
Qex: Symbolic SQL Query Explorer∗

Margus Veanes, Nikolai Tillmann, and Jonathan de Halleux
Microsoft Research, Redmond, WA, USA

{margus,nikolait,jhalleux}@microsoft.com

Abstract

We describe a technique and a tool called Qex for generating input tables and parameter values
for a given parameterized SQL query. The evaluation semantics of an SQL query is translated into
a specific background theory for a satisfiability modulo theories (SMT) solver as a set of equational
axioms. Symbolic evaluation of a goal formula together withthe background theory yields a model
from which concrete tables and values are extracted. We use the SMT solver Z3 in the concrete
implementation of Qex and provide an evaluation of its performance.

1 Introduction

The original motivation behind Qex comes fromunit testingof relational databases, where a key chal-
lenge is the automatic generation of input tables and parameters for a given query and a given test
condition, where a typical test condition is that the resultof the query is a nonempty table. An early
prototype of Qex as a proof-of-concept and an integration ofQex into the Visual Studio Database edi-
tion is discussed in [19, 24]. Here we present a new approach for encoding queries that uses algebraic
datatypes and equational axioms, taking advatage of recentadvances in SMT technology. The encoding
is much simpler than the one described in [24], and boosted the performance of Qex by several orders of
magnitude. In [24] algebraic datatypes were not available and queries were encoded into an intermediate
background theoryT Σ using bags and a summation operator. The resulting formula was eagerly ex-
panded, for a given size of the database, into a quantifier free formula that was then asserted to the SMT
solver. The expansion often caused an exponential blowup inthe size of the expanded formula, even
when some parts of the expansion were irrelevant with respect to the test condition. The new approach
not only avoids the eager expansion but avoids also the need for nonlinear constraints that arise when
dealing with multiplicities of rows in bags and aggregates over bags. Moreover, the axiomatic approach
makes it possible to encode frequently occurring like-patterns through an automata based technique, and
other string constraints. To this end, Qex now encodes strings faithfully as character sequences, whereas
in [24] strings were abstracted to integers with no support for general string operations. Furthermore,
algebraic datatypes provide a straightforward encoding for value types that allow null values. In addition,
Qex now also handles table constraints and uses symmetry breaking formulas for search space reduction.

The core idea is as follows. A given SQL queryq is translated into a term[[q]] over a rich background
theory that comes with a collection of built-in (predefined)functions. Tables are represented by lists of
tuples, where lists are built-in algebraic datatypes. In addition to built-in functions (such as arithmetical
operations) the term[[q]] may also use functions whose meaning is governed by a set of additional ax-
ioms referred to asTh(q). These custom axioms describe the evaluation rules of SQL queries and are in
most cases defined as recursive list axioms that resemble functional programs. Table 1 provides a rough
overview of the SQL constructs supported in Qex and the corresponding theories used for mapping a
given construct into a formula for Z3 [26, 10] that is used as the underlying SMT solver in the imple-
mentation of Qex. As indicated in the table, in all of the cases there is also an additional set of custom
axioms that are used in addition to the built-in ones.

∗Microsoft Research Technical Report MSR-TR-2009-2015, October 2009, Updated January 2010

1

Qex: Symbolic SQL query explorer Veanes, Tillmann, and de Halleux

Table 1: Overview of features in Qex and related use of SMT theories.

Built-in theories Custom
Features Arithmetic Bitvectors Sets Arrays Algebraic d.t. Tuples theories

Table constraints ! ! ! ! !
SELECT clauses ! ! !

Aggregates ! ! ! ! ! !
LIKE patterns ! ! !

Null values ! !
For input tables and other parameters, the term[[q]] uses uninterpreted constants. Given a condition

ϕ over the result of[[q]], e.g.,[[q]] 6= nil ([[q]] is nonempty),ϕ is asserted to the SMT solver as a goal
formula andTh(q) is asserted to the SMT solver as an additional set of axioms, sometimes called asoft
theory. Next, a satisfiability check is performed together withmodel generation. If ϕ is satisfiable then
the generated model is used to extract concrete values (interpretations) for the input table constants and
other additional parameter constants.

The rest of the paper is structured as follows. Section 2 introduces some basic notions that are used
throughout the paper. Section 3 defines a custom theory of axioms over lists that are used in Section 4
to translate queries into formulas. Section 5 discusses theimplementation of Qex with a focus on its
interaction with Z3. Section 6 provides some experimental evaluation of Qex. Section 7 is about related
work, and Section 8 provides some final remarks.

2 Preliminaries

We assume that the reader is familiar with elementary concepts in logic and model theory, our terminol-
ogy is consistent with [13] in this regard.

We are working in a fixed multi-sorted universeU of values. For each sortσ , U σ is a separate
subuniverse ofU . The basic sorts needed in this paper are the Boolean sortB, (U B = {true, false}), the
integer sortZ, and then-tuple sortT〈σ0, . . . ,σn−1〉 for n≥ 1 of some given basic sortsσi for i < n. We
also use other sorts but they are introduced at the point whenthey are first needed.

There is a collection of functions with a fixed meaning associated with the universe, e.g., arithmetical
operations overU Z. These functions and the corresponding function symbols are calledbuilt-in. Each
function symbol f of arity n ≥ 0 has a fixed domain sortσ0 × ·· · × σn−1 and a fixed range sortσ ,
f : σ0×·· ·×σn−1 → σ . For example, there is a built-inrelation or predicate(Boolean function) symbol
< : Z×Z→B that denotes the standard order on integers. One can also declarefresh(new)uninterpreted
function symbolsf of arity n≥ 0, for a given domain sort and a given range sort. Using model theoretic
terminology, these new symbolsexpandthe signature.

Termsandformulas(or Boolean terms) are defined by induction as usual and are assumed to be well-
sorted. We writeFV(t) for the set of free variables in a term (or formula)t. A term or formula without
free variables isclosed.

