
quFiles: A Unifying Abstraction for Mobile Data
Management

Kaushik Veeraraghavan∗, Edmund B. Nightingale †, Jason Flinn∗ and Brian Noble∗

University of Michigan∗ Microsoft Research (Redmond)†

ABSTRACT
We introduce a unifying file system abstraction, called a
quFile, that provides a new mechanism for implementing
mobile data management policies. quFiles allow arbitrary
data types to be bundled together without confusing the
user. Similar to a quBit (quantum bit), the particular data
displayed by a quFile is not determined until the moment it
is observed. A quFile displays the appropriate data type and
version depending upon an application-specific policy that
can take any information into account, such as the platform,
external devices, context, connectivity, or battery power.
We first describe what the quFile mechanism provides to ap-
plications and mobile devices. We then discuss how quFiles
can benefit mobile data management in the areas of resource
management, extensibility, and data consistency and avail-
ability.

1. INTRODUCTION
Today, no single abstraction exists that enables users and
applications to address all the problems inherent in data
access in a mobile environment. This is no coincidence.
To systems designers, application developers and end-users
alike, mobile computing still presents a harsh and unfor-
giving environment. Applications must contend with hard
energy constraints, highly variable connectivity, bandwidth
and latency limitations, computing contexts that alternate
between trusted and untrusted environments, and a large,
diverse set of platforms that each present unique constraints
on the format and fidelity of data.

In the past, new policies that mitigated these problems re-
quired new software systems, each of which implemented
narrow, problem-specific solutions [15, 5, 1]. The result is
a collection of ad-hoc implementations and abstractions for
managing data in a mobile environment.

This complex world calls for sophisticated, application and
platform specific policies for data management. Yet, after

twenty years of mobile computing, managing data in a mo-
bile environment is still an experiment in frustration: de-
spite large amounts of data shared among devices, manual
or application-specific management is still the current state-
of-the-art. Most applications fail to adapt as connectivity
changes, and many mobile devices fail to do more than dim
the screen as the battery is depleted. Finally, as the behavior
of the user changes, mobile systems fail to take notice.

To simplify mobile data access and management, we intro-
duce quFiles, which provide a single abstraction for imple-
menting solutions to disparate problems such as extensibility
or power management. Similar to a quBit (quantum bit),
the particular data displayed by a quFile is not determined
until the moment it is needed. A quFile displays the appro-
priate data type and version depending upon an application
specific policy that can take any information into account,
such as the screen size, platform, external devices, context,
connectivity and battery power.

Support within the file system for application-specific poli-
cies bridges the semantic gap without modifying applica-
tions. Anyone can write policies that extend applications
to work with quFiles. Multiple policies (e.g., power and
availability) may be strung together to decide which data
an application requires.

We are currently implementing a prototype of quFiles in
BlueFS [14], a distributed file system with first-class sup-
port for battery powered, mobile devices such as laptops and
cell phones. While our current implementation is limited to
BlueFS, we believe that the design of quFiles described in
Section 2 is general enough to allow most local and distrib-
uted file systems to add the quFile abstraction. Section 3
delves into the uses of quFiles in a wide variety of problem
domains, including device/platform specific resource man-
agement, extensibility, data consistency and availability. We
present related work in Section 4 and then conclude.

2. WHAT IS A QUFILE?
Simply put, a quFile encapsulates different representations
of a single data object. For example, a quFile that encapsu-
lates musical data could have several different formats that
are each an encoding of the same musical data (e.g., an mp3
file, an m4a file and a WAV file). A quFile dynamically
resolves to zero or one of its encapsulated representations
depending on the context in which it is accessed. Examples
of such context are: the application that is accessing the



data, the mobile device on which the content is accessed,
the battery state of the mobile device, and the network con-
nectivity of the device.

Our design of quFiles attempts to balance several important
goals:

• Transparency: Ideally, the existence of a quFile should
be completely hidden from the user. The complexity
of multiple formats or representations of data should
be encapsulated in the file system.

