
Parallelizing Dynamic Programming Through Rank Convergence

Saeed Maleki
Univerity of Illinois at

Urbana-Champaign
maleki1@illinois.edu

Madanlal Musuvathi
Microsoft Research

madanm@microsoft.com

Todd Mytkowicz
Microsoft Research

toddm@microsoft.com

Abstract
This paper proposes an efficient parallel algorithm for an
important class of dynamic programming problems that in-
cludes Viterbi, Needleman-Wunsch, Smith-Waterman, and
Longest Common Subsequence. In dynamic programming,
the subproblems that do not depend on each other, and thus
can be computed in parallel, form stages or wavefronts. The
algorithm presented in this paper provides additional par-
allelism allowing multiple stages to be computed in paral-
lel despite dependences among them. The correctness and
the performance of the algorithm relies on rank convergence
properties of matrix multiplication in the tropical semiring,
formed with plus as the multiplicative operation and max as
the additive operation.

This paper demonstrates the efficiency of the parallel
algorithm by showing significant speed ups on a variety
of important dynamic programming problems. In particular,
the parallel Viterbi decoder is up-to 24× faster (with 64
processors) than a highly optimized commercial baseline.

Categories and Subject Descriptors D.1.3 [Concurrent
Programming]: Parallel programming; F.1.2 [Modes of
Computation]: Parallelism and concurrency

Keywords Parallelism; Dynamic Programming; Tropical
Semiring; Wavefront; Viterbi; Smith-Waterman;

1. Introduction
Dynamic programming [4] is a method to solve a variety of
important optimization problems in computer science, eco-
nomics, genomics, and finance. Figure 1 describes two such
examples: Viterbi, which finds the most-likely path through
a hidden-Markov model for a sequence of observations and
LCS, which finds the longest common subsequence between

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PPoPP ’14, February 15–19, 2014, Orlando, Florida, USA.
Copyright c© 2014 ACM 978-1-4503-2656-8/14/02. . . $15.00.
http://dx.doi.org/10.1145/2555243.2555264

a) Viterbi b) LCS

𝑝𝑖,𝑗 = max
𝑘

(𝑝𝑖−1,𝑘 ∗ 𝑡𝑘,𝑗) 𝐶𝑖,𝑗 = max

𝐶𝑖−1,𝑗−1 + 𝛿𝑖,𝑗
𝐶𝑖,𝑗−1
𝐶𝑖−1,𝑗

Stage

Stage

𝒑𝒊,𝒋 𝑪𝒊,𝒋

𝑝𝑖−1,1

𝑝𝑖−1,2

𝑝𝑖−1,3

𝑝𝑖−1,4

𝑝𝑖−1,5

𝒕𝟏,𝒋

𝒕𝟓,𝒋

𝜹𝒊,𝒋 𝟎

𝟎

𝑪𝒊−𝟏,𝒋−𝟏

𝑪𝒊,𝒋−𝟏

𝑪𝒊−𝟏,𝒋

Figure 1: Dynamic programming examples with depen-
dences between stages.

two input strings. Dynamic programming algorithms pro-
ceed by recursively solving a series of subproblems, usually
represented as cells in a table as shown in the figure. The
solution to a subproblem is constructed from solutions to an
appropriate set of subproblems, as shown by the respective
recurrence relation in the figure.

These data-dependences naturally group subproblems
into stages whose solutions do not depend on each other.
For example, all subproblems in a column form a stage in
Viterbi and all subproblems in an anti-diagonal form a stage
in LCS. A predominant method for parallelizing dynamic
programming is wavefront parallelization [20], which com-
putes all subproblems within a stage in parallel.1

In contrast, this paper breaks data-dependences across
stages and fixes up incorrect values later in the algorithm.
Therefore, this approach exposes parallelism for a class of
dynamic programming algorithms we call linear-tropical
dynamic programming (LTDP). A LTDP computation can
be viewed as performing a sequence of matrix multiplica-
tions in the tropical semiring where the semiring is formed
with + as the multiplicative operator and max as the additive
operator. This paper demonstrates that several important op-
timization problems such as Viterbi, LCS, Smith-Waterman,

1 The definition of wavefront parallelism used here is more general and
includes the common usage where a wavefront performs computations
across logical iterations as in the LCS example in Figure 1(a).

and Needleman-Wunsch (the latter two are used in bioin-
formatics for sequence alignment) belong to LTDP. To effi-
ciently break data-dependences across stages, the algorithm
uses rank convergence, a property by which the rank of a se-
quence of matrix products in the tropical semiring is likely
to converge to 1.

A key advantage of our parallel algorithm is its ability
to simultaneously use both the coarse-grained parallelism
across stages and the fine-grained wavefront parallelism
within a stage. Moreover, the algorithm can reuse exist-
ing highly-optimized implementations that exploit wave-
front parallelism with little modification. As a consequence,
our implementation achieves multiplicative speed ups over
existing implementations. For instance, the parallel Viterbi
decoder is up-to 24× faster with 64 cores than a state-of-
the-art commercial baseline [25]. This paper demonstrates
similar speed ups for other LTDP instances studied in this
paper.

2. Background
In linear algebra, a matrix-vector multiplication maps a vec-
tor from an input space to an output space. If the matrix is
of low rank, the matrix maps the vector to a subspace of the
output space. In particular, if the matrix has rank 1, then it
maps all input vectors to a line in the output space. These
geometric intuitions hold even when one changes the mean-
ing of the sum and multiplication operators (say to max and
+, respectively), as long as the new meaning satisfies the
following rules.