A modelis a mapping from function symbols to their interpretations(values). The built-in function
symbols have the same interpretation in all models that we are considering, keeping that in mind, we
may omit mentioning them in a model. A modelM satisfiesa closed formulaϕ , M |= ϕ , if it provides
an interpretation for all the uninterpreted function symbols in ϕ that makesϕ true. For example, let
f : Z → Z be an uninterpreted function symbol andc : Z be an uninterpreted constant. LetM be a

2

Qex: Symbolic SQL query explorer Veanes, Tillmann, and de Halleux

model wherecM (the interpretation ofc in M) is 0 and f M is a function that maps all values to 1. Then
M |= 0 < f (c) but M 6|= 0 < c.

A closed formulaϕ is satisfiableif it has a model. A formulaϕ with FV(ϕ) = x̄ is satisfiableif its
existential closure∃x̄ϕ is satisfiable. We write|=U ϕ , or |= ϕ , if ϕ is valid (true in all models). Some
examples: 0< 1∧2 < 10 is valid; 4< x∧ x < 5, wherex:Z is a free variable, is unsatisfiable because
there exists no integer between 4 and 5; 0< x∧x < 3, wherex:Z is a free variable, is satisfiable.

3 Equational axioms over lists

The representation of a table in Qex is a list of rows, where a row is a tuple. While bags of rows rather
than lists would model the semantics of SQL more directly (order of rows is irrelevant, but multiple
occurrences of the same row are relevant), the inductive structure of a list provides a way to define the
evaluation semantics of queries by recursion. The mapping of queries to axioms, discussed in Section 4,
uses a collection of axioms over lists that are defined next. Intuitively, the axioms correspond to defini-
tions of standard (higher order) functionals that are typical in functional programming. The definitions
of the axioms below, although more concise, correspond precisely to their actual implementation in Qex
using the Z3 API. Before describing the actual axioms, we explain the intuition behind a particular kind
of axioms, that we callequational, when used in an SMT solver.

3.1 Equational axioms and E-matching in SMT solvers

During proof search in an SMT solver, axioms are triggered bymatching subexpressions in the goal. Qex
uses particular kinds of axioms, all of which are equations of the form

∀x̄(tlhs = trhs) (1)

whereFV(tlhs) = x̄ andFV(trhs) ⊆ x̄. The left-hand-sidetlhs of (1) is called thepatternof (1).

While SMT solvers support various kinds of patterns in general, in this paper we use the
convention that the pattern of an equational axiom is alwaysits left-hand-side.

The high-level idea behindE-matching is as follows. The axiom (1) istriggeredby the current goal
ψ of the solver, ifψ contains a subtermu and there exists a substitutionθ such thatu =E tlhsθ , i.e., u
matches the patternof the axiom (modulo the built-in theoriesE). If (1) is triggered, then the current
goal is replaced by thelogically equivalentformula whereu has been replaced bytrhsθ .

Thus, the axioms that are used in Qex can be viewed as “rewriterules”, and each application of an
axiom preserves the logical equivalence to the original goal. As long as there exists an axiom in the
current goal that can be triggered, then triggering is guaranteed. Thus, termination is in general not
guaranteed in the presence of (mutually) recursive axioms.Note that, unlike in term rewrite systems,
there is no notion of term orderings or well-defined customizable strategies (at least not in the current
version of Z3) that could be used to guide the triggering process of the axioms.

3.2 Axioms over lists

For each sortσ there is a built-inlist sort L〈σ〉 and a corresponding subuniverseU L〈σ〉. (In Z3, lists
are provided as built-in algebraic datatypes and are associated with standard constructors and accessors.)
For a given element sortσ there is an empty listnil (of sortL〈σ〉) and ife is an element of sortσ andl is
a list of sortL〈σ〉 thencons(e, l) is a list of sortL〈σ〉. The accessors are, as usual,hd (head) andtl (tail).
In the following consider a fixed element sortσ . Observe that one can define a well-ordering such that,

3

Qex: Symbolic SQL query explorer Veanes, Tillmann, and de Halleux

in all of the recursive cases of the axioms, the right-hand-side decreases with respect to that ordering,
which guarantees that triggering terminates and implies that the axioms are well-defined. In all of the
cases, the use of the list constructors in the patterns is fundamental. In most cases one can provide more
compact and logically equivalent definitions of the axioms where the right-hand-sides are combined in a
disjunction, but where the pattern is too general and may cause nontermination of axiom triggering in an
SMT solver.

3.2.1 Filter

Let ϕ be a formula with a single free variablex0 :σ . Declare the function symbolFilter [ϕ] :L〈σ〉→L〈σ〉
and define the following axioms:

Filter [ϕ](nil) = nil

∀x0x1 (Filter [ϕ](cons(x0,x1)) = Ite(ϕ ,cons(x0,Filter [ϕ](x1)),Filter [ϕ](x1)))

TheIte-term Ite(φ , t1, t2) equalst1, if φ is true; it equalst2, otherwise.Ite is a built-in function.

3.2.2 Map

Let t :ρ be a term with a single free variablex0 :σ . Declare the function symbolMap[t] :L〈σ〉 → L〈ρ〉
and define:

Map[t](nil) = nil

∀x0x1 (Map[t](cons(x0,x1)) = cons(t,Map[t](x1)))

3.2.3 Reduce

Let t :ρ be a term with two free variablesx0 :σ andx1 :ρ . Declare the function symbolReduce[t] :L〈σ〉×
ρ → ρ and define:

∀x(Reduce[t](nil,x) = x)

∀x0x1 x2 (Reduce[t](cons(x0,x2),x1) = Reduce[t](x2, t))

For example, ifl :L〈Z〉 is a list of integers, thenReduce[x0 +x1](l ,0) is equal to the sum of the integers
in l , or 0 if l is empty (in any model that satisfies the correspondingReduce[]-axioms).