• Backward compatibility: quFiles should work with
existing applications.

• Extensibility: quFiles should support arbitrary res-
olution policies. This implies that policies should be
specified via code that is safely and dynamically linked
into the file system.

• Simplicity: Enhancing an existing file system to use
quFiles should require a minimal set of changes.

In order to realize our first goal of transparency, the creation
and maintenance of quFiles is done automatically. When
a user adds an audio file, e.g. song.mp3, to the BlueFS
namespace, it is copied to the server and a file system change
notification is generated. In our BlueFS implementation, a
persistent query [16] is used to deliver this notification to
a transcoding application on our file system server. On a
device with a local file system, the transcoding application
will only run if the device is resource-rich i.e., connected to
A/C power and has spare storage capacity.

The transcoding application creates a quFile and populates
it with the original file (song.mp3), as well as additional for-
mats such as song.wav and song.m4a. The user can modify
the quFile using the original file name. If the user later
deletes song.mp3, the entire quFile, including the original
file and the additional formats, is deleted. If the user moves
song.mp3 to a new directory, the entire quFile is moved to
that directory. To make this process as transparent as pos-
sible, the resolution policy for a quFile should return the
original file when the invoking application is a utility such
as ls or a graphical file system browser.

By default, we do not permit the user to edit the low-fidelity
transcoded copies of a file unless the transcoding algorithm
is lossless so that the transformation loses no data. Addi-
tionally, we envision that applications might provide custom
policies that keep a log of the operations performed by the
edit — these operations can be replayed on the high-fidelity
original to ensure that no data is lost. Finally, applications
can also provide custom policies that parse edits and apply
them across files — for instance, a policy can check if any
writes to audio files occur within an ID3 tag and if so, permit
the edit and repeat it on the original file.

In order to realize our third goal of extensibility, our BlueFS
implementation uses Sprockets [17], which use a form of
software fault isolation to allow the file system to safely
execute dynamically specified code modules. Each quFile

contains a link to a shared library that specifies its partic-
ular resolution policy; links are used to avoid the storage
overhead caused by duplicating the same resolution policy
across many quFiles. Thus, much like an object in an object-
oriented programming language, each quFile encapsulates
both data and the mechanisms for accessing that data.

We accomplish our final goal of simplicity by noting that the
on-disk representation of a quFile is quite similar to that of
a directory. Both directories and quFiles contain a set of
names and references to other objects in the file system.
While the semantics of the two objects differ significantly,
we can reuse a substantial portion of the original file sys-
tem code by implementing quFiles as directories that either
have a reserved name (our current implementation treats all
directories with the name .qufile.<name> as a quFile) or a
reserved number in the file mode portion of the metadata.

The file system implementation need only interpose on a
small subset of directory operations. On a readdir oper-
ation, the file system should invoke the resolver for each
quFile contained within the directory to determine which
representation contained in the quFile will be returned to
the application. This name, rather than the name of the
quFile, is specified in the data returned by readdir. Sim-
ilarly, on lookup, the file system must return the object
contained within the quFile rather than the quFile itself.
Other operations, such as create and mkdir should guar-
antee uniqueness across all regular objects within the di-
rectory, as well as all representations contained by quFiles
within that directory. With these exceptions, a file system
can reuse its existing directory code to support quFiles.

3. QUICK AND EASY CONSTRUCTS WITH
QUFILES

We currently envision quFiles benefiting mobile clients in
three areas: resource management, extensibility and consis-
tency/availability.

