Qex: Symbolic SQL Query Explorer

Margus Veanes, Nikolai Tillmann, and Jonathan de Halleux
Microsoft Research, Redmond, WA, USA
{margus,nikolait, jhalleux}@microsoft.com

Abstract

We describe a technique and a tool called Qex for generatjmgf tables and parameter values
for a given parameterized SQL query. The evaluation sergofian SQL query is translated into
a specific background theory for a satisfiability modulo tieso(SMT) solver as a set of equational
axioms. Symbolic evaluation of a goal formula together whith background theory yields a model
from which concrete tables and values are extracted. Wehes&MT solver Z3 in the concrete
implementation of Qex and provide an evaluation of its penfance.

1 Introduction

The original motivation behind Qex comes framit testingof relational databases, where a key chal-
lenge is the automatic generation of input tables and pamméor a given query and a given test
condition, where a typical test condition is that the resfilthe query is a nonempty table. An early
prototype of Qex as a proof-of-concept and an integratio@ex into the Visual Studio Database edi-
tion is discussed in [19, 24]. Here we present a new appraarcbricoding queries that uses algebraic
datatypes and equational axioms, taking advatage of receances in SMT technology. The encoding
is much simpler than the one described inl [24], and booste@dhformance of Qex by several orders of
magnitude. In[[24] algebraic datatypes were not availabtecueries were encoded into an intermediate
background theory”Z using bags and a summation operator. The resulting formameagerly ex-
panded, for a given size of the database, into a quantifiefdmenula that was then asserted to the SMT
solver. The expansion often caused an exponential blowdlpersize of the expanded formula, even
when some parts of the expansion were irrelevant with régpehe test condition. The new approach
not only avoids the eager expansion but avoids also the ratbhlinear constraints that arise when
dealing with multiplicities of rows in bags and aggregatesrdags. Moreover, the axiomatic approach
makes it possible to encode frequently occurring likegrat through an automata based technique, and
other string constraints. To this end, Qex now encodesgstfmthfully as character sequences, whereas
in [24] strings were abstracted to integers with no suppartgeneral string operations. Furthermore,
algebraic datatypes provide a straightforward encodingdtue types that allow null values. In addition,
Qex now also handles table constraints and uses symmeakibgegformulas for search space reduction.

The core idea is as follows. A given SQL queris translated into a terrfg]] over a rich background
theory that comes with a collection of built-in (predefindaf)ctions. Tables are represented by lists of
tuples, where lists are built-in algebraic datatypes. kiitaah to built-in functions (such as arithmetical
operations) the terrfig]] may also use functions whose meaning is governed by a sedafoel ax-
ioms referred to agh(q). These custom axioms describe the evaluation rules of S@tieguand are in
most cases defined as recursive list axioms that resemhtédnoal programs. Tabl€ 1 provides a rough
overview of the SQL constructs supported in Qex and the sparding theories used for mapping a
given construct into a formula for Z3 [26, 110] that is usedlss tinderlying SMT solver in the imple-
mentation of Qex. As indicated in the table, in all of the cadere is also an additional set of custom
axioms that are used in addition to the built-in ones.

*Microsoft Research Technical Report MSR-TR-2009-20153pBer 2009, Updated January 2010

Qex: Symbolic SQL query explorer Veanes, Tillmann, and dielda

Table 1: Overview of features in Qex and related use of SMdribs.

Built-in theories Custom

| Features || Arithmetic | Bitvectors| Sets| Arrays | Algebraic d.t.| Tuples| theories
Table constraints v v v v v
SELECT clausesg v v v
Aggregates v v v v v v
LIKE patterns v v v
Null values v v

For input tables and other parameters, the tggihuses uninterpreted constants. Given a condition
¢ over the result of[q]], e.g.,[[q] # nil ([q]] is nonempty),¢ is asserted to the SMT solver as a goal
formula andTh(q) is asserted to the SMT solver as an additional set of axioometmes called goft
theory. Next, a satisfiability check is performed together withdel generationlf ¢ is satisfiable then
the generated model is used to extract concrete valuespfietations) for the input table constants and
other additional parameter constants.

The rest of the paper is structured as follows. Sed¢ilon Ddhices some basic notions that are used
throughout the paper. Sectibh 3 defines a custom theory ofrexover lists that are used in Sectidn 4
to translate queries into formulas. Sectidn 5 discusse@tplementation of Qex with a focus on its
interaction with Z3. Sectiop] 6 provides some experimentaluation of Qex. Sectidn 7 is about related
work, and Sectiohl8 provides some final remarks.

2 Preiminaries

We assume that the reader is familiar with elementary cdadrpogic and model theory, our terminol-
ogy is consistent with [13] in this regard.

We are working in a fixed multi-sorted universg of values. For each sod, % ¢ is a separate
subuniverse o/ . The basic sorts needed in this paper are the Booleais@tt ® = {true, false}), the
integer sortZ, and then-tuple sortT(0y, ..., 0n-1) for n > 1 of some given basic sortg for i < n. We
also use other sorts but they are introduced at the point Wiesnare first needed.

There is a collection of functions with a fixed meaning asseci with the universe, e.g., arithmetical
operations ove#/”. These functions and the corresponding function symbelsaltedbuilt-in. Each
function symbolf of arity n > 0 has a fixed domain sody x --- x 0,1 and a fixed range sou,
f:oox---x0on_1— 0. Forexample, there is a built-relation or predicate(Boolean function) symbol
<:7Z x 7 — B that denotes the standard order on integers. One can alsoafezsh(new)uninterpreted
function symbolsf of arity n > 0, for a given domain sort and a given range sort. Using mbeelretic
terminology, these new symbatgpandthe signature.

