

Estimating Progress of Execution for SQL Queries
 Surajit Chaudhuri Vivek Narasayya Ravishankar Ramamurthy1

 Microsoft Research Microsoft Research University of Wisconsin, Madison

 surajitc@microsoft.com viveknar@microsoft.com ravi@cs.wisc.edu

ABSTRACT
Today’s database systems provide little feedback to the user/DBA
on how much of a SQL query’s execution has been completed. For
long running queries, such feedback can be very useful, for
example, to help decide whether the query should be terminated or
allowed to run to completion. Although the above requirement is
easy to express, developing a robust indicator of progress for
query execution is challenging. In this paper, we study the above
problem and present techniques that can form the basis for
effective progress estimation. The results of experimentally
validating our techniques in Microsoft SQL Server are promising.

1. INTRODUCTION
Decision support applications typically include long-running
queries. For such queries, the ability to estimate the progress of
query execution could be very useful. Progress estimation could
help DBAs as well as end users or applications help decide
whether to terminate the query or allow it to finish. Such feedback
could qualitatively improve the experience for any database user.
However, today’s database systems only provide rudimentary
feedback to users about progress of query execution. This
feedback is limited to the query optimizer generated execution
plan and its cost, as well as the number of tuples returned by the
query during its execution. Beyond this, to the best of our
knowledge, there is no prior published work on the problem of
progress estimation for SQL query execution.

The most useful measure of progress would report to the user at
any point during the query’s execution, the amount of time
required for the query to complete execution. However, any
method that provides such a measure would be subject to
uncertainty arising from concurrent execution of other queries.
Due to this difficulty, we focus on the problem of estimating the
percentage remaining (or equivalently completed) of the query, at
any point during its execution, i.e., reporting a “progress bar” for
query execution. Such an estimator is simpler than estimating time
remaining since it is independent of other queries. In effect, this
measure estimates the time remaining on an isolated system where
only the given query is executing.

Effective progress estimation for query execution requires us to
accurately estimate the total “work” required to execute the query.
Queries in modern database systems are quite complex involving

joins, nested sub-queries and aggregation. Any measure of work
for a query that is independent of the intermediate cardinalities of
such operators is likely to be too simplistic. For example, consider
a metric that reports progress as the percentage of query results
that have been returned thus far. Let us assume that we could
accurately estimate the total number of rows that a query will
return in its result. To see why such a metric for progress could be
really inaccurate, consider an execution plan consisting of a very
expensive join followed by an inexpensive Sort operation. Since
Sort is a blocking operation, query results are not returned until
the Sort starts outputting rows. Therefore, until such time, the
above metric would report no progress irrespective of how much
work was done in the join. As another illustration of why the
problem is difficult, consider a metric that reports the percentage
of nodes (i.e., operators) in the execution plan that have
completed. However, if a query is just a single pipeline of
operators, for almost the entire duration of the execution of the
query, all the operators in the plan are active i.e., not yet
completed. Thus the above metric will not report any progress
until near the very end of query execution .

We note that a query optimizer already uses a model of work done
by a query (based on estimated CPU and I/O costs). While
leveraging this model for progress estimation may be possible, in
this paper, we ask whether an even simpler model would suffice
for the purposes of progress estimation. The motivation for this
simpler model is the ease of incorporation into existing query
execution engines. We model work done by a query as a function
of the number of rows output by each operator in the query
execution plan.

While this model does inherit the known difficulties of cardinality
estimation faced by a query optimizer, we use two key ideas to
help mitigate the impact of inaccurate cardinality estimation on
progress estimation. First, we observe that it is possible to
estimate the cardinalities of certain operators e.g., Table Scans or
Index Scans which we refer to as driver nodes (formally defined in
Section 2) much more accurately than other intermediate nodes in
a pipeline e.g., a Filter or Hash Join. We show that in many cases
estimating the overall query progress by only monitoring progress
of these driver nodes can greatly improve accuracy. Second,
during query execution we leverage runtime execution
information to refine cardinality estimation. We take a
conservative approach (based on maintaining and refining upper
and lower bounds on cardinalities of operators in the plan) that is
guaranteed not to introduce additional inaccuracies as a result of
such refinement. Our solution is applicable to arbitrary SQL
queries and can be implemented at low overhead in existing
database systems. We have implemented our techniques inside
Microsoft SQL Server and the initial results of experimentally

1 Work done while author was visiting Microsoft Research.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGMOD 2004, June 13–18, 2004, Paris, France.
Copyright 2004 ACM 1-58113-859-8/04/06 …$5.00.

evaluating our estimator on the TPC-H benchmark [12] queries
(10 GB version on uniform as well as skewed data distributions)
are promising.

The rest of the paper is structured as follows. Section 2 describes
the problem and presents our model of work done by a query.
Given this model, we propose in Section 3, an estimator for the
progress of a query whose execution consists of a single pipeline.
Section 4 presents our solution for the general case of a query
involving multiple pipelines. Experimental validation of our
prototype on decision support queries is presented in Section 5.
Section 6 discusses the desirable property of monotonicity of
progress estimation and its relationship to accuracy of estimation.
We present extensions to our model of work to be more robust to
runtime conditions in Section 7, and discuss related work in
Section 8. We conclude with a brief discussion on interesting
areas of future work.

2. PROBLEM DESCRIPTION

2.1 Definitions
A progress estimator uses an execution plan that is chosen by the
query optimizer for the given query. An execution plan is a tree
where the nodes of the tree are physical operators. For example,
Figure 1 shows the execution plan for a query.

A physical operator is referred to as a blocking operator if it does
not produce any outputs until it has consumed at least one of its
inputs completely. For example, suppose Table Scan A with Filter
is the build relation of the Hash Join and Index Scan B is the
probe relation. The Hash Join operator in Figure 1 is blocking
since it must consume all rows from the build relation before it
produces any output. Another example of a common blocking
operator is Sort.

The overall execution of a query is staged into multiple pipelines.
We now define the notion of pipelines for an execution plan
consisting of common physical operators such as Table Scan,
Index Scan, Index Seek, Filter, Hash Join, Merge-Join, Index
Nested Loops (INL) Join, NL Join, Group-By (Hash-based) and
Sort. The definition is procedural and proceeds inductively in a
bottom up manner over the nodes of an execution plan. A leaf
node of the plan (Table Scan, Index Scan, Index Seek) starts a
pipeline. A Filter node is part of the pipeline that its child operator
belongs to. For a Hash Join, the join operator is included in the
pipeline of the probe child, and the build child is the root of
another pipeline. For a Merge-Join, the pipelines containing its
children and the Merge Join operator itself are union’ed to create a

single pipeline. For a Nested Loops or Index Nested Loops Join
operator, the outer child, the join operator and its entire inner
subtree are part of a the same pipeline as the outer child node.
Both Sort and Group-By (hash-based) operators, which are
blocking, start a new pipeline of their own. For the example in
Figure 1, the pipelines are: P1 = {Table Scan A, Filter}, P2 =
{Index Scan B, Hash Join, Index Nested Loops, Index Seek C}. In
principle the above definition of can be extended to other physical
operators as well. Thus, intuitively, a pipeline can be thought of as
a maximal subtree of concurrently executing operators.