3.1 Resource management
Resource management on a mobile device is a complex prob-
lem because all available resources are severely constrained.
Each decision affecting the CPU, network bandwidth, stor-
age or power usually affects other resources in the system.
Further, the semantic gap has frustrated system builders:
the operating system has global knowledge of available re-
sources, and only the application knows its intent for re-
source consumption. In the past, researchers have managed
these problems in two ways: first, the problem is constrained
by considering only a subset of the problem, such as power
or availability. Second, the semantic gap is bridged either
by exposing more information to the application (requiring
each application to make an independent decision), or the
application is modified to reveal its intent to the operat-
ing system. Each new policy has required a new system
to be built (e.g., Odyssey [15] or STPM [1]), which makes
putting policies from different problem areas together vir-
tually impossible. quFiles simplify the problem of resource
management by allowing applications to reveal their intent
without modifying applications or the operating system.



quFiles can extend the battery lifetime of a mobile device
by taking advantage of its spare storage capacity. Tradi-
tionally, lossy compression has been used on mobile devices
because storage space was precious and network bandwidth
was constrained; an mp3 transfers faster and takes up less
space than its lossless (WAV) counterpart. However, a com-
pressed file takes significantly more computational power to
decode than the original, lossless version. Our preliminary
measurements show that playing a WAV file rather than an
mp3 increases the battery lifetime of an iPAQ by 11%.

As described in Section 2, when an mp3 is added to the
file system, a transcoder generates its corresponding WAV
and m4a versions and moves the original and transcoded
files to a newly created quFile. When a mobile device reads
the quFile, an application-specific policy determines which
audio format to return.

One sample policy could function as follows. If the mo-
bile device is connected to the BlueFS server and is running
off A/C power, the application’s energy-conservation policy
would dictate that apart from the mp3 being played, the
power-efficient WAV version of the audio file should also be
cached on the device. quFiles leverage the caching mecha-
nism built into BlueFS to fetch the WAV transcoding from
the server and cache it on the device. The next time the user
attempts to play this audio file, the quFile will return the
energy-efficient WAV file. If only one version is available,
the policy will determine if it is more efficient to decode the
version in local storage or fetch an alternate version from
the file server.

On some mobile devices, storage is constrained. When stor-
age becomes scarce, application-specific policies can be in-
voked to determine which files can be safely deleted. For
backup purposes, only the original file need be retained since
alternate versions can be transcoded from the original.

Format replication, where a file might be encoded in mul-
tiple formats to cater to application or device constraints,
also means that a device might cache a file type that it is
incapable of playing (e.g., some cell phones cannot play au-
dio files encoded in an m4a format intended for an iPod).
quFiles absolve the user from having to deal with format
replication; device-specific policies can direct each device to
only cache formats that they are capable of playing.

3.2 Extensibility
In addition to resource management, quFiles allow us to
easily support various extensions of data objects. For ex-
ample, context has become increasingly important in mo-
bile and pervasive systems. Put simply, an object’s con-
text is a collection of metadata elements describing vari-
ous faces of the object—where it was obtained, who else
collaborated on it, what it is related to, and so on. By
supporting metadata decoration, such as a tuple space [9],
quFiles provide a simple abstraction for applications that
harvest, reason about, and share context. By packing them
together, applications and services that are ignorant of con-
text can still treat the collection as a unit. This preserves
contextual information for interested applications and ser-
vices.

One can also apply this notion of extensibility to protect
against format obsolescence. For example, applications such
as Corel Draw (a photo editing suite) and Lotus123 (an office
application suite) once were popular, if not dominant, but
have since fallen out of favor. As such applications die out,
their file formats become increasingly difficult to manage—
over time, format conversion tools are harder to come by.
However, for a time, these file formats were just as popu-
lar as their eventually successful competitors. During that
time, conversion tools are plentiful. quFiles can exploit such
transitional periods by converting between common formats,
creating format-specific conversion policies out of existing
conversion tools. Even when formats are popular and cur-
rent, some individual clients may not be capable of reading
them using only the installed base of software—quFiles also
support such machines by pre-converting to formats that are
known to be used by that client. While this is not a problem
specific to mobile and pervasive computing, such platforms
exacerbate the problem, due to their highly constrained re-
sources and often unique display capabilities.

