
Automatic Generation of Starting Positions in Board Games

Umair Ahmed
IIT Kanpur

umair.z.ahmed@gmail.com

Krishnendu Chatterjee
IST Austria

Krishnendu.Chatterjee@ist.ac.at

Sumit Gulwani
MSR Redmond

sumitg@microsoft.com

Abstract

Board games, like Tic-Tac-Toe and CONNECT-4, play an
important role not only in development of mathematical and
logical skills, but also in emotional and social development.
In this paper, we motivate and address the problem of gen-
erating interesting start states for such games. Our algorithm
generates starting states of varying difficulty level for player
1, given the rules of a board game, the number of steps re-
quired for player 1 to win, and the expertise levels of the two
players. Our algorithm leverages symbolic methods and it-
erative simulation to efficiently search the humongous state
space. We present experimental results that discover for the
first time such interesting states for several games and demon-
strate the feasibility of finding them in an offline mode. The
presence of such states for a game like Tic-Tac-Toe 4×4 that
was previously thought to be trivial, opens up new games to
be played that have been believed to be useless for ages.

Introduction
A board game, such as Tic-Tac-Toe or CONNECT-4, in-
volves placing pieces on a pre-marked surface or board ac-
cording to a set of rules. Studies show that such board games
can significantly improve a child’s mathematical ability (Ra-
mani and Siegler 2008). Giving children an early maths
boost is significant because studies also show that differ-
ences in mathematical ability between children in the first
year at school persist into secondary education (Duncan et
al. 2007).

Board games play a vital role in the emotional and social
development of a child. They instill a competitive urge and
desire to master new skills in order to win, to be better than
others. Winning gives a boost to their self confidence and
enjoyment. Playing a game within a set of rules help them to
adhere to discipline in life. They learn social etiquette; tak-
ing turns, and being patient. Strategy is another huge com-
ponent of board games. Children should quickly grasp that
decisions they make in the beginning of the game have con-
sequences later on. Cause and effect is elegantly displayed
in several board games.

Playing board games helps elderly people stay mentally
sharp and less likely to develop Alzheimer (Gottlieb 2003).

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

They also hold a great importance in today’s digital soci-
ety by strengthening family ties. It bridges the gap between
young and old. It bolsters the self-esteem of children who
take great pride and pleasure when an elder spends playing
time with them.

Board games are typically played with a default start state.
For example, in case of Tic-Tac-Toe and CONNECT-4, it
is the empty board. However, there are several drawbacks
associated with starting from a fixed starting state.

• The starting state may be heavily biased towards one
player and hence that game has never been popular. For
example, Tic-Tac-Toe (3,4,4), where the goal is to make a
straight line of 3 pieces, but on a 4×4 board. In this game,
the person who plays first invariably almost always wins.

• Even if the default starting state is not heavily biased, it
might have a well-known conclusion. For example, both
players can enforce a draw in Tic-Tac-Toe while the first
player can enforce a win in CONNECT-4 (Allis 1988).

• The starting state for commonly played games yields an
enjoyable game between opponents of similar expertise.
The flexibility to start from some other starting state that
is more biased towards the weaker player can allow for
an enjoyable game among players of different expertise.

• Players can memorize certain moves and strategies from
the starting state, and hence the game may lose charm
quickly. Hence, it is not surprising that grown-ups find
playing the standard Tic-Tac-Toe game to be quite boring.

• Certain challenges manifest only in states that are typi-
cally not easily reachable from the start state, or might
require too many steps. The flexibility to start from such
states might have greater educational value.

• People sometimes might be disinterested in playing a
game if it takes too much time to finish. However, se-
lecting non-default starting positions allow the potential
of a shorter game play.

We address the problem of automatically generating inter-
esting starting states for a given board game. Our algorithm
takes as input the rules of a board game and the number of
steps required for player 1 to win. It then generates starting
states that are labelled as easy, medium, or hard for player 1
for various expertise level combinations of the two players.
The difficulty for a player is defined with respect to the frac-
tion of times player 1 will win, playing a strategy of depth k



against an opponent who plays a strategy of depth k′.
Generating such states automatically from game rules also

has the advantage of experimenting with new games or their
variants. While people might be hesitant to learn a game
with different new rules, it is quite convenient to change the
rules slightly. For example, instead of allowing for straight-
line matches in each of row, column, or diagonal (RCD) in
Tic-Tac-Toe or CONNECT-4, one may restrict the matches
to say only row or diagonal (RD).

Our algorithm is a novel combination of symbolic meth-
ods and iterative simulation to efficiently identify desired
states. Symbolic methods are used to compute the winning
set for player 1 and they work particularly well for navigat-
ing a state space where the transition relation forms a sparse
DAG (as is the case for those board games in which a piece
once placed on the board does not move, as in Tic-Tac-Toe
and CONNECT-4). Simulation is used to identify the dif-
ficulty of a given winning state. Instead of randomly sam-
pling the winning set to identify a state of a certain difficulty
level, we identify states of varying difficulty level in order
of increasing values of k and k′. The key observation is that
hard states are much smaller in number than easy states, and
given a value of k′ interesting states for higher values of k
are a subset of the hard states for smaller values of k.

