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ABSTRACT 
Today’s database systems provide little feedback to the user/DBA 
on how much of a SQL query’s execution has been completed. For 
long running queries, such feedback can be very useful, for 
example, to help decide whether the query should be terminated or 
allowed to run to completion. Although the above requirement is 
easy to express, developing a robust indicator of progress for 
query execution is challenging. In this paper, we study the above 
problem and present techniques that can form the basis for 
effective progress estimation. The results of experimentally 
validating our techniques in Microsoft SQL Server are promising. 

1. INTRODUCTION 
Decision support applications typically include long-running 
queries. For such queries, the ability to estimate the progress of 
query execution could be very useful. Progress estimation could 
help DBAs as well as end users or applications help decide 
whether to terminate the query or allow it to finish. Such feedback 
could qualitatively improve the experience for any database user. 
However, today’s database systems only provide rudimentary 
feedback to users about progress of query execution. This 
feedback is limited to the query optimizer generated execution 
plan and its cost, as well as the number of tuples returned by the 
query during its execution. Beyond this, to the best of our 
knowledge, there is no prior published work on the problem of 
progress estimation for SQL query execution. 

The most useful measure of progress would report to the user at 
any point during the query’s execution, the amount of time 
required for the query to complete execution. However, any 
method that provides such a measure would be subject to 
uncertainty arising from concurrent execution of other queries. 
Due to this difficulty, we focus on the problem of estimating the 
percentage remaining (or equivalently completed) of the query, at 
any point during its execution, i.e., reporting a “progress bar” for 
query execution. Such an estimator is simpler than estimating time 
remaining since it is independent of other queries. In effect, this 
measure estimates the time remaining on an isolated system where 
only the given query is executing.    

Effective progress estimation for query execution requires us to 
accurately estimate the total “work” required to execute the query. 
Queries in modern database systems are quite complex involving 

joins, nested sub-queries and aggregation. Any measure of work 
for a query that is independent of the intermediate cardinalities of 
such operators is likely to be too simplistic. For example, consider 
a metric that reports progress as the percentage of query results 
that have been returned thus far. Let us assume that we could 
accurately estimate the total number of rows that a query will 
return in its result. To see why such a metric for progress could be 
really inaccurate, consider an execution plan consisting of a very 
expensive join followed by an inexpensive Sort operation. Since 
Sort is a blocking operation, query results are not returned until 
the Sort starts outputting rows. Therefore, until such time, the 
above metric would report no progress irrespective of how much 
work was done in the join. As another illustration of why the 
problem is difficult, consider a metric that reports the percentage 
of nodes (i.e., operators) in the execution plan that have 
completed. However, if a query is just a single pipeline of 
operators, for almost the entire duration of the execution of the 
query, all the operators in the plan are active i.e., not yet 
completed. Thus the above metric will not report any progress 
until near the very end of query execution . 

We note that a query optimizer already uses a model of work done 
by a query (based on estimated CPU and I/O costs). While 
leveraging this model for progress estimation may be possible, in 
this paper, we ask whether an even simpler model would suffice 
for the purposes of progress estimation. The motivation for this 
simpler model is the ease of incorporation into existing query 
execution engines. We model work done by a query as a function 
of the number of rows output by each operator in the query 
execution plan.  

While this model does inherit the known difficulties of cardinality 
estimation faced by a query optimizer, we use two key ideas to 
help mitigate the impact of inaccurate cardinality estimation on 
progress estimation. First, we observe that it is possible to 
estimate the cardinalities of certain operators e.g., Table Scans or 
Index Scans which we refer to as driver nodes (formally defined in 
Section 2) much more accurately than other intermediate nodes in 
a pipeline e.g., a Filter or Hash Join. We show that in many cases 
estimating the overall query progress by only monitoring progress 
of these driver nodes can greatly improve accuracy. Second, 
during query execution we leverage runtime execution 
information to refine cardinality estimation. We take a 
conservative approach (based on maintaining and refining upper 
and lower bounds on cardinalities of operators in the plan) that is 
guaranteed not to introduce additional inaccuracies as a result of 
such refinement. Our solution is applicable to arbitrary SQL 
queries and can be implemented at low overhead in existing 
database systems.  We have implemented our techniques inside 
Microsoft SQL Server and the initial results of experimentally 
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evaluating our estimator on the TPC-H benchmark [12] queries 
(10 GB version on uniform as well as skewed data distributions) 
are promising.  

The rest of the paper is structured as follows. Section 2 describes 
the problem and presents our model of work done by a query.  
Given this model, we propose in Section 3, an estimator for the 
progress of a query whose execution consists of a single pipeline. 
Section 4 presents our solution for the general case of a query 
involving multiple pipelines.  Experimental validation of our 
prototype on decision support queries is presented in Section 5. 
Section 6 discusses the desirable property of monotonicity of 
progress estimation and its relationship to accuracy of estimation. 
We present extensions to our model of work to be more robust to 
runtime conditions in Section 7, and discuss related work in 
Section 8. We conclude with a brief discussion on interesting 
areas of future work. 

2. PROBLEM DESCRIPTION 

2.1 Definitions 
A progress estimator uses an execution plan that is chosen by the 
query optimizer for the given query. An execution plan is a tree 
where the nodes of the tree are physical operators. For example, 
Figure 1 shows the execution plan for a query.  

 
A physical operator is referred to as a blocking operator if it does 
not produce any outputs until it has consumed at least one of its 
inputs completely. For example, suppose Table Scan A with Filter 
is the build relation of the Hash Join and Index Scan B is the 
probe relation. The Hash Join operator in Figure 1 is blocking 
since it must consume all rows from the build relation before it 
produces any output. Another example of a common blocking 
operator is Sort.  

The overall execution of a query is staged into multiple pipelines. 
We now define the notion of pipelines for an execution plan 
consisting of common physical operators such as Table Scan, 
Index Scan, Index Seek, Filter, Hash Join, Merge-Join, Index 
Nested Loops (INL) Join, NL Join, Group-By (Hash-based) and 
Sort. The definition is procedural and proceeds inductively in a 
bottom up manner over the nodes of an execution plan. A leaf 
node of the plan (Table Scan, Index Scan, Index Seek) starts a 
pipeline. A Filter node is part of the pipeline that its child operator 
belongs to. For a Hash Join, the join operator is included in the 
pipeline of the probe child, and the build child is the root of 
another pipeline. For a Merge-Join, the pipelines containing its 
children and the Merge Join operator itself are union’ed to create a 

single pipeline. For a Nested Loops or Index Nested Loops Join 
operator, the outer child, the join operator and its entire inner 
subtree are part of a the same pipeline as the outer child node. 
Both Sort and Group-By (hash-based) operators, which are 
blocking, start a new pipeline of their own. For the example in 
Figure 1, the pipelines are: P1 = {Table Scan A, Filter}, P2 = 
{Index Scan B, Hash Join, Index Nested Loops, Index Seek C}. In 
principle the above definition of can be extended to other physical 
operators as well. Thus, intuitively, a pipeline can be thought of as 
a maximal subtree of concurrently executing operators.  