Termsandformulas(or Boolean terms) are defined by induction as usual and aeres] to be well-
sorted. We writed=V(t) for the set of free variables in a term (or formuta)A term or formula without
free variables iglosed

A modelis a mapping from function symbols to their interpretatigvalues). The built-in function
symbols have the same interpretation in all models that wecansidering, keeping that in mind, we
may omit mentioning them in a model. A moddl satisfiesa closed formulap, M |= @, if it provides
an interpretation for all the uninterpreted function syishia ¢ that makesp true. For example, let
f : Z — Z be an uninterpreted function symbol and Z be an uninterpreted constant. Ldtbe a

2

Qex: Symbolic SQL query explorer Veanes, Tillmann, and dielda

model whereM (the interpretation o€ in M) is 0 andfM is a function that maps all values to 1. Then
MEO< f(c) butM =0 < c.

A closed formulag is satisfiableif it has a model. A formulap with FV(¢) = x is satisfiableif its
existential closureix¢ is satisfiable. We writé=y, ¢, or = ¢, if ¢ isvalid (true in all models). Some
examples: < 1A 2 < 10 is valid; 4< XA X < 5, wherex:Z is a free variable, is unsatisfiable because
there exists no integer between 4 and 5 A X < 3, wherex: Z is a free variable, is satisfiable.

3 Equational axiomsover lists

The representation of a table in Qex is a list of rows, wher@aais a tuple. While bags of rows rather
than lists would model the semantics of SQL more directidéorof rows is irrelevant, but multiple
occurrences of the same row are relevant), the inductivetsiie of a list provides a way to define the
evaluation semantics of queries by recursion. The mapdingeries to axioms, discussed in Secfion 4,
uses a collection of axioms over lists that are defined nextitively, the axioms correspond to defini-
tions of standard (higher order) functionals that are w@iic functional programming. The definitions
of the axioms below, although more concise, correspondgsigco their actual implementation in Qex
using the Z3 API. Before describing the actual axioms, wdathe intuition behind a particular kind
of axioms, that we cakquationa)] when used in an SMT solver.

3.1 Equational axiomsand E-matchingin SMT solvers

During proof search in an SMT solver, axioms are triggerethjching subexpressions in the goal. Qex
uses particular kinds of axioms, all of which are equatidnfi® form

v)Rtlhs = trhs) (l)
whereFV (ths) = x andFV(ths) C X. The left-hand-sidéys of (@) is called thepatternof ().

While SMT solvers support various kinds of patterns in galném this paper we use the
convention that the pattern of an equational axiom is alwts/eft-hand-side.

The high-level idea behinBE-matching is as follows. The axiorhl(1)tisggered by the current goal
Y of the solver, ify contains a subterma and there exists a substitutighsuch thatu =g tjs0, i.e.,u
matches the patterof the axiom (modulo the built-in theorids). If (@) is triggered, then the current
goal is replaced by thiegically equivalenformula whereu has been replaced lyys6.

Thus, the axioms that are used in Qex can be viewed as “remi#ge”, and each application of an
axiom preserves the logical equivalence to the original.gé& long as there exists an axiom in the
current goal that can be triggered, then triggering is quesd. Thus, termination is in general not
guaranteed in the presence of (mutually) recursive axionwe that, unlike in term rewrite systems,
there is no notion of term orderings or well-defined cust@iblie strategies (at least not in the current
version of Z3) that could be used to guide the triggering esswf the axioms.

3.2 Axiomsover lists

For each sort there is a built-inlist sort (o) and a corresponding subuniverg€-(). (In Z3, lists
are provided as built-in algebraic datatypes and are agsocwith standard constructors and accessors.)
For a given element sod there is an empty ligtil (of sortl.(c)) and ifeis an element of sodr andl is
alist of sortl.(o) thenconge,l) is a list of sortl.(g). The accessors are, as ustma (head) andl (tail).
In the following consider a fixed element sart Observe that one can define a well-ordering such that,

3

Qex: Symbolic SQL query explorer Veanes, Tillmann, and dielda

in all of the recursive cases of the axioms, the right-hadd-decreases with respect to that ordering,
which guarantees that triggering terminates and impliat ttie axioms are well-defined. In all of the
cases, the use of the list constructors in the patterns dafaental. In most cases one can provide more
compact and logically equivalent definitions of the axiontgeve the right-hand-sides are combined in a
disjunction, but where the pattern is too general and magecaontermination of axiom triggering in an
SMT solver.

3.2.1 Filter

Let ¢ be a formula with a single free variabtg: 0. Declare the function symbeéilter[¢]:L(o) — L(0)
and define the following axioms:

Filter[¢](nil) = nil
VxoXy (Filter [@](congxg,x1)) = Ite(¢,congxg,Filter[¢](x1)), Filter [¢](x1)))

Thelte-termIte(q,ty,t2) equaldty, if @is true; it equald,, otherwise Ite is a built-in function.

322 Map

Lett:p be a term with a single free variabtg: 0. Declare the function symbdflapjt]: (o) — L{p)
and define:

Mapit](nil) = nil
VxoX1 (Map[t](congxo,x1)) = congt,Map[t](x1)))

3.2.3 Reduce

Lett: p be aterm with two free variableg: o andx; : p. Declare the function symb&educé):L{o) x
p — p and define:
Vx(Reduc](nil,x) = x)
VX0 X1 X2 (Reducft](congxp, x2),Xx1) = Reducé](xp,t))

For example, il :IL(Z) is a list of integers, theReducég + x1](l,0) is equal to the sum of the integers
inl, or 0ifl is empty (in any model that satisfies the corresponéleguc@-axioms).