This paper makes the following contributions.
• We motivate and formalize the problem of generating ini-

tial states for board games.
• We present an algorithm for generating starting states

of varying difficulty level parameterized by the expertise
levels of players, given a graph game description and the
number of steps required for winning. Our algorithm uses
a novel combination of symbolic methods and iterative
simulation to efficiently search a huge state space.

• We present experimental results that illustrate the effec-
tiveness of our search algorithm. During this process, we
produced a large database of initial states of varying hard-
ness level for standard games as well as some interesting
variations of those games (thereby discovering some in-
teresting variations of the standard games).

Graph Games and Problem Description
We present the mathematical model of graph games, recall
some basic results on graph games, and then describe the
notion of hardness and finally the description of the problem
we consider for graph games. We start with the background.
Graph games. An alternating graph game (for short, graph
game) G = ((V,E), (V1, V2)) consists of a finite graph G
with vertex set V , a partition of the vertex set into player-
1 vertices V1 and player-2 vertices V2, and edge set E ⊆
((V1×V2)∪(V2×V1)). The game is alternating in the sense
that the edges of player-1 vertices go to player-2 vertices and
vice-versa. The game is played as follows: the game starts at
a starting vertex v0; if the current vertex is a player-1 vertex,
then player 1 chooses an outgoing edge to move to a new
vertex; if the current vertex is a player-2 vertex, then player 2
does likewise. The winning condition is given by a target set
T1 ⊆ V for player 1; and similarly a target set T2 ⊆ V for
player 2. If the target set T1 is reached, then player 1 wins;
if T2 is reached, then player 2 wins; else we have a draw.

Examples. The class of graph games provide the mathe-
matical framework to study many interesting games, such
as Chess or Tic-Tac-Toe. For example, in Tic-Tac-Toe the
vertices of the graph represent the board configurations and
whether it is player 1 (×) or player 2 (◦) to play next. The set
T1 (resp. T2) is the set of board configurations where there is
three consecutive × (resp. ◦) in a row, column, or diagonal.
Classical game theory result. A classic result in the theory
of graph games shows that for every graph game, from every
starting vertex one of the following three conditions hold:
(1) player 1 can enforce a win no matter how player 2 plays
(i.e., there is a way for player 1 to play to ensure winning
against all possible strategies of the opponent); (2) player 2
can enforce a win no matter how player 1 plays; or (3) both
players can enforce a draw. In the mathematical study of
game theory, the theoretical question is: given a designated
starting vertex v0 determine whether case (1), case (2), or
case (3) holds. In other words, the mathematical game the-
oretic question concerns the best possible way for a player
to play to ensure the best possible outcome. The set Wj is
defined as the set of vertices such that player 1 can ensure
to win within j-moves; and the winning set W 1 of vertices
of player 1 is the set

⋃
j≥0Wj where player 1 can win in

any number of moves. Analogously, we defineW 2; and then
the classical game theory question is formally stated as fol-
lows: given a designated starting vertex v0 decide whether
v0 belongs to W 1 (player-1 winning set) or to W 2 (player-2
winning set) or to V \ (W 1 ∪W 2) (both players draw set).
Our problem. We now present our problem description.
Notion of hardness. The mathematical game theoretic ques-
tion ignores two aspects. (1) The notion of hardness: It is
always concerned with optimal strategies irrespective of its
hardness, and it is not concerned with when can sub-optimal
strategies perform well, and when do sub-optimal strategies
fail; and (2) the problem of generating different starting ver-
tices. In this work we are interested in generating starting
vertices of different hardness level. The notion of hardness
we consider is the depth of the tree a player can explore
which is standard in artificial intelligence. We first explain
the notion of tree exploration.
Tree exploration in graph games. Consider a vertex u0 that
belongs to player 1. The search tree of depth 1 is as follows:
we consider a tree rooted at u0 such that children of u0 are
the vertices u1 of player 2 such that (u0, u1) ∈ E (there is an
edge from u0 to u1); and for every vertex u1 (that is a chil-
dren of u0) the children of u1 are the vertices u2 such that
(u1, u2) ∈ E, and they are the leaves of the tree. This gives
us the search tree of depth 1, which intuitively corresponds
to exploring one round of the play. The search tree of depth
k + 1 is defined inductively from the search tree of depth
k, where we first consider the search tree of depth 1 and re-
place every leaf by a search tree of depth k. The depth of the
search tree denotes the depth of reasoning (analysis depth)
of a player and corresponds to the optimality (or competence
or maturity) of the player to play the game. The search tree
for player 2 is defined analogously.
Strategy from tree exploration. A depth-k strategy of a
player that does a tree exploration of depth k is obtained by



