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Abstract—Clones are generally considered bad programming
practice in software engineering folklore. They are identified
as a bad smell and a major contributor to project maintenance
difficulties. Clones inherently cause code bloat, thus increasing
project size and maintenance costs. In this work, we try to
validate the conventional wisdom empirically to see whether
cloning makes code more defect prone.

This paper analyses relationship between cloning and defect
proneness. We find that, first, the great majority of bugs are
not significantly associated with clones. Second, we find that
clones may be less defect prone than non-cloned code. Finally,
we find little evidence that clones with more copies are actually
more error prone. Our findings do not support the claim that
clones are really a “bad smell”. Perhaps we can clone, and
breathe easy, at the same time.
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I. INTRODUCTION

The software life cycle comprises two major parts; first
we define the specification and implement it; then, we
need to maintain the finished product and evolve it to
better suit user needs. For most other industries, develop-
ment cost is the major factor in a project’s lifetime cost.
However for software development it has been found that
maintenance and evolution are also critical activities from
the cost perspective and might comprise upto 80% of the
overall cost and effort [1]. Researchers have long sought
to ameliorate maintenance costs. There have been quite a
bit of work on improving process models, tool support,
language support, etc., to improve development process and
reduce bad attributes of code which might negatively impact
maintenance cost. Often, however, poor maintainability can
be traced back to poor code which is difficult to understand,
modify or more error prone. For a taxonomy of bad code
attributes refer to [2], [3].

Fowler [2] suggests that code duplication or cloning is a
bad smell and thus one of the major indicators of poor main-
tainability. Cloning is an easy, tempting alternative to the
hard work of actually refactoring the code. Unfortunately, if
a piece of code is buggy or has a latent bug, then a clone can
replicate a bug silently. To aggravate the situation, cloning
is often performed hastily and without much care about the
context. This could mean that even bug-free code could

become buggy after cloning [4]. Furthermore, developers
often copy others’ code without fully understanding it. This
introduces another classic fault proneness through poorly
understood code. For these reasons, clones have been vilified
for many years and a considerable body of research work
has been devoted to automatically find clones; some even
try to automatically refactor them [5], [6], [7].

At the same time, another body of research presents evi-
dence that clones improve productivity and they may not be
as bad as some claim. Kim et al. [8] argued that aggressive
refactoring is not worth the effort, as most clones are short
lived. Also, they suggested that long lived clones may not be
refactorable due to language limitations. Kasper and Godfrey
[9] presented evidence that clones are made deliberately and
improves developer productivity. Thummalapenta et al assert
that developers are actually quite capable of remembering
and updating clones consistently whenever required, even
when they reside in very different parts of the system [10].
However, prior research has not tried to establish a direct
relation between end product quality and cloning. We take
the view that product quality is a major barometer of product
success and if clones have much impact on product quality,
we claim it a serious disadvantage for cloning proponents.
One good approximation of product quality is the number
of defects found in the product. More defects could make a
system unusable and make its users unhappy. In this paper
we try to assess clones’ impact on defect occurrence of
software products.

Considering the entire population of bugs, it would be
interesting to determine how many of these are associated
with cloned content. Do clones contribute a very small
proportion of bugs, or the vast majority? This gives us an
indication of how important clones are in overall project
quality.
RQ1: To what extent does cloned code contribute to bugs?

Next, we examine the converse question. Considering the
code implicated in defect repair (“buggy code”). Are clones
unduly over-represented in this code? If buggy code contains
a lot of clones, then this suggests that we’d do well to
refactor out clones, or at least inspect all the clone code.
RQ2: Do clones occur more often in buggy code than



elsewhere?

Finally, we’d like to know whether clones with many copies
(“prolific clones”) are worse than clones with fewer copies
(“non-prolific clones”). One can easily imagine that as
copies proliferate, it is likely that the chance of accidentally
introducing errors will increase.
RQ3: Are prolific clone groups more buggy than non-prolific
clone groups?

We try to answer our questions empirically by analyzing
four major open source projects, namely: Apache, Evolution,
Gimp and Nautilus. Our study suggests that clones occur
less often in bugs than overall code. In all projects, we
found that most bugs have nothing at all to do with cloned
code (RQ1). Furthermore, we found buggy code is less likely
to have cloned code, when compared to the project overall
(RQ2). Finally, we found no evidence to support the claim
that prolific clones have more buggy code than the non-
prolific ones.

Our results might encourage researchers to put more
effort on automatic clone maintenance than refactoring and
eliminating them, so that when consistent change is required,
a developer could be pointed to all the available clone
fragments. In addition, and rather surprisingly, one might
well conclude that bug-prediction tools could use cloned
content as a negative indicator of defect-proneness!