3.24 Crossproduct

Declare the function symbolSrossL(o) x L(p) — L(T(o,p)) andCr: o x L{o) x L{p) x L{p) —
L(T(o,p)), and define
vx(Crosgnil, x
vx(Crosgx, nil
VX (CrosgcongXp, x1),congxz,X3)) = Cr(Xo,X1,CONX2,X3),CONYX2,X3)))
VX(Cr(xo, X1, Nil,X2) = Crosgxy,x2))
VX (Cr(Xo,X1,congx2,X3),Xa) = congT (Xo,X2),Cr(Xo,X1,%3,%4)))

= nil)
= nil)

—_ — — T

whereT :0 x p — T(0g, p) is the built-in tuple constructor (for the given sorts). leaample, the term
Crosgcong1,cong2,nil)),cong3,cong4,nil))) is equal to the term

congT(1,3),congT(1,4),congT(2,3),congT(2,4),nil)))).

Qex: Symbolic SQL query explorer Veanes, Tillmann, and dielda

3.25 Removeduplicates

The functionRemoveDuplicates used to remove duplicates from a list. The definition malsas of
built-in sets and set operations; the set sort of elemenisizrdenoteds (o).
Declare:RemoveDuplicated.(o) — (o), Rd:L(0) x S(o) — L(0). Define:

Vx(RemoveDuplicatég) = Rd(x,0))
VX (Rd(nil,x) = nil)
VX(Rd(congxp,X1),X2) = Ite(Xo € X2, Rd(x1,X2),congXo, RA(X1, {Xo} UX2))))

4 From SQL toformulas

In this section we show how we translate an SQL quginto a set of axiomJh(q) that is suitable as an
input soft theory to an SMT solver. The translation makesaigbe list axioms discussed in Sectign 3.
We omit full details of the translation and illustrate itdkugh examples and templates, which should be
adequate for understanding how the general case works.cothls fs on the purely relational subset of
SQL (without side-effects). We start by describing how éaldre represented.

4.1 Tablesand table constraints

Tables are represented by lists of rows where each row isl@ tlipe sorts of the elements in the tuple
are derived from the types of the corresponding columnsateigiven in the database schema. The
currently supported column types in Qex aBégInt, Int, SmallInt, TinyInt, Bit, andChar. The
first four types are mapped # (and associated with a corresponding range constraint,betyveen 0
and 255 forTinyInt). Bit is mapped tdB. Char (that in SQL stands for a sequence of characters) is
mapped to thetring sort(or word sor) W = IL(C), whereC is the built-in sort oin-bitvectors for some
fixed n that depends on the character range: UTF+l& (16), basic ASCII § = 7), extended ASCII
(n=18).

The order of rows in a table is irrelevant regarding the eatidin semantics of queries. The number of
times the same row occurs in a table is theltiplicity of the row. In general, duplicate rows are allowed
in tables so the multiplicity may be more than one. Howewembst cases input tables have primary
keys that disallow duplicates. Tables may also be assdcwaith other constraints such as foreign key
constraints and restrictions on the values in the columngQdx, these constraints are translated into
corresponding formulas on the list elements. The follonergmple illustrates that aspect of Qex.

Example 1. Consider the following schema for a school database.

CREATE TABLE [School]. [Scores]

(StudentID tinyint not null FOREIGN KEY REFERENCES Students(StudentNr),
CourseID tinyint not null CHECK(1 <= CourseID and CourseID <= 100),
Points tinyint not null CHECK(Points <= 10),

PRIMARY KEY (StudentID, CourselD),

CHECK(NOT(1 <= CourseID and CourseID <= 10) or Points < 6));

CREATE TABLE [School]. [Students]
(StudentNr tinyint not null PRIMARY KEY,
StudentName char (100) not null);

The (primary) key of th€cores table is the pair containing a student id and a course id aciureay
provides the number of points the student has received &ogitren course. The additional constraints

5

Qex: Symbolic SQL query explorer Veanes, Tillmann, and dielda

are that the course ids go from 1 to 100, no course gives marelfl points and courses 1 through 10
give a maximum of 5 points.

Qex declares the table variabi8soresL(T(Z,Z,7Z)) and StudentsL(T(Z,W)). There is a given
boundk on the number of rows in each table. (In general there is aragphound per table and the
bounds are increased during model generation discussedciin®[5.) The following equalities are
generated:

Scores = congScores,...,congScoreg_1,nil))
Students = congStudents,...,congStudentg 1,nil))

where Scores: T(Z,Z,7Z) and Students T(Z,W) for i < k. For the primary key constraints, the fol-
lowing formulas are generated. The distinctness prediadiethe projections functiorrg on tuples are
built-in. We use i to abbreviate the ternm (t).

Distinct(T (Scoreg.0,Scoresg.1),...,T(Scoreg_1.0,Scoreg_1.1))
Distinct(Students.0, ..., Studentg_1.0)

For expressing the foreign key constraint, Qex uses théibuslets and the subset predicate:
{Scoreg0}ik C {StudentsO};
The remaining constraints are conjunctions of check-caimés on individual rows, e.g.,

/\(—(1 < Scores 1A Scores1 < 10) v Scores2 < 6)

i<k

asserts that courses 1 through 10 give a maximum of 5 points. X

4.2 Null values

If a column in a table is optional, it may contain a null valueaplaceholder for an unknown value.
Any column in SQL (other than a primary key column) is optibnaless anot null type constraint

is associated with the column type. Algebraic datatypesigeoa convenient mechanism to represent
optional values througlifted sorts Let o be any sort. Declare the datatyp@? with the constructors
NotNull: 0 — (o), Null : (o), the accessovalue: ?(g) — o (that maps any valuBotNull(a) to a),
and the testersNotNull: ?(g) — B, IsNull : ?(c) — B. Declaring such datatypes is directly supported
in Z3.