3.3 Consistency and Availability
Format replication compounds the problem of ensuring the
most up to date version of a file that exists on multiple mo-
bile devices is available when the user requires it. Distrib-
uted file systems have handled this problem [12] by either
forcing the user to fix the conflict, or by building application-
specific resolvers. quFiles allow application developers to
quickly and easily add structure to application data or meta-
data that allows conflicting versions of a file to be resolved
automatically.

Distributed file systems have typically made no visible dis-
tinction between data cached locally and data that must be
fetched remotely from a server. Exposing this information to
the user is not necessarily useful, but quFiles can determine
dynamically whether to show any file at all. For example,
one useful policy for multimedia data is to not show files if
they must be fetched from a remote server and the available
bandwidth is less than the bit-rate of the multimedia file.
Using this policy, a music or video player will only see con-
tent that it can play at the moment. Alternatively, if battery
lifetime is of utmost importance, a quFile policy might not
make available files that must be fetched over the network.

4. RELATED WORK
We believe quFiles are a novel abstraction for unifying dis-
parate mobile data management policies. Our design de-
scribes how quFiles can be easily incorporated into existing
local and distributed file systems. Application developers
can specify how quFiles should resolve custom data-types
by specifying device or context-dependent policies.

There are many possible ways to implement the quFile ab-
straction. We chose to use Sprockets [17] as a method to
safely and dynamically link type specific code into the file
system. Alternatively, we could have used methods such as
Watchdogs [3] or the FUSE toolkit [8] that allow user level
file system extensions. Similarly, we chose to use persistent
queries [16] to notify transcoders that quFiles need to be
created or updated. Operating system specific notification



mechanisms such as the NTFS change log [4] or Linux’s in-
otify [13] could also serve this purpose.

quFiles provide a mechanism to support multiple fidelities
of data within the file system. Other alternatives such as
application-aware adaptation [15], component-based adap-
tation [5] or NTFS data streams [18] require either appli-
cation modification or the insertion of a proxy between the
application and the file system.

Schilit et. al. introduced context-aware computing com-
puting applications [19] and identify four major categories
of applications. Of these, quFiles support both contextual
information and command-based applications, and context-
triggered actions. While Schilit focused on usability and the
GUI used to interact with the system, quFiles adapt to the
application and usage context and return different views of
the user’s file system. This adaptation allows quFiles to
resolve to the correct representation for every scenario, in-
cluding ones that are counter intuitive. For instance, Barr
and Asanovic [2] argue that data compression before trans-
mission greatly reduces the energy expended by a mobile de-
vice. We note that the opposite holds true for local storage
— uncompressed data requires less energy to play than com-
pressed data, hence compression before transmission might
not always be the best policy.

Past approaches such as Xerox’s Placeless Documents [6]
and Gifford’s Semantic File Systems [10] suggest semantic or
property-based mechanisms as alternatives to organize data
in a file system. quFiles share the same goal with Placeless
Documents and Semantic File Systems, but we have chosen
a backward-compatible design that works within existing file
systems, rather than requiring a system re-write.

Fox [7] and Gribble [11] introduce the notion of an interme-
diary“active proxy”, that adapts data flowing from resource-
rich servers to thin devices. An active proxy is trusted by
the device to perform the adaptation correctly on its behalf.
In comparison, quFiles offer a mechanism whereby applica-
tions specify custom policies that dictate how data can be
transformed based on power, network connectivity and sim-
ilar context. quFile policies execute within the file system
address space with guards enforcing file system integrity [17].

5. CONCLUSION
We have shown that quFiles can provide a unifying ab-
straction for implementing previously disparate mobile data
management policies. Some uses of quFiles include resource
management, extensibility and data availability. We plan
to extend both local and distributed file systems to support
quFiles. Using this support, we will implement novel poli-
cies such as using spare storage capacity to extend battery
lifetime. We will also demonstrate the generality of quFiles
by implementing policies that were previously realized by
problem-specific solutions. We hope that quFiles will prove
to be an abstraction that greatly simplifies mobile data man-
agement.