II. RELATED WORKS

A. Clone Evolution

Several studies have investigated the extent and evolution
of cloning in different software projects. These studies report
between 5 to 50% of the source code being cloned [11],
[12]. Kim et al. [8] have investigated evolution of clones
and built a clone genealogy. Their findings indicate that
most of the clones are short lived, and therefore over-
aggressive refactoring may be overkill. They also found
that the long-lived clones diverge so much, that they can
no longer be refactored with existing language support.
Geiger et al. [13] examined whether clones in different files
induce change coupling. Kim et al. [14] have studied the
copy-paste behavior of programmers and have proposed a
taxonomy of clones in their paper. Kapser et al. [9] proposed
a categorization of patterns of clones, and analyzed the
motivation, maintenance impact, advantage, disadvantage,
structural manifestation of the patterns. They conclude that
cloning is a reasonable design decision and tools should be
developed with long term maintenance of duplicates in mind.
Krinke [15] studied consistent and inconsistent changes
to clones and found that only 50% of the clone groups
underwent consistent changes; once made inconsistent, the
groups remained inconsistent. Krinke studied cloned code
stability [16] where he concluded that cloned code is more
stable than non-cloned code.

B. Tool Support
There has been quite a bit of research on tools for

clone maintenance. Ekoko et al. [17] proposed a tool for
tracking clones in evolving software. Their tool supports
simultaneous editing of clones, along with notification to
developer when one of the clones changes. A clone track-
ing tool could reduce possible bug inducing inconsistent
changes while allowing developers greater latitude. Bruntink
et al. [18] proposed automatic aspect mining based on
clone detection. SHINOBI [19] tries to identify clones in
real time and is integrated with Microsoft Visual Studio
to aid maintenance. Clever [20] integrates with SVN to
facilitate better management of clones. Toomim et al. [21]
suggested linked editing to edit multiple regions without
much programmer intervention.

C. Clones and Bugs
Researchers have studied the effect of clones on software

quality. Juergens et al. [22] studied inconsistent clones as
detected by their tool. They used manual annotations by
developers to determine faults in inconsistent clones, and
concluded that unintentionally made inconsistent clones are
more likely to contain defects. Statistical tests of signifi-
cance are not presented. As described below, our approach
relies on data mined from bug repositories, rather than
manual annotation. Jiang et al. [4] proposed an approach
on detecting clone related bugs based on context. Their
approach tries to detect similar sections of clones, and then
based on their contextual difference suggests whether a
possible bug is lurking. Thummalapenta et al. studied clone
maintenance [10] and their evolution pattern. They found
that clones were consistently propagated when needed and
developers actually seem to remember the clone locations
that require such propagation. They also found cloning often
used as a templating mechanism. They found that clone
characteristics such as clone granularity or clone radius have
little impact on clone evolution. As a whole their study views
clones positively; they argue that while better tool support
for clone maintenance would help, aggressive refactoring
out of clones was probably not worthwhile. Sliwerski et al.
[23] studied source code changes that induce fixes. Their
approach of determining fix-inducing-change is similar to
our buggy code determination approach. However, instead
of finding the origination of a buggy code, we map the
buggy code to some intermediate snapshot and analyze its
properties at that point in time.

III. TERMINOLOGIES

In this section we will define all the terminologies and
background of our experiment.

A. Snapshot and Revision
Source code management systems (SCM) typically pro-

vide a rich version history of software projects. This in-
formation includes file history, such as when a file was



added/removed/modified; author history, such as who wrote
a particular line in a file; commit history, such as when
a file was committed; commit log, such as what is the
contribution of a commit etc. In our study we identify
each of these commits as a revision, where a revision
r = 〈A, T, f1, f2, . . . , fn〉. Here A is the author of the
revision who modified a set of files {fi} and committed the
revision at time T . Our study examines the impact of cloning
throughout the project life cycle, and thus must find clones
in all the revisions committed into the SCM. Checking for
clones on every revision of every file is not feasible. Instead
we run clone detection only once a month from project
inception to the end of available project history. We call each
of these chosen monthly revisions a “snapshot”. So, we have
a collection of snapshots S = 〈s1, s2, . . . , sn〉, where si is
the first revision committed in month i, i.e. si = ri1, where
〈ri1, ri2, . . . , rim〉 are the revisions committed in month
i. Note that our months may not coincide with calender
months; we start monthly epochs from the first revision date
of a project. For each such snapshot, we check out all the
files extant at that time in the project history and run clone
detection on them.

We used git for our repository; for speed, we migrated
other repositories (SVN and CVS) to git.

B. Finding Clones

In this paper, the term “clone” refers to a code clone, i.e.
similar fragments of code sections, as output by the clone
detector. A clone detector’s output O typically consists of
a set of clone groups; O = {g1, g2, . . . gn}, where each of
the groups gi contains a set of code sections that are similar
to each other, i.e. clone group gi = {c1, c2, . . . , cn}, and
each of the clones are defined as ci = 〈sj , fk, ls, le〉. Here
sj refers to the snapshot in which this clone was found, fk

refers to the file that contains clone ci and ls and le indicates
start and end line number.