Every pipeline has a set of driver nodes, i.e., operators that are the 
sources of tuples operated upon by remaining nodes in the 
pipeline. More precisely, we define the driver nodes of a pipeline 
as the set of all leaf nodes of the pipeline, except those that are in 
the inner subtree of a Nested Loops/ Index Nested Loops join. For 
example, in Figure 1, the shaded nodes are driver nodes – Table 
Scan A is the driver node for the pipeline P1 and Index Scan B is 
the driver node for pipeline P2. Note that Index Seek C is not a 
driver node since it is a leaf node of the inner subtree of an Index 
Nested Loops Join. We observe that it is possible for a pipeline to 
contain more than one driver node, e.g., in a Merge-Join of two 
sorted relations, both the input relations to the Merge-Join are 
driver nodes.  

 

This is illustrated in Figure 2. The pipelines identified for this 
query would be P1 = {Table Scan A}, P2 = {Index Scan B} P3 = 
{Sort A, Sort B, Merge Join, Index Nested Loops, Index Seek C} 
and the driver nodes (the shaded nodes) would be respectively 
{Table Scan A}, {Table Scan B}, {Sort A, Sort B}.  Thus there 
are two driver nodes for the last pipeline. We note that unlike a 
Hash Join, for a Sort-Merge Join, the scans of both inputs do not 
necessarily need to complete for the Sort-Merge Join to complete.  

An execution plan can be viewed as a partial order of pipelines 
since, in general, for certain pipelines to start executing, one or ore 
other pipelines need to complete. For example in Figure 1, 
execution of P1 must precede P2. Similarly in Figure 2, execution 
of P1 and P2 must precede P3, but the order between P1 and P2 is 
arbitrary.  

2.2 Desirable Properties of a Progress 
Estimator 
Accuracy: The estimated percentage of work completed by the 
query at any point during its execution should be close to the 
actual percentage of work completed by the query at that point.  

Table Scan A Index Scan B 

Sort A 

Sort-Merge Join 

Figure 2. Execution plan with Sort-Merge Join. 
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Figure 1. Example of an execution plan for a query 
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Fine granularity: It follows from the above accuracy requirement 
that the estimator should be able to provide estimates at 
sufficiently fine granularity over the duration of the query’s 
execution. Thus, for example, an estimator that only provides 
accurate estimates at 0% and 100% completion would not be 
useful.  

Low overhead: An essential requirement for a progress estimator 
to be practical is that it should impose low overhead on the actual 
execution of the query.  

Leveraging feedback from execution:  As query execution 
progresses, more information based on (intermediate) results of 
execution can become available. Ideally, an estimator should be 
able to take full advantage of such information.  

Monotonicity: Since the actual execution of the query progresses 
monotonically, ideally, the estimated progress should be also be 
monotonically increasing from the start of query execution to its 
finish.  

We observe that in today’s database systems feedback on query 
progress during execution does not satisfy one or more of the 
above requirements. While the optimizer estimated cost of a query 
can be obtained at low overhead and progress estimation based on 
this cost is trivially monotonic (since the estimated cost does not 
change over the lifetime of the query’s execution), it can 
potentially be inaccurate and it does not leverage any feedback 
from execution. Similarly, the number of tuples returned by a 
query during its execution (while low overhead and monotonic) 
has the major drawback that it can be inaccurate and lacking in 
granularity – as illustrated in the introduction. Moreover, it only 
takes limited advantage of execution feedback. Finally, we note 
that in general, there is a trade-off between guaranteeing 
monotonicity and achieving accuracy of progress estimation (we 
discuss this further in Section 6). 

2.3 The GetNext() Model of Work 
As described in the introduction, our goal is to estimate progress 
of a query on an isolated system, i.e., on a system where there is 
no other activity besides the execution of this query. Any progress 
estimator requires a model of work done by a query as the basis of 
its estimation. In this section we present such a model of work. 
One approach for modeling the work done by a query could have 
been to use the cost model used by query optimizer’s for 
comparing different execution plans for a query. Query optimizers 
typically model the work done by the query as a function of CPU, 
random I/O and sequential I/O costs. Thus, to use such a model 
for progress estimation, we would need to measure the CPU, 
random and sequential I/O’s performed by the query during its 
execution. In this paper we investigate whether an even simpler 
model of work would be adequate for the purposes of progress 
estimation. The main motivation for a simpler model is the ease 
with which it can be incorporated into today’s database systems. 
The reason we expect that a simpler model may be adequate for 
progress estimation is that unlike the query optimizer that needs to 
distinguish between multiple plans for a given query using its cost 
model, we only need to be able to estimate the percentage of work 
done for a given query execution plan.  

We note that operators in a query execution plan are typically 
implemented using a demand driven iterator model [5], where 
each physical operator in the execution plan exports a standard 
interface for query processing (including Open(), Close() and 

GetNext()). We propose to model the work done by a query as the 
total number of GetNext() calls issued throughout the duration of 
the query’s execution over all operators in the execution plan. In 
essence, we are counting each GetNext() call as a primitive 
operation of query processing and modeling the total work done 
by the query by the total number of GetNext() calls. Note that all 
CPU instructions, I/Os etc. performed by the query occurs as a 
result of GetNext() calls. Thus, this model assumes that the total 
time required to execute the query is amortized across multiple 
GetNext() calls, and therefore the percentage of GetNext() calls 
done thus far is a good estimator of the time taken by the query 
(on an isolated system).  

It should be noted that the GetNext() model of work is inadequate 
for the purposes of query optimization. As a simple example of 
why this is the case, consider two plans for the same query: one 
involving a non-clustered index Index Seek and another involving 
a Table Scan. With the above GetNext() model of work, the Index 
Seek would always be considered cheaper (i.e., less work) by the 
query optimizer since the number of rows it returns can never 
exceed that of the Table Scan. 

 

Progress Estimation Based on GetNext() model 

We now define progress estimation based on the GetNext() model 
of work. Suppose the execution plan has a total of m operators. 
Let the total number of tuples that flow out of operator Opi (i.e., 
number of GetNext() calls invoked on that operator) at the end of 
query execution be Ni (i= 1..m). At any point during query 
execution, let the number of tuples that have flowed out of every 
operator thus far be Ki (i = 1..m). Thus, the ideal estimator under 
the GetNext() model of work (we call it gnm) would estimate 
progress at that point during the query’s execution as: 

∑
∑

=

i
i

i
i
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K
gnm

 

Note that while accurate Ki values can be obtained as the query is 
executing, the exact Ni values are available only at the end of 
query execution. Thus, the estimator gnm is not directly 
implementable as stated above since Ni’s are not known exactly 
while the query is executing.  

Thus, the key challenge for any progress estimator E that uses the 
above model of work is to estimate ∑Ni as accurately as possible 
while the query is executing. Note that the problem of estimating 
the number of GetNext() calls for an operator in the query 
execution plan is the cardinality estimation problem faced by 
query optimizers. The only difference is that unlike a query 
optimizer, which can only use pre-computed database statistics 
(e.g., histograms), the estimator E can potentially also observe 
feedback from query execution for use in its estimation.  