When an SQL expressianis encoded as a terfig], it is assumed thatis well-formed. Operations
using optional values are assumed to occur in a context vitherealue is known to be not null. SQL
includes particular predicatds NULL andIS NOT NULL for this purpose. In the translation the corre-
sponding testers are used and Yaue accessor is applied to cast the optional value to its unichgrly
sort.

Note that, formally, there is a distinct null value for eaifted sort. This does not cause a semantic
discrepency with SQL, since it is not possible in SQL to corapaull values with comparison operators.

4.3 Formulasfor queries

As the concrete input of queries, Qex uses a subset of theaabsyntax of the TSQLL[1] grammar. It
is not feasible to fit the full details of the translation frameries to formulas into the paper, instead, we
look at a collection of representative samples that ilatstthe core ideas behind the translation. In the
samples, we reuse the schema from Exarmple 1. We denote theléoresulting from a querg by [[q].

6

Qex: Symbolic SQL query explorer Veanes, Tillmann, and dielda

43.1 SELECT clauses

The main component of a query issalect clause A select clause refers to a particular selection of
columns from a given table by usingselect list The table is often a derived table, as the result of a join
operation. Consider the queqy

SELECT StudentName, Points
FROM Students JOIN Scores ON Scores.StudentID = Students.StudentNr
WHERE Scores.CourselID = 10 AND Scores.Points > 0O

The formula]q] is:

Map[T (x.0.1,x.1.2)](Filter[x.1.1 = 10A x.1.2 > 0|(
Filter [x.0.0 = x.1.0](Crosg StudentsScores)))

wherex: T(T(Z, W), T(Z,Z,Z)). Such formulas get human-unreadable very quickly. Dutiegrocess
of creating([q]], usually several list axioms are created. This set of aximmsferred to agh(q). In
particular, in this cas&h(q) includes the axioms for the map, filter, and cross produattfan symbols
that occur infq].

4.3.2 Aggregates

Aggregates are used to combine values from all the rows ibla.tdhe most common aggregates are
MIN, MAX, SUM, andCOUNT. For example, the following queny; selects the maximum points from the
Scores table.

SELECT DISTINCT MAX(Points) from Scores
Depending on the use gf, the translatiorq; || is either the singleton list:
cong T (Reduc@te(Xp.2 > x1,X0.2,X1)] (Scores—o)), nil)
or just theReduc@-term:
Reducdte(xg.2 > X1,Xp.2,X1)](Scores—o)

The first case applies ¢f; is used as a top-level query, the second case applgssfused as aubquery
expressionThe second case applies in the following querghat also uses theAX aggregate in the top
level select list in combination witiROUP BY that eliminates duplicates from the resulting table:

SELECT StudentID, MAX(Points) FROM Scores GROUP BY StudentID
HAVING MAX(Points) = (SELECT DISTINCT MAX(Points) from Scores)

The queryg, selects all students that have the most points at some cathisdranslation ofigy] is
as follows where thé&ilter[] application corresponds to the HAVING clause that is appl@the result
of the grouping.

Filter [x.1 = [01])] (RemoveDuplicatéSelecixy.0, MAX (x0.3)](Score$))

The definition ofSelecf] is technically more complicated but similar to the othemursive list axioms.
It collects the maximum points for each student id and usedbtfilt-in arraysin Z3 to accumulate the
values, see the Appendix.

Qex: Symbolic SQL query explorer Veanes, Tillmann, and dielda

4.3.3 LIKE-patterns

Like-patterns are particular regular expressions thateansed as constraints on strings. A like-pattern
r is converted into aymbolic finite automatoj23] (SFA) A, that is similar to a classical finite automaton
except that moves are labeled by formulas denddigtgof characters rather than single characters. The
automatord, is translated into a theorjh(A;). The theory describes the acceptance condition for words
in L(A). In particular,Th(A;) defines a predicate

AcY : W x N — B,

whereN is an algebraic datatype fomary natural numbersvith the constructor®:N ands:N — N.
We writek + 1 for s(k). We use the following property of the theory Af [23, Theorem 1]:

Proposition 1. Lett be a closed term of soW, k a nonnegative integer, and M a model of Ah. Then
M E Acd (t,k) iff t™M € L(A/) and [tM] < k.

In column type declarations of SQL database schemas, a maxstring length is associated with
the char type (default being 1), e.g., the typkar (100) of a column allows strings containing at most
100 characters. In the formulscd™ (t,R), wheret refers to a column whose values are strifgis the
maximum length of the strings in that column.

Example 2. Consider the query that selects students whose name starts with the kfidiowed by
any letter between andn followed by 0 or more additional characters:

SELECT StudentName FROM Students WHERE StudentName like "B[a-n]%"

true

#=B #>=a) & #<=n
The SFAAfor "B[a-n]%" is @ @ where # is a free variable of sdttand
each symbolic mové, ¢ [#, j) denotes the set of transitiod§,a, j) | ac #, = ¢[a]}. For each state
SQS1S2of A there are two axioms iiTh(A), one for length boung= 0 and the other one for length
bound> 0:

S0: Vx(Acc(x,0) < false) Vxy(Acc(x,s(y)) < x # nil Ahd(x) =B A Acg (tl(X),Y))

S1: Vx(Acg(x,0) < false) ¥xy(Acc (x,5(y)) < X # nil Ahd(X) > a Ahd(x) < nAAcc(tl(X),y))
S2: VX(Acc(x,0) < x=nil) V¥xy(Acc(X,s(y)) < X = nil V (x # nil AAcc(t(X),Y)))
The term([[q] is Map|[T (Xo.1)](Filter [Acc(xo.1,100)] (Student$). Note thatTh(A) C Th(q). X

The automata based approach opens up several transfarmnt@tioniques that can be performed
in the process of encoding queries and theories of querasinkiolve like-patterns. These upfront
transformations can greatly simplify the formulas. Westhate this with an example involving the use
of productof SFAs [23].