the classical min-max reasoning (or backward induction) on
the search tree. First, for every vertex v of the game we asso-
ciate a number (or reward) r(v) that denotes how favorable
is the vertex for a player to win. Given the current vertex
u, a depth-k strategy is as defined as follows: first construct
the search tree of depth k and evaluate the tree bottom-up
with min-max reasoning, i.e., a leaf vertex v is assigned re-
ward r(v), and for a vertex in the tree if it is a player-1
(resp. player-2) vertex we consider its reward as the maxi-
mum (resp. minimum) of its children, and finally, for vertex
u (the root) the strategy chooses uniformly at random among
its children with the highest reward.
Example description of tree exploration. Consider the ex-
ample of the Tic-Tac-Toe game. We first describe how to
assign reward r to board positions. Recall that in the game
of Tic-Tac-Toe the goal is to form a line of three consecutive
positions in a row, column, or diagonal. Given a board posi-
tion, (i) if it is winning for player 1, then it is assigned reward
+∞; (ii) else if it is winning for player 2, then it is assigned
reward −∞; (iii) otherwise it is assigned the score as fol-
lows: let n1 be the number of two consecutive positions of
marks for player 1 and n2 be the number of two consecutive
positions of marks of player 2, then the reward is the differ-
ence n1 − n2. If we consider the depth-1 strategy, then the
strategy chooses all board positions uniformly at random; a
depth-2 strategy chooses the center and considers all other
positions to be equal; a depth-3 strategy chooses the center
and also recognizes that the next best choice is one of the
four corners. This example illustrates that as the depth in-
creases, the strategies become more intelligent for the game.
Outcomes and probabilities given strategies. Given a
starting vertex v, a depth-k strategy σ1 for player 1, and
depth-k′ strategy σ2 for player 2, let O be the possible out-
comes, i.e., the set of possible plays given σ1 and σ2 from
v. The strategies and the starting vertex define a probability
distribution over the outcomes which we denote as Prσ1,σ2

v ,
i.e., for a play ρ in the outcome O we have Prσ1,σ2

v (ρ) is the
probability of ρ given the strategies. Note that strategies are
randomized (because strategies choose distributions over the
children with highest value after the search tree exploration),
and hence defines a probability distribution over outcomes.
Problem description. In this work we will consider sev-
eral board games (such as Tic-Tac-Toe, CONNECT-4, and
variants), and the goal is to obtain starting positions that
are of different hardness level, where our hardness is char-
acterized by strategies of different depths. In other words,
our goal is to obtain starting positions that are of different
hardness levels: i.e., hard for depth-1 strategies, but easy for
depth-2 strategies; and hard for depth-2 strategies, but easy
for depth-3 strategies, and so on. More precisely, consider
a depth-k strategy for player 1, and depth-k′ strategy for
player 2, and a starting vertex v ∈ Wj that is winning for
player 1 within j-moves. We classify the starting vertex into
three types as follows: if player 1 wins (i) at least 2

3 times,
then we call it easy (E); (ii) at most 1

3 times, then we call
it hard (H); (iii) otherwise medium (M).
Definition 1 ((j, k, k′)-Hardness). Consider a vertex v ∈
Wj that is winning for player 1 within j-moves. Let σ1 and

σ2 be a depth-k strategy for player 1 and depth-k′ strat-
egy for player 2, respectively. Let O1 ⊆ O be the set of
plays that belong to the outcome and is winning for player 1.
Let Prσ1,σ2

v (O1) =
∑
ρ∈O1

Prσ1,σ2
v (ρ) be the probability of

the winning plays. The (k, k′)-classification of v is as fol-
lows: (i) if Prσ1,σ2

v (O1) ≥ 2
3 , then v is easy (E); (ii) if

Prσ1,σ2
v (O1) ≤ 1

3 , then v is hard (H); (iii) otherwise it is
medium (M).

Our goal is to consider various classes of games and
identify states of different categories (e.g., hard for depth-k
against depth-k′, but easy for depth-(k+1) against depth-k′,
for small values of k and k′).

Methodology
We describe the methodology we use for the problem of gen-
erating starting positions of different hardness levels.

Overall methodology
We start with a description of the overall methodology.
Generation of j-steps win set. Given a game graph G =
((V,E), (V1, V2)) along with target sets T1 and T2 for
player 1 and player 2, respectively, our first goal is to com-
pute the set of vertices Wj such that player 1 can win within
j-moves. For this we define two kinds of predecessor opera-
tors. Given a set of vertices X , let EPre(X) (called existen-
tial predecessor) denote the set of player 1 vertices that has
an edge to X; i.e., EPre(X) = {u ∈ V1 | there exists v ∈
X such that (u, v) ∈ E} (i.e., player 1 can ensure to reach
X from EPre(X) in one step); and APre(X) (called univer-
sal predecessor) denote the set of player 2 vertices that has
all its outgoing edges to X; i.e., APre(X) = {u ∈ V2 |
for all (u, v) ∈ E we have v ∈ X} (i.e., irrespective of the