We observe that the fine granularity requirement (see Section 2.2) 
should typically be satisfied by an estimator using the GetNext() 
model since for a long running query, a large number of GetNext() 
calls are made during its execution. Another desirable property of 
an estimator is small runtime overhead. For example, an estimator 
that actually executes the query in order to obtain the total number 
of GetNext() calls (∑Ni) would be unacceptable. Thus, we require 
that the information used by any estimator be limited to a small 
amount of aggregated information either in the form of pre-



  

computed database statistics or statistics computed on observed 
feedback from query execution. Although this restriction by itself 
is not sufficient to guarantee low overhead, it appears to be 
necessary for an estimator to be practical. The estimator that we 
present in this paper uses feedback from query execution (see 
Section 4) to refine estimates of Ni. Observe that since ∑Ki is 
monotonically increasing as the query executes, the monotonicity 
of the estimator depends on how the estimates of ∑Ni are changed 
by the estimator as the query executes. We comment on the 
monotonicity property of our estimator based on the GetNext() 
model in Section 6. We note a couple of additional properties of 
the GetNext() model of work: (1) It can be applied to modern 
database systems since they typically employ a demand driven 
iterator model for query execution. (2) It has the property that it is 
invariant across multiple runs of the same query.  

3. DRIVER NODE ESTIMATOR: SINGLE 
PIPELINE QUERIES 
In this section, we outline our solution for the progress estimation 
problem for the class of queries that consist of a single execution 
pipeline. We show how our solution extends to the general class 
of arbitrary query execution plans (consisting of multiple 
pipelines) in Section 4.  

For simplicity, we consider a query whose execution plan is a 
single pipeline consisting of a chain of m (non-blocking) 
operators: Op1 -> Op2 …. -> Opm and having a single operator 
Op1 as its driver node (see Section 2.1 for definition of a driver 
node). Typically, such a pipeline consists of a single driver node 
(e.g., Table Scan or Index Scan) followed by a sequence of non-
blocking operators such as Filter and Index Nested Loops (INL) 
join. As described earlier, they key challenge for any estimator 
using the GetNext() model (i.e., trying to estimate gnm)  is to 
accurately estimate ∑Ni , the total number of GetNext() calls that 
will be performed over all nodes in the query. In an ideal world, 
the optimizer’s estimates of Ni (and hence the progress estimator, 
which can use such estimates) would be accurate. But cardinality 
estimation usually involves simplifying assumptions (particularly 
on the correlation between data values) and consequently is prone 
to estimation errors. For example, it is known that estimation 
errors propagate exponentially as a function of the number of joins 
in the query [8]. Our focus in this paper is not on developing 
techniques for better cardinality estimation for the purpose of 
query optimization.  Rather, we develop additional techniques that 
could mitigate the impact of errors in cardinality estimation on 
progress estimation.  

Our estimator (called the Driver Node Estimator, dne for short) for 
single pipeline queries having exactly one driver node is defined 
as: 

1

1

N

K
dne =  

where K1 is the number of GetNext() calls done on the driver node 
of the pipeline, Op1, thus far; and N1 is the estimated total number 
of GetNext() calls for Op1. Therefore, underlying dne is the 
hypothesis (we refer to it as the driver node hypothesis) that 
overall query progress can be estimated by the progress of only the 
driver node of the pipeline, i.e.,: 
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There are a few important reasons why the estimator dne can work 
well in practice. First, note that inaccuracies in gnm arise due to 
inaccurate Ni estimates. Since a driver node in a pipeline is the 
source of tuples that are operated upon by other nodes in the 
pipeline, prior to start of execution of that pipeline, the cardinality 
of the driver node is typically known accurately. For example, for 
many pipelines, driver nodes are typically Table Scans or Index 
Scans, and the estimates of Ni for such driver nodes can be 
obtained (almost exactly) from the database system catalogs. 
While the estimates may not be as accurate in the case of the 
driver node being an Index Seek operator, any histograms on the 
predicate columns can be leveraged. In such cases, the estimate of 
Ni for the driver node can still be quite accurate. On the other 
hand, accurately estimating Ni for a Filter node that references a 
UDF, or a Nested Loops Join node are usually more inaccurate 
due to the inherent difficulties in selectivity estimation and errors 
in propagation to intermediate nodes [8]. Thus, using only driver 
nodes for progress estimation can often result in better accuracy. 

Second, when cardinality of the driver node N1 dominates Ni’s of 
other operators in the pipeline we can expect the estimator dne to 
be close to gnm. This is not uncommon in decision support 
queries such as TPC-H [12] where the driver node cardinalities are 
large (e.g. large Table/Index Scans), and where operators such as 
Filter and Group-By can greatly reduce the cardinality of non-
driver nodes.  

Third, observe that the driver node hypothesis implies: 
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where ∑iN / N1 can be thought of as the work done per tuple 
output by the driver node. Therefore, when the total number of 
GetNext() calls made over all nodes in the pipeline does not vary 
significantly over the lifetime of the pipeline, monitoring progress 
of only driver node is sufficient. Although this condition does not 
hold for arbitrary pipelines, we show below an important class of 
pipelines (in which the output cardinality of each operator is no 
larger than its input cardinality) for which dne still yields progress 
estimates that are within a constant factor of gnm.  

Finally, since a driver node is the source of tuples processed by 
other operators in the pipeline, it typically provides sufficiently 
fine granularity of progress estimation. This property may not hold 
in general for other operators (such as Filter or NL Join) in a 
pipeline, since their cardinalities may be arbitrarily small.  

Guarantee of dne for monotonically decreasing pipelines: 

We discuss an important class of single pipeline queries where dne 
is guaranteed to be accurate within a constant factor of gnm (the 
constant factor is the number of operators m in the pipeline). 
Consider pipelines having the logical property that no operator in 
the pipeline can increase its incoming cardinality. Thus, at any 
point during the query’s execution, Ki ≥ Ki+1 and Ni ≥ Ni+1. We 
refer to such a pipeline as a monotonically decreasing pipeline. 
Some of common physical operators that could be part of a 
monotonically decreasing pipeline are Table Scan, Filter and 



  

streaming aggregate operators. INL Join would also satisfy the 
above property when the join looks up a key value (i.e., a foreign 
key – key join).  

Claim: For a monotonically decreasing pipeline with m operators, 
the estimator dne is guaranteed to be accurate within a constant 
factor m of the ideal estimator gnm, i.e. 

 gnmmdne
m

gnm
.≤≤  

Proof: See Appendix A.  

Note that for the case of a single pipeline consisting of a Table 
Scan, Filter and aggregation operator (similar to the class of 
queries studied in the online aggregation work e.g., [7]), if the 
input tuples to such a pipeline P are read in random order, then the 
driver node hypothesis will hold, i.e., the expected value of K1/N1 
is  ∑PK / ∑PN for that pipeline. Finally, for the case of a single 
pipeline that is not monotonically decreasing, the above guarantee 
does not hold, and dne is a heuristic. Intuitively, if an intermediate 
operator (e.g., a non foreign-key Nested Loops Join) can increase 
its incoming cardinality arbitrarily, then the distribution of work 
done in the pipeline can be skewed so that progress at the driver 
node may not be indicative of overall progress of the pipeline.   