We detect clones on all the snapshots si. For each of the
snapshots, we ran DECKARD [24] on that snapshot to get all
the clone information. From DECKARD output, we extract
filename, line number, which clone a line belongs to and
the sibling clones. For our study, we ran DECKARD with a
conservative and a liberal clone detection parameter setting.
This is to reduce study bias towards a particular clone
detector parameter setting and to understand system behavior
as the clones become more dissimilar. For the conservative
mode, we set minimum token parameter for DECKARD to
50 (clones must be at least 50 tokens in length) and similarity
to 1.0 (clones must be nearly identical). In liberal parameter
setting, we set minimum token to 50 and similarity to
0.99 (to allow greater divergence). In both cases we set
DECKARD stride to 2. We also experimented with several
other parameter settings such as <50, 1.0, 16> and <50,
0.95, 4>, <50, 1.0, Infinity> and <30, 0.95, Infinity>
where they are represented as <Min Token, Similarity,

Stride>, and found similar results. We chose DECKARD
as it is previously [24] shown to be a very scalable, and
finds more clones than CCFinder or CP-Miner with few false
positives.

We call the cardinality of the clone group gi as its order.
So, Orderi = |gi|. We also partition clone groups into two
sets: prolific clone groups, with more than 3 members and
non-prolific clone groups, with up to 3 members.

C. Copy and Unique

For this study, we flatten all the clones detected by
DECKARD and consider them at individual line level. So,
for each of the line in any of the file fi, of snapshot s, if
that line is part of any of the detected clones by DECKARD,
we call that a copy, otherwise it is called unique. Here to
note that: a single line may occasionally appear in multiple
clones but we declare a line as copy whether it appears in
one clone or many.

D. Bug Fixing History

We focus on bugs which were discovered and recorded in
the project’s issue tracking history, for example Bugzilla.
Typically bugs are discovered and recorded in an issue
tracking system such as Bugzilla and later on fixed by the
developers. We consider any change associated with a report
in the Bugzilla database as a bug. However, Bugzilla has the
“enhancement” type entry which does not designate a bug.
We excluded any such entry in our observation. We define
bug as B = 〈OD,FD,D〉, where OD represents date when
a bug was opened, FD is the date when the bug was fixed
and marked in the system as fixed and D is the description
of the bug.

We link a fixed bug from issue tracker to a particular
revision in the SCM. We call this a bug fixing revision.
We identify a bug fixing revision based on several different
heuristics. Various key words such as “bug”, “fixed” etc.
in the SCM commit log typically indicates a bug fixing
revision [25]. Also, a numerical bug id is typically men-
tioned in a bug fixing commit log, which can then be
linked back to issue tracking system’s issue identifier [26],
[27]. We also crosscheck with the issue tracking system
to see whether such issue identifier exists and whether its
status changes after fixing the bug. Finally we use manual
inspection to remove spurious linking as much as possible.
Our approach uses Bachmann’s linking heuristics; in fact,
we gratefully acknowledge the direct use of data derived by
Bachmann [28].

E. Buggy Code

In an ideal situation, a set of source code lines that
introduced a bug can be defined as buggy code. However,
it is very difficult to precisely find the culpable code, so
we approximated the notion of buggy code. In this paper
buggy code refers to a set of source code lines which were



modified to fix a bug. So, buggy code for i-th bug fixed in
revision r: BCi = {Lf,j} where Lf,j is the j-th changed
line in file f for fixing that bug (note: changed lines in a
file may not be contiguous and buggy code for a single bug
can span multiple files).

To determine buggy code, we first identify a revision
which fixes a bug. If a bug is fixed in revision r we
take the immediate preceding revision r − 1 and then
we identify all the files that were changed in revision r.
We then find the lines changed in each of these files.
{Lf,j} = diff(fr, fr−1). Where diff is traditional Unix diff
tool and fr is the version of the file f at revision r. For all
changed files f the set of changed lines {Lf,j} comprises
our buggy code for i-th bug. Note: we ignore any newly
introduced lines at revision r as they, by definition, could
not be the cause of original bug.

F. Bug Staging Snapshot
Each of the bugs is associated with its closest preceding

snapshot which is called its staging snapshot (ssb). So, if
a bug b is fixed in revision r and revision r − 1 (the last
revision prior to fixing that bug) occurs in month i of the
project history, then i-th snapshot is its staging snapshot. The
staging snapshot is where buggy code for a bug is analyzed.
This is necessary because we do not have clone information
available for some arbitrary revisions other than the chosen
snapshots.

Due to possible intervening changes to buggy files be-
tween ssb and r − 1, each of the buggy lines in a buggy
code at revision r − 1 may have different line number at
its staging snapshot. But for our purposes we need the older
line number at ssb instead of the newer line number at r−1.
To map a line at lr−1 to lss, we used Unix diff utility to find
all the changes made to that file during this time period. So,
if n lines were added and m lines were deleted on top of
a given line number lr−1 between releases ssb and r − 1,
we adjust the overall difference to find lss. Also, if lr−1

was newly added some time after revision ssb (i.e. lr−1 was
nonexistent in ssb), then we ignore that line.