choice of player 2 the set X is reached from APre(X) in
one step). The computation of the set Wj is defined induc-
tively as follows: W0 = EPre(T1) (i.e., player 1 wins with
the next move to reach T1); and Wi+1 = EPre(APre(Wi)).
In other words, from Wi player 1 can win within i-moves,
and from APre(Wi) irrespective of the choice of player 2 the
next vertex is in Wi; and hence EPre(APre(Wi)) is the set
of vertices such that player 1 can win within (i+ 1)-moves.
Exploring vertices from Wj . The second step is to explore
vertices from Wj , for increasing values of j starting with
small values of j, for strategies of different depth for player 1
against strategies of different depth for player 2, and then
obtain starting vertices of different hardness levels. That is,
we consider a vertex v from Wj , consider a depth-k strategy
for player 1 and a depth-k′ strategy for player 2, and play
the game multiple times with starting vertex v to find out
the hardness level with respect to (k, k′)-strategies, i.e., the
(k, k′)-classification of the vertex v ∈ Wj . Note that from
Wj player 1 can win within j-moves. Thus the approach has
the benefit that player 1 has a winning strategy with a small
number of moves and the game need not be played for long.
Two key issues. There are two main computational issues
associated with the above approach in practice. The first is-
sue is related to the size of the state space (number of ver-
tices) of the game which makes enumerative approach to an-
alyze the game graph explicitly computationally infeasible.



For example, the size of the state space of a Tic-Tac-Toe 3×3
game is 8,532; Tic-Tac-Toe 4 × 4 game is 7,848,848; and a
CONNECT-4 5 × 5 game is 114,130,912 (more than 100
million). Hence any enumerative method would not work
for such large game graphs. The second issue is related to
exploring the vertices from Wj . If Wj has a lot of witness
vertices, then playing the game multiple times from all of
them will be computationally expensive. In other words, we
need an initial metric to guide the search of the vertices from
Wj such that the computation of the metric is not computa-
tionally expensive. We solve the first issue with symbolic
approach, and the second one by iterative simulation.

Symbolic methods

In this section we discuss the symbolic methods that allow
to analyze games with large state spaces. The key idea is
to represent the games symbolically (not with explicit state
space) using variables, and operate on the symbolic repre-
sentation. The key object used in symbolic representation
are called BDDs (boolean decision diagrams) (?) that can
efficiently represent a set of states using a dag representa-
tion of a boolean formula representing the set of states. The
tool CUDD supports many symbolic representation of state
space using BDDs and supports many operations on sym-
bolic representation on graphs using BDDs (?).

Symbolic representation of vertices. In symbolic meth-
ods, a game graph is represented by a set of variables
x1, x2, . . . , xn such that each of them takes values from a
finite set (e.g., ×, ◦, and blank symbol); and each vertex of
the game represents a valuation assigned to the variables.
For example, the symbolic representation of the game of
Tic-Tac-Toe of board size 3 × 3 consists of ten variables
x1,1, x1,2, x1,3, x2,1 . . . , x3,3, x10, where the first nine vari-
ables xi,` denote the symbols in the board position (i, `) and
the symbol is either ×, ◦, or blank; and the last variable x10
denote whether it is player 1 or player 2’s turn to play.

Symbolic encoding of transition function. The transition
function (or the edges) are also encoded in a symbolic fash-
ion: instead of specifying every edge, the symbolic encoding
allows to write a simple program over the variables to spec-
ify the transitions. The tool CUDD takes such a symbolic
description written as a program over the variables and con-
structs a BDD representation of the transition function. For
example, for the game of Tic-Tac-Toe, a simple program to
describe the symbolic transition is as follows: the program
maintains a set U of positions of the board that are already
marked; and at every point receives an input (i, `) from the
set {(a, b) | 1 ≤ a, b ≤ 3} \ U of remaining board positions
from the player of the current turn; then adds (i, `) to the set
U and sets the variable xi,` as× or ◦ (depending on whether
it was player 1 or player 2). This represents the symbolic de-
scription of the transition function. The CUDD tool accepts
such symbolic description and outputs a BDD representation
of the game.

Symbolic encoding of target states. The set of target states
is encoded as a boolean formula that represents a set of
states. For example, in Tic-Tac-Toe the set of target vertices

for player 1 is given by the following boolean formula:
∃i, `. 1 ≤ i, ` ≤ 3. (xi,` = × ∧ xi+1,` = × ∧ xi+2,` = ×)
∨ (xi,` = × ∧ xi,`+1 = × ∧ xi,`+2 = ×)
∨ (x2,2 = × ∧ ((x1,1 = × ∧ x3,3 = ×) ∨ (x3,1 = × ∧ x1,3 = ×)))
∧ Negation of above with ◦ to specify player 2 not winning

The above formula states that either there is some column
(xi,`, xi+1,` and xi+2,`) that is winning for player 1; or a row
(xi,`, xi,`+1 and xi,`+2) that is winning for player 1; or there
is a diagonal (x1,1, x2,2 and x3,3; or x3,1, x2,2 and x1,3) that
is winning for player 1; and player 2 has not won already. To
be precise, we also need to consider the BDD that represents
all valid board configurations (reachable vertices from the
empty board) and intersect the BDD of the above formula
with valid board configurations to obtain the target set T1.
Symbolic computation of Wj . The symbolic computation
of Wj is as follows: given the boolean formula for the tar-
get set T1 we obtain the BDD for T1; and the CUDD tool
supports both EPre and APre with a set of basic operations
using symbolic functions; i.e., the tool takes as input a BDD
representing a set X and supports the operation to return the
BDD for EPre(X) and APre(X). Thus we obtain the sym-
bolic computation of the set Wj .