4. SOLUTION FOR GENERAL CASE 
In this section, we extend our solution for an arbitrary SQL query 
execution plan that consists of multiple pipelines. As described in 
Section 2.1, we model an arbitrary execution plan as a partial order 
of pipelines and extend the ideas of Section 3 of using only driver 
nodes for each currently executing pipeline. Therefore, in our 
approach, the key issues are: (1) explaining how to use the Driver 
Node Estimator (dne) for a single pipeline to obtain an overall 
progress estimate for entire query execution plan (Section 4.1), and 
(2) initializing and refining the cardinality estimates based on 
feedback from query execution (Section 4.2).  

4.1 Estimator for Arbitrary Query Execution 
Plan 
As per our definition of gnm (Section 2.3), for a query execution 
plan with s pipelines, our estimator for the entire query can be re-
written equivalently as follows: 

∑ ∑
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where each summation term denotes the sum over all nodes in the 
corresponding pipeline. As discussed previously, the key 
challenge for a pipeline P is estimating the ∑PN for that pipeline. 
We note that in a query execution plan that involves multiple 
pipelines, we know that each pipeline must be in one of the 
following states: (a) Completed. (b) Currently executing. (c) Not 
yet started executing. For any pipeline that has completed 
execution we have the exact values of the number of GetNext() 
calls done on all operators in that pipeline, and thus ∑PK = ∑PN 
for such a pipeline. For a currently executing pipeline, we use dne 
to estimate ∑PN. Specifically, it follows directly from the driver 
node hypothesis that ∑PN = ∑PK / dne. For a pipeline that has not 

yet started executing (∑PK = 0), and we use the optimizer’s 
estimates for ∑PN. In fact, it is for this case where we expect a 
significant opportunity to improve estimate of ∑PN using feedback 
from query execution.  

4.2 Exploiting Execution Feedback for 
Refining Estimates 
A key challenge arises from estimating cardinality of nodes of 
pipelines that start with intermediate blocking nodes e.g., Sort 
nodes and hash based Group-By nodes. For nodes of such 
pipelines there is an opportunity to get better cardinality estimates 
by using feedback from query execution.   

Consider the query execution plan shown in Figure 3. Suppose A 
is the build relation and B the probe relation of the Hash Join. The 
pipelines for the query are P1 = {Table Scan A, Filter, Hash Join}, 
P2 = {Table Scan B}, P3 = {Group-By} and P4 = {Sort}, which are 
executed in the order P1, P2, P3, P4. The driver nodes for the query 
are shaded in the figure. To estimate the cardinality of the Sort 
operator (in pipeline P4), we would need to have accurate 
estimates on the filter, join and group-by operators of the first two 
pipelines. This is in fact the traditional cardinality estimation 
problem and is error prone. Hence, our initial estimate of work 
done by the Sort could be inaccurate, potentially leading to overall 
incorrect progress estimation. Here, execution feedback can be 
leveraged to improve estimate of the Sort node cardinality. For 
example, when pipeline P2 completes, we in fact have the exact 
value of the cardinality of the result of the join. Similarly, when 
the Group-By, completes, we have exact cardinality (no 
uncertainty) of the input to the Sort. In the rest of this section, we 
describe a general framework for refining cardinality estimates of 
a given execution plan based on execution feedback. 

While several techniques are possible, in this paper we follow a 
conservative approach that ensures that we never introduce any 
additional inaccuracies due to the refinement process. Thus, we 
refine the current Ni estimate of any node only if we are certain 
that the refinement will make the estimate more accurate. We 
achieve this as follows: For each node in the execution plan, we 
track two additional values UBi and LBi, which are respectively, 
the upper and lower bounds on the cardinalities of the rows that 
can be output from that node. These bounds are based solely on 
the algebraic properties of the operator and observed cardinalities 
from execution, and are guaranteed to be actual bounds on Ni. In 
particular, this means that LBi ≤ Ni ≤ UBi. We adjust these lower 
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Figure 3. Execution plan with multiple blocking operators 
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and upper bounds as we get more information from query 
execution using the techniques described below. The invariant that 
we maintain at all times is that LBi ≤ current estimate of Ni ≤ UBi, 
i.e., if we find that the current estimate of Ni lies outside the 
bounds, then we correct its value to the appropriate bound. The 
effectiveness of such refinement based on bounds depends on how 
much and how quickly these bounds can be refined based on 
execution feedback. 

When an upper (or lower) bound for a particular node is refined, 
this could potentially help refine the upper (or lower) bound of 
other nodes above it in the execution tree. We propagate these 
bounds using algebraic properties of operators. For example, in 
Figure 3, suppose that at some point in time T during the query’s 
execution, we were able to conclude that the upper bound for the 
Hash Join can be reduced from 1 million rows to 0.5 million rows. 
Suppose the upper bounds for the Group By and Sort nodes were 
0.8 million rows. Then, based on the algebraic properties of 
Group-By and Sort nodes, we can also conclude that each of their 
upper bounds cannot exceed 0.5 million rows. The lowering of the 
upper bound could help refine the estimates of Ni at one or both of 
these nodes at time T. Note that although dne uses only the driver 
node cardinalities for the currently executing pipeline, it is 
necessary to refine cardinalities of all nodes in the pipeline, since 
it could influence the Ni estimates for nodes in a pipeline that is 
yet to start executing. In our implementation, we propagate 
bounds a few times per second (at roughly the granularity at which 
feedback is necessary to the user/application).  

Refining lower and upper bounds 

The refinement of lower and upper bounds for an operator Opi at 
query execution time uses the following information: (1) The 
observed input and output cardinalities of the operator (i.e., the Ki 
of the operator as well as its input operators) (2) Algebraic 
properties of the operator. For example, for Filter and Group-By 
operators, we know that the cardinality cannot exceed its input 
cardinality. (3) The current state of the operator. This refers to the 
state of internal data structures used by the operator. For example, 
the current number of entries in the hash table of a Group-By 
operator.  

For refining lower bounds, Ki (the actual number of rows output 
from the operator thus far) is itself a correct lower bound for any 
operator. An example of where the algebraic property of the 
operator is useful for refining lower bounds is Sort. Since Sort has 
the property that it does not change its input cardinality, in fact, 
Ki-1 (i.e., cardinality of the input operator to the Sort) is a valid 
lower bound.  Thus, the cardinality of the Sort operator (which is 
always the start of a new pipeline) can be refined when the 
previous pipeline is executing. An example of where the current 
state of the operator is useful in refining lower bounds, consider 
the Group-By (hash based) operator. If we can count the number 
of distinct values observed during the operator’s execution thus 
far (say d), then the lower bound can be refined to d at that point 
in time. This could be done, for example, by tracking the internal 
hash table used by the operator.  