Every pipeline has a set of driver nodes, i.e., operators that are the
sources of tuples operated upon by remaining nodes in the
pipeline. More precisely, we define the driver nodes of a pipeline
as the set of all leaf nodes of the pipeline, except those that are in
the inner subtree of a Nested Loops/ Index Nested Loops join. For
example, in Figure 1, the shaded nodes are driver nodes – Table
Scan A is the driver node for the pipeline P1 and Index Scan B is
the driver node for pipeline P2. Note that Index Seek C is not a
driver node since it is a leaf node of the inner subtree of an Index
Nested Loops Join. We observe that it is possible for a pipeline to
contain more than one driver node, e.g., in a Merge-Join of two
sorted relations, both the input relations to the Merge-Join are
driver nodes.

This is illustrated in Figure 2. The pipelines identified for this
query would be P1 = {Table Scan A}, P2 = {Index Scan B} P3 =
{Sort A, Sort B, Merge Join, Index Nested Loops, Index Seek C}
and the driver nodes (the shaded nodes) would be respectively
{Table Scan A}, {Table Scan B}, {Sort A, Sort B}. Thus there
are two driver nodes for the last pipeline. We note that unlike a
Hash Join, for a Sort-Merge Join, the scans of both inputs do not
necessarily need to complete for the Sort-Merge Join to complete.

An execution plan can be viewed as a partial order of pipelines
since, in general, for certain pipelines to start executing, one or ore
other pipelines need to complete. For example in Figure 1,
execution of P1 must precede P2. Similarly in Figure 2, execution
of P1 and P2 must precede P3, but the order between P1 and P2 is
arbitrary.

2.2 Desirable Properties of a Progress
Estimator
Accuracy: The estimated percentage of work completed by the
query at any point during its execution should be close to the
actual percentage of work completed by the query at that point.

Table Scan A Index Scan B

Sort A

Sort-Merge Join

Figure 2. Execution plan with Sort-Merge Join.

Index Nested Loops
Join

Index Seek C

Sort B

Table Scan A

Index Scan B

Filter

Hash Join

Figure 1. Example of an execution plan for a query

Index Nested Loops
Join

Index Seek C

Fine granularity: It follows from the above accuracy requirement
that the estimator should be able to provide estimates at
sufficiently fine granularity over the duration of the query’s
execution. Thus, for example, an estimator that only provides
accurate estimates at 0% and 100% completion would not be
useful.

Low overhead: An essential requirement for a progress estimator
to be practical is that it should impose low overhead on the actual
execution of the query.

Leveraging feedback from execution: As query execution
progresses, more information based on (intermediate) results of
execution can become available. Ideally, an estimator should be
able to take full advantage of such information.

Monotonicity: Since the actual execution of the query progresses
monotonically, ideally, the estimated progress should be also be
monotonically increasing from the start of query execution to its
finish.

We observe that in today’s database systems feedback on query
progress during execution does not satisfy one or more of the
above requirements. While the optimizer estimated cost of a query
can be obtained at low overhead and progress estimation based on
this cost is trivially monotonic (since the estimated cost does not
change over the lifetime of the query’s execution), it can
potentially be inaccurate and it does not leverage any feedback
from execution. Similarly, the number of tuples returned by a
query during its execution (while low overhead and monotonic)
has the major drawback that it can be inaccurate and lacking in
granularity – as illustrated in the introduction. Moreover, it only
takes limited advantage of execution feedback. Finally, we note
that in general, there is a trade-off between guaranteeing
monotonicity and achieving accuracy of progress estimation (we
discuss this further in Section 6).

2.3 The GetNext() Model of Work
As described in the introduction, our goal is to estimate progress
of a query on an isolated system, i.e., on a system where there is
no other activity besides the execution of this query. Any progress
estimator requires a model of work done by a query as the basis of
its estimation. In this section we present such a model of work.
One approach for modeling the work done by a query could have
been to use the cost model used by query optimizer’s for
comparing different execution plans for a query. Query optimizers
typically model the work done by the query as a function of CPU,
random I/O and sequential I/O costs. Thus, to use such a model
for progress estimation, we would need to measure the CPU,
random and sequential I/O’s performed by the query during its
execution. In this paper we investigate whether an even simpler
model of work would be adequate for the purposes of progress
estimation. The main motivation for a simpler model is the ease
with which it can be incorporated into today’s database systems.
The reason we expect that a simpler model may be adequate for
progress estimation is that unlike the query optimizer that needs to
distinguish between multiple plans for a given query using its cost
model, we only need to be able to estimate the percentage of work
done for a given query execution plan.

We note that operators in a query execution plan are typically
implemented using a demand driven iterator model [5], where
each physical operator in the execution plan exports a standard
interface for query processing (including Open(), Close() and

GetNext()). We propose to model the work done by a query as the
total number of GetNext() calls issued throughout the duration of
the query’s execution over all operators in the execution plan. In
essence, we are counting each GetNext() call as a primitive
operation of query processing and modeling the total work done
by the query by the total number of GetNext() calls. Note that all
CPU instructions, I/Os etc. performed by the query occurs as a
result of GetNext() calls. Thus, this model assumes that the total
time required to execute the query is amortized across multiple
GetNext() calls, and therefore the percentage of GetNext() calls
done thus far is a good estimator of the time taken by the query
(on an isolated system).

It should be noted that the GetNext() model of work is inadequate
for the purposes of query optimization. As a simple example of
why this is the case, consider two plans for the same query: one
involving a non-clustered index Index Seek and another involving
a Table Scan. With the above GetNext() model of work, the Index
Seek would always be considered cheaper (i.e., less work) by the
query optimizer since the number of rows it returns can never
exceed that of the Table Scan.

Progress Estimation Based on GetNext() model

We now define progress estimation based on the GetNext() model
of work. Suppose the execution plan has a total of m operators.
Let the total number of tuples that flow out of operator Opi (i.e.,
number of GetNext() calls invoked on that operator) at the end of
query execution be Ni (i= 1..m). At any point during query
execution, let the number of tuples that have flowed out of every
operator thus far be Ki (i = 1..m). Thus, the ideal estimator under
the GetNext() model of work (we call it gnm) would estimate
progress at that point during the query’s execution as:

∑
∑

=

i
i

i
i

N

K
gnm

Note that while accurate Ki values can be obtained as the query is
executing, the exact Ni values are available only at the end of
query execution. Thus, the estimator gnm is not directly
implementable as stated above since Ni’s are not known exactly
while the query is executing.

Thus, the key challenge for any progress estimator E that uses the
above model of work is to estimate ∑Ni as accurately as possible
while the query is executing. Note that the problem of estimating
the number of GetNext() calls for an operator in the query
execution plan is the cardinality estimation problem faced by
query optimizers. The only difference is that unlike a query
optimizer, which can only use pre-computed database statistics
(e.g., histograms), the estimator E can potentially also observe
feedback from query execution for use in its estimation.