3.2.4 Cross product

Declare the function symbolsCross:L〈σ〉×L〈ρ〉 → L〈T〈σ ,ρ〉〉 andCr :σ ×L〈σ〉×L〈ρ〉×L〈ρ〉 →
L〈T〈σ ,ρ〉〉, and define

∀x(Cross(nil,x) = nil)

∀x(Cross(x,nil) = nil)

∀x̄(Cross(cons(x0,x1),cons(x2,x3)) = Cr(x0,x1,cons(x2,x3),cons(x2,x3)))

∀x̄(Cr(x0,x1,nil,x2) = Cross(x1,x2))

∀x̄(Cr(x0,x1,cons(x2,x3),x4) = cons(T(x0,x2),Cr(x0,x1,x3,x4)))

whereT :σ ×ρ → T〈σ ,ρ〉 is the built-in tuple constructor (for the given sorts). Forexample, the term
Cross(cons(1,cons(2,nil)),cons(3,cons(4,nil))) is equal to the term

cons(T(1,3),cons(T(1,4),cons(T(2,3),cons(T(2,4),nil)))).

4

Qex: Symbolic SQL query explorer Veanes, Tillmann, and de Halleux

3.2.5 Remove duplicates

The functionRemoveDuplicatesis used to remove duplicates from a list. The definition makesuse of
built-in sets and set operations; the set sort of element sort σ is denotedS〈σ〉.

Declare:RemoveDuplicates:L〈σ〉 → L〈σ〉, Rd:L〈σ〉×S〈σ〉→ L〈σ〉. Define:

∀x(RemoveDuplicates(x) = Rd(x, /0))

∀x(Rd(nil,x) = nil)

∀x̄(Rd(cons(x0,x1),x2) = Ite(x0 ∈ x2,Rd(x1,x2),cons(x0,Rd(x1,{x0}∪x2))))

4 From SQL to formulas

In this section we show how we translate an SQL queryq into a set of axiomsTh(q) that is suitable as an
input soft theory to an SMT solver. The translation makes useof the list axioms discussed in Section 3.
We omit full details of the translation and illustrate it through examples and templates, which should be
adequate for understanding how the general case works. The focus is on the purely relational subset of
SQL (without side-effects). We start by describing how tables are represented.

4.1 Tables and table constraints

Tables are represented by lists of rows where each row is a tuple. The sorts of the elements in the tuple
are derived from the types of the corresponding columns thatare given in the database schema. The
currently supported column types in Qex are:BigInt, Int, SmallInt, TinyInt, Bit, andChar. The
first four types are mapped toZ (and associated with a corresponding range constraint, e.g., between 0
and 255 forTinyInt). Bit is mapped toB. Char (that in SQL stands for a sequence of characters) is
mapped to thestring sort(or word sort) W = L〈C〉, whereC is the built-in sort ofn-bitvectors for some
fixed n that depends on the character range: UTF-16 (n = 16), basic ASCII (n = 7), extended ASCII
(n = 8).

The order of rows in a table is irrelevant regarding the evaluation semantics of queries. The number of
times the same row occurs in a table is themultiplicity of the row. In general, duplicate rows are allowed
in tables so the multiplicity may be more than one. However, in most cases input tables have primary
keys that disallow duplicates. Tables may also be associated with other constraints such as foreign key
constraints and restrictions on the values in the columns. In Qex, these constraints are translated into
corresponding formulas on the list elements. The followingexample illustrates that aspect of Qex.

Example 1. Consider the following schema for a school database.

CREATE TABLE [School].[Scores]

(StudentID tinyint not null FOREIGN KEY REFERENCES Students(StudentNr),

CourseID tinyint not null CHECK(1 <= CourseID and CourseID <= 100),

Points tinyint not null CHECK(Points <= 10),

PRIMARY KEY (StudentID, CourseID),

CHECK(NOT(1 <= CourseID and CourseID <= 10) or Points < 6));

CREATE TABLE [School].[Students]

(StudentNr tinyint not null PRIMARY KEY,

StudentName char(100) not null);

The (primary) key of theScores table is the pair containing a student id and a course id and each row
provides the number of points the student has received for the given course. The additional constraints

5

Qex: Symbolic SQL query explorer Veanes, Tillmann, and de Halleux

are that the course ids go from 1 to 100, no course gives more than 10 points and courses 1 through 10
give a maximum of 5 points.

Qex declares the table variablesScores:L〈T〈Z,Z,Z〉〉 andStudents:L〈T〈Z,W〉〉. There is a given
boundk on the number of rows in each table. (In general there is a separate bound per table and the
bounds are increased during model generation discussed in Section 5.) The following equalities are
generated:

Scores = cons(Scores0, . . . ,cons(Scoresk−1,nil))
Students = cons(Students0, . . . ,cons(Studentsk−1,nil))

whereScoresi :T〈Z,Z,Z〉 andStudentsi :T〈Z,W〉 for i < k. For the primary key constraints, the fol-
lowing formulas are generated. The distinctness predicateand the projections functionsπi on tuples are
built-in. We use t.i to abbreviate the termπi(t).

Distinct(T(Scores0.0,Scores0.1), . . . ,T(Scoresk−1.0,Scoresk−1.1))
Distinct(Students0.0, . . . ,Studentsk−1.0)

For expressing the foreign key constraint, Qex uses the built-in sets and the subset predicate:

{Scoresi .0}i<k ⊆ {Studentsi .0}i<k

The remaining constraints are conjunctions of check-constraints on individual rows, e.g.,

∧

i<k

(¬(1≤ Scoresi .1∧Scoresi .1≤ 10)∨Scoresi.2 < 6)

asserts that courses 1 through 10 give a maximum of 5 points. �

4.2 Null values

If a column in a table is optional, it may contain a null value as a placeholder for an unknown value.
Any column in SQL (other than a primary key column) is optional unless anot null type constraint
is associated with the column type. Algebraic datatypes provide a convenient mechanism to represent
optional values throughlifted sorts. Let σ be any sort. Declare the datatype ?〈σ〉 with the constructors
NotNull : σ → ?〈σ〉, Null : ?〈σ〉, the accessorValue: ?〈σ〉 → σ (that maps any valueNotNull(a) to a),
and the testersIsNotNull : ?〈σ〉 → B, IsNull : ?〈σ〉 → B. Declaring such datatypes is directly supported
in Z3.