G. Buggy Cloned Code and Bug Clone Ratio
Each of the lines in a buggy code fragment can be

classified as either a copy or unique, based on whether that
line is part of any of the clones recognized by DECKARD.
We called the copied lines of buggy code buggy cloned code.
We then calculate the ratio of such copied code in the buggy
code, which we call bug clone ratio. Note, to determine any
such partitioning of buggy code, we first mapped all the
buggy codes to its staging snapshot and then determined
intersection between buggy code and copied lines of that
snapshot.

IV. EXPERIMENTAL METHODS

We chose 4 different medium- to large-sized open-source
projects for our study. All have long development history, but

hail from different domains. All of our projects are written
in C. We summarize our projects below.

1) Apache httpd – Apache httpd is a widely used open
source web server. We converted the repository from
SVN to git for ease of use.

2) Nautilus – Nautilus is the default file manager for
the Gnome desktop. We were able to use their git
repository directly.

3) Evolution – Evolution is the default email client for
the Gnome desktop with support for integrated mail,
address book and calender functionality. We used their
git repository directly.

4) Gimp – Gimp is most popular open source image
manipulation program. We used their git repository
directly.

A summary of descriptive statistics of the projects studied
is presented in table I. They range in size from 124K lines
to about 755k lines. The table presents quite a bit of details
about the number of snapshots, and average (computed over
all snapshots) statistics on the average total number of clone
lines, number of members (clone) per clone group, clone
size in lines, number of cloned lines per snapshot, and total
number of linked bugs (over the entire period).

For all the projects, we first identify monthly snapshots
and then run DECKARD to detect clones in those snapshots.
We tag each of the lines of a snapshot as either a copy or
a unique line. We then identify all the bug fix revisions.
Buggy code is then identified by running diff on the bug
fix revision and its immediately preceding revision. We
then map those buggy lines to their corresponding staging
snapshots. A simple set intersection is performed to classify
each of the buggy lines as either copy or unique. We then
find the buggy cloned code and calculate the clone ratio in
the bugs. We stored all of our information in a PostgreSQL
database before processing them.

In one specific Apache snapshot, we found abnormal (4
fold) increase of source code line count and a corresponding
spike in the clone ratio. We believe this was due to some ac-
cidental copying of major project elements, and we therefore
ignored that snapshot. All the bugs that have that snapshot as
their staging snapshot, were mapped back to the immediate
preceding snapshot.

Our experimental approaches to the research questions are
detailed below:
RQ1 To what extent does cloned code contribute to
bugs? For each bug in the project, we consider how much
cloned code contributes to that bug, viz., its bug clone ratio.
Now we can consider cumulative bug clone ratio distribution
for all the bugs in a given project. So for example, if the
cumulative distribution indicates that most of the bugs have
a clone ratio (defined earlier, in III-G above) between 80%
and 100%, we can conclude that clones contribute heavily
to bugs; alternatively, if most of the bugs have 1% or lower



Name Max size Total Lines per Cloned lines Clones Lines Cloned lines Clones Lines Number
snapshots snapshot per snapshot per group per clone per snapshot per group per clone of linked

(conservative) (conser.) (conser.) (liberal) (liberal) (liberal) bugs

Apache 208388 155 124462.62 13817.02 3.24 14.79 16611.14 3.25 14.76 453
Evolution 531342 129 324487.14 26322.54 2.49 15.27 33011.09 2.56 15.34 1440

Gimp 947073 130 755511.68 167160.73 3.38 22.08 176090.99 3.45 22.04 2103
Nautilus 366894 116 131062.94 14878.97 2.20 18.13 17495.76 2.24 17.85 747

Table I
SUMMARY OF STUDIED SYSTEMS

clone ratio, then we know that clones contribute almost no
bugs.
RQ2 Do clones occur more often in buggy code than
elsewhere? We compare all the bugs’ clone ratio (pro-
portion of cloned code, in all bugs, taken together) against
the overall clone ratio in the project at the time that bug
is fixed. So, if a bug is fixed at the r-th revision, and
x% of the total code of the project, in the (r − 1)-th
revision, was from clones, we ask if the buggy code in
that revision has a bigger or smaller proportion of cloned
code, compared to the overall project code. Since we do
not have clone information for all possible revisions, we
just project each line number back in the history to its
staging snapshot and see whether a line is a clone or not. We
then compare the staging snapshot’s clone ratio against all
the bugs’ combined clone ratio that pertain to that staging
snapshot. So, if a staging snapshot ssb has n different bugs,
which include a combined total m lines, of which c total
lines are contributed by clones, we compare c