We observe that the fine granularity requirement (see Section 2.2)
should typically be satisfied by an estimator using the GetNext()
model since for a long running query, a large number of GetNext()
calls are made during its execution. Another desirable property of
an estimator is small runtime overhead. For example, an estimator
that actually executes the query in order to obtain the total number
of GetNext() calls (∑Ni) would be unacceptable. Thus, we require
that the information used by any estimator be limited to a small
amount of aggregated information either in the form of pre-

computed database statistics or statistics computed on observed
feedback from query execution. Although this restriction by itself
is not sufficient to guarantee low overhead, it appears to be
necessary for an estimator to be practical. The estimator that we
present in this paper uses feedback from query execution (see
Section 4) to refine estimates of Ni. Observe that since ∑Ki is
monotonically increasing as the query executes, the monotonicity
of the estimator depends on how the estimates of ∑Ni are changed
by the estimator as the query executes. We comment on the
monotonicity property of our estimator based on the GetNext()
model in Section 6. We note a couple of additional properties of
the GetNext() model of work: (1) It can be applied to modern
database systems since they typically employ a demand driven
iterator model for query execution. (2) It has the property that it is
invariant across multiple runs of the same query.

3. DRIVER NODE ESTIMATOR: SINGLE
PIPELINE QUERIES
In this section, we outline our solution for the progress estimation
problem for the class of queries that consist of a single execution
pipeline. We show how our solution extends to the general class
of arbitrary query execution plans (consisting of multiple
pipelines) in Section 4.

For simplicity, we consider a query whose execution plan is a
single pipeline consisting of a chain of m (non-blocking)
operators: Op1 -> Op2 …. -> Opm and having a single operator
Op1 as its driver node (see Section 2.1 for definition of a driver
node). Typically, such a pipeline consists of a single driver node
(e.g., Table Scan or Index Scan) followed by a sequence of non-
blocking operators such as Filter and Index Nested Loops (INL)
join. As described earlier, they key challenge for any estimator
using the GetNext() model (i.e., trying to estimate gnm) is to
accurately estimate ∑Ni , the total number of GetNext() calls that
will be performed over all nodes in the query. In an ideal world,
the optimizer’s estimates of Ni (and hence the progress estimator,
which can use such estimates) would be accurate. But cardinality
estimation usually involves simplifying assumptions (particularly
on the correlation between data values) and consequently is prone
to estimation errors. For example, it is known that estimation
errors propagate exponentially as a function of the number of joins
in the query [8]. Our focus in this paper is not on developing
techniques for better cardinality estimation for the purpose of
query optimization. Rather, we develop additional techniques that
could mitigate the impact of errors in cardinality estimation on
progress estimation.

Our estimator (called the Driver Node Estimator, dne for short) for
single pipeline queries having exactly one driver node is defined
as:

1

1

N

K
dne =

where K1 is the number of GetNext() calls done on the driver node
of the pipeline, Op1, thus far; and N1 is the estimated total number
of GetNext() calls for Op1. Therefore, underlying dne is the
hypothesis (we refer to it as the driver node hypothesis) that
overall query progress can be estimated by the progress of only the
driver node of the pipeline, i.e.,:

∑
∑

≈

i
i

i
i

N

K

N

K

1

1

There are a few important reasons why the estimator dne can work
well in practice. First, note that inaccuracies in gnm arise due to
inaccurate Ni estimates. Since a driver node in a pipeline is the
source of tuples that are operated upon by other nodes in the
pipeline, prior to start of execution of that pipeline, the cardinality
of the driver node is typically known accurately. For example, for
many pipelines, driver nodes are typically Table Scans or Index
Scans, and the estimates of Ni for such driver nodes can be
obtained (almost exactly) from the database system catalogs.
While the estimates may not be as accurate in the case of the
driver node being an Index Seek operator, any histograms on the
predicate columns can be leveraged. In such cases, the estimate of
Ni for the driver node can still be quite accurate. On the other
hand, accurately estimating Ni for a Filter node that references a
UDF, or a Nested Loops Join node are usually more inaccurate
due to the inherent difficulties in selectivity estimation and errors
in propagation to intermediate nodes [8]. Thus, using only driver
nodes for progress estimation can often result in better accuracy.

Second, when cardinality of the driver node N1 dominates Ni’s of
other operators in the pipeline we can expect the estimator dne to
be close to gnm. This is not uncommon in decision support
queries such as TPC-H [12] where the driver node cardinalities are
large (e.g. large Table/Index Scans), and where operators such as
Filter and Group-By can greatly reduce the cardinality of non-
driver nodes.

Third, observe that the driver node hypothesis implies:

1111 KN

KN

K

K

N

N
i

i
i

i
i

i
i

i

−

−
≈≈

∑∑∑∑

where ∑iN / N1 can be thought of as the work done per tuple
output by the driver node. Therefore, when the total number of
GetNext() calls made over all nodes in the pipeline does not vary
significantly over the lifetime of the pipeline, monitoring progress
of only driver node is sufficient. Although this condition does not
hold for arbitrary pipelines, we show below an important class of
pipelines (in which the output cardinality of each operator is no
larger than its input cardinality) for which dne still yields progress
estimates that are within a constant factor of gnm.

Finally, since a driver node is the source of tuples processed by
other operators in the pipeline, it typically provides sufficiently
fine granularity of progress estimation. This property may not hold
in general for other operators (such as Filter or NL Join) in a
pipeline, since their cardinalities may be arbitrarily small.

Guarantee of dne for monotonically decreasing pipelines:

We discuss an important class of single pipeline queries where dne
is guaranteed to be accurate within a constant factor of gnm (the
constant factor is the number of operators m in the pipeline).
Consider pipelines having the logical property that no operator in
the pipeline can increase its incoming cardinality. Thus, at any
point during the query’s execution, Ki ≥ Ki+1 and Ni ≥ Ni+1. We
refer to such a pipeline as a monotonically decreasing pipeline.
Some of common physical operators that could be part of a
monotonically decreasing pipeline are Table Scan, Filter and

streaming aggregate operators. INL Join would also satisfy the
above property when the join looks up a key value (i.e., a foreign
key – key join).

Claim: For a monotonically decreasing pipeline with m operators,
the estimator dne is guaranteed to be accurate within a constant
factor m of the ideal estimator gnm, i.e.

 gnmmdne
m

gnm
.≤≤

Proof: See Appendix A.

Note that for the case of a single pipeline consisting of a Table
Scan, Filter and aggregation operator (similar to the class of
queries studied in the online aggregation work e.g., [7]), if the
input tuples to such a pipeline P are read in random order, then the
driver node hypothesis will hold, i.e., the expected value of K1/N1
is ∑PK / ∑PN for that pipeline. Finally, for the case of a single
pipeline that is not monotonically decreasing, the above guarantee
does not hold, and dne is a heuristic. Intuitively, if an intermediate
operator (e.g., a non foreign-key Nested Loops Join) can increase
its incoming cardinality arbitrarily, then the distribution of work
done in the pipeline can be skewed so that progress at the driver
node may not be indicative of overall progress of the pipeline.

4. SOLUTION FOR GENERAL CASE
In this section, we extend our solution for an arbitrary SQL query
execution plan that consists of multiple pipelines. As described in
Section 2.1, we model an arbitrary execution plan as a partial order
of pipelines and extend the ideas of Section 3 of using only driver
nodes for each currently executing pipeline. Therefore, in our
approach, the key issues are: (1) explaining how to use the Driver
Node Estimator (dne) for a single pipeline to obtain an overall
progress estimate for entire query execution plan (Section 4.1), and
(2) initializing and refining the cardinality estimates based on
feedback from query execution (Section 4.2).

4.1 Estimator for Arbitrary Query Execution
Plan
As per our definition of gnm (Section 2.3), for a query execution
plan with s pipelines, our estimator for the entire query can be re-
written equivalently as follows:

∑ ∑
∑∑

+

+
=

1

1

...