Proposition 2. Let A and B be SFAs, thefA® B) = L(A)NL(B).

Example 3. Consider the following querg. ke with n+ 1 occurrences of ” in the first like-pattern
andn occurrences of " in the second like-pattern:

SELECT StudentName FROM Students
WHERE StudentName like "%a " AND StudentName like "%b "

Qex: Symbolic SQL query explorer Veanes, Tillmann, and dielda

The first like-pattern corresponds to the regex. *a . {n+1} and the second like-pattern corresponds
to the regex,=.*b.{n}. The query is essentially an intersection constraint;cdindr,. In a direct
encoding ofg ke, Th(guike) includes both the axioms fak, as well asA;,. Rather than usingy, and
A, separately, the produét,, ® A, of A, andA, can be used together with the thedrg(Ar, ® Ar,)
instead ofTh(Ay,) UTh(Ay,). Thus, withproduct encoding

[auike | = Map[T (xo.1)](Filter [Accd1%%2(xo.1, T00)| (Studenty)
and withdirect encoding
[auike | = Map[T (xo.1)] (Filter [Acd™1 (xo.1, T00) A Acc™2 (x0.1, T00)] (Students)

The gain in performance is discussed in Sedtion 6. X

Note that correctness of the transformation illustrated®Example[B follows from Propositiorid 1
and(2.

5 Implementation

Qex uses the SMT solver Z3 [26,/10]. Interaction with Z3 is iempented through its programmatic API
rather than using a textual format, such as the smt-lib fof2@]. The main reasons for working with
the API are: access to built-in datatypes; model generatimmking within a given context. The first
point is fundamental, since algebraic datatypes are deotthe whole approach and are not part of the
smt-lib standard.

Besides allowing to check satisfiability, perhaps the mwogtartant feature exposed by some SMT
solvers (including Z3) for the purposes of test input getienas generating a modeds a witness of the
satisfiability check, i.e., a mapping of the uninterpretedction symbols to their interpretations. Z3 has
a separate method for satisfiability checking with modelkgation. This code snippet illustrates the use
of that functionality:

Model m;

z3.AssertCnstr(f);

LBool sat = z3.CheckAndGetModel (out m);
Term v = m.Eval(s); ...

A contextincludes declarations for a set of symbols, and assertmma $et of formulas. A context
is essentially a layering mechanism for signature expassiath related constraints. There is@arent
contextand a backtrack stack of previous contexts. Contexts caavseighrougtpushingand restored
throughpopping When a satisfiability check is performed in a given contthé, context may become
inconsistent. Qex uses contexts during table generatidnna8FA algorithms during theory generation
for like-patterns.

5.1 Incremental table generation

Let g be a fixed query and assume tbat ..., X, are the input table variables. Assuifgg: o and let
@[Y] be a formula with the free variab¥: o. Intuitively, ¢ is atest conditionon the result of the query,
e.g.Y # nil. The followingbasic table generation procedudescribes the input table generation dor
and¢.

1. AssertTh(qg), i.e. add the axioms af to the current context.

9

Qex: Symbolic SQL query explorer Veanes, Tillmann, and dielda

2. Letk = (ka,...,k,) = (1,...,1) be the initial sizes of the input tables. Repeat the follguintil a
modelM is found or a timeout occurs.

(a) Push the current context, i.e., create a backtrack.point
(b) Create constraints fofy, ..., X, usingk to fix the table sizes.

(c) Assertg[[d]]
(d) Check and get the model. If the check fails, increasl%systematically and pop the context.

3. Getthe values ofy,..., X, in M.

There are several possible variations of the basic proeedure table constraints can be updated incre-
mentally when the table sizes are increased. The tableragrtstcan also be created f@pperbounds
rather than exact bounds on the table sizes. One way to dasdatiows:

table= congrowl, restl) A (restl= nil v (restl= congrow2 rest2 A---))

The size of the overall resulting formula is always polynahin the size of the original query and
In practice, Qex uses bounds kand overall time constraints to guarantee termination gagihg the
satisfiability of queries is undecidable in general [9].

5.2 Symmetry breaking formulas

The translation of a query into a formula][q]] together withTh(q) and the additional table constraints
looks very much like a “functional program with constraintghis intuition is correct as far as the logical
meaning of the translation is concerned. There are, howawvemechanisms to control the evaluation
order of patterns (such as, “outermost first”) and no notibteion orderings. The search space ffqf

is typically vast.

Recall that although Qex uses lists to encode tables, ther afdrows is not relevant according
to the SQL semantics. We can therefore assert predicatesdhatrain the input tables to bm-
dered (thus eliminating all symmetrical models where the ordgrdoes not hold). Consider a ta-
ble congrowp, congrows, - - -congrow,, nil))) of sort L{o). Define a lexicographic order predicate
< :0 x 0 — B. The definition of< on integers is just the built-in ordet, similarly for bitvectors.
For tuples, it is the standard lexicographic order definegiims of the orders of the respective element
sorts. For strings (lists of bitvectors) the order prediazgin be defined using recursion over lists. Assert
the symmetry breaking formula

/\ row <rowi
i<n—1
In some situations the symmetry breaking formula can begthened. For example, when the table has
a primary key then the formula can be strengthened by usmgttict order< instead of<. Moreover, if
all of the columns are part of the primary key then the primay constraint itself becomes redundant.