m against
clone ratio of ssb. We consider two samples: each staging
snapshots’ clone ratio and the corresponding coalesced clone
ratio for all the bugs attributed to that snapshot. We then
compare them visually using boxplots, and test if they are
drawn from the same distribution (null hypothesis) using a
paired Wilcoxon test. The null hypothesis is, both of these
distributions should be same. Note: in some cases, there may
not be any bug projected to a particular snapshot and we
ignore that snapshot as that is not a staging snapshot for
any bug.
RQ3 Are prolific clone groups more buggy than non-
prolific clone groups? We compare prolific clone groups’
bugginess with non-prolific clone groups’ bugginess. We
define defect density as the fraction of cloned lines of that
group that contribute to a bug. Assuming that bugs will
proliferate as clone copies proliferate, we can assume that
the defect density buggy lines

total lines will not change much. As there
are many more clone groups which do not contribute any
buggy code (Since the total volume of buggy codes mapped
to a staging snapshot are a tiny fraction of overall project
code, and thereby it is more likely that many clone groups
include cloned lines that actually do not contribute to any
buggy code), we only consider those clone groups which
contribute at least one line in some buggy code. Also, by
normalizing contributed buggy cloned lines for number of
lines in that clone group we control for the disparity of total
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Figure 1. Cumulative coverage of bugs at a given clone ratio (a),
Apache (b) Gimp.

Name p-value p-value
(Conservative) (Liberal)

Apache 3.777e-05 3.3e-04
Evolution 1.291-04 9.4e-05

Gimp 6.482e-06 2.2e-05
Nautilus 3.394e-06 1.1e-03

Table II
WILCOXON PAIRED TEST WITH ALTERNATIVE HYPOTHESIS SET TO

“SNAPSHOT CLONE RATIO > BUG CLONE RATIO”. ALL P-VALUES HAVE
BEEN ADJUSTED USING THE BENJAMINI-HOCHBERG PROCEDURE.

cloned lines contributed by clone groups of different size.

V. RESULTS

A. Findings

RQ1 To what extent does cloned code contribute to bugs?
Figure 1 shows the cumulative bug coverage at different
clone ratios. Due to space constraints, we only show Apache
and Gimp, which are representative. The plot shows the
fraction of bugs that have a clone ratio <= a given clone
ratio. So, if b bugs have a clone ratio <= r, and there are
total t bugs, then the plot shows b

t on the Y axis against
r on the X axis. Alternatively we can say that a 1 − b

r
bugs portion of bugs have higher clone ratio than Y. As
is evident from the plot, most of the bugs in both liberal
and conservative clone detector settings contain hardly any
cloned code. In fact besides Gimp, 80% or more bugs in the
other projects contain no cloned code at all. Even for Gimp,
this threshold is close to 80%. The vertical lines depict the
average clone ratio across all snapshots for different clone
detector settings. So, e.g., we can say that for Gimp about
85% of bugs have lower clone ratio than overall project clone
ratio. This finding suggests that only a small number of bugs
are attributable to cloning.
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Figure 2. Clone ratio in bugs and snapshots for (a) Apache (Conservative) (b) Apache (Liberal) (c) Gimp (Conservative) (d) Gimp
(Liberal).

Name p-value p-value
(Conservative) (Liberal)

Apache 6.666e-03 4.850e-12
Evolution 1.418e-05 4.400e-16

Gimp 8.800e-16 4.400e-16
Nautilus 1.000e-02 8.900e-03

Table III
WILCOXON TEST WITH ALTERNATIVE HYPOTHESIS SET TO “DEFECT
DENSITY IN NON-PROLIFIC GROUP > DEFECT DENSITY IN PROLIFIC

GROUP”. ALL P-VALUES HAVE BEEN ADJUSTED USING THE
BENJAMINI-HOCHBERG PROCEDURE.

RQ2 Do clones occur more often in buggy code than
elsewhere? Figure 2 shows boxplots of clone ratio in staging
snapshots and corresponding clone ratio in bugs that were
fixed in those staging snapshots. For all the projects, the
boxplots clearly indicate a lower clone ratio in buggy code.
For Apache with a conservative clone detector settings,
the difference between the two boxplots is dramatic. Even
with a liberal clone detector settings, the median of bug
clone ratio is well below the median of snapshot clone
ratio. This phenomenon is repeated in all the other projects.
The non-parametric paired Wilcoxon rank sum test (with
continuity correction) in all cases conclusively rejects the
null hypothesis that the two samples (clone ratios in buggy
code and clone ratios in the entire snapshot) are drawn
from the same distribution. Corresponding p-values after
Benjamini-Hochberg adjustment are presented in Table II.
As we mentioned earlier, we also experimented with several
other clone detector parameter settings. We found that as the
similarity value is decreased and set to a very low value, such
as 0.95 along with smaller token size, such as 30, clone ratio
in bugs increases and the gap in median with the background
distribution closes. However a Wilcoxon rank sum test shows
that the overall clone ratio remains significantly lower than
clone ratio in buggy code. These robust statistical results,
across all 4 projects, suggest that clones are not really a
major source of bugs.
RQ3 Are prolific clone groups more buggy than non-
prolific clone groups? We compare defect density (number
of buggy cloned lines per line of cloned code) in lines which
are part of prolific clone groups against lines which are part
of non-prolific clone groups. One might expect that by dint