...

P Ps

PsP

NN

KK

gnm

where each summation term denotes the sum over all nodes in the
corresponding pipeline. As discussed previously, the key
challenge for a pipeline P is estimating the ∑PN for that pipeline.
We note that in a query execution plan that involves multiple
pipelines, we know that each pipeline must be in one of the
following states: (a) Completed. (b) Currently executing. (c) Not
yet started executing. For any pipeline that has completed
execution we have the exact values of the number of GetNext()
calls done on all operators in that pipeline, and thus ∑PK = ∑PN
for such a pipeline. For a currently executing pipeline, we use dne
to estimate ∑PN. Specifically, it follows directly from the driver
node hypothesis that ∑PN = ∑PK / dne. For a pipeline that has not

yet started executing (∑PK = 0), and we use the optimizer’s
estimates for ∑PN. In fact, it is for this case where we expect a
significant opportunity to improve estimate of ∑PN using feedback
from query execution.

4.2 Exploiting Execution Feedback for
Refining Estimates
A key challenge arises from estimating cardinality of nodes of
pipelines that start with intermediate blocking nodes e.g., Sort
nodes and hash based Group-By nodes. For nodes of such
pipelines there is an opportunity to get better cardinality estimates
by using feedback from query execution.

Consider the query execution plan shown in Figure 3. Suppose A
is the build relation and B the probe relation of the Hash Join. The
pipelines for the query are P1 = {Table Scan A, Filter, Hash Join},
P2 = {Table Scan B}, P3 = {Group-By} and P4 = {Sort}, which are
executed in the order P1, P2, P3, P4. The driver nodes for the query
are shaded in the figure. To estimate the cardinality of the Sort
operator (in pipeline P4), we would need to have accurate
estimates on the filter, join and group-by operators of the first two
pipelines. This is in fact the traditional cardinality estimation
problem and is error prone. Hence, our initial estimate of work
done by the Sort could be inaccurate, potentially leading to overall
incorrect progress estimation. Here, execution feedback can be
leveraged to improve estimate of the Sort node cardinality. For
example, when pipeline P2 completes, we in fact have the exact
value of the cardinality of the result of the join. Similarly, when
the Group-By, completes, we have exact cardinality (no
uncertainty) of the input to the Sort. In the rest of this section, we
describe a general framework for refining cardinality estimates of
a given execution plan based on execution feedback.

While several techniques are possible, in this paper we follow a
conservative approach that ensures that we never introduce any
additional inaccuracies due to the refinement process. Thus, we
refine the current Ni estimate of any node only if we are certain
that the refinement will make the estimate more accurate. We
achieve this as follows: For each node in the execution plan, we
track two additional values UBi and LBi, which are respectively,
the upper and lower bounds on the cardinalities of the rows that
can be output from that node. These bounds are based solely on
the algebraic properties of the operator and observed cardinalities
from execution, and are guaranteed to be actual bounds on Ni. In
particular, this means that LBi ≤ Ni ≤ UBi. We adjust these lower

Table Scan A

Table Scan B Filter

Hash Join

Figure 3. Execution plan with multiple blocking operators

Group-By (Hash)

Sort

and upper bounds as we get more information from query
execution using the techniques described below. The invariant that
we maintain at all times is that LBi ≤ current estimate of Ni ≤ UBi,
i.e., if we find that the current estimate of Ni lies outside the
bounds, then we correct its value to the appropriate bound. The
effectiveness of such refinement based on bounds depends on how
much and how quickly these bounds can be refined based on
execution feedback.

When an upper (or lower) bound for a particular node is refined,
this could potentially help refine the upper (or lower) bound of
other nodes above it in the execution tree. We propagate these
bounds using algebraic properties of operators. For example, in
Figure 3, suppose that at some point in time T during the query’s
execution, we were able to conclude that the upper bound for the
Hash Join can be reduced from 1 million rows to 0.5 million rows.
Suppose the upper bounds for the Group By and Sort nodes were
0.8 million rows. Then, based on the algebraic properties of
Group-By and Sort nodes, we can also conclude that each of their
upper bounds cannot exceed 0.5 million rows. The lowering of the
upper bound could help refine the estimates of Ni at one or both of
these nodes at time T. Note that although dne uses only the driver
node cardinalities for the currently executing pipeline, it is
necessary to refine cardinalities of all nodes in the pipeline, since
it could influence the Ni estimates for nodes in a pipeline that is
yet to start executing. In our implementation, we propagate
bounds a few times per second (at roughly the granularity at which
feedback is necessary to the user/application).

Refining lower and upper bounds

The refinement of lower and upper bounds for an operator Opi at
query execution time uses the following information: (1) The
observed input and output cardinalities of the operator (i.e., the Ki
of the operator as well as its input operators) (2) Algebraic
properties of the operator. For example, for Filter and Group-By
operators, we know that the cardinality cannot exceed its input
cardinality. (3) The current state of the operator. This refers to the
state of internal data structures used by the operator. For example,
the current number of entries in the hash table of a Group-By
operator.

For refining lower bounds, Ki (the actual number of rows output
from the operator thus far) is itself a correct lower bound for any
operator. An example of where the algebraic property of the
operator is useful for refining lower bounds is Sort. Since Sort has
the property that it does not change its input cardinality, in fact,
Ki-1 (i.e., cardinality of the input operator to the Sort) is a valid
lower bound. Thus, the cardinality of the Sort operator (which is
always the start of a new pipeline) can be refined when the
previous pipeline is executing. An example of where the current
state of the operator is useful in refining lower bounds, consider
the Group-By (hash based) operator. If we can count the number
of distinct values observed during the operator’s execution thus
far (say d), then the lower bound can be refined to d at that point
in time. This could be done, for example, by tracking the internal
hash table used by the operator.

As far as the upper bound is concerned, for operators such as
Filter and NL Join (foreign-key join), we can leverage their
algebraic properties (the fact that they can never increase their
input cardinality) and the Ki’s to refine the upper bound to: (UBi-1
– Ki-1) + Ki

 . Another example where algebraic properties help

refine upper bound is Sort, where UBi-1 (i.e., upper bound of input
to Sort) is an upper bound for the Sort itself. An example of the
use of current operator state for refining upper bounds is the Hash
Join operator. Consider a Hash Join between two relations A
(build side) and B (probe side). Assume A has already been
hashed into buckets, and suppose S is the number of tuples of the
largest bucket. We can exploit this information during the probe
phase to obtain a tighter upper bound since we know that each row
from B can produce at most S tuples after the join. We refer the
reader to Appendix B for details of how upper and lower bounds
can be refined for certain common physical operators. In the
future, we intend to explore applicability of other rules that can
yield tighter bounds based on execution feedback.

We observe that whenever an operator terminates, we know
exactly the upper and lower bounds of that operator (which are
identical at that point). Thus, e.g., for the query plan in Figure 3,
when the final pipeline (P4) starts executing, we know exactly the
cardinality of its driver node (the Sort node). In general, when a
pipeline starts executing, we know exactly the cardinality of its
driver nodes.