Iterative simulation
We now describe a computationally inexpensive (but ap-
proximate) way to aid sampling of vertices as candidates for
starting positions of a given hardness level. Given a starting
vertex v, a depth-k strategy for player 1, and a depth-k′ strat-
egy for player 2, we need to consider the tree exploration of
depth max{k, k′} to obtain the hardness of v. Hence if the
strategy of the opponent is of high depth, then it is computa-
tionally expensive. Thus we need a preliminary metric that
can be computed relatively easily for small values of k as
a guide for vertices to be explored in depth. We use a very
simple metric for this purpose. For the vertices in Wj , we
fix a depth-k strategy, and fix a small depth strategy for the
opponent and assign the vertex a number based on the per-
formance of a depth-k strategy and the small depth strategy
of the opponent. The vertices that have the lowest perfor-
mance according to this metric are then iteratively simulated
against depth-k′ strategies of the opponent to obtain vertices
of different hardness level.

Framework for Board Games
We now consider the specific problem of board games. We
describe a framework to specify several variants of board
games such as Tic-Tac-Toe, CONNECT-4, and several new
games. Note that though our implementation of symbolic
methods works for this class of board games, our method-
ology is applicable to the general class of graph games.
Parameter to generate different games. In our framework
we consider three different types of parameters to generate
different variants of board games.
1. The first parameter is the board size; e.g., the board size

could be 3× 3; or 4× 4; or 4× 5 and so on.
2. The second parameter is the way to specify the winning

condition; and we consider the cases where a player wins



if a sequence of the moves of the player are in a line but
the line could be in a row (R), in a column (C), or along
the diagonal (D). The user can specify any combination,
i.e., the winning condition could be (i) RCD (denoting
the player wins if the moves are in a line along a row,
column or diagonal); (ii) RC (line must be along a row
or column, but diagonal lines are not winning); (iii) RD
(row or diagonal, but not column); or (iv) CD (column or
diagonal, but not row).

3. The third parameter is related to the allowed moves of the
player. At any point the players can choose a column (if
it is available, i.e., there is at least one empty position in
the column) but can be restricted according to the follow-
ing parameters: (i) Full gravity (once a player chooses a
column, the move is chosen as the lowest available posi-
tion in that column); (ii) partial gravity-` (once a player
chooses the column the move can be chosen as the one of
the bottom-` available positions in the column); or (iii) no
gravity (the player can choose any of the available posi-
tions in the column).

Observe that Tic-Tac-Toe is given as board size (i) board
size 3× 3; (ii) winning condition RCD; and (iii) no-gravity;
whereas in CONNECT-4 the winning condition is still RCD
but moves are with full gravity. But in our framework there
are many new variants of the previous classical games, e.g.,
Tic-Tac-Toe in a board of size 4 × 4 but diagonal lines are
not winning (RC). Tic-Tac-Toe, Bottom-2 and CONNECT-3
require 3 consecutive positions to be marked for a player to
win, while CONNECT-4 requires 4 consecutive positions.

Features of our implementation. We have implemented
our symbolic approach to solve the problem of generation
of starting vertices (or board positions) of different hardness
levels (if they exist) for the class of board games described
above. The main features that our implementation supports
are as follows: (1) Generation of starting vertices of differ-
ent hardness level if they exist. (2) Playing against opponents
of different levels. We have implemented the depth-k′ strat-
egy of the opponent for k′ = 1, 2 and 3 (typically in all the
above games depth-3 strategies are quite intelligent). Thus, a
learner (beginner) can consider starting with board positions
of various hardness levels and play with opponents of differ-
ent skill level and thus hone her ability to play the game and
be exposed to new combinatorial challenges of the game.

Experimental Results
We now present our experimental results, which in our opin-
ion are the most interesting aspect and finding of our paper.