of sheer size, prolific clone groups, with more code, and
with more copying, will be associated with more defects
than non-prolific clone groups. As the copies proliferate, the
defects will replicate in the copies, and thus we can expect
that the defect density will remain a constant. Figure 3
depicts our findings for Apache and Gimp. Rest of the
projects are very similar and thereby we omitted them for
brevity. Note that, the bug density may occasionally go
above 1.0. This is because of clone group with contribution
to buggy code of multiple bugs, thereby making numerator
(number of buggy lines) greater than denominator (total
number of lines in clone group). We find that in fact, prolific
clone group has lower defect density than non-prolific clone
group. Table III shows adjusted p-values (using Benjamini-
Hochberg method) of Wilcoxon one-sided rank sum test
with continuity correction. The alternative hypothesis is
set to “defect density in non-prolific group is greater than
defect density of prolific group”. All the p-values are highly
significant; thus we reject null hypothesis. Clearly, there is
a strong signal in all the projects, that more copies doesn’t
at all mean more defects: in fact, the more copies, the lower
the defect density.

We hasten to point out that others, for example [8], [9],
[16], [10] have argued that the fear of clones is perhaps
overstated. To our knowledge however, this is the first study
to use data mined from version-control repositories and re-
ported bug-fixes to provide quantitative evidence that clones
are not necessarily to be feared. Also, to our knowledge,
ours is the first study to indicate that larger clone groups are
different from smaller clone groups with respect to defect
attribution.

However, there could be another possible explanation of
the observed phenomenon in RQ3. Prolific clone groups
by definition have many members. A developer may fix
the same bug in multiple copies, but do so in multiple
commits; he may not identify every commit as a fix of
a bug and/or present the bug id in the commit log. In
such situations, our linking algorithm may miss some of
the delayed fixes altogether. This will deflate bug density in
prolific clone groups and poses a significant threat to RQ3
findings. However, Thummalapenta et al. [10] found that
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Figure 3. Defect density in clone groups of different sizes for different projects (a) Apache (Conservative) (b) Apache (Liberal) (c) Gimp
(Conservative) (d) Gimp (Liberal).

developers are able to remember location of clone copies and
propagate changes consistently. In only a small percentage
of cases, usually less than 16% they actually underwent late
propagation.

We however want to stress that, the above mentioned
threat to validity does not affect our findings in RQ1 and
RQ2. In RQ1, we consider cloned code in buggy code,
which is immune to above mentioned bug linking problem.
Unless there is any systematic bias in bug linking which
only links non cloned bugs while leaving out others, our
result is robust and statistically sound. Even if only one
copy is linked with a bug, we adjust both numerator and
denominator when calculating clone ratio. In RQ2 we again
work with clone ratio which is robust against the mentioned
linking problem. We ignore bugs that are not linked and
consider clone ratio in linked bugs. As long as there is no
systematic bias in linking process to leave out bugs that have
cloned code in them, our results of RQ1 is also robust and
statistically sound.

B. Case Study

To gain further insights as to why clones appear less
buggy, we did a case study of 20 good quality (has very
few bugs) clones (3 from conservative and 2 from liberal
for each of the 4 projects). In Listing 1, we show one
very good quality (no buggy code) clone which comes
from a group of 2 clone members. Both of the members
come from the file “libnautilus-private/nautilus-file.c” in a
snapshot taken on 20th November, 2000. This code tries
to set a file’s owner and before doing that it checks to
see whether the user has required privileges or whether
the user is same as the current file owner. If everything
goes well, then the code proceeds to change the owner
of the file. A very similar role of a file manager is to
change the group of the file. Another clone from the same
group achieves that and it copies the above code exactly,
but the sequence of helper method calls are different
(e.g. instead of calling get user id from user name,
it calls get group id from group name; instead
of calling nautilus file can set owner, it calls
nautilus file can set group). This file has 4552 lines

of code in that snapshot, of which 2779 lines were declared
as cloned code by DECKARD. Also, our linked bug data
shows that a total of 58 bugs were fixed during the project
lifetime and a total of 798 lines were modified during bug
fixing, but not a single bug has any cloned code in them.