In our experiments on TPC-H queries, we have found that both
lower and upper bounds help refine Ni’s of certain driver nodes
significantly (e.g., by three orders of magnitude for Q21) for
driver nodes of upper level pipelines (when the optimizer
underestimates the cardinality e.g., of a Sort node). Interestingly,
the impact of these refinements on the overall estimation errors
(see Section 5) is typically much smaller (a few percent). This is
because in these queries, the Ni’s of driver nodes such as
Table/Index Scan dominate the Ni’s of other nodes. A more
thorough evaluation of the effectiveness of these bounding
techniques on other data sets/queries is part of our ongoing work.

Finally, we note that other techniques to leverage information
from query execution are possible. For example, online estimation
techniques based on observing intermediate results as in [7],
refining statistics based on observed query results [1,11], and re-
invoking optimizer for cardinality estimated based on observed
cardinalities similar to [4]. Exploiting these ideas to augment our
techniques is an important area of future work.

5. IMPLEMENTATION AND
EXPERIMENTAL EVALUATION
In this section, we first describe the implementation of our
solution for estimating progress of SQL queries inside Microsoft
SQL Server. We follow this with the results of an experimental
evaluation of our solution for long running decision support
queries on both the TPC-H benchmark [12] as well as an internal
customer database.

5.1 Implementation
Our implementation inside Microsoft SQL Server consists of the
following simple extensions to the existing query execution
engine. We augment the data structure corresponding to a node in
the query execution plan with counters for Ki (number of rows
output by the node thus far), Ni (current estimate of total number
of rows that will be output by node at completion), UBi and LBi
(upper and lower bounds respectively of number of rows that can
be output by node). After the query is optimized and an execution
plan tree P has been generated for the query, we identify pipelines

in P and the driver node(s) for each pipeline. We initialize Ni for
each node to the optimizer estimated cardinality (for leaf-level
nodes such as Table/Index Scan this is the cardinality of the base
table/index). We update and propagate the values of UBi, LBi and
Ni for nodes using the Ki and algebraic properties of operators as
described in Section 4.2.

For convenience of collecting the progress information of an
executing query, we implement a background thread that wakes up
periodically (approximately 4 times a second), traverses P,
computes the progress, and logs the progress estimate and a
timestamp to a file. The overheads of gathering this information at
runtime are negligible relative to execution time of queries we
considered. In general, we would expect that database servers will
extend interfaces (e.g., via system stored procedures or functions)
to allow clients to programmatically access progress information
for an executing query by polling the server.

5.2 Experiments
Goal: The goal of the experiments is to:

• Evaluate the accuracy of our estimator (which is based on the
GetNext() model of work presented in Section 2) on a set of
long running and complex decision support queries.

• Evaluate robustness of our estimator when data skew is
varied.

• Validate the driver node hypothesis for progress estimation
of currently executing pipelines.

Setup: We conducted the experiments on a machine with a
2.8GHz CPU and 512 MB RAM.

Databases: We ran the experiments on the TPC-H 10GB database
[12]. We chose the 10GB configuration because the queries are
truly long running (typically 10s of minutes). For the evaluation
with varying skew, we generated a TPC-H 10GB database with a
Zipfian skew factor of 2 using the publicly available tool [3]. We
also ran queries from a real data warehouse application used
within the company to analyze sales (we refer to this as the
SALES database – approx. 5GB in size).

Queries: For TPC-H we evaluate all the queries defined in the
benchmark. We report numbers for all the long running queries in
the benchmark (those that reference the lineitem table). For TPC-
H queries, the joins are typically foreign-key joins, and thus most
pipelines exhibit the property of being monotonically decreasing
(Section 3). For the SALES database, we picked a few queries for
evaluation. The queries against the sales database are aggregation
queries that are joins of 7-10 tables, and have 8-10 grouping
columns. The joins are non foreign-key joins, thus the property of
monotonically decreasing pipelines does not hold.

Evaluation Metric: Our experiments are conducted a single query
at a time, and on a machine on which only the database server is
executing. In this setting, we expect the percentage work
completed reported by any scheme to be a good estimator of the
percentage time taken by the query. As described in Section 5.1
above, we record the fraction complete predicted by our solution
at regular intervals throughout query execution. Assume the query
starts executing at time t0. Let fi be the percentage of the query
completed as reported by our estimator at time ti (i > 0, ti > ti-1).
Let tn be the time at which the query completes. Then, at any point
in time ti, an estimator that has perfect knowledge of the future

would report the actual percentage of the query completed as 100 .
(ti-t0)/(tn-t0). Thus, we define the estimation error of an estimator

at time ti (denoted by ei) as:
i

n

i
i f

tt

tt
e −

−
−⋅

=
)(

)(100

0

0

Note also that since we take the absolute value of the difference,
we do not distinguish between under estimates or over estimates.
We report the overall estimation error for a query using three
aggregate measures over all the ei’s collected for the query, the
average, standard deviation and max over all ei’s.

5.2.1 TPC-H Benchmark Queries
The goal of this experiment is to evaluate the accuracy of our
progress estimator (see Section 4.1), which is based on the
GetNext() model of work. We evaluate the estimator on complex
decision support queries of the TPC-H benchmark [12] on the
10GB database.

Table 2 shows the mean and maximum error (as defined above)
for several long running TPC-H queries for the uniform data
distribution case (Z=0) as well as the skewed data distribution
case (Z=2). As we see from the table, for the Z=0 case, the
maximum error for any query does not exceed 10%, and the
average error is small (typically below 5%). The standard
deviation was also small (at or below 5% in all cases). One
interesting observation is that expensive Sort nodes at the top of a
query execution plan can potentially be problematic (as in Q5 for
Z=0), particularly when the query optimizer overestimates the
cardinality of the Sort node. In such cases it is difficult to rectify
errors based on execution feedback until the lower pipeline (that
feeds into the Sort node) is almost complete. Thus, the error
induced by the optimizer’s estimates persists for almost the entire
duration of the query.

For the Z=2 case, the maximum and mean errors are higher for
certain queries e.g., Q8, Q18, and Q21. To understand the reasons
for the errors better, refer to Figures 4 and 5, which show scatter
plots of the actual percentage completed vs. estimated percentage
completed for Q8 for Z=0 and Z=2 respectively. A perfect
estimator would have all data points along the diagonal of the
graph. For the Z=2 case (Figure 5), when the major pipeline in
this query (involving scan of the lineitem table followed by a
Merge Join and couple of Hash Joins (probes)) starts, the
estimates of the cardinalities of the joins used by our estimator are
significantly overestimated. However, shortly after the pipeline
starts executing, (as explained in Section 4.2) we estimate the
cardinalities using dne which is based on the progress of the driver
node (Scan of lineitem). This results in quickly reducing the
estimation error, and explains the discontinuity in progress
estimation around 20% actual completion. In general, until a
pipeline starts executing, our estimator is more susceptible to
errors in cardinality estimation. For the case of Z=0, the
cardinality estimates of this pipeline are quite accurate, and
therefore we see lower errors. We observe similar behavior in
queries Q18 and Q21. This experiment shows our estimator (based
on the GetNext() model of work) results in fairly robust progress
estimation, even in the presence of skewed data distributions.

TPCH-10GB Query 8 (Z=0)

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%
Actual Pct. Completion

E
st

im
at

ed
 P

ct
.

C
o

m
p

le
ti

o
n

TPCH-10GB Query 8 (Z=2)

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

Actual Pct. Completion

E
st

im
at

ed
 P

ct
.