Using symmetry breaking over lists in this way improves tkeefgrmance by orders of magnitude

over the previous approadh [24] using bags.

6 Experiments

We provide some performance evaluation results of Qex ofiection of sample queri%]n the first set
of experiments we look at the performance of the basic tadshe@tion procedure. In these experiments

1The experiments were run on a Lenovo T61 laptop with Intel dage T7500 2.2GHz processor.

10

Qex: Symbolic SQL query explorer Veanes, Tillmann, and dielda

Table 2: Sample queries.

| # | Query | tims] | k |

DECLARE @x as tinyint;

SELECT DISTINCT Scores.StudentID, SUM(Scores.Points)

1 FROM Scores 20 1

WHERE Scores.Points > 2

HAVING SUM(Scores.Points) >= @x AND @x > 5

SELECT Scores.StudentID, MAX(Scores.Points)
FROM Scores

2 GROUP BY Scores.StudentID 20 1

HAVING MAX(Scores.Points) = (SELECT MAX(Scores.Points) FROM Scores)

DECLARE @x as tinyint;

SELECT DISTINCT COUNT(S.StudentName)

3 FROM Students as S 1200 | 4

WHERE S.StudentName LIKE "%Mar[gkclus’" AND S.StudentNr > @x

HAVING COUNT(S.StudentName) > @x AND @x > 2

DECLARE @x as tinyint;

SELECT Students.StudentName, SUM(Points)

4 FROM Scores JOIN Students ON Scores.StudentID = Students.StudentNr 130 2

WHERE Scores.Points > 2 AND Students.StudentName LIKE "John%"

GROUP BY Students.StudentName

HAVING SUM(Points) >= @x AND @x > 15

SELECT Students.StudentName, Scores.Points

5 FROM Students JOIN Scores ON Scores.StudentID = Students.StudentNr 30 1

WHERE Scores.CourseID = 10 AND Scores.Points > 0

SELECT Students.StudentName, Courses.CourseName, Scores.Points

FROM Scores JOIN Students ON Scores.StudentID = Students.StudentNr

6 JOIN Courses ON Courses.CourseNr = Scores.CourselD 160 1

WHERE Scores.Points > 2 AND Students.StudentName LIKE "%bob%"

AND Courses.CourseName LIKE "AIJ"

we use the same bourdfor both tables. The test condition used here is that thdtressnonempty.
Table[2 summarizes the overall tim€in ms) for each query, which includes the parsing time, the
generation time offh(q), and the model generation time. The coluknshows the number of rows
generated for the input tables. Some of the queries incladanpeters, indicated with, the values of
parameters are also generated. (The actual data that wesatghis not shown here.) We reuse the
schema introduced in Example 1. The last query uses an@utlitiable calledourses.

The total size of the query seems to have very little effecthentimet. The key factor is the use
of aggregatesand the constraints they introduce that cause the inpuggablgrow, thus, causing back-
tracking during model generation, that is clearly seen faryg #3. Consider the following experiment.
Take query #3 and replace the constant 2 in it with the cohstéor n=1,...,15. Figurdl shows the
timet in seconds as a function of k is alwaysn + 2.

Given a quenryg, several optimizations or transformations can be perfdrorethe terni[q] as well
as the set of axiom¥h(q) prior to asserting them to the solver. Figlte 2 shows a drasicrease in
model generation time foq ke from Example B in Qex when the product construction is usey. B
performing localized SMT solver queries during productstaiction of SFAs, the size of the resulting
automata can often dramatically decrease.

We also reevaluated the performance of Qex on the benchmegpksted in[[24, Table 1] that use
a different sample database schema (where strings do not)oda all of the cases the performance
improvement was between 10x and 100x. As we suspected, ¢fee egpansion time reported &g,
in [24], that was by an order of magnitude larger than the rhgeleeration timé;, is avoided completely
in the new approach. The initial cost of creatifaj is negligable, since the size [is polynomial in
the size ofg in theory, and close to linear in practice. The added ovetldeging model generation due

11

Qex: Symbolic SQL query explorer Veanes, Tillmann, and dielda

350

300

250

200

100 /
50

D«}{
*

Figure 1: Exploration times (sec) for query #3 in Table 2 wiies constant 2 is replaced withfor
n=1...,15.

30

25 + ¥
+
= 20 +
©
< +
g 15 oo
ﬁ, + _H-_|- 4 + without product
= 10 +
+ L + t + e with product
P
5 hy 5
ot oy
0 1a89eq’
0 20 40 60 80 100

Figure 2: Exploration times (sec) for quenyxe without (scattered crosses) and with (solid line of dots
at the bottom) product construction foe=1,...,98.

to the use of axioms only marginally increased the model geiom timet,s.

7 Reated work

The first prototype of Qex was introduced in [24]. The curneaper presents a continuation of the Qex
project [19], and a redesign of the encoding of queries iotmtilas based on a lazy axiomatic approach
that was briefly mentioned in [24] but required support faedlraic datatypes in the underlying solver.
Moreover, Qex now also supports a substantially largemfiexgt of SQL (such as subquery expressions)
and like-patterns on strings, as discussed above.

Deciding satisfiability of SQL queries requires a formal satics. While we give meaning to SQL
gueries by an embedding into the theory of an SMT solvergtlaee other approaches, e.g., defining
the semantics in the Extended Three Valued Predicate @al¢l¥], or using bags as a foundation [7].
Satisfiability of queries is also related to logic-basedrapphes to semantic query optimization [5].
The general problem of satisfiability of SQL queries is undigsle and computationally hard for very
restricted fragments, e.g., deciding if a query has a nohemmswer is NEXP-hard for nonrecursive
range-restricted queries|[9].