Listing 1. Example Clone in Nautilus
void n a u t i l u s f i l e s e t o w n e r ( N a u t i l u s F i l e ∗ f i l e ,

c o n s t char ∗use r name or id ,
N a u t i l u s F i l e O p e r a t i o n C a l l b a c k c a l l b a c k ,
g p o i n t e r c a l l b a c k d a t a )

{
u i d t new id ;
i f ( ! n a u t i l u s f i l e c a n s e t o w n e r ( f i l e ) ) {

n a u t i l u s f i l e c h a n g e d ( f i l e ) ;
(∗ c a l l b a c k ) ( f i l e , GNOME VFS ERROR ACCESS DENIED,

c a l l b a c k d a t a ) ;
re turn ;

}
i f ( ! g e t u s e r i d f r o m u s e r n a m e ( use r name or id ,& new id )

&& ! g e t i d f r o m d i g i t s t r i n g ( use r name or id ,& new id ) )
{

n a u t i l u s f i l e c h a n g e d ( f i l e ) ;
(∗ c a l l b a c k ) ( f i l e , GNOME VFS ERROR BAD PARAMETERS,

c a l l b a c k d a t a ) ;
re turn ;

}
i f ( new id == f i l e−>d e t a i l s−>i n f o−>u i d ) {

(∗ c a l l b a c k ) ( f i l e ,GNOME VFS OK, c a l l b a c k d a t a ) ;
re turn ;

}
s e t o wn e r a nd g ro u p ( f i l e ,

new id ,
f i l e−>d e t a i l s−>i n f o−>gid ,
c a l l b a c k , c a l l b a c k d a t a ) ;

}

Listing 2. Example Clone in Gimp
Tool∗ t o o l s n e w c o l o r b a l a n c e ( )
{

Tool ∗ t o o l ;
C o l o r B a l a n c e ∗ p r i v a t e ;
i f ( ! c o l o r b a l a n c e o p t i o n s )

c o l o r b a l a n c e o p t i o n s = t o o l s r e g i s t e r n o o p t i o n s
(COLOR BALANCE, ” Co lo r Ba lance O p t i o n s ” ) ;

t o o l = ( Tool ∗) g ma l loc ( s i z e o f ( Tool ) ) ;
p r i v a t e = ( C o l o r B a l a n c e ∗) g ma l loc ( s i z e o f ( C o l o r B a l a n c e ) ) ;

t o o l−>t y p e = COLOR BALANCE;
t o o l−>s t a t e = INACTIVE ;
t o o l−>s c r o l l l o c k = 1 ; /∗ D i s a l l o w s c r o l l i n g ∗/
t o o l−>p r i v a t e = ( void ∗) p r i v a t e ;
t o o l−>a u t o s n a p t o = TRUE;
t o o l−>b u t t o n p r e s s f u n c = c o l o r b a l a n c e b u t t o n p r e s s ;
t o o l−>b u t t o n r e l e a s e f u n c = c o l o r b a l a n c e b u t t o n r e l e a s e ;
t o o l−>mot ion func = c o l o r b a l a n c e m o t i o n ;
t o o l−>a r r o w k e y s f u n c = s t a n d a r d a r r o w k e y s f u n c ;
t o o l−>c u r s o r u p d a t e f u n c = c o l o r b a l a n c e c u r s o r u p d a t e ;
t o o l−>c o n t r o l f u n c = c o l o r b a l a n c e c o n t r o l ;
re turn t o o l ;

}

In Listing 2, we show another clone from one of the
largest clone groups, with 27 members totaling 775 lines
of cloned code. All the clones come from different files,
so this group spans 27 different files. Interestingly, all



these clones share a common API protocols. All of these
clones first check whether some option is set, then they
allocate an object, set some properties and then return that
object. The code shown creates a ColorBalance object. Other
clones likewise create different types of objects such as
HueSaturation, BrightnessContrast, ByColorSelect etc. Our
linked bug data indicates that a total of 50 bugs were fixed in
all the files containing these clones during project lifetime,
of which only 1 bug has trace of cloned code. This buggy
cloned code came from some other clone in one of these
files, but not from the above mentioned 27 member group!

We also did a case study on 250 randomly picked clone
groups (100 from Apache, 100 from Nautilus, 25 from
Gimp and 25 from Evolution), all with liberal settings to
assess clone quality of DECKARD and to understand clone
patterns. We used PostgreSQL random() function to pick
random samples and found very few false positives. A
great many of our observed clone groups contain direct
copy/paste, or embody protocols for carrying important,
common operations. Arguably, programmers copying from
well-written code, or regurgitating familiar programming
logic from memory, are less likely to produce error-prone
code. Others were an artifact of the C language, and could
be avoided using object oriented techniques. For example,
in one Gimp clone group, members create different type of
drawing objects (e.g. brush editor, gradient editor, palette
editor) with slight change of code. This could have been
avoided using a FACTORY METHOD or BUILDER pattern.
Clearly, the availability of bounded polymorphism would
have avoided code bloat: however, it appears, at least in
this case, developers can manually generate bloated code
to mimic bounded polymorphism without unduly impacting
quality.

On the other hand, some clones simply cannot be avoided.
E.g. in Nautilus, one clone group has two member functions
for handling going back/forward in the file browser. Based
on the action performed, these methods reorder two linked
list (in different direction) and perform other actions on
those list. A forced refactoring using linked list and function
abstraction could render the code overly unintuitive. We also
found some duplicate files in the projects.