As far as the upper bound is concerned, for operators such as 
Filter and NL Join (foreign-key join), we can leverage their 
algebraic properties (the fact that they can never increase their 
input cardinality) and the Ki’s to refine the upper bound to: (UBi-1 
– Ki-1) + Ki

 . Another example where algebraic properties help 

refine upper bound is Sort, where UBi-1 (i.e., upper bound of input 
to Sort) is an upper bound for the Sort itself. An example of the 
use of current operator state for refining upper bounds is the Hash 
Join operator. Consider a Hash Join between two relations A 
(build side) and B (probe side). Assume A has already been 
hashed into buckets, and suppose S is the number of tuples of the 
largest bucket. We can exploit this information during the probe 
phase to obtain a tighter upper bound since we know that each row 
from B can produce at most S tuples after the join.  We refer the 
reader to Appendix B for details of how upper and lower bounds 
can be refined for certain common physical operators. In the 
future, we intend to explore applicability of other rules that can 
yield tighter bounds based on execution feedback. 

We observe that whenever an operator terminates, we know 
exactly the upper and lower bounds of that operator (which are 
identical at that point). Thus, e.g., for the query plan in Figure 3, 
when the final pipeline (P4) starts executing, we know exactly the 
cardinality of its driver node (the Sort node). In general, when a 
pipeline starts executing, we know exactly the cardinality of its 
driver nodes.  

In our experiments on TPC-H queries, we have found that both 
lower and upper bounds help refine Ni’s of certain driver nodes 
significantly (e.g., by three orders of magnitude for Q21) for 
driver nodes of upper level pipelines (when the optimizer 
underestimates the cardinality e.g., of a Sort node). Interestingly, 
the impact of these refinements on the overall estimation errors 
(see Section 5) is typically much smaller (a few percent). This is 
because in these queries, the Ni’s of driver nodes such as 
Table/Index Scan dominate the Ni’s of other nodes. A more 
thorough evaluation of the effectiveness of these bounding 
techniques on other data sets/queries is part of our ongoing work.  

Finally, we note that other techniques to leverage information 
from query execution are possible. For example, online estimation 
techniques based on observing intermediate results as in [7], 
refining statistics based on observed query results [1,11], and re-
invoking optimizer for cardinality estimated based on observed 
cardinalities similar to [4]. Exploiting these ideas to augment our 
techniques is an important area of future work.  

5. IMPLEMENTATION AND 
EXPERIMENTAL EVALUATION 
In this section, we first describe the implementation of our 
solution for estimating progress of SQL queries inside Microsoft 
SQL Server. We follow this with the results of an experimental 
evaluation of our solution for long running decision support 
queries on both the TPC-H benchmark [12] as well as an internal 
customer database.  

5.1 Implementation 
Our implementation inside Microsoft SQL Server consists of the 
following simple extensions to the existing query execution 
engine. We augment the data structure corresponding to a node in 
the query execution plan with counters for Ki (number of rows 
output by the node thus far), Ni (current estimate of total number 
of rows that will be output by node at completion), UBi and LBi 
(upper and lower bounds respectively of number of rows that can 
be output by node). After the query is optimized and an execution 
plan tree P has been generated for the query, we identify pipelines 



  

in P and the driver node(s) for each pipeline. We initialize Ni for 
each node to the optimizer estimated cardinality (for leaf-level 
nodes such as Table/Index Scan this is the cardinality of the base 
table/index). We update and propagate the values of UBi, LBi and 
Ni for nodes using the Ki and algebraic properties of operators as 
described in Section 4.2.   

For convenience of collecting the progress information of an 
executing query, we implement a background thread that wakes up 
periodically (approximately 4 times a second), traverses P, 
computes the progress, and logs the progress estimate and a 
timestamp to a file. The overheads of gathering this information at 
runtime are negligible relative to execution time of queries we 
considered. In general, we would expect that database servers will 
extend interfaces (e.g., via system stored procedures or functions) 
to allow clients to programmatically access progress information 
for an executing query by polling the server.  

5.2 Experiments 
Goal: The goal of the experiments is to: 

•  Evaluate the accuracy of our estimator (which is based on the 
GetNext() model of work presented in Section 2) on a set of 
long running and complex decision support queries. 

•  Evaluate robustness of our estimator when data skew is 
varied. 

•  Validate the driver node hypothesis for progress estimation 
of currently executing pipelines. 

Setup:  We conducted the experiments on a machine with a 
2.8GHz CPU and 512 MB RAM.  

Databases: We ran the experiments on the TPC-H 10GB database 
[12]. We chose the 10GB configuration because the queries are 
truly long running (typically 10s of minutes). For the evaluation 
with varying skew, we generated a TPC-H 10GB database with a 
Zipfian skew factor of 2 using the publicly available tool [3]. We 
also ran queries from a real data warehouse application used 
within the company to analyze sales (we refer to this as the 
SALES database – approx. 5GB in size).  

Queries: For TPC-H we evaluate all the queries defined in the 
benchmark. We report numbers for all the long running queries in 
the benchmark (those that reference the lineitem table). For TPC-
H queries, the joins are typically foreign-key joins, and thus most 
pipelines exhibit the property of being monotonically decreasing 
(Section 3). For the SALES database, we picked a few queries for 
evaluation. The queries against the sales database are aggregation 
queries that are joins of 7-10 tables, and have 8-10 grouping 
columns. The joins are non foreign-key joins, thus the property of 
monotonically decreasing pipelines does not hold.  

Evaluation Metric: Our experiments are conducted a single query 
at a time, and on a machine on which only the database server is 
executing. In this setting, we expect the percentage work 
completed reported by any scheme to be a good estimator of the 
percentage time taken by the query. As described in Section 5.1 
above, we record the fraction complete predicted by our solution 
at regular intervals throughout query execution. Assume the query 
starts executing at time t0.  Let fi be the percentage of the query 
completed as reported by our estimator at time ti (i > 0, ti > ti-1). 
Let tn be the time at which the query completes. Then, at any point 
in time ti, an estimator that has perfect knowledge of the future 

would report the actual percentage of the query completed as 100 . 
(ti-t0)/(tn-t0). Thus, we define the estimation error of an estimator 

at time ti (denoted by ei) as: 
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Note also that since we take the absolute value of the difference, 
we do not distinguish between under estimates or over estimates. 
We report the overall estimation error for a query using three 
aggregate measures over all the ei’s collected for the query, the 
average, standard deviation and max over all ei’s.  

5.2.1 TPC-H Benchmark Queries 
The goal of this experiment is to evaluate the accuracy of our 
progress estimator (see Section 4.1), which is based on the 
GetNext() model of work. We evaluate the estimator on complex 
decision support queries of the TPC-H benchmark [12] on the 
10GB database.  