CONNECT games. In Table 1 we present the experimental
results for CONNECT-3 and CONNECT-4 games. The first
column represents the type of the game and the board size
(CONNECT-3 or CONNECT-4, in either 4 × 4 or 5 × 5)
The second column denotes the size of the state space of
the game. We explore vertices from W2 and W3 only as the
set W4 is almost always empty (i.e., if there is a winning
starting position it belongs to either W1, W2 and W3). The
third column j = 2, 3 denotes whether we explore from W2

or W3. The fourth column denotes the winning condition
(RCD, CD, RC, CD, respectively). The fifth column denotes

Table 1: CONNECT-3 & -4 against depth-3 strategy of opponent.
Game State j Win No. Sampling k = 1 k = 2 k = 3

Space Cond States E M H E M H E M H
CONNECT-3 7.2×104 2 RCD 110 All * 18 4 * 2 0 * 0 0

4x4 1.0×105 RC 292 All * 44 4 * 17 3 * 0 0
1.2×105 RD 444 All * 34 16 * 15 3 * 0 0
1.1×105 CD 323 All * 39 23 * 30 15 * 0 0

CONNECT-3 3 RCD, RC 0 -
4x4 RD 18 All * 0 0 * 0 0 * 0 0

CD 2 All * 0 0 * 0 0 * 0 0
CONNECT-4 1.1×108 2 RCD >5000 Rand + B100 * 4 8 * 1 4 * 0 0

5x5 1.3×108 RC >5000 Rand + B100 * 7 24 * 1 24 * 0 0
1.5×108 RD >5000 Rand + B100 * 8 8 * 4 2 * 0 0
1.5×108 CD >5000 Rand + B100 * 5 11 * 2 8 * 0 0

CONNECT-4 3 RCD >5000 Rand + B100 * 11 28 * 8 21 * 7 12
5x5 RC >5000 Rand + B100 * 8 79 * 10 23 * 5 20

RD >5000 Rand + B100 * 23 42 * 2 14 * 6 8
CD >5000 Rand + B100 * 1 15 * 7 7 * 3 6

Table 2: Bottom-2 against depth-3 strategy of opponent.
Board State j Win No. Sampling k = 1 k = 2 k = 3
Size Space Cond States E M H E M H E M H
3x3 6.5×103 2 RCD 22 All * 7 1 * 1 0 * 0 0

6.6×103 RC 0 -
6.7×103 RD 11 All * 2 4 * 3 2 * 0 0
6.7×103 CD 1 All * 0 0 * 0 0 * 0 0

3x3 3 Any 0 -
4x4 3.1×106 2 RCD 209 All * 17 24 * 0 2 * 0 0

4.1×106 RC 2735 B100 * 18 10 * 1 3 * 0 0
3.9×106 RD 2175 B100 * 7 3 * 0 0 * 0 0
4.1×106 CD 1507 B100 * 10 14 * 1 0 * 0 0

4x4 3 RCD 0 -
RC 90 All * 40 24 * 0 0 * 0 0
RD 26 All * 0 2 * 0 0 * 0 0
CD 20 All * 7 3 * 1 0 * 0 0

the number of states in Wj . The sixth column denotes sam-
pling to select starting vertices if the number of states in Wj

is large. In this column “All” denotes that we explore all
states in Wj , and if there is a large number of states, then we
first sample 5000 states randomly and then use our metric on
the 5000 states and select bottom 100 (B100), i.e., hundred
states with the least score according to our iterative simula-
tion metric. This describes the sampling of states from Wj .
The next three columns describes the analysis of the cho-
sen states with respect to depth-k strategies for player 1, and
depth-3 strategy of the opponent, for k = 1, 2, and 3. Given a
board position, we run the game between the depth-k vs the
depth-3 strategy for 30 times. If player 1 (i) wins more than
2
3 times (20 times), then the position is identified as easy (E);
(ii) wins less than 1

3 times (10 times), then it is identified as
hard (H); (iii) else as medium (M). The next three columns
presents the result (classification of the states as E, M, and
H) and the * denotes the number of remaining states.

Experimental results for Bottom-2 and Tic-Tac-Toe. The
results for Bottom-2 (partial gravity-2) and Tic-Tac-Toe

Table 3: Tic-Tac-Toe against depth-3 strategy of opponent.
Board State j Win No. Sampling k = 1 k = 2 k = 3
Size Space Cond States E M H E M H E M H
3x3 8.5×103 2 RCD 36 All * 16 2 * 0 0 * 0 0

8.6×103 RC 0 -
8.7×103 RD 1 All * 0 0 * 0 0 * 0 0
8.7×103 CD 1 All * 0 0 * 0 0 * 0 0