When an SQL expressione is encoded as a term[[e]], it is assumed thate is well-formed. Operations
using optional values are assumed to occur in a context wherethe value is known to be not null. SQL
includes particular predicatesIS NULL andIS NOT NULL for this purpose. In the translation the corre-
sponding testers are used and theValueaccessor is applied to cast the optional value to its underlying
sort.

Note that, formally, there is a distinct null value for each lifted sort. This does not cause a semantic
discrepency with SQL, since it is not possible in SQL to compare null values with comparison operators.

4.3 Formulas for queries

As the concrete input of queries, Qex uses a subset of the abstract syntax of the TSQL [1] grammar. It
is not feasible to fit the full details of the translation fromqueries to formulas into the paper, instead, we
look at a collection of representative samples that illustrate the core ideas behind the translation. In the
samples, we reuse the schema from Example 1. We denote the formula resulting from a queryq by [[q]].

6

Qex: Symbolic SQL query explorer Veanes, Tillmann, and de Halleux

4.3.1 SELECT clauses

The main component of a query is aselect clause. A select clause refers to a particular selection of
columns from a given table by using aselect list. The table is often a derived table, as the result of a join
operation. Consider the queryq:

SELECT StudentName, Points

FROM Students JOIN Scores ON Scores.StudentID = Students.StudentNr

WHERE Scores.CourseID = 10 AND Scores.Points > 0

The formula[[q]] is:

Map[T(x.0.1,x.1.2)](Filter [x.1.1 = 10∧x.1.2 > 0](
Filter [x.0.0 = x.1.0](Cross(Students,Scores))))

wherex:T〈T〈Z,W〉,T〈Z,Z,Z〉〉. Such formulas get human-unreadable very quickly. During the process
of creating[[q]], usually several list axioms are created. This set of axiomsis referred to asTh(q). In
particular, in this caseTh(q) includes the axioms for the map, filter, and cross product function symbols
that occur in[[q]].

4.3.2 Aggregates

Aggregates are used to combine values from all the rows in a table. The most common aggregates are
MIN, MAX, SUM, andCOUNT. For example, the following queryq1 selects the maximum points from the
Scores table.

SELECT DISTINCT MAX(Points) from Scores

Depending on the use ofq1, the translation[[q1]] is either the singleton list:

cons(T(Reduce[Ite(x0.2≥ x1,x0.2,x1)](Scores,−∞)),nil)

or just theReduce[]-term:

Reduce[Ite(x0.2≥ x1,x0.2,x1)](Scores,−∞)

The first case applies ifq1 is used as a top-level query, the second case applies ifq1 is used as asubquery
expression. The second case applies in the following queryq2 that also uses theMAX aggregate in the top
level select list in combination withGROUP BY that eliminates duplicates from the resulting table:

SELECT StudentID, MAX(Points) FROM Scores GROUP BY StudentID

HAVING MAX(Points) = (SELECT DISTINCT MAX(Points) from Scores)

The queryq2 selects all students that have the most points at some course. The translation of[[q2]] is
as follows where theFilter [] application corresponds to the HAVING clause that is applied to the result
of the grouping.

Filter [x.1 = [[q1]]](RemoveDuplicates(Select[x0.0,MAX (x0.3)](Scores)))

The definition ofSelect[] is technically more complicated but similar to the other recursive list axioms.
It collects the maximum points for each student id and uses the built-in arrays in Z3 to accumulate the
values, see the Appendix.

7

Qex: Symbolic SQL query explorer Veanes, Tillmann, and de Halleux

4.3.3 LIKE-patterns

Like-patterns are particular regular expressions that canbe used as constraints on strings. A like-pattern
r is converted into asymbolic finite automaton[23] (SFA)Ar that is similar to a classical finite automaton
except that moves are labeled by formulas denotingsetsof characters rather than single characters. The
automatonAr is translated into a theoryTh(Ar). The theory describes the acceptance condition for words
in L(Ar). In particular,Th(Ar) defines a predicate

AccAr :W×N → B,

whereN is an algebraic datatype forunary natural numberswith the constructors0:N ands :N → N.
We writek+1 for s(k). We use the following property of the theory ofAr [23, Theorem 1]:

Proposition 1. Let t be a closed term of sortW, k a nonnegative integer, and M a model of Th(Ar). Then
M |= AccAr (t,k) iff tM ∈ L(Ar) and |tM | ≤ k.

In column type declarations of SQL database schemas, a maximum string length is associated with
thechar type (default being 1), e.g., the typechar(100) of a column allows strings containing at most
100 characters. In the formulaAccAr (t,k), wheret refers to a column whose values are strings,k is the
maximum length of the strings in that column.