Table 2 shows the mean and maximum error (as defined above) 
for several long running TPC-H queries for the uniform data 
distribution case (Z=0) as well as the skewed data distribution 
case (Z=2). As we see from the table, for the Z=0 case, the 
maximum error for any query does not exceed 10%, and the 
average error is small (typically below 5%). The standard 
deviation was also small (at or below 5% in all cases). One 
interesting observation is that expensive Sort nodes at the top of a 
query execution plan can potentially be problematic (as in Q5 for 
Z=0), particularly when the query optimizer overestimates the 
cardinality of the Sort node. In such cases it is difficult to rectify 
errors based on execution feedback until the lower pipeline (that 
feeds into the Sort node) is almost complete. Thus, the error 
induced by the optimizer’s estimates persists for almost the entire 
duration of the query. 

For the Z=2 case, the maximum and mean errors are higher for 
certain queries e.g., Q8, Q18, and Q21. To understand the reasons 
for the errors better, refer to Figures 4 and 5, which show scatter 
plots of the actual percentage completed vs. estimated percentage 
completed for Q8 for Z=0 and Z=2 respectively. A perfect 
estimator would have all data points along the diagonal of the 
graph. For the Z=2 case (Figure 5), when the major pipeline in 
this query (involving scan of the lineitem table followed by a 
Merge Join and couple of Hash Joins (probes)) starts, the 
estimates of the cardinalities of the joins used by our estimator are 
significantly overestimated. However, shortly after the pipeline 
starts executing, (as explained in Section 4.2) we estimate the 
cardinalities using dne which is based on the progress of the driver 
node (Scan of lineitem). This results in quickly reducing the 
estimation error, and explains the discontinuity in progress 
estimation around 20% actual completion. In general, until a 
pipeline starts executing, our estimator is more susceptible to 
errors in cardinality estimation. For the case of Z=0, the 
cardinality estimates of this pipeline are quite accurate, and 
therefore we see lower errors. We observe similar behavior in 
queries Q18 and Q21. This experiment shows our estimator (based 
on the GetNext() model of work) results in fairly robust progress 
estimation, even in the presence of skewed data distributions. 
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5.2.2 Validation of Driver Node Hypothesis 
In this experiment, we demonstrate the importance of estimating 
overall progress based only on progress of driver nodes within a 
currently executing pipeline. We do this by comparing with an 
estimator that also uses the GetNext() model, but does not use dne 
(i.e., the driver node hypothesis) to estimate the cardinality of all 
nodes in the currently executing pipeline, but relies only on the 
optimizer estimated cardinalities. 

We show the results for TPC-H query Q9 against the 10 GB 
database with Zipfian skewed data (Z=2). The results for our 
estimator and the estimator that uses only optimizer estimates 
(OPT) for currently executing pipelines is shown in Figures 6 and 
7 respectively. The mean and max errors for our estimator is 2.9% 
and 8.3% respectively, whereas the errors for OPT are 23% and 
47% respectively. The reason is that OPT, due to the inclusion of 
several join nodes (whose cardinality estimates are inaccurate), 
ends up with a significant overestimate of the actual work which 
gets refined only near the very end of query execution (when the 
estimated completion jumps from 48% to 89%).  
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5.2.3 Queries on SALES Database 
In this experiment, we evaluate our estimator on complex decision 
support style queries from a real database application. As in TPC-
H, we see that the mean estimation errors are quite low (around 
10%) and the max errors are around 20% (see Table 3). This 

 Estimation Error 
(Z=0) 

Estimation Error 
(Z=2) 

Query Mean Max Mean Max 

Q1 0.9% 2.8% 0.2% 0.5% 

Q3 1.1% 2.0% 3.4% 4.7% 

Q4 0.5% 1.0% 0.6% 1.4% 

Q5 7.3% 9.0% 3.7% 5.4% 

Q6 1.2% 2.9% 2.8% 4.6% 

Q7 2.3% 4.0% 3.8% 7.6% 

Q8 0.8% 1.7% 5.2% 16.2% 

Q9 2.7% 4.9% 2.9% 8.3% 

Q10 0.4% 1.4% 1.6% 4.4% 

Q12 1.0% 1.7% 0.9% 3.8% 

Q14 0.5% 1.8% 1.5% 3.2% 

Q15 0.6% 1.3% 1.6% 4.4% 

Q17 1.7% 2.6% 0.7% 2.0% 

Q18 5.9% 16.8% 14.2% 25.5% 

Q19 0.5% 1.5% 1.8% 2.7% 

Q20 3.0% 9.8% 3.7% 5.9% 

Q21 0.9% 2.5% 15.7% 38.8% 

Table 2. Estimation Errors TPC-H Benchmark Queries    
(10 GB database), Uniform and Skewed Data Sets 

Figure 5. Scatter plot of   actual vs. estimated percentage 
completed (TPC-H Q8), Skewed distribution 

Figure 6. Scatter plot of   actual vs. estimated percentage completed 
(TPC-H Q9, Using Driver node hypothesis) 

Figure 7. Scatter plot of   actual vs. estimated percentage 
completed (TPC-H Q9, Using only optimizer estimates) 

Figure 4. Scatter plot of   actual vs. estimated percentage 
completed (TPC-H Q8), Uniform distribution 



  

experiment shows that that the accuracy of our estimator  does not 
degrade appreciably for this set of real world queries that contain 
non foreign-key joins, and significant grouping and aggregation. 

 

 Estimation Error 

Query Mean  Max 

Q1 7.1% 17.3% 
Q2 8.2% 16.9% 
Q3 11.6% 18.2% 
Q4 9.3% 21.4% 
Q5 7.0% 18.1% 

 

6. MONOTONICITY 
As discussed in Section 2.2., monotonicity is a desirable property 
from a user’s perspective. Consider a progress estimator that uses 
the GetNext() model of work (Section 2.3). Since the Ki values 
(observed cardinalities during execution) are monotonically 
increasing, the estimator will be monotonic provided any changes 
to the Ni values during query execution are monotonically 
decreasing. An estimator that has up front knowledge of the exact 
number of GetNext() calls that will be made by each operator (i.e., 
the Ni values) can guarantee monotonicity, since it would never 
need to change Ni.  However, for any other technique that can only 
estimate the value of the Ni there is a trade-off between 
guaranteeing monotonicity and the accuracy of progress 
estimation.  

One way to ensure monotonicity is to initially use a value for the 
estimated Ni that is much larger than the actual Ni, i.e., an upper-
bound. The problem with such an approach is that accuracy can 
suffer, since the actual Ni may be much smaller. For example, 
consider a query plan which performs a hash join of relations R1 
and R2 and then sorts the result of the join. Note that obtaining a 
tight upper-bound on the estimate of the Sort node cardinality can 
be problematic. If the join is a foreign-key join, then we know that 
an upper bound on the cardinality of the joined relation, and hence 
the Sort node, is the size of table with the foreign-key. However, 
for non foreign-key joins the upper-bound can be a considerable 
overestimate of the actual Ni for the Sort node, and thus the 
accuracy of the estimator may be poor until most of the query has 
completed executing. Therefore, the real challenge is to find tight 
upper-bounds so that accuracy of the estimator is not significantly 
compromised. 