C
o

m
p

le
ti

o
n

5.2.2 Validation of Driver Node Hypothesis
In this experiment, we demonstrate the importance of estimating
overall progress based only on progress of driver nodes within a
currently executing pipeline. We do this by comparing with an
estimator that also uses the GetNext() model, but does not use dne
(i.e., the driver node hypothesis) to estimate the cardinality of all
nodes in the currently executing pipeline, but relies only on the
optimizer estimated cardinalities.

We show the results for TPC-H query Q9 against the 10 GB
database with Zipfian skewed data (Z=2). The results for our
estimator and the estimator that uses only optimizer estimates
(OPT) for currently executing pipelines is shown in Figures 6 and
7 respectively. The mean and max errors for our estimator is 2.9%
and 8.3% respectively, whereas the errors for OPT are 23% and
47% respectively. The reason is that OPT, due to the inclusion of
several join nodes (whose cardinality estimates are inaccurate),
ends up with a significant overestimate of the actual work which
gets refined only near the very end of query execution (when the
estimated completion jumps from 48% to 89%).

TPCH-10GB Query 9 (Z=2)

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%
Actual Pct. Completion

E
st

im
at

ed
 P

ct
.

C
o

m
p

le
ti

o
n

TPCH-10GB Query 9 (Z=2)

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%
Actual Pct. Completion

E
st

im
at

ed
 P

ct
.

C
o

m
p

le
ti

o
n

5.2.3 Queries on SALES Database
In this experiment, we evaluate our estimator on complex decision
support style queries from a real database application. As in TPC-
H, we see that the mean estimation errors are quite low (around
10%) and the max errors are around 20% (see Table 3). This

 Estimation Error
(Z=0)

Estimation Error
(Z=2)

Query Mean Max Mean Max

Q1 0.9% 2.8% 0.2% 0.5%

Q3 1.1% 2.0% 3.4% 4.7%

Q4 0.5% 1.0% 0.6% 1.4%

Q5 7.3% 9.0% 3.7% 5.4%

Q6 1.2% 2.9% 2.8% 4.6%

Q7 2.3% 4.0% 3.8% 7.6%

Q8 0.8% 1.7% 5.2% 16.2%

Q9 2.7% 4.9% 2.9% 8.3%

Q10 0.4% 1.4% 1.6% 4.4%

Q12 1.0% 1.7% 0.9% 3.8%

Q14 0.5% 1.8% 1.5% 3.2%

Q15 0.6% 1.3% 1.6% 4.4%

Q17 1.7% 2.6% 0.7% 2.0%

Q18 5.9% 16.8% 14.2% 25.5%

Q19 0.5% 1.5% 1.8% 2.7%

Q20 3.0% 9.8% 3.7% 5.9%

Q21 0.9% 2.5% 15.7% 38.8%

Table 2. Estimation Errors TPC-H Benchmark Queries
(10 GB database), Uniform and Skewed Data Sets

Figure 5. Scatter plot of actual vs. estimated percentage
completed (TPC-H Q8), Skewed distribution

Figure 6. Scatter plot of actual vs. estimated percentage completed
(TPC-H Q9, Using Driver node hypothesis)

Figure 7. Scatter plot of actual vs. estimated percentage
completed (TPC-H Q9, Using only optimizer estimates)

Figure 4. Scatter plot of actual vs. estimated percentage
completed (TPC-H Q8), Uniform distribution

experiment shows that that the accuracy of our estimator does not
degrade appreciably for this set of real world queries that contain
non foreign-key joins, and significant grouping and aggregation.

 Estimation Error

Query Mean Max

Q1 7.1% 17.3%
Q2 8.2% 16.9%
Q3 11.6% 18.2%
Q4 9.3% 21.4%
Q5 7.0% 18.1%

6. MONOTONICITY
As discussed in Section 2.2., monotonicity is a desirable property
from a user’s perspective. Consider a progress estimator that uses
the GetNext() model of work (Section 2.3). Since the Ki values
(observed cardinalities during execution) are monotonically
increasing, the estimator will be monotonic provided any changes
to the Ni values during query execution are monotonically
decreasing. An estimator that has up front knowledge of the exact
number of GetNext() calls that will be made by each operator (i.e.,
the Ni values) can guarantee monotonicity, since it would never
need to change Ni. However, for any other technique that can only
estimate the value of the Ni there is a trade-off between
guaranteeing monotonicity and the accuracy of progress
estimation.

One way to ensure monotonicity is to initially use a value for the
estimated Ni that is much larger than the actual Ni, i.e., an upper-
bound. The problem with such an approach is that accuracy can
suffer, since the actual Ni may be much smaller. For example,
consider a query plan which performs a hash join of relations R1
and R2 and then sorts the result of the join. Note that obtaining a
tight upper-bound on the estimate of the Sort node cardinality can
be problematic. If the join is a foreign-key join, then we know that
an upper bound on the cardinality of the joined relation, and hence
the Sort node, is the size of table with the foreign-key. However,
for non foreign-key joins the upper-bound can be a considerable
overestimate of the actual Ni for the Sort node, and thus the
accuracy of the estimator may be poor until most of the query has
completed executing. Therefore, the real challenge is to find tight
upper-bounds so that accuracy of the estimator is not significantly
compromised.

Given the difficulty of guaranteeing a tight upper bound for
intermediate driver nodes, a trade-off between monotonicity and
the accuracy of progress estimation appears unavoidable. Thus, an
interesting issue is whether users prefer more accurate estimates or
estimates that are guaranteed to be monotonic. A possible
approach for addressing this issue is to present both the estimated
progress as well as the progress based on the upper-bounds. Let
the progress computed using upper bounds be p1% and the
corresponding one computed using estimates be p2%. Then (p1,
p2) as a pair of values would indicate to the user that the % done at
any instant is not lower than p1 and our current best estimate is the
value p2. Note that p1 is monotonic, whereas p2 may not be.

We observe that for a single pipeline query, the estimator dne
(Section 3) is monotonic, since N1 is known exactly and does not

change during the execution of the pipeline (see Section 7 for
runtime conditions that may cause monotonicity violations even
for single pipeline queries). However, for the case of multi-
pipeline queries, our estimator is not guaranteed to be monotonic.
In particular, monotonicity violations can occur when a new
pipeline starts executing, and we revise the optimizer estimates of
Ni, with the estimate based on dne (as described in Section 4.2).
For the queries against the TPC-H 10GB (Skew Z=2) data in our
experiments, we computed progress estimates at regular intervals
(approximately 4 times a second), and we measured: (a) the
number of monotonicity violations, i.e., number of times in which
a progress estimate was less than the previous estimate, (b) the
average % by which the estimate decreased and (c) the maximum
% by which the estimate decreased. We observed monotonicity
violations in five queries (Q7, Q8, Q9, Q20, Q21). Moreover,
except for Q8 and Q20, there was only 1 violation in the other
three queries. The maximum decrease in estimated progress across
all queries was 8.3% (for Q21) and the average decrease for each
query respectively was 1.4%, 0.7%, 4.9%, 0.01%, and 8.3%. One
reason for the relatively few and small monotonicity violations is
that in these queries the Ni’s are dominated by the leaf-level driver
nodes (scans of lineitem, orders tables). Due to the filtering and
aggregations performed in these queries, the actual Ni’s of the
upper-level nodes in the plan are usually much smaller. Thus, even
in cases when the Ni’s for the non-leaf driver nodes are initially
under-estimated, the magnitude of the monotonicity violations are
small.