Example 2. Consider the queryq that selects students whose name starts with the letterB followed by
any letter betweena andn followed by 0 or more additional characters:

SELECT StudentName FROM Students WHERE StudentName like "B[a-n]%"

The SFAA for "B[a-n]%" is
S0 S1

#=B
S2

true

(#>=a)&(#<=n)

where # is a free variable of sortC and
each symbolic move(i,ϕ [#], j) denotes the set of transitions{(i,a, j) | a∈ U C, |= ϕ [a]}. For each state
S0,S1,S2of A there are two axioms inTh(A), one for length bound= 0 and the other one for length
bound> 0:

S0: ∀x(Acc(x,0) ⇔ false) ∀xy(Acc(x,s(y)) ⇔ x 6= nil ∧hd(x) = B∧Acc1(tl(x),y))
S1: ∀x(Acc1(x,0) ⇔ false) ∀xy(Acc1(x,s(y)) ⇔ x 6= nil ∧hd(x) ≥ a∧hd(x) ≤ n∧Acc2(tl(x),y))
S2: ∀x(Acc2(x,0) ⇔ x = nil) ∀xy(Acc2(x,s(y)) ⇔ x = nil ∨ (x 6= nil ∧Acc2(tl(x),y)))

The term[[q]] is Map[T(x0.1)](Filter [Acc(x0.1,100)](Students)). Note thatTh(A) ⊆ Th(q). �

The automata based approach opens up several transformation techniques that can be performed
in the process of encoding queries and theories of queries that involve like-patterns. These upfront
transformations can greatly simplify the formulas. We illustrate this with an example involving the use
of productof SFAs [23].

Proposition 2. Let A and B be SFAs, then L(A⊗B) = L(A)∩L(B).

Example 3. Consider the following queryqLIKE with n+ 1 occurrences of “” in the first like-pattern
andn occurrences of “” in the second like-pattern:

SELECT StudentName FROM Students

WHERE StudentName like "%a_____" AND StudentName like "%b____"

8

Qex: Symbolic SQL query explorer Veanes, Tillmann, and de Halleux

The first like-pattern corresponds to the regexr1=.*a.{n+1} and the second like-pattern corresponds
to the regexr2=.*b.{n}. The query is essentially an intersection constraint ofr1 and r2. In a direct
encoding ofqLIKE , Th(qLIKE) includes both the axioms forAr1 as well asAr2. Rather than usingAr1 and
Ar2 separately, the productAr1 ⊗Ar2 of Ar1 andAr2 can be used together with the theoryTh(Ar1 ⊗Ar2)
instead ofTh(Ar1)∪Th(Ar2). Thus, withproduct encoding,

[[qLIKE]] = Map[T(x0.1)](Filter [AccAr1⊗Ar2(x0.1,100)](Students))

and withdirect encoding,

[[qLIKE]] = Map[T(x0.1)](Filter [AccAr1(x0.1,100)∧AccAr2(x0.1,100)](Students))

The gain in performance is discussed in Section 6. �

Note that correctness of the transformation illustrated inExample 3 follows from Propositions 1
and 2.

5 Implementation

Qex uses the SMT solver Z3 [26, 10]. Interaction with Z3 is implemented through its programmatic API
rather than using a textual format, such as the smt-lib format [20]. The main reasons for working with
the API are: access to built-in datatypes; model generation; working within a given context. The first
point is fundamental, since algebraic datatypes are central to the whole approach and are not part of the
smt-lib standard.

Besides allowing to check satisfiability, perhaps the most important feature exposed by some SMT
solvers (including Z3) for the purposes of test input generation isgenerating a modelas a witness of the
satisfiability check, i.e., a mapping of the uninterpreted function symbols to their interpretations. Z3 has
a separate method for satisfiability checking with model generation. This code snippet illustrates the use
of that functionality:

Model m;

z3.AssertCnstr(f);

LBool sat = z3.CheckAndGetModel(out m);

Term v = m.Eval(s); ...

A contextincludes declarations for a set of symbols, and assertions for a set of formulas. A context
is essentially a layering mechanism for signature expansions with related constraints. There is acurrent
contextand a backtrack stack of previous contexts. Contexts can be saved throughpushingand restored
throughpopping. When a satisfiability check is performed in a given context,the context may become
inconsistent. Qex uses contexts during table generation and in SFA algorithms during theory generation
for like-patterns.

5.1 Incremental table generation

Let q be a fixed query and assume thatX1, . . . ,Xn are the input table variables. Assume[[q]] :σ and let
ϕ [Y] be a formula with the free variableY :σ . Intuitively, ϕ is atest conditionon the result of the query,
e.g. Y 6= nil. The followingbasic table generation proceduredescribes the input table generation forq
andϕ .

1. AssertTh(q), i.e. add the axioms ofq to the current context.

9

Qex: Symbolic SQL query explorer Veanes, Tillmann, and de Halleux

2. Let~k = (k1, . . . ,kn) = (1, . . . ,1) be the initial sizes of the input tables. Repeat the following until a
modelM is found or a timeout occurs.

(a) Push the current context, i.e., create a backtrack point.

(b) Create constraints forX1, . . . ,Xn using~k to fix the table sizes.

(c) Assertϕ [[[q]]]

(d) Check and get the modelM. If the check fails, increase~k systematically and pop the context.

3. Get the values ofX1, . . . ,Xn in M.

There are several possible variations of the basic procedure. The table constraints can be updated incre-
mentally when the table sizes are increased. The table constraints can also be created forupperbounds
rather than exact bounds on the table sizes. One way to do so isas follows:

table= cons(row1, rest1)∧ (rest1= nil ∨ (rest1= cons(row2, rest2)∧ ·· ·))

The size of the overall resulting formula is always polynomial in the size of the original query and~k.
In practice, Qex uses bounds on~k and overall time constraints to guarantee termination, as deciding the
satisfiability of queries is undecidable in general [9].

5.2 Symmetry breaking formulas

The translation of a queryq into a formula[[q]] together withTh(q) and the additional table constraints
looks very much like a “functional program with constraints”. This intuition is correct as far as the logical
meaning of the translation is concerned. There are, however, no mechanisms to control the evaluation
order of patterns (such as, “outermost first”) and no notion of term orderings. The search space for[[q]]
is typically vast.