Given the difficulty of guaranteeing a tight upper bound for 
intermediate driver nodes, a trade-off between monotonicity and 
the accuracy of progress estimation appears unavoidable. Thus, an 
interesting issue is whether users prefer more accurate estimates or 
estimates that are guaranteed to be monotonic. A possible 
approach for addressing this issue is to present both the estimated 
progress as well as the progress based on the upper-bounds. Let 
the progress computed using upper bounds be p1% and the 
corresponding one computed using estimates be p2%. Then (p1, 
p2) as a pair of values would indicate to the user that the % done at 
any instant is not lower than p1 and our current best estimate is the 
value p2. Note that p1 is monotonic, whereas p2 may not be.   

We observe that for a single pipeline query, the estimator dne 
(Section 3) is monotonic, since N1 is known exactly and does not 

change during the execution of the pipeline (see Section 7 for 
runtime conditions that may cause monotonicity violations even 
for single pipeline queries). However, for the case of multi-
pipeline queries, our estimator is not guaranteed to be monotonic. 
In particular, monotonicity violations can occur when a new 
pipeline starts executing, and we revise the optimizer estimates of 
Ni, with the estimate based on dne (as described in Section 4.2). 
For the queries against the TPC-H 10GB (Skew Z=2) data in our 
experiments, we computed progress estimates at regular intervals 
(approximately 4 times a second), and we measured: (a) the 
number of monotonicity violations, i.e., number of times in which 
a progress estimate was less than the previous estimate, (b) the 
average % by which the estimate decreased and (c) the maximum 
% by which the estimate decreased. We observed monotonicity 
violations in five queries (Q7, Q8, Q9, Q20, Q21). Moreover, 
except for Q8 and Q20, there was only 1 violation in the other 
three queries. The maximum decrease in estimated progress across 
all queries was 8.3% (for Q21) and the average decrease for each 
query respectively was 1.4%, 0.7%, 4.9%, 0.01%, and 8.3%. One 
reason for the relatively few and small monotonicity violations is 
that in these queries the Ni’s are dominated by the leaf-level driver 
nodes (scans of lineitem, orders tables). Due to the filtering and 
aggregations performed in these queries, the actual Ni’s of the 
upper-level nodes in the plan are usually much smaller. Thus, even 
in cases when the Ni’s for the non-leaf driver nodes are initially 
under-estimated, the magnitude of the monotonicity violations are 
small. 

7. RUNTIME CONDITIONS 
The model of work done by a query (see Section 2) makes the 
simplifying assumption that the actual work done by a call to 
GetNext() is the same across all operators in the plan, i.e., 
GetNext() from all operators are weighted equally. In general, this 
assumption does not hold, e.g., due to an expensive operator like a 
UDF in a Filter node, or because one Table Scan reads from a fast 
disk whereas another Table Scan reads from a slow disk. A 
possible way to extend the basic model of work to account for 
different cost of GetNext() of different operators is to model the 
work as a weighted sum of the number of GetNext() calls done by 
operators in the plan. The weighting factor Cj associated with 
operator j is a relative measure of the work done by a GetNext() 
on that operator. Of course, this introduces an additional 
parameter (besides driver node cardinality) that needs to be 
estimated and refined. A possible solution is to start with uniform 
relative rates (i.e. Cj = 1 for all j) or use cost estimates made by the 
query optimizer, and then adjust the Cj values based on execution 
feedback. Modeling and computing per-tuple work for every 
pipeline could be an important factor in general, and developing 
techniques to address this issue is part of our ongoing work. In the 
rest of this section we discuss an important special case of a 
runtime condition, spills of tuples to disk due to insufficient 
memory, and show how our estimator can be adapted to handle 
spills without introducing an additional weighting factor, by 
treating spill processing as a “runtime pipeline”.   

Handling Spills: Spills of tuples to disk, which can occur as a 
result of insufficient memory can result in more work that is not 
accounted for by our model of work since it occurs within an 
operator. Consider a join between two relations A and B, where the 
optimizer picks a hybrid hash join operator. Hybrid hash proceeds 
by building a hash table of A in memory. During the scan of 

Table 3. Estimation Errors SALES queries 

 



  

relation A, if the memory budget of the hash join is exhausted, then 
certain buckets will be spilled to disk. When the table B is used to 
probe the hash partitions, the tuples of B that hash to the buckets 
that are not memory resident are also written to disk. Bucket 
spilling is a runtime effect and hence it can be difficult to accurately 
estimate in advance the number of tuples that will be spilled to disk.   

We observe that we can model the query execution as comprising 
two parts, one that processes the original relations and another that 
processes the spilled partitions. In other words we can think of the 
original query as follows. Q = (A join B) ∪  (A’ join B’) where A’ 
and B’ denote the corresponding parts of relations A and B that 
have been spilled (0 ≤ |A’| ≤ |A|, 0 ≤  |B’| ≤ |B|). The driver nodes 
for query Q would include scans of A, B, A’ and B’. Thus the total 
work for Q would be |A|+|B|+|A’|+|B’|. The main problem is that 
|A’|, |B’| cannot be predicted at optimization time.  

The main idea behind our solution to the spill problem is as 
follows. Whenever a tuple is spilled to disk (either from relation A 
or B) the denominator value (which denotes the total work) is 
incremented by one (i.e., another GetNext() call). We are in essence 
adding more work to be done later and the denominator value 
should reflect the estimated cardinality of the pipeline.  Now, 
consider the point during execution when the first phase of hash 
processing is over and none of the spilled partitions have been 
processed. The modified estimator would have incremented the 
denominator counter for each tuple that had been spilled and would 
estimate the progress as (|A|+|B|)/ (|A|+|B|+|A'|+|B'|) which is correct 
as it accounts for the remaining tuples to be processed. When the 
spilled partitions are re-read the corresponding counts would be 
counted in the numerator and only when all the partitions have been 
processed will the estimator report the progress as 100%. This 
correction to the estimator works because of the symmetry of spills, 
i.e., exactly the tuples that have been written to disk will be 
processed later. It is also easy to see that this modification to the 
original algorithm would work for multiple recursion levels in a 
hash join pipeline.  Finally, we note that spills could occur in other 
operators like hash-based Group-By or the merge phase in a Sort-
Merge join if there are too many duplicates of a particular value. 
Thus, in general, a query can be considered as Q ∪  Q’ where Q’ 
accounts for the work done by the current query in handling data 
that is spilled.  

The following experiment on TPC-H Q18 highlights in the 
importance of handling spills. From Figure 8 we see that the 
progress estimator remains stuck on 44% for a relatively long time 
(more than 15% of total query execution time). This is because 
during this interval the query is writing and reading the spilled 
partitions, and the estimator does not capture this effect. On the 
other hand when we enable spill handling as discussed above (see 
Figure 9) the estimator is more accurate. 
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TPC-H 10GB Query 18 (Z=0)
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8. RELATED WORK 
There are two broad areas that are related to our work. First is the 
area of estimating cardinality of query expressions. Selectivity 
estimation e.g., [9] plays a key role in enabling query optimizers 
to pick a suitable query execution plan. Our work leverages the 
query optimizer to provide an initial estimate of cardinality of 
nodes in an execution plan.    