3x3 3 Any 0 -
4x4 7.8×106 2 RCD 128 All * 8 0 * 0 0 * 0 0

1.1×107 RC 3272 B100 * 46 19 * 0 0 * 0 0
1.1×107 RD 4627 B100 * 3 2 * 0 0 * 0 0
1.1×107 CD 4627 B100 * 3 2 * 0 0 * 0 0

4x4 3 RCD, RC 0 -
RD 4 All * 0 0 * 0 0 * 0 0
CD 4 All * 0 0 * 0 0 * 0 0



O X

X O X

X O

O X O

(a) Tic-Tac-Toe
RC Hard for k=1

X

X

O

O X O

(b) Tic-Tac-Toe
CD Hard for k=1

X

O X

O

(c) Bottom-2
RCD hard for
k=2

X

X O

O O X

(d) Bottom-2 RC
Hard for k=2

O O

X X X

X O X

X X O X O

O O O X O

(e) CONNECT-4
RCD Hard for k=3

O O

X X X

O O X

O O X

O X O X X

(f) CONNECT-4 RD
Hard for k=3

Figure 1: Example starting board positions.
games are shown in Table 2 and Table 3, respectively. The
meaning of the entries are as described above for Table 1. In
many cases, the number of states in the winning set Wi was
less than 5000 but more than 1000, and in all these cases we
use the bottom 100 sampling using our metric.
Example board positions. In Figure 1(a)-Figure 1(f) we
present examples of several board positions that are of dif-
ferent hardness level for strategies of certain depth. In all
the figures, player-X is the current player to play. All these
board positions were discovered in our experimental results.
Important aspects. We now highlight two important as-
pects of our experimental results. Our first key finding is
the existence of states of different hardness levels in vari-
ous games. Let us consider the case where the depth of the
opponent strategy is k′ = 3. We observe that in Tic-Tac-Toe
games only board positions that are hard for k = 1 exist, but
interestingly they also exist in board of size 4× 4. With the
slight variation of allowable moves (Bottom-2), we obtain
board positions that are hard for k = 2. In Connect-4 we ob-
tain states that are hard for k = 3 even with small board size
of 5× 5. The second key aspect of our results is the fact that
the number of interesting states is a negligible fraction of
the huge state space. For example, in Bottom-2 RCD games
with board size 4× 4 the size of the state space is over three
million, but has only two positions that are hard for k = 2.
Since the interesting positions are extremely rare, a naive
approach of randomly generating positions and measuring
its hardness will be searching for a needle in a haystack and
be completely ineffective to generate interesting positions.
Thus there is need for automation which our tool provides.

Related Works and Conclusion
Tic-Tac-Toe and Connect-4. Tic-Tac-Toe has been gener-
alized to different board size, match length (Ma ), and even
polyomino matches (Harary 1977) to find variants that are
interesting from the default start state. Existing research
has focussed on establishing which of these games have a
winning strategy (Gardner 1979; 1983; Weisstein ). In con-
trast, we show that even simpler variants can be interest-
ing if we start from certain specific states. Existing research
on Connect-4 also focussed on establishing that there is a
winning strategy from the default starting state for the first
player (Allis 1988). In contrast, we study how easy or diffi-
cult is to win from winning states given the expertise levels.
Level generation. The problem of level generation has been
studied for specific games. Goldspinner (Williams-King et
al. 2012) is an automatic level generation system for KGol-
drunner, which is a puzzle-oriented platform game with dy-
namic elements. It uses a genetic algorithm to generate can-
didate levels and simulation to evaluate dynamic aspects of

the game. We also use simulation to evaluate the dynamic as-
pect, but use symbolic methods to generate candidate states;
also, our system is parameterized by game rules.

Most other work has been restricted to games without op-
ponent and dynamic content such as Sudoku (Hunt, Pong,
and Tucker 2007; XUE et al. 2009). Smith et al. used
answer-set programming to generate levels for the educa-
tional puzzle game Refraction that adhered to prespecified
constraints written in first-order logic (Smith et al. 2012).
Similar approaches have also been used to generate lev-
els for platform games (Smith et al. 2009). In all these ap-
proaches, designers must explicitly specify constraints that
the generated content must reflect, for example, the tree
needs to be near the rock and the river needs to be near
the tree. In contrast, our system takes as input rules of the
game and does not require any further help from the de-
signer. (Andersen, Gulwani, and Popovic 2013) also uses a
similar model and applies symbolic methods (namely, test
input generation techniques) to generate various levels for
DragoxBox, an algebra-learning video game that became
the most purchased game in Norway on the Apple App
Store (Liu 2012). In contrast, we use symbolic methods for
generating valid start states, and use simulation for estimat-
ing the difficulty level.

Problem generation. Recently, there has been interesting
work on generating fresh set of practice problems for various
subject domains including proof problems for high-school
algebra (Singh, Gulwani, and Rajamani 2012) and proce-
dural problems for middle-school mathematics (Andersen,
Gulwani, and Popovic 2013). The former uses probabilistic
testing to guarantee the validity of a generated problem can-
didate (from abstraction of the original problem) on random
inputs, but there is no guarantee of the difficulty level. Our
simulation is also akin to this probabilistic testing approach,
but it is used to guarantee difficulty level; whereas validity is
guaranteed by symbolic methods. Interesting starting states
that require few steps to play and win are often published
in newspapers and magazines for sophisticated games like
Chess and Bridge. These are usually obtained from database
of past games. In contrast, we show how to automatically
generate such states, albeit for simpler games.

Conclusion. We revisit the classic domain of simple board
games that have been popular since ancient times. We define
a novel problem of generating starting states of a given dif-
ficulty level, given rules of the game. We present a novel
search technique that combines use of symbolic methods
and iterative simulation. Our experiments identified states
of varying difficulty level for various games, opening up new
games to be played that were believed to be useless for ages.