Recall that although Qex uses lists to encode tables, the order of rows is not relevant according
to the SQL semantics. We can therefore assert predicates that constrain the input tables to beor-
dered (thus eliminating all symmetrical models where the ordering does not hold). Consider a ta-
ble cons(row0,cons(row1, · · ·cons(rown,nil))) of sort L〈σ〉. Define a lexicographic order predicate
� :σ ×σ → B. The definition of� on integers is just the built-in order≤, similarly for bitvectors.
For tuples, it is the standard lexicographic order defined interms of the orders of the respective element
sorts. For strings (lists of bitvectors) the order predicate can be defined using recursion over lists. Assert
thesymmetry breaking formula ∧

i<n−1

rowi � rowi+1

In some situations the symmetry breaking formula can be strengthened. For example, when the table has
a primary key then the formula can be strengthened by using the strict order≺ instead of�. Moreover, if
all of the columns are part of the primary key then the primarykey constraint itself becomes redundant.

Using symmetry breaking over lists in this way improves the performance by orders of magnitude
over the previous approach [24] using bags.

6 Experiments

We provide some performance evaluation results of Qex on a collection of sample queries.1 In the first set
of experiments we look at the performance of the basic table generation procedure. In these experiments

1The experiments were run on a Lenovo T61 laptop with Intel dual core T7500 2.2GHz processor.

10

Qex: Symbolic SQL query explorer Veanes, Tillmann, and de Halleux

Table 2: Sample queries.

Query t[ms] k

1

DECLARE @x as tinyint;

SELECT DISTINCT Scores.StudentID, SUM(Scores.Points)

FROM Scores

WHERE Scores.Points > 2

HAVING SUM(Scores.Points) >= @x AND @x > 5

20 1

2
SELECT Scores.StudentID, MAX(Scores.Points)

FROM Scores

GROUP BY Scores.StudentID

HAVING MAX(Scores.Points) = (SELECT MAX(Scores.Points) FROM Scores)

20 1

3

DECLARE @x as tinyint;

SELECT DISTINCT COUNT(S.StudentName)

FROM Students as S

WHERE S.StudentName LIKE "%Mar[gkc]us%" AND S.StudentNr > @x

HAVING COUNT(S.StudentName) > @x AND @x > 2

1200 4

4

DECLARE @x as tinyint;

SELECT Students.StudentName, SUM(Points)

FROM Scores JOIN Students ON Scores.StudentID = Students.StudentNr

WHERE Scores.Points > 2 AND Students.StudentName LIKE "John%"

GROUP BY Students.StudentName

HAVING SUM(Points) >= @x AND @x > 15

130 2

5
SELECT Students.StudentName, Scores.Points

FROM Students JOIN Scores ON Scores.StudentID = Students.StudentNr

WHERE Scores.CourseID = 10 AND Scores.Points > 0

30 1

6

SELECT Students.StudentName, Courses.CourseName, Scores.Points

FROM Scores JOIN Students ON Scores.StudentID = Students.StudentNr

JOIN Courses ON Courses.CourseNr = Scores.CourseID

WHERE Scores.Points > 2 AND Students.StudentName LIKE "%bob%"

AND Courses.CourseName LIKE "AI%"

160 1

we use the same boundk for both tables. The test condition used here is that the result is nonempty.
Table 2 summarizes the overall timet (in ms) for each queryq, which includes the parsing time, the
generation time ofTh(q), and the model generation time. The columnk shows the number of rows
generated for the input tables. Some of the queries include parameters, indicated with@, the values of
parameters are also generated. (The actual data that was generated is not shown here.) We reuse the
schema introduced in Example 1. The last query uses an additional table calledCourses.

The total size of the query seems to have very little effect onthe timet. The key factor is the use
of aggregatesand the constraints they introduce that cause the input tables to grow, thus, causing back-
tracking during model generation, that is clearly seen for query #3. Consider the following experiment.
Take query #3 and replace the constant 2 in it with the constant n for n = 1, . . . ,15. Figure 1 shows the
time t in seconds as a function ofn; k is alwaysn+2.

Given a queryq, several optimizations or transformations can be performed on the term[[q]] as well
as the set of axiomsTh(q) prior to asserting them to the solver. Figure 2 shows a drastic decrease in
model generation time forqLIKE from Example 3 in Qex when the product construction is used. By
performing localized SMT solver queries during product construction of SFAs, the size of the resulting
automata can often dramatically decrease.

We also reevaluated the performance of Qex on the benchmarksreported in [24, Table 1] that use
a different sample database schema (where strings do not occur). In all of the cases the performance
improvement was between 10x and 100x. As we suspected, the eager expansion time reported astexp

in [24], that was by an order of magnitude larger than the model generation timetz3, is avoided completely
in the new approach. The initial cost of creating[[q]] is negligable, since the size of[[q]] is polynomial in
the size ofq in theory, and close to linear in practice. The added overhead during model generation due

11

Qex: Symbolic SQL query explorer Veanes, Tillmann, and de Halleux

Figure 1: Exploration times (sec) for query #3 in Table 2 whenthe constant 2 is replaced withn for
n = 1, . . . ,15.

Figure 2: Exploration times (sec) for queryqLIKE without (scattered crosses) and with (solid line of dots
at the bottom) product construction forn = 1, . . . ,98.

to the use of axioms only marginally increased the model generation timetz3.

7 Related work

The first prototype of Qex was introduced in [24]. The currentpaper presents a continuation of the Qex
project [19], and a redesign of the encoding of queries into formulas based on a lazy axiomatic approach
that was briefly mentioned in [24] but required support for algebraic datatypes in the underlying solver.
Moreover, Qex now also supports a substantially larger fragment of SQL (such as subquery expressions)
and like-patterns on strings, as discussed above.

