaluation Technique 
Text retrieval systems typically use the following two 
metrics to measure the retrieval performance: precision and 
recall [40], [4]. Note that these metrics measure the retrieval 
performance as opposed to execution performance (re- 
trieval speed). 

Precision and recall are based on the notion that for each 
query, the collection can be partitioned into two subsets of 
documents. One subset is the set of relevant documents and 
is based on the user’s criteria for relevance to the query. The 
second is the set of documents actually returned by the 
system as the result of the query. Now preciszon and recall 
can be defined as follows: 

* Precision is the ratio of the number of relevant im- 
ages retrieved to the total number of images retrieved. 
Perfect precision (100 percent) means that all re- 
trieved images are relevant. 

I relevant n retrievedl 
precision = I retrievedl (16) 

Recall is the ratio of the number of relevant images 
retrieved to the total number of relevant images. Per- 
fect recall (100 percent) can be obtained by retrieving 
the entire collection, but the precision will be poor. 

I relevant n retrievedl 
recall = I relevant1 (17) 

An IR system can be characterized in terms of perform- 
ance by constructing a precision-recall graph for each 
query by incrementally increasing the size of the retrieved 
set i.e., by measuring the precision at different recall points. 
Usually, the larger the retrieved set, the higher the recall 
and the lower the precision. This is easily done in MARS 
since the query processing algorithms are implemented as 
a pipeline. 

5.2 Data Sets Used 
We have conducted experiments on two data sets. The first 
data set is a collection of images of ancient artifacts from 
the Fowler Museum of Cultural History. We used a total of 
286 images of such artifacts. The relevance judgments for 
this collection were obtained from a class project in Library 
and Information Science department at the University of 
Illinois. Experts in librarianship consulted with the curator 
of the collection to determine appropriate queries and their 
answers. Queries posed to this collection range from simple 
single feature queries to complicated queries involving all 
the operators described above and both retrieval models, 
namely fuzzy and probabilistic. In all, five groups of related 
images were chosen. For each group several queries in- 
volving single features and arbitrary operations between 
them as well as different weightings were constructed. 
These relevant query groups ranged in their cardinality 
from 9 to 33 images. 

The second data set is the Core1 collection of images 
available online at http://corel.digitalriver.com. This collection 
contains around 70,000 images mostly of natural scenes. All 
images are catalogued into broad categories and each image 
carries an associated description. In this case, manually 
separating the collection into relevant and nonrelevant sets 
was infeasible due to the size. Instead we made use of our 
results in [32] to automatically determine the appropriate 
result set of each query. 

5.3 Results 
5.3.1 Fowler Collection 
In this section, we describe the results of some experiments 
performed on the image collection from the Fowler Mu- 
seum. Since the complete set of experiments are too large to 
include, we present only the results of certain representa- 
tive experiments. 

We conducted experiments to verify the role of feature 
weighting in retrieval. Fig. 13a shows results of a shape or 
color query i.e., to retrieve all images having either the same 
shape or the same color as the query image. We obtained 
four different precision recall curves by varying the feature 
weights. The retrieval performance improves when the 
shape feature receives more emphasis. 

We also conducted experiments to observe the impact of 
the retrieval model used to evaluate the queries. We observed 
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that the fuzzy and probabilistic interpretation of the same 
query yields different results. Fig. 13b shows the perform- 
ance of the same query (a texture or color query) in the two 
models. The result shows that neither model is consistently 
better that the other in terms of retrieval. 

Fig. 13c shows a complex query (shape(1,) and color(1,) or 
shape(ll) and layout(ll) query) with different weightings. 
The three weightings fared quite similar, which suggests 
that complex weighings may not have a significant effect on 
retrieval performance. We used the same complex query to 
compare the performance of the retrieval models. The result 
is shown in Fig. 13d. In general, the probabilistic model 
outperforms the fuzzy model. 

5.3.2 Corel Collection 
For the Corel data set, Fig. 13e shows a query involving two 
database objects ranked under both fuzzy and probabilistic 
models. In this query, all terms are positive literals. Al- 
though at first the fuzzy model has good performance, the 
probabilistic model soon improves and stays better. Fig. 13f 
shows a query involving a negation. In this case the fuzzy 
model performed well below the probabilistic model. The 
next section discusses possible explanations. 

5.4 Analysis of Data 
Note the graphs shown are not always monotonic. The pre- 
cision is expected to monotonically decrease as more and 
more images are retrieved. The small peaks in the graphs 
imply that a sequence of relevant images was quickly re- 
trieved following a possibly long sequence of nonrelevant 
images. Taking averages over several queries would help in 
smoothing out these peaks. However, we do not take aver- 
ages to depict the peculiar effects of individual queries. The 
way to read these graphs is that a higher curve is better 
than a lower one. This would mean that at all recall points, 
the precision was better. 

We observe from Fig. 13a that the weighting of features 
can improve performance dramatically. The weights for the 
queries were determined subjectively and several combina- 
tions were tried. Automatic learning of these weights in MARS 
is an interesting extension of this work explored in [35], 
[37], [36]. We also observed (from Fig. 13c) that complex 
weighting strategies may not always improve performance 
significantly. 

We observed that the probabilistic model is superior to 
the fuzzy model for Corel queries. A possible explanation 
for this (specially for Fig. 13f) is that the min and max op- 
erations used in the fuzzy model are too restrictive. They 
take into account only one of all their parameters while the 
probabilistic operators take into account all the parameters. 
These results scaled from 286 to 70,000 images. This gives 
us confidence in the robustness of our approach. 