7. RUNTIME CONDITIONS
The model of work done by a query (see Section 2) makes the
simplifying assumption that the actual work done by a call to
GetNext() is the same across all operators in the plan, i.e.,
GetNext() from all operators are weighted equally. In general, this
assumption does not hold, e.g., due to an expensive operator like a
UDF in a Filter node, or because one Table Scan reads from a fast
disk whereas another Table Scan reads from a slow disk. A
possible way to extend the basic model of work to account for
different cost of GetNext() of different operators is to model the
work as a weighted sum of the number of GetNext() calls done by
operators in the plan. The weighting factor Cj associated with
operator j is a relative measure of the work done by a GetNext()
on that operator. Of course, this introduces an additional
parameter (besides driver node cardinality) that needs to be
estimated and refined. A possible solution is to start with uniform
relative rates (i.e. Cj = 1 for all j) or use cost estimates made by the
query optimizer, and then adjust the Cj values based on execution
feedback. Modeling and computing per-tuple work for every
pipeline could be an important factor in general, and developing
techniques to address this issue is part of our ongoing work. In the
rest of this section we discuss an important special case of a
runtime condition, spills of tuples to disk due to insufficient
memory, and show how our estimator can be adapted to handle
spills without introducing an additional weighting factor, by
treating spill processing as a “runtime pipeline”.

Handling Spills: Spills of tuples to disk, which can occur as a
result of insufficient memory can result in more work that is not
accounted for by our model of work since it occurs within an
operator. Consider a join between two relations A and B, where the
optimizer picks a hybrid hash join operator. Hybrid hash proceeds
by building a hash table of A in memory. During the scan of

Table 3. Estimation Errors SALES queries

relation A, if the memory budget of the hash join is exhausted, then
certain buckets will be spilled to disk. When the table B is used to
probe the hash partitions, the tuples of B that hash to the buckets
that are not memory resident are also written to disk. Bucket
spilling is a runtime effect and hence it can be difficult to accurately
estimate in advance the number of tuples that will be spilled to disk.

We observe that we can model the query execution as comprising
two parts, one that processes the original relations and another that
processes the spilled partitions. In other words we can think of the
original query as follows. Q = (A join B) ∪ (A’ join B’) where A’
and B’ denote the corresponding parts of relations A and B that
have been spilled (0 ≤ |A’| ≤ |A|, 0 ≤ |B’| ≤ |B|). The driver nodes
for query Q would include scans of A, B, A’ and B’. Thus the total
work for Q would be |A|+|B|+|A’|+|B’|. The main problem is that
|A’|, |B’| cannot be predicted at optimization time.

The main idea behind our solution to the spill problem is as
follows. Whenever a tuple is spilled to disk (either from relation A
or B) the denominator value (which denotes the total work) is
incremented by one (i.e., another GetNext() call). We are in essence
adding more work to be done later and the denominator value
should reflect the estimated cardinality of the pipeline. Now,
consider the point during execution when the first phase of hash
processing is over and none of the spilled partitions have been
processed. The modified estimator would have incremented the
denominator counter for each tuple that had been spilled and would
estimate the progress as (|A|+|B|)/ (|A|+|B|+|A'|+|B'|) which is correct
as it accounts for the remaining tuples to be processed. When the
spilled partitions are re-read the corresponding counts would be
counted in the numerator and only when all the partitions have been
processed will the estimator report the progress as 100%. This
correction to the estimator works because of the symmetry of spills,
i.e., exactly the tuples that have been written to disk will be
processed later. It is also easy to see that this modification to the
original algorithm would work for multiple recursion levels in a
hash join pipeline. Finally, we note that spills could occur in other
operators like hash-based Group-By or the merge phase in a Sort-
Merge join if there are too many duplicates of a particular value.
Thus, in general, a query can be considered as Q ∪ Q’ where Q’
accounts for the work done by the current query in handling data
that is spilled.

The following experiment on TPC-H Q18 highlights in the
importance of handling spills. From Figure 8 we see that the
progress estimator remains stuck on 44% for a relatively long time
(more than 15% of total query execution time). This is because
during this interval the query is writing and reading the spilled
partitions, and the estimator does not capture this effect. On the
other hand when we enable spill handling as discussed above (see
Figure 9) the estimator is more accurate.

TPC-H 10 GB Query 18 (Z=0)
Without Spill Handling

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

Actual Percentage Completed

E
st

im
at

ed

P
er

ce
n

ta
g

e
C

o
m

p
le

te
d

TPC-H 10GB Query 18 (Z=0)
With Spill Handling

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

Actual Percentage Completed

E
st

im
at

ed

P
er

ce
n

ta
g

e
C

o
m

p
le

te
d

8. RELATED WORK
There are two broad areas that are related to our work. First is the
area of estimating cardinality of query expressions. Selectivity
estimation e.g., [9] plays a key role in enabling query optimizers
to pick a suitable query execution plan. Our work leverages the
query optimizer to provide an initial estimate of cardinality of
nodes in an execution plan.

The second broad area that relates to this paper is the use of
information gathered during query execution. One body of work
e.g., [2,4] uses feedback of observed cardinalities at runtime to
potentially re-optimize the same query, pick among competing
query plans or to improve decisions on resource allocation for it.
In contrast, we use observed cardinality of operators in the
execution tree to improve estimate of total work that needs to be
done, while leaving the query execution plan unchanged. We note
that in principle, the techniques in [4] that collect statistics such as
cardinalities/histograms etc. of intermediate query results can be
adapted in our context for obtaining better estimates of Ni’s by re-
invoking the query optimizer’s cardinality estimation module at
runtime with more accurate statistics. While this does require non-
trivial extensions to today’s query processing engines, it
represents an interesting avenue of future work for progress
estimation. Another use of runtime feedback is to refine statistics
e.g., [1,11] that can be used for selectivity estimation for

Figure 8. Scatter plot of actual vs. estimated percentage
completed (TPC-H Q18, No Spill handling)

Figure 9. Scatter plot of actual vs. estimated percentage
completed (TPC-H Q18, With Spill handling)

subsequent queries. In contrast, we limit the use of observed
cardinality estimates to improving estimates for the same query.

A possible direction for using feedback from query execution is
applying techniques for online aggregation [6,7] for estimating
how many tuples would be output by a pipeline. Online
aggregation techniques typically need to make assumptions about
randomness of order of input tuples in order to give confidence
intervals, and they exploit non-traditional join algorithms, e.g.,
ripple join. In contrast, we use a complementary (and more
conservative) approach of refining lower and upper bounds based
on observed cardinalities at runtime, and our runtime refinement is
designed to work with traditional operators in today’s database
systems.

The paper [10] describes the importance of progress bars for
computer-human interfaces of long running programs. The paper
also discusses an inherent problem in estimating progress in the
following case: The input of one program is output of another; as
can happen e.g., when using the Unix pipe command. The paper
suggests ensuring that all programs in the pipeline consume input
at the same rate, and then basing progress estimation only on the
original data producer. The concept of driver nodes in an
execution pipeline can be viewed as an application of the above
idea in the context of SQL queries.