Deciding satisfiability of SQL queries requires a formal semantics. While we give meaning to SQL
queries by an embedding into the theory of an SMT solver, there are other approaches, e.g., defining
the semantics in the Extended Three Valued Predicate Calculus [17], or using bags as a foundation [7].
Satisfiability of queries is also related to logic-based approaches to semantic query optimization [5].
The general problem of satisfiability of SQL queries is undecidable and computationally hard for very
restricted fragments, e.g., deciding if a query has a nonempty answer is NEXP-hard for nonrecursive
range-restricted queries [9].

Several research efforts have considered formal analysis and verification of aspects of database sys-

12

Qex: Symbolic SQL query explorer Veanes, Tillmann, and de Halleux

tems, usually employing a possibly interactive theorem prover. For example, one system [21] checks
whether a transaction is guaranteed to maintain integrity constraints in a relational database; the system
is based on Boyer and Moore-style theorem proving [4].

There are many existing approaches to generate database tables as test inputs. Most approaches
create data in an ad-hoc fashion. Only few consider a target query. Tsai et.al. present an approach for
test input generation for relational algebra queries [22].They do not use lists to represent tables. They
propose a translation of queries to a set of systems of linearinequalities, for which they implemented
an ad-hoc solving framework which compares favorably to random guessing of solutions. A practical
system for testing database transactions is AGENDA [11]. Itgenerates test inputs satisfying a database
schema by combining user-provided data, and it supports checking of complex integrity constraints by
breaking them into simpler constraints that can be enforcedby the database. While this system does not
employ a constraint solver, it has been recently refined withthe TGQG [6] algorithm: Based on given
SQL statements, it generates test generation queries; execution of these queries against a user-provided
set of data groups yields test inputs which cover desired properties of the given SQL statements.

Some recent approaches to test input generation for databases employ automated reasoning. The re-
lational logic solver Alloy [14, 15] has been used by Khalek et.al. [16] to generate input data for database
queries. Their implementation supports a subset of SQL witha simplified syntax. In queries, they can
reason about relational operations on integers, equality operations on strings, and logical operations, but
not about nullable values, or grouping with aggregates suchasSUM; they also do not reason about du-
plicates in the query results. QAGen [3] is another approachto query-solving. It first processes a query
in an adhoc-way, which requires numerous user-provided “knob” settings as additional inputs. From
the query, a propositional logic formula is generated, which is then decided by the Cogent [8] solver to
generate the test inputs. In [2] a model-checking based approach, called Reverse Query Processing, is
introduced that, given a query and a result table as input, returns a possible database instance that could
have produced that result for that query, the approach uses reverse relational algebra. In [25] an inten-
tional approach is presented in which the database states required for testing are specified as constrained
queries using a domain specific language. Recently, test input generation of queries has been combined
with test input generation of programs that contain embedded queries in the program text [12], using
ad-hoc heuristic solvers for some of the arising constraints from the program and the queries.

8 Conclusion and future work

The current implementation of the Qex project is still in itsearly stages, but we were highly encouraged
by the performance improvements when switching to the lazy approach and reducing the need for nonlin-
ear constraints through a different representation of tables. There are many more possible optimizations
that can be performed as a preprocessing step on formulas generated by Qex, before asserting them to the
SMT solver. One such optimization, using automata theory, was illustrated in Example 3 and Figure 2
when multiple like-patterns occur in a query. Systematic preprocessing can also often reveal that a query
is trivially false, independent of the size of input tables,e.g., if an ‘_’ is missed in the first like-pattern in
Example 3 then the product automaton would be empty.

For practical usage in an industrial context, where SQL queries are usually embedded in other pro-
grams or in store procedures, we are looking at integrating Qex in Pex [18]. For efficient support for
regex constraints in Pex, integration of Rex [23] is a first step in that integration.

It is also possible to apply a translation similar to the one described in the paper to LINQ queries,
although, unlike in SQL, the semantics of LINQ queries depends on the order of the rows in the tables.
This fits well with the list representation of tables but imposes some limitations on the use of certain
optimizations (such as the use of symmetry breaking formulas).

13

Qex: Symbolic SQL query explorer Veanes, Tillmann, and de Halleux

A practical limitation of Qex is if queries use multiple joins and aggregates and the input tables
need to contain a high number of rows in order to satisfy the test condition. Another limitation is the
use nonlinear constraints over unbounded integers, in particular multiplication, that has currently only
limited support in Z3. We consider using bitvectors instead. Despite these limitations, the mere size of
queries does not seem to be a concern, neither the size ofTh(q) for a given queryq. The size ofTh(q)
may easily be in hundreds, in particular when several like-patterns are used, where the number of axioms
is proportional to the size of the finite automaton acceptingthe pattern.

Acknowledgement

We thank Nikolaj Bjørner for the continuous support with Z3 and for suggesting the idea of using sym-
metry breaking formulas discussed in Section 5.2.

References

[1] SELECT (T-SQL). http://msdn.microsoft.com/en-us/library/ms189499.aspx.

[2] C. Binnig, D. Kossmann, and E. Lo. Reverse query processing. In Proceedings of the 23rd International
Conference on Data Engineering (ICDE 2007), pages 506–515. IEEE, 2007.

[3] C. Binnig, D. Kossmann, E. Lo, and M. T.Özsu. Qagen: generating query-aware test databases. InSIGMOD
’07: Proceedings of the 2007 ACM SIGMOD international conference on Management of data, pages 341–
352, New York, NY, USA, 2007. ACM.

[4] R. S. Boyer and J. S. Moore.A computational logic handbook. Academic Press Professional, Inc., San Diego,
CA, USA, 1988.

[5] U. S. Chakravarthy, J. Grant, and J. Minker. Logic-basedapproach to semantic query optimization.ACM
Trans. Database Syst., 15(2):162–207, 1990.

[6] D. Chays, J. Shahid, and P. G. Frankl. Query-based test generation for database applications. InProceedings
of the 1st International Workshop on Testing Database Systems (DBTest’08), pages 1–6, New York, NY,
USA, 2008. ACM.