6 RELATED WORK 
Content-based retrieval of images is an active area of re- 
search being pursued independently by many research 
teams. Similar to MARS, most existing content-based image 
retrieval systems also extract low-level image features like 
color, texture, shape, and structure [14], [48], [29], [16], [31], 
[28], [33], [42]. However, compared to MARS the retrieval 

techniques supported in some of these systems are quite 
primitive. Many of these systems support queries only on 
single features separately. Certain other systems allow que- 
ries over multiple feature sets by associating a degree of 
tolerance with each feature. An image is deemed similar to 
the query if it is within the specified tolerance on all the 
query features. As discussed in Section 1.2, this approach 
has many drawbacks. 

Some commercial systems have been developed. QBIC 
1161, standing for Query By Image Content, is the first 
commercial content-based Image Retrieval system. Its sys- 
tem framework and techniques had profound effects on 
later Image Retrieval systems. QBIC supports queries based 
on example images, user-constructed sketches and draw- 
ings and selected color and texture patterns, etc. The color 
features used in QBIC are the average (R, G, B), (Y, i, q), 
(L, a, b), and MTM (Mathematical Transform to Munsell) 
coordinates, and a k element Color Histogram. Its texture 
feature is an improved version of the Tamura texture repre- 
sentation [48], i.e., combinations of coarseness, contrast, and 
directionality. Its shape feature consists of shape area, cir- 
cularity, eccentricity, major axis orientation, and a set of 
algebraic moments invariants. QBIC is one of the few sys- 
tems which take into account high dimensional feature in- 
dexing. In its indexing subsystem, the KL transform is first 
used to perform dimension reduction and then RH-tree is 
used as the multidimensional indexing structure. 

Virage is a content-based image search engine developed 
at Virage Inc. Similar to QBIC, Virage [l] supports visual 
queries based on color, composition (color layout), texture, 
and structure (object boundary information). But Virage 
goes one step further than QBIC. It also supports arbitrary 
combinations of the above four atomic queries. Users can 
adjust the weights associated with the atomic features ac- 
cording to their own emphasis. In [l], Jeffrey et al. further 
proposed an open framework for image management. They 
classified the visual features (”primitive”) as general (such 
as color, shape, or texture) and domain specific (face recog- 
nition, cancer cell detection, etc.). Various useful ”primitives” 
can be added to the open structure depending on the do- 
main requirements. To go beyond the query-by-example 
mode, Gupta and Jain proposed a nine-component query 
language framework in [21]. 

Photobook [33] is a set of interactive tools for browsing 
and searching images developed at the MIT Media Lab. 
Photobook consists of three subbooks, from which shape, 
texture, and face features are extracted respectively. Users 
can then query based on corresponding features in each of 
the three subbooks. In its more recent version of Photobook, 
FourEyes, Picard et al. proposed to include human in the 
image annotation and retrieval loop [30]. The motivation of 
this was based on the observation that there was no single 
feature which can best model images from each and every 
domain. Furthermore, human perception is subjective. They 
proposed a ”society of models” approach to incorporate the 
human factor. Experimental results show that this approach 
is very effective in interactive image annotation. 

In [24], Jain and Vailaya propose an image retrieval sys- 
tem based on color and shape. Their color measure is based 
on the RGB color space and Euclidean and histogram 
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intersection measures are used. For shape, they use a po- 
lygonal description that is resilient to scaling, translation 
and rotation. The proposed integration uses a weighted 
sum of shape and color to arrive at the final result. They 
address high dimensional feature indexing with a cluster- 
ing approach, where clusters are build upon database 
creation time. 

To date, no systematic approach to answering content- 
based queries based on image features has emerged. To 
address this challenge, similar to the approaches taken in 
information retrieval system, the approach we have taken 
in developing MARS is to support an ”intelligent retrieval” 
model using which a user can specify their information 
need to the image database and the database provides a 
ranked retrieval of images to user’s request. The retrieval 
model supported is a variation of the Boolean model based 
on probabilistic and fuzzy interpretations of distances be- 
tween the image and the query. 

7 CONCLUSIONS 
To address the emerging needs of applications that require 
access to and retrieval of multimedia objects, we are devel- 
oping the Multimedia Analysis and Retrieval System (MARS). 
In this paper, we described the retrieval subsystem of 
MARS and its support for content-based queries over im- 
age databases. To support content-based retrieval, in MARS 
many visual features are extracted from imagewolor, 
texture, shape, color, and texture layout. Information re- 
trieval (IR) techniques, modified to work over visual fea- 
tures, are then used to map user’s queries to a collection of 
relevant images. Specifically, extended Boolean models 
based on a probabilistic and fuzzy interpretation of Boolean 
operators are used to support ranked retrieval. Our results 
show that using IR techniques for content-based retrieval in 
image databases is a promising approach. 

The work reported in this paper is being extended in 
many important directions. In our current system, we have 
concentrated on adapting the Boolean retrieval model for 
content-based retrieval of images. Many other retrieval 
models that have a better retrieval performance compared 
to the Boolean approach have been developed in the IR lit- 
erature for textual databases [40], [4], [51]. We are currently 
exploring how these models can be adapted for content- 
based image retrieval. Furthermore, our current work has 
concentrated on image databases. We are also generalizing 
our approach to content-based retrieval in multimedia da- 
tabases. Weighting is an important tool for the user to 
communicate to the system the relative importance of 
query components. We plan to explore the approach de- 
scribed in [13] and compare the impact of the weighting 
strategies on the quality of the retrieval. Finally, we are also 
exploring the use of relevance feedback techniques in our 
extended Boolean model. 
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