6. ACKNOWLEDGMENTS
We thank Dan Peek, Ya-Yunn Su, Mona Attariyan, Benji
Wester, Jon Oberheide, Manish Anand and the anonymous

reviewers for suggestions that improved the quality of this
paper. The work is supported by the National Science Foun-
dation under awards CNS-0306251 and CNS-0509089. Jason
Flinn is supported by NSF CAREER award CNS-0346686.
Intel Corp. has provided additional support. The views
and conclusions contained in this document are those of the
authors and should not be interpreted as representing the
official policies, either expressed or implied, of NSF, Intel,
the University of Michigan, or the U.S. government

7. REFERENCES
[1] Anand, M., Nightingale, E. B., and Flinn, J.

Self-tuning wireless network power management. In
MobiCom (2003), pp. 176–189.

[2] Barr, K., and Asanović, K. Energy aware lossless data
compression. In MobiSys (2003), pp. 231–244.

[3] Bershad, B. B., and Pinkerton, C. B. Watchdogs -
extending the unix file system. Computer Systems 1, 2
(1988).

[4] Cooperstein, J., and Richter, J. Keeping an eye on your
NTFS drives: the Windows 2000 Change Journal
explained. Microsft Systems Journal (1999).

[5] de Lara, E., Wallach, D. S., and Zwaenepoel, W.
Puppeteer: Component-based adaptation for mobile
computing. In USITS (2001).

[6] Dourish, P., Edwards, W. K., LaMarca, A., Lamping,
J., Petersen, K., Salisbury, M., Terry, D. B., and
Thornton, J. Extending document management systems
with user-specific active properties. ACM TOIS 18, 2
(2000), 140–170.

[7] Fox, A., Gribble, S. D., Brewer, E. A., and Amir, E.
Adapting to network and client variability via on-demand
dynamic distillation. In ASPLOS (1996), pp. 160–170.

[8] Filesystem in userspace. http://fuse.sourceforge.net/.
[9] Gelernter, D. Generative communication in Linda. ACM

TOPLAS 7, 1 (1985).
[10] Gifford, D. K., Jouvelot, P., Sheldon, M. A., and

O’Toole, J. W. Semantic file systems. In SOSP (1991),
pp. 16–25.

[11] Gribble, S. D., Welsh, M., von Behren, J. R., Brewer,
E. A., Culler, D. E., Borisov, N., Czerwinski, S. E.,
Gummadi, R., Hill, J. R., Joseph, A. D., Katz, R. H.,
Mao, Z. M., Ross, S., and Zhao, B. Y. The ninja
architecture for robust internet-scale systems and services.
Computer Networks 35, 4 (2001), 473–497.

[12] Kumar, P., and Satyanarayanan, M. Flexible and safe
resolution of file conflicts. In USENIX Winter Technical
(1995).

[13] Love, R. Kernel korner: Intro to inotify. Linux Journal,
139 (2005), 8.

[14] Nightingale, E. B., and Flinn, J. Energy-efficiency and
storage flexibility in the Blue File System. In OSDI (2004),
pp. 363–378.

[15] Noble, B. D., Satyanarayanan, M., Narayanan, D.,
Tilton, J. E., Flinn, J., and Walker, K. R. Agile
application-aware adaptation for mobility. In SOSP (1997),
pp. 276–287.

[16] Peek, D., and Flinn, J. EnsemBlue: Integrating consumer
electronics and distributed storage. In OSDI (2006),
pp. 219–232.

[17] Peek, D., Nightingale, E. B., Higgins, B. D., Kumar,
P., and Flinn, J. Sprockets: Safe extensions for
distributed file systems. In USENIX Annual Technical
(2007), pp. 115–128.

[18] Russinovich, M. E., and Solomon, D. A. Advanced
features of NTFS. In Microsoft Windows Internals (2005),
Microsoft Press, pp. 719–721.

[19] Schilit, B., Adams, N., and Want, R. Context-aware
computing applications. In IEEE WMCSA (1994).