The second broad area that relates to this paper is the use of 
information gathered during query execution.  One body of work 
e.g., [2,4] uses feedback of observed cardinalities at runtime to 
potentially re-optimize the same query, pick among competing 
query plans or to improve decisions on resource allocation for it. 
In contrast, we use observed cardinality of operators in the 
execution tree to improve estimate of total work that needs to be 
done, while leaving the query execution plan unchanged. We note 
that in principle, the techniques in [4] that collect statistics such as 
cardinalities/histograms etc. of intermediate query results can be 
adapted in our context for obtaining better estimates of Ni’s by re-
invoking the query optimizer’s cardinality estimation module at 
runtime with more accurate statistics. While this does require non-
trivial extensions to today’s query processing engines, it 
represents an interesting avenue of future work for progress 
estimation. Another use of runtime feedback is to refine statistics 
e.g., [1,11] that can be used for selectivity estimation for 

Figure 8. Scatter plot of   actual vs. estimated percentage 
completed (TPC-H Q18, No Spill handling) 

Figure 9. Scatter plot of   actual vs. estimated percentage 
completed (TPC-H Q18, With Spill handling) 



  

subsequent queries. In contrast, we limit the use of observed 
cardinality estimates to improving estimates for the same query.   

A possible direction for using feedback from query execution is 
applying techniques for online aggregation [6,7] for estimating 
how many tuples would be output by a pipeline. Online 
aggregation techniques typically need to make assumptions about 
randomness of order of input tuples in order to give confidence 
intervals, and they exploit non-traditional join algorithms, e.g., 
ripple join. In contrast, we use a complementary (and more 
conservative) approach of refining lower and upper bounds based 
on observed cardinalities at runtime, and our runtime refinement is 
designed to work with traditional operators in today’s database 
systems.  

The paper [10] describes the importance of progress bars for 
computer-human interfaces of long running programs. The paper 
also discusses an inherent problem in estimating progress in the 
following case: The input of one program is output of another; as 
can happen e.g., when using the Unix pipe command. The paper 
suggests ensuring that all programs in the pipeline consume input 
at the same rate, and then basing progress estimation only on the 
original data producer. The concept of driver nodes in an 
execution pipeline can be viewed as an application of the above 
idea in the context of SQL queries.  

9. CONCLUSION and FUTURE WORK 
 Long running queries are common in decision support 
environments, but current systems provide inadequate feedback to 
the user about progress of such queries. As a first step, we look at 
the problem of providing a progress estimator for SQL queries. 
The proposed solution is simple and applicable to arbitrary SQL 
queries. Initial experiments on a prototype in Microsoft SQL 
Server are encouraging. We intend to extend our current 
framework to be more robust to runtime conditions.  

Although the work in this paper focuses on returning a single 
percentage completion number for the entire query, the estimator 
has more granular information, e.g., progress information at a per 
operator level. It would be interesting to consider leveraging this 
more granular information in providing feedback to users. 

As mentioned in the introduction, perhaps the most useful 
feedback on query execution progress is estimating the time 
remaining to completion in a system with concurrently executing 
queries. Our paper does not achieve this. Our hypothesis is that 
providing percentage completion for query execution is a partial 
step in this direction that is still useful. It would be important to 
validate this hypothesis based on actual user feedback.  
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APPENDIX A 
Claim: Consider a monotonically decreasing pipeline (i.e., having 
the logical property that no operator in the pipeline can increase 
its incoming cardinality). For a monotonically decreasing pipeline 
with m operators, the estimator dne is guaranteed to be accurate 
within a constant factor m of the ideal estimator gnm, i.e. 

 gnmmdne
m

gnm
.≤≤  

Proof: We present two estimators E1, E2 that provides estimates 
that are within a constant factor m (number of operators in the 
pipeline) of gnm for the above class of queries. Intuitively, E1 is a 
pessimistic estimator which always underestimates the progress 
whereas E2 is an optimistic estimator that always overestimates the 
progress. We then show that dne must lie between E1 and E2.  

Estimator E1:         
mN

K
E i

i

⋅
=
∑

1
1

 

Where N1 is the number of tuples that flow out of operator Op1 (the 
driver node of the pipeline), and m is the number of operators in the 
pipeline. E1 assumes that none of the N1 tuples flowing out of Op1 
would be discarded by the other operators (Op2 ..Opm). 

Claim: For monotonically decreasing pipelines E1 is a lower bound 
on gnm within a factor m.  

Proof:  E1 / gnm   =   ∑i Ni   / (N1*m).   Since, the pipeline is 
guaranteed to be monotonically decreasing we know that N1 ≤ ∑i Ni 
≤ m. N1. In other words: 

1/ m  ≤  E1/ gnm ≤ 1 or equivalently: 



  

gnmE
m

gnm ≤≤ 1

1
. ……………………………………..(1) 

Estimator E2:        
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Thus, E2 assumes that all of the N1 tuples that flow out of Op1 are 
discarded by subsequent operators. 

Claim: For monotonically decreasing pipelines E2 is an upper 
bound on gnm within a factor m.  

Proof:   
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We know that: 
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in other words we have 1 ≤  E2/ gnm   ≤ m, or equivalently,  

gnmmEgnm ⋅≤≤ 2 ……………………………………(2) 

 

Claim: Estimator dne always lies between estimators E1 and E2. 

Proof: Let us compare dne to estimators E1 and E2 defined above. 
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Since the pipeline is monotonically decreasing, we have m.K1 ≥ 
(K1+K2+…Km). Therefore, (dne - E1) ≥ 0 or dne ≥ E1.  

From the definition of E2, we know that: 
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and since 0
2

≥∑
=

m

i
iK , we know that E2 ≥ dne. 

Thus, E1 ≤ dne ≤ E2. Using Equations (1) and (2) above:  

gnmmEdneE
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APPENDIX B 
Operator specific refinements based on execution feedback to 
upper and lower bounds of a physical operator Opi in an execution 
plan. Ki is the actual number of rows output from the operator thus 
far. UBi (resp. LBi,) is the upper (resp. lower) bound on the 
cardinalities of the rows that can be output from Opi. 

 

 

Physical 
operator i 

Lower Bound 
(LBi) 

Upper Bound 

(UBi) 

Filter Ki (UBi-1 – Ki-1) + Ki 
Group By d (#distinct values 

observed thus far) 
(UBi-1 – Ki-1) + d 

Sort Ki-1 UBi-1 
NL Join 

(Foreign Key) 
Ki (UBi-1 – Ki-1) + Ki 

i-1 refers to 'Outer 
relation 

NL Join 
Not FK 

Ki (UBi-1 – Ki-1) . UBi-2 + Ki 
i-2 refers to Inner relation 

Hash Join 
Not FK 

Ki (UBi-1 – Ki-1) . S 
S is #rows of largest build  

partition 
Table / Index 
Scan (table T) 

|T| (#rows in table) |T| 

 

 

Table 1. Operator specific rules for refining upper 
and lower bounds on cardinality 
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