9. CONCLUSION and FUTURE WORK
 Long running queries are common in decision support
environments, but current systems provide inadequate feedback to
the user about progress of such queries. As a first step, we look at
the problem of providing a progress estimator for SQL queries.
The proposed solution is simple and applicable to arbitrary SQL
queries. Initial experiments on a prototype in Microsoft SQL
Server are encouraging. We intend to extend our current
framework to be more robust to runtime conditions.

Although the work in this paper focuses on returning a single
percentage completion number for the entire query, the estimator
has more granular information, e.g., progress information at a per
operator level. It would be interesting to consider leveraging this
more granular information in providing feedback to users.

As mentioned in the introduction, perhaps the most useful
feedback on query execution progress is estimating the time
remaining to completion in a system with concurrently executing
queries. Our paper does not achieve this. Our hypothesis is that
providing percentage completion for query execution is a partial
step in this direction that is still useful. It would be important to
validate this hypothesis based on actual user feedback.

10. ACKNOWLEDGMENTS
We are very grateful to Raghav Kaushik for his many thoughtful
and insightful comments that have greatly influenced this paper.
As a matter of fact, he has read the paper more times than the
authors! We also thank the anonymous referees for their valuable
feedback.

11. REFERENCES
[1] Aboulnaga, A., and Chaudhuri, S. Self-Tuning Histograms:

Building Histograms Without Looking at Data. Proceedings
of ACM SIGMOD 1999.

[2] Antoshenkov, G. Dynamic Query Optimization in
Rdb/VMS. Proceedings of IEEE ICDE 1993.

[3] Chaudhuri, S. and Narasayya V. Program for TPC-D Data
generation with skew.
ftp://ftp.resesearch.microsoft.com/users/viveknar/tpcdskew

[4] Dewitt, D., and Kabra, N. Efficient Mid-Query Re-
Optimization of Sub-Optimal Query Execution Plans.
Proceedings of ACM SIGMOD 1998.

[5] Graefe, G. Query Evaluation Techniques for Large
Databases. ACM Comput. Surv. 25(2): 73-170 (1993).

[6] Haas, P.J., and Hellerstein J.M. Ripple Joins for Online
Aggregation. Proceedings of ACM SIGMOD, 1995.

[7] Hellerstein, J.M, Haas, P.J., and Wang, H.J. Online
Aggregation. Proceedings of ACM SIGMOD 1997.

[8] Ioannidis, Y., and Christodoulakis, S. On the propagation of
errors in the size of join results. ACM SIGMOD ‘91.

[9] Ioannidis, Y., and Poosala, V. Balancing Histogram
Optimality and Practicality for Query Result Size
Estimation. Proceedings of ACM SIGMOD 1995.

[10] Myers, B.A. The Importance of Percent-Done Progress
Indicators for Computer-Human Interfaces. Proceedings of
ACM SIGCHI 1985.

[11] Stillger, M., Lohman, G., Markl, V, and Kandil, M. LEO:
DB2’s Learning Optimizer. Proceedings of VLDB 2001.

[12] TPC Benchmark H. Decision Support. http://www.tpc.org.

APPENDIX A
Claim: Consider a monotonically decreasing pipeline (i.e., having
the logical property that no operator in the pipeline can increase
its incoming cardinality). For a monotonically decreasing pipeline
with m operators, the estimator dne is guaranteed to be accurate
within a constant factor m of the ideal estimator gnm, i.e.

 gnmmdne
m

gnm
.≤≤

Proof: We present two estimators E1, E2 that provides estimates
that are within a constant factor m (number of operators in the
pipeline) of gnm for the above class of queries. Intuitively, E1 is a
pessimistic estimator which always underestimates the progress
whereas E2 is an optimistic estimator that always overestimates the
progress. We then show that dne must lie between E1 and E2.

Estimator E1:
mN

K
E i

i

⋅
=
∑

1
1

Where N1 is the number of tuples that flow out of operator Op1 (the
driver node of the pipeline), and m is the number of operators in the
pipeline. E1 assumes that none of the N1 tuples flowing out of Op1
would be discarded by the other operators (Op2 ..Opm).

Claim: For monotonically decreasing pipelines E1 is a lower bound
on gnm within a factor m.

Proof: E1 / gnm = ∑i Ni / (N1*m). Since, the pipeline is
guaranteed to be monotonically decreasing we know that N1 ≤ ∑i Ni
≤ m. N1. In other words:

1/ m ≤ E1/ gnm ≤ 1 or equivalently:

gnmE
m

gnm ≤≤ 1

1
. ……………………………………..(1)

Estimator E2:

∑

∑

=

=

+
=

m

i
i

m

i
i

KN

K
E

2
1

1
2

Thus, E2 assumes that all of the N1 tuples that flow out of Op1 are
discarded by subsequent operators.

Claim: For monotonically decreasing pipelines E2 is an upper
bound on gnm within a factor m.

Proof:

∑

∑

=

+
=

k

i
i

i
i

KN

N

gnm

E

2
1

2

We know that:








 +⋅≤≤






 + ∑∑∑
==

m

i
i

i
i

m

i
i KNmNKN

2
1

2
1

in other words we have 1 ≤ E2/ gnm ≤ m, or equivalently,

gnmmEgnm ⋅≤≤ 2 ……………………………………(2)

Claim: Estimator dne always lies between estimators E1 and E2.

Proof: Let us compare dne to estimators E1 and E2 defined above.

11

1
1)(

Nm

Ki

N

K
Edne i

⋅
−=−
∑ . Cross multiplying,

11

21111
1 ..

)....(..
)(

NmN

KKKNKmN
Edne m++−

=−

Since the pipeline is monotonically decreasing, we have m.K1 ≥
(K1+K2+…Km). Therefore, (dne - E1) ≥ 0 or dne ≥ E1.

From the definition of E2, we know that:

∑

∑

=

=

+

+
=

m

i
i

m

i
i

KN

KK
E

2
1

2
1

2

and since 0
2

≥∑
=

m

i
iK , we know that E2 ≥ dne.

Thus, E1 ≤ dne ≤ E2. Using Equations (1) and (2) above:

gnmmEdneE
m

gnm
.21 ≤≤≤≤

APPENDIX B
Operator specific refinements based on execution feedback to
upper and lower bounds of a physical operator Opi in an execution
plan. Ki is the actual number of rows output from the operator thus
far. UBi (resp. LBi,) is the upper (resp. lower) bound on the
cardinalities of the rows that can be output from Opi.

Physical
operator i

Lower Bound
(LBi)

Upper Bound

(UBi)

Filter Ki (UBi-1 – Ki-1) + Ki
Group By d (#distinct values

observed thus far)
(UBi-1 – Ki-1) + d

Sort Ki-1 UBi-1
NL Join

(Foreign Key)
Ki (UBi-1 – Ki-1) + Ki

i-1 refers to 'Outer
relation

NL Join
Not FK

Ki (UBi-1 – Ki-1) . UBi-2 + Ki
i-2 refers to Inner relation

Hash Join
Not FK

Ki (UBi-1 – Ki-1) . S
S is #rows of largest build

partition
Table / Index
Scan (table T)

|T| (#rows in table) |T|

Table 1. Operator specific rules for refining upper
and lower bounds on cardinality

	page1: 803
	page2: 804
	page3: 805
	page4: 806
	page5: 807
	page6: 808
	page7: 809
	page8: 810
	page9: 811
	page10: 812
	page11: 813
	page12: 814