In summary, all our evidence points to one conclusion:
Clones don’t really smell that bad!

VI. THREATS TO VALIDITY

A. Construct Validity

Bugs were collected from the Bugzilla databases for each
project, and thus may not represent the complete set of
all bugs. As the primary method by which users report
problems, per community norms, and as they are reported
manually and confirmed, we claim that project databases
represent an important class of bugs which are indicative of
aberrant behavior.

We used an automated bug linking process which may not
be completely accurate. As a result, there may be both false
positives and false negatives in the linked set. As discussed
in Section V-A under RQ3, this does not pose an undue
threat to RQ1 and RQ2, but some plausible failures to link
might specially threaten the validity of our conclusion for
RQ3. In a prior study [29] we evaluated the false positive
and false negative rates and found the upper bounds on 95%
confidence intervals to be less than 1% for bugs which were
indeed linked by developers. Moreover, our bug introduction
identification algorithm uses the diff tool. It is entirely
possible that some of the changes in a revision marked as a
bug fix are not, in fact, fixing lines which caused the bug. In
lieu of this problem we use an approach used by well known
prior studies [23]. Accuracy in identifying bug introducing
changes may be increased by using advanced algorithms [30]
and we are currently involved in additional studies assessing
the quality of such data.

We use monthly snapshots instead of running analysis
on every revision. This may introduce some imprecision
as some of the buggy lines may not be mapped back
to its staging snapshot because of their introduction into
the system after their staging snapshot. We ignore such
lines, but given the life of the projects (an average age
of 132 monthly snapshots) and the level of significance
observed in our findings, the results presented are robust.
Also, our choice of monthly snapshot may not capture some
late propagation of changes in different clone members
(we do not build a clone genealogy, so once they have
different staging snapshots, they are considered to affect
different clone groups). However, we evaluated our datasets
to determine the effect of such late propagation and found
that on an average only 3.3% of bugs have fixes with late
propagation that has different staging snapshots. So, this
should not pose a significant threat to validity to RQ3. Note
however, that RQ1 and RQ2 are not affected by this threat.
In addition, although clone identification is not a sound and
precise type of analysis (indeed, the very definition of a
clone remains fuzzy and up for debate to some degree), we
benefit by making use of DECKARD, which represents the
current state of the art in clone detection.

B. Internal Validity

We have presented strong evidence that clones occur less
frequently in buggy code than in the entire body of code.
While strong correlation exists, the stringent requirements
for causality have not been shown [31]. Despite this, our
results do indeed cast doubt on the belief that code clones
actually cause more bugs than non-cloned code, and provide
support for further research examining why cloned code is
decidedly less buggy.



C. External Validity

In attempt to address the generalizability of our findings,
we have studied four real software projects that represent
varying software processes and governance styles [32], with
fairly consistent results across the different projects. How-
ever, while it is reasonable to believe that our results are
representative of open source software, it is unclear how
well they generalize to commercial software. Again, we have
provided evidence that clones may in fact benefit code and
plan to evaluate the relationship of clones with software
quality in more diverse contexts.

VII. CONCLUSION

We have studied several medium to large projects to
verify whether cloning is really a “bad smell”. We took
an empirical approach, based on actual bug-fix data to
evaluate the extent to which clones are associated with code
implicated in bug fixes. We find that 1) most bugs have very
little to do with clones, 2) cloned code, in fact contains less
“buggy code” (viz., code implicated in bug fixes) than the
rest of the system and 3) larger clone groups don’t have
more bugs than smaller clone groups, and in fact, making
more copies of code doesn’t introduce more defects, and
furthermore, larger clone groups have lower bug density per
line. than smaller clone groups. While others have made the
argument before that clones aren’t to be feared, our study is
the first to quantitatively validate this claim using data mined
from version control and bug repositories. In addition, to
our knowledge ours is the first study to consider differences
between smaller and larger clone groups.
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[23] J. Śliwerski, T. Zimmermann, and A. Zeller, “When do
changes induce fixes?” in MSR ’05: Proceedings of the 2005
international workshop on Mining software repositories.
New York, NY, USA: ACM, 2005, pp. 1–5. [Online].
Available: http://dx.doi.org/10.1145/1083142.1083147

[24] L. Jiang, G. Misherghi, Z. Su, and S. Glondu, “Deckard:
Scalable and accurate tree-based detection of code clones,” in
ICSE ’07: Proceedings of the 29th international conference
on Software Engineering. Washington, DC, USA: IEEE
Computer Society, 2007, pp. 96–105. [Online]. Available:
http://dx.doi.org/10.1109/ICSE.2007.30

[25] A. Mockus and L. G. Votta, “Identifying reasons for
software changes using historic databases,” in Software
Maintenance, 2000. Proceedings. International Conference
on, vol. 0. Los Alamitos, CA, USA: IEEE Computer
Society, August 2002, pp. 120–130. [Online]. Available:
http://dx.doi.org/10.1109/ICSM.2000.883028
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