Several research efforts have considered formal analgsiverification of aspects of database sys-

12

Qex: Symbolic SQL query explorer Veanes, Tillmann, and dielda

tems, usually employing a possibly interactive theorenveroFor example, one system [21] checks
whether a transaction is guaranteed to maintain integahstraints in a relational database; the system
is based on Boyer and Moore-style theorem proving [4].

There are many existing approaches to generate databdse #abtest inputs. Most approaches
create data in an ad-hoc fashion. Only few consider a tangettyq Tsai et.al. present an approach for
test input generation for relational algebra queries [A2]ey do not use lists to represent tables. They
propose a translation of queries to a set of systems of limegualities, for which they implemented
an ad-hoc solving framework which compares favorably taloam guessing of solutions. A practical
system for testing database transactions is AGENDA [11defterates test inputs satisfying a database
schema by combining user-provided data, and it supportskatge of complex integrity constraints by
breaking them into simpler constraints that can be enfobgetthe database. While this system does not
employ a constraint solver, it has been recently refined thighTGQG [[6] algorithm: Based on given
SQL statements, it generates test generation gueriesjtexeof these queries against a user-provided
set of data groups yields test inputs which cover desirefdestes of the given SQL statements.

Some recent approaches to test input generation for dasbkeasploy automated reasoning. The re-
lational logic solver Alloy[14, 15] has been used by Khalekle[16] to generate input data for database
gueries. Their implementation supports a subset of SQL avghmplified syntax. In queries, they can
reason about relational operations on integers, equglityations on strings, and logical operations, but
not about nullable values, or grouping with aggregates sis@uM; they also do not reason about du-
plicates in the query results. QAGen [3] is another appraaauery-solving. It first processes a query
in an adhoc-way, which requires numerous user-provide®Bkrsettings as additional inputs. From
the query, a propositional logic formula is generated, Whécthen decided by the Cogeht [8] solver to
generate the test inputs. In [2] a model-checking basedoappr called Reverse Query Processing, is
introduced that, given a query and a result table as inputnme a possible database instance that could
have produced that result for that query, the approach esesse relational algebra. In [25] an inten-
tional approach is presented in which the database stajesed for testing are specified as constrained
queries using a domain specific language. Recently, test ggneration of queries has been combined
with test input generation of programs that contain embedyleeries in the program text [12], using
ad-hoc heuristic solvers for some of the arising constdhaim the program and the queries.

8 Conclusion and future work

The current implementation of the Qex project is still ingtrly stages, but we were highly encouraged
by the performance improvements when switching to the lppy@ach and reducing the need for nonlin-
ear constraints through a different representation oetablhere are many more possible optimizations
that can be performed as a preprocessing step on formulasaged by Qex, before asserting them to the
SMT solver. One such optimization, using automata theoag ilustrated in Examplel 3 and Figurke 2
when multiple like-patterns occur in a query. Systemateppocessing can also often reveal that a query
is trivially false, independent of the size of input tableg., if an _’ is missed in the first like-pattern in
Example B then the product automaton would be empty.

For practical usage in an industrial context, where SQL iggaare usually embedded in other pro-
grams or in store procedures, we are looking at integratieg i@ Pex [18]. For efficient support for
regex constraints in Pex, integration of Rex|[23] is a firgpsh that integration.

It is also possible to apply a translation similar to the oasadibed in the paper to LINQ queries,
although, unlike in SQL, the semantics of LINQ queries delsenn the order of the rows in the tables.
This fits well with the list representation of tables but ilmps some limitations on the use of certain
optimizations (such as the use of symmetry breaking forg)ula

13

Qex: Symbolic SQL query explorer Veanes, Tillmann, and dielda

A practical limitation of Qex is if queries use multiple jeirand aggregates and the input tables
need to contain a high number of rows in order to satisfy teedendition. Another limitation is the
use nonlinear constraints over unbounded integers, iicpkat multiplication, that has currently only
limited support in Z3. We consider using bitvectors insteBdspite these limitations, the mere size of
queries does not seem to be a concern, neither the sikk(gf for a given queny. The size ofTh(q)
may easily be in hundreds, in particular when several likgepns are used, where the number of axioms
is proportional to the size of the finite automaton acceptivggpattern.

Acknowledgement

We thank Nikolaj Bjgrner for the continuous support with Zgldor suggesting the idea of using sym-
metry breaking formulas discussed in Sectfion 5.2.

References

[1] SELECT (T-SQL). http://msdn.microsoft.com/en-usrary/ms189499.aspx.

[2] C. Binnig, D. Kossmann, and E. Lo. Reverse query proogssin Proceedings of the 23rd International
Conference on Data Engineering (ICDE 200@ages 506-515. IEEE, 2007.

[3] C.Binnig, D. Kossmann, E. Lo, and M. Dzsu. Qagen: generating query-aware test databassfGMOD
'07: Proceedings of the 2007 ACM SIGMOD international coefee on Management of dataages 341—
352, New York, NY, USA, 2007. ACM.

[4] R.S.BoyerandJ. S. Mooré& computational logic handbookcademic Press Professional, Inc., San Diego,
CA, USA, 1988.

[5] U. S. Chakravarthy, J. Grant, and J. Minker. Logic-baapdroach to semantic query optimizatiohACM
Trans. Database Sysfl5(2):162—-207, 1990.

[6] D.Chays, J. Shahid, and P. G. Frankl. Query-based tesirgéon for database applications.Hroceedings
of the 1st International Workshop on Testing Database 8yst@®BTest'08)pages 1-6, New York, NY,
USA, 2008. ACM.