References
Allis, V. 1988. A knowledge-based approach of connect-four.
Vrije Universiteit, Subfaculteit Wiskunde en Informatica.
Andersen, E.; Gulwani, S.; and Popovic, Z. 2013. A trace-
based framework for analyzing and synthesizing educational
progressions. In CHI.
Duncan, G.; Dowsett, C.; Claessens, A.; Magnuson, K.; Hus-
ton, A.; Klebanov, P.; Pagani, L.; Feinstein, L.; Engel, M.;
Brooks-Gunn, J.; et al. 2007. School readiness and later
achievement. Developmental psychology 43(6):1428.
Gardner, M. 1979. Mathematical games in which players
of ticktacktoe are taught to hunt bigger game. Scientific
American (April 1979) 18–26.
Gardner, M. 1983. Tic-tac-toe games. In Wheels, life, and
other mathematical amusements. WH Freeman. chapter 9.
Gottlieb, S. 2003. Mental activity may help prevent dementia.
BMJ 326(7404):1418.
Harary, F. 1977. Generalized tic-tac-toe. http:
//en.wikipedia.org/wiki/Harary’s_
generalized_tic-tac-toe.
Hunt, M.; Pong, C.; and Tucker, G. 2007. Difficulty-driven
sudoku puzzle generation. UMAPJournal 343.
Liu, J. 2012. Dragonbox: Algebra beats angry birds. Wired.
Ma, W. J. Generalized tic-tac-toe. http:
//www.weijima.com/index.php?option=com_
content&view=article&id=11&Itemid=15.
Ramani, G., and Siegler, R. 2008. Promoting broad and stable
improvements in low-income childrens numerical knowledge
through playing number board games. Child development
79(2):375–394.
Singh, R.; Gulwani, S.; and Rajamani, S. 2012. Automati-
cally generating algebra problems. In AAAI.
Smith, G.; Treanor, M.; Whitehead, J.; and Mateas, M.
2009. Rhythm-based level generation for 2D platformers. In
International Conference on Foundations of Digital Games.
ACM.
Smith, A. M.; Andersen, E.; Mateas, M.; and Popović, Z.
2012. A case study of expressively constrainable level de-
sign automation tools for a puzzle game. In International
Conference on the Foundations of Digital Games. ACM.
Weisstein, E. W. Tic-tac-toe. From MathWorld–A Wol-
fram Web Resource http://mathworld.wolfram.
com/Tic-Tac-Toe.html.
Williams-King, D.; Denzinger, J.; Aycock, J.; and Stephen-
son, B. 2012. The gold standard: Automatically generating
puzzle game levels. In AIIDE.
XUE, Y.; JIANG, B.; LI, Y.; YAN, G.; and SUN, H. 2009.
Sudoku puzzles generating: From easy to evil. Mathematics
in Practice and Theory 21:000.



Appendix
We first present a summary of our experimental results, and
then illustrate the hardness of an example.
Summary. We summarize our results in Table 4. We call a
state category-i state if it is not easy for depth-(i− 1) strat-
egy, but it is easy for depth-i strategy. In Table 4 we sum-
marize the different games and the existence of category i
states in such games.
Illustration of hardness with an example. In Figure 2,
we present how different depth-k strategies choose the best
available position to mark on a Connect-4 RCD category-3
state. The example board position of Figure 2 is the same
as for Figure 1 (e). The three depth-k strategies (k = 1, 2, 3)
play as player-X and assign a score to each of the three avail-
able positions (column-2, 3, 4) by looking k-turns ahead.
In each sub-figure, the position with yellow-background is
the one chosen for exploration and the positions with grey-
background are the predicted moves of how the game might
turn out after k-turns.

As observed, only k = 3 strategy is able to foresee that
marking column-2 would lead player-X to a winning state
and also conclude that the other column choices will lead to
a draw. Where as, k = 1, 2 incorrectly choose column-3 as
the best position to mark hence making this starting position
a category-3 state.



Table 4: Summary

Game Category-1 Category-2 Category-3 Category-4
Tic-Tac-Toe All variants 3x3 - only RCD - -

4x4 - All except RCD
Bottom-2 All variants All variants except 3x3-CD RCD for 3x3 and 4x4 -

RC for 4x4
CONNECT-3 All variants All i=2 variants All i=2 variants except RCD -
CONNECT-4 All variants All variants All variants All i=3 variants

(a) k = 1, column-2 fetches Player-X a
reward of +5

(b) k = 1, column-3 fetches Player-X a
reward of +6

(c) k = 1, column-4 fetches Player-X a
reward of +2

(d) k = 2, column-2 fetches Player-X a
reward of +3

(e) k = 2, column-3 fetches Player-X a
reward of +6

(f) k = 2, column-4 fetches Player-X a
reward of +0

(g) k = 3, column-2 fetches Player-X a
reward of +∞

(h) k = 3, column-3 fetches Player-X a
reward of +0

(i) k = 3, column-4 fetches Player-X a
reward of +0

Figure 2: Depth-K strategy exploration on a CONNECT-4 RCD category-3 state