[7] H. R. Chinaei. An ordered bag semantics of SQL. Master’s thesis, University of Waterloo, Waterloo, Ontario,
Canada, 2007.

[8] B. Cook, D. Kroening, and N. Sharygina. Cogent: Accuratetheorem proving for program verification. In
Proceedings of CAV 2005, volume 3576 of Lecture Notes in Computer Science, pages 296–300. Springer,
2005.

[9] E. Dantsin and A. Voronkov. Complexity of query answering in logic databases with complex values. In
Proceedings of the 4th International Symposium on Logical Foundations of Computer Science (LFCS’97),
pages 56–66, London, UK, 1997. Springer.

[10] L. de Moura and N. Bjørner. Z3: An efficient SMT solver. InTools and Algorithms for the Construction and
Analysis of Systems, (TACAS’08), LNCS. Springer, 2008.

[11] Y. Deng, P. Frankl, and D. Chays. Testing database transactions with AGENDA. InICSE ’05: Proceedings of
the 27th international conference on Software engineering, pages 78–87, New York, NY, USA, 2005. ACM.

[12] M. Emmi, R. Majumdar, and K. Sen. Dynamic test input generation for database applications. InProceedings
of the 2007 International Symposium on Software Testing andAnalysis (ISSTA’07), pages 151–162. ACM,
2007.

[13] W. Hodges.Model theory. Cambridge Univ. Press, 1995.

[14] D. Jackson. Automating first-order relational logic.SIGSOFT Softw. Eng. Notes, 25(6):130–139, 2000.

[15] D. Jackson.Software Abstractions. MIT Press, 2006.

[16] S. A. Khalek, B. Elkarablieh, Y. O. Laleye, and S. Khurshid. Query-aware test generation using a relational
constraint solver. InASE, pages 238–247, 2008.

14

Qex: Symbolic SQL query explorer Veanes, Tillmann, and de Halleux

[17] M. Negri, G. Pelagatti, and L. Sbattella. Formal semantics of SQL queries.ACM Transactions on Database
Systems, 17(3):513–534, September 1991.

[18] Pex. http://research.microsoft.com/projects/pex.

[19] Qex. http://research.microsoft.com/projects/qex.

[20] S. Ranise and C. Tinelli. The SMT-LIB Standard: Version1.2. Technical report, Department of Computer
Science, The University of Iowa, 2006. Available atwww.SMT-LIB.org.

[21] T. Sheard and D. Stemple. Automatic verification of database transaction safety.ACM Trans. Database Syst.,
14(3):322–368, 1989.

[22] W. T. Tsai, D. Volovik, and T. F. Keefe. Automated test case generation for programs specified by relational
algebra queries.IEEE Trans. Softw. Eng., 16(3):316–324, 1990.

[23] M. Veanes, P. de Halleux, and N. Tillmann. Rex: Symbolicregular expression explorer. In A. Cavalli and
S. Ghosh, editors,Third International Conference on Software Testing, Verification and Validation (ICST
2010), Paris, France, April 2010. IEEE.

[24] M. Veanes, P. Grigorenko, P. de Halleux, and N. Tillmann. Symbolic query exploration. In K. Breitman and
A. Cavalcanti, editors,ICFEM’09, volume 5885 ofLNCS, pages 49–68. Springer, 2009.

[25] D. Willmor and S. M. Embury. An intensional approach to the specification of test cases for database appli-
cations.28th International Conference on Software Engineering, pages 102–111, 2006.

[26] Z3. http://research.microsoft.com/projects/z3.

Appendix: Select with grouping and aggregates

Select clauses with aggregates and grouping are translatedinto formulas using the following axioms. Let
t1 :ρ be a term with a single free variablex0 :σ . Let t2 : Z be a term with a single free variablex0 :σ .
Intuitively, σ is a tuple sort, botht1 andt2 are projections, and the termt2 corresponds to some aggregate
operation, such as MAX.

We declare the function symbolSelect[t1, t2] :L〈σ〉→L〈T〈ρ ,Z〉〉 and define a set of recursive axioms
for it that for each element in the list collect the maximum value with respect tot2 and then create a list
of pairs that for each projectiont1 provides that maximum value. In order to define these axioms,arrays
(mathematical maps) are used.

Given argument sortσ1 and result sortσ2, A〈σ1,σ2〉 is the corresponding array sort. (In particular
S〈σ1〉 is synonymous withA〈σ1,B〉.) Declare

Select[t1,MAX (t2)] : L〈σ〉 → L〈T〈ρ ,Z〉〉,

Sel1 : L〈σ〉×A〈σ ,Z〉×L〈σ〉→ L〈σ〉,

Sel2 : L〈σ〉×A〈σ ,Z〉→ L〈σ〉

and define the axioms, whereArrayReadandArrayStoreare built-in,

∀x(Select[t1,MAX (t2)](x) = Sel1(x,{ 7→ −∞},x))

∀x̄(Sel1(cons(x0,x1),x2,x3) = Sel1(x1, Ite(ArrayRead(x2,T(t1, t2)) ≥ t2,x2,

ArrayStore(x2,T(t1, t2), t2)),x3))

∀x̄(Sel1(nil,x0,x1) = Sel2(x1,x0))

∀x̄(Sel2(cons(x0,x1),x2) = cons(ArrayRead(x2,T(t1, t2)),Sel2(x1,x2)))

∀x(Sel2(nil,x) = nil)

15

	Introduction
	Preliminaries
	Equational axioms over lists
	Equational axioms and E-matching in SMT solvers
	Axioms over lists
	Filter
	Map
	Reduce
	Cross product
	Remove duplicates

	From SQL to formulas
	Tables and table constraints
	Null values
	Formulas for queries
	SELECT clauses
	Aggregates
	LIKE-patterns

	Implementation
	Incremental table generation
	Symmetry breaking formulas

	Experiments
	Related work
	Conclusion and future work