[7]1 H. R. Chinaei. An ordered bag semantics of SQL. Mast&esis, University of Waterloo, Waterloo, Ontario,
Canada, 2007.

[8] B. Cook, D. Kroening, and N. Sharygina. Cogent: Accutéeorem proving for program verification. In
Proceedings of CAV 2005, volume 3576 of Lecture Notes in Gtansciencepages 296-300. Springer,
2005.

[9] E. Dantsin and A. Voronkov. Complexity of query answeriim logic databases with complex values. In
Proceedings of the 4th International Symposium on Logicalngations of Computer Science (LFCS'97)
pages 56—66, London, UK, 1997. Springetr.

[10] L. de Moura and N. Bjgrner. Z3: An efficient SMT solver. Tools and Algorithms for the Construction and
Analysis of Systems, (TACAS'0OBNCS. Springer, 2008.

[11] Y. Deng, P. Frankl, and D. Chays. Testing databaseactimns with AGENDA. INCSE '05: Proceedings of
the 27th international conference on Software engineepages 78—87, New York, NY, USA, 2005. ACM.

[12] M. Emmi, R. Majumdar, and K. Sen. Dynamic test input gatien for database applications.Pnoceedings
of the 2007 International Symposium on Software TestingAaralysis (ISSTA'07)pages 151-162. ACM,
2007.

[13] W. Hodges.Model theory Cambridge Univ. Press, 1995.

[14] D. Jackson. Automating first-order relational logBiIGSOFT Softw. Eng. Note&5(6):130-139, 2000.

[15] D. JacksonSoftware AbstractiondMIT Press, 2006.

[16] S. A. Khalek, B. Elkarablieh, Y. O. Laleye, and S. KhugshQuery-aware test generation using a relational
constraint solver. IASE pages 238-247, 2008.

14

Qex: Symbolic SQL query explorer Veanes, Tillmann, and dielda

[17] M. Negri, G. Pelagatti, and L. Sbattella. Formal senedf SQL queriesACM Transactions on Database
Systemsl7(3):513-534, September 1991.

[18] Pex. http://Iresearch.microsoft.com/projects/pex.
[19] Qex. http://research.microsoft.com/projects/gex.

[20] S. Ranise and C. Tinelli. The SMT-LIB Standard: Versib@. Technical report, Department of Computer
Science, The University of lowa, 2006. Availablewats. SMT-LIB.org.

[21] T. Sheard and D. Stemple. Automatic verification of Batse transaction safe#xCM Trans. Database Syst.
14(3):322-368, 1989.

[22] W. T. Tsai, D. Volovik, and T. F. Keefe. Automated tesseajeneration for programs specified by relational
algebra queriedEEE Trans. Softw. Engl16(3):316—324, 1990.

[23] M. Veanes, P. de Halleux, and N. Tillmann. Rex: Symbadigular expression explorer. In A. Cavalli and
S. Ghosh, editorsThird International Conference on Software Testing, Meaifon and Validation (ICST
2010) Paris, France, April 2010. IEEE.

[24] M. Veanes, P. Grigorenko, P. de Halleux, and N. Tillma8gmbolic query exploration. In K. Breitman and
A. Cavalcanti, editordCFEM’09, volume 5885 of NCS pages 49-68. Springer, 2009.

[25] D. Willmor and S. M. Embury. An intensional approach e tspecification of test cases for database appli-
cations.28th International Conference on Software Engineerjpapes 102-111, 2006.

[26] Z3. http://research.microsoft.com/projects/z3.

Appendix: Select with grouping and aggregates

Select clauses with aggregates and grouping are tran@tdefdrmulas using the following axioms. Let
t1:p be a term with a single free variabig: 0. Lett, : Z be a term with a single free variabig: o.
Intuitively, o is a tuple sort, botky andt, are projections, and the termcorresponds to some aggregate
operation, such as MAX.

We declare the function symb8klectt; ,to] : IL(0) — L(T(p,Z)) and define a set of recursive axioms
for it that for each element in the list collect the maximuntueawith respect td, and then create a list
of pairs that for each projectidn provides that maximum value. In order to define these axiamays
(mathematical maps) are used.

Given argument sorr; and result sortz, A(01, 02) is the corresponding array sort. (In particular
S{o1) is synonymous withi\(o1,B).) Declare

Selecft;, MAX (t2)] : L{o) — L(T(p,Z)),
Sell : L{(o)xA(0,Z)xL{o)— L{o),
Sel2 : L(o)xA(o,Z)— L{o)

and define the axioms, whefgrayReadandArrayStoreare built-in,

vx(Seleclt;, MAX (t2)](x) = Sellx,{-+— —o} X))
vx(Sellcongxp,X1),%2,%3) = Sellxy,lte(ArrayReadxy, T (t1,t2)) > tz, X2,
ArrayStoréxy, T (t1,12),t2)),X3))
vx(Sellnil,xo,x1) = SeldXy,%0))
Vx(SelZcongxg,X1),X2) = congArrayReadxy, T (t1,t2)), Seldxq,X%2)))
vx(SelZnil,x) = nil)

15

	Introduction
	Preliminaries
	Equational axioms over lists
	Equational axioms and E-matching in SMT solvers
	Axioms over lists
	Filter
	Map
	Reduce
	Cross product
	Remove duplicates

	From SQL to formulas
	Tables and table constraints
	Null values
	Formulas for queries
	SELECT clauses
	Aggregates
	LIKE-patterns

	Implementation
	Incremental table generation
	Symmetry breaking formulas

	Experiments
	Related work
	Conclusion and future work