Semirings A semiring is a five-tuple (D,⊕,⊗,0,1), where
D is the domain of the semiring that is closed under the ad-
ditive operation ⊕ and the multiplicative operation ⊗. The
two operations satisfy the following properties:

• (D,⊕,0) forms a commutative monoid with 0 as the
identity

associativity: ∀x, y, z ∈ D : (x⊕ y)⊕ z = x⊕(y⊕ z)
identity: ∀x ∈ D : x⊕0 = x

commutativity: ∀x, y ∈ D : x⊕ y = y⊕x
• (D,⊗,1) forms a monoid with 1 as the identity

associativity: ∀x, y, z ∈ D : (x⊗ y)⊗ z = x⊗(y⊗ z)
identity: ∀x ∈ D : x⊗1 = 1⊗x = x

• ⊗ left- and right-distributes over ⊕
∀x, y, z ∈ D : x⊗(y⊕ z) = (x⊗ y)⊕(x⊗ z)
∀x, y, z ∈ D : (y⊕ z)⊗x = (y⊗x)⊕(z⊗x)

• 0 is an annihilator for ⊗
∀x ∈ D : x⊗ 0 = 0⊗x = 0

Tropical Semiring The semiring (R∪{−∞},max,+,−∞, 0)
with the real numbers extended with −∞ as the domain,
max as the additive operation⊕, and + as the multiplicative

operation ⊗ is called the tropical semiring. All properties of
a semiring hold with −∞ as the additive identity 0 and 0 as
the multiplicative identity 1. Alternately, one can reverse the
sign of every element in the domain and change the additive
operation to min.

Matrix Multiplication Let An×m denote a matrix with n
rows and m columns with elements from the domain of the
tropical semiring. Let A[i, j] denote the element of A at the
ith row and jth column. The matrix product of Al×m and
Bm×n is A�B, a l × n matrix defined such that

(A�B)[i, j] =
⊕

1≤k≤m

(A[i, k]⊗B[k, j])

= max
1≤k≤m

(A[i, k] +B[k, j])

Note, this is the standard matrix product with multiplication
replaced by + and addition replaced by max.

The transpose of An×m is the matrix Aᵀ
m×n such that

∀i, j : Aᵀ[i, j] = A[j, i]. Using standard terminology, we
will denote a vn×1 matrix as the column vector ~v, a v1×n
matrix as the row vector ~v ᵀ, and x1×1 matrix simply as the
scalar x. This terminology allows us to extend the defini-
tion of matrix-matrix multiplication above to matrix-vector,
scalar-matrix, and scalar-vector multiplication appropriately.
Also, ~v [i] is the ith element of a vector ~v. The follow-
ing lemma follows from the associativity, distributivity, and
commutativity properties of ⊗ and ⊕ in a semiring.

Lemma 1. Matrix multiplication is associative in semirings

(A�B)�C = A�(B�C)

Parallel Vectors Two vectors ~u and ~v are parallel in the
tropical semiring, denoted as ~u ‖ ~v, if there exist scalars x
and y such that ~u�x = ~u� y. Intuitively, parallel vectors
in tropical semiring ~u and ~v differ by a constant offset. For
instance, [1 0 2]ᵀ and [3 2 4]ᵀ are parallel vectors differing
by an offset 2. Note that the definition above requires two
scalars as −∞ does not have a multiplicative inverse in the
tropical semiring.

Matrix Rank The rank of a matrix Mm×n, denoted by
rank(M), is the smallest number r such that there exist
matricesCm×r andRr×n whose product isM . In particular,
a rank-1 matrix is a product of a column vector and a row
vector. There are alternate ways to define the rank of a matrix
in semirings, such as the number of linearly independent
rows or columns in a matrix. While such definitions coincide
in fields (which have inverses for ⊕ and ⊗), they are not
equivalent in semirings [7].

Lemma 2. For any vectors ~u and ~v and a matrix A of rank
1, A� ~u ‖ A�~v
Intuitively, this lemma states that a rank-1 matrix maps all
vectors to a line. If rank(A) = 1 then it is a product of some

column vector ~c and a row vector ~r ᵀ. For any vectors ~u and
~v:

A� ~u =(~c�~r ᵀ)� ~u =~c�(~r ᵀ� ~u) =~c�xu
A�~v =(~c�~r ᵀ)�~v =~c�(~r ᵀ�~v) =~c�xv

for appropriate scalars xu and xv . As an example, consider

A =

1 2 3
2 3 4
3 4 5

 ~u =

 1
−∞

3

 ~v =

−∞2
0


A = [1 2 3]ᵀ� [0 1 2] is rank-1. A� ~u = [6 7 8]ᵀ and
A�~v = [4 5 6]ᵀ which are parallel with a constant offset
2. Also note that all rows in a rank-1 matrix are parallel to
each other.

3. Linear-Tropical Dynamic Programming
Dynamic programming is a method for solving problems
that have optimal substructure — the solution to a problem
can be obtained from the solutions to a set of its overlapping
subproblems. This dependence between subproblems is cap-
tured by a recurrence equation. Classic dynamic program-
ming implementations solve the subproblems iteratively ap-
plying the recurrence equation in an order that respects the
dependence between subproblems.

LTDP Definition A dynamic programming problem is
linear-tropical dynamic programming (LTDP), if (a) the sub-
problems can be grouped into a sequence of stages such that
the solution to a subproblem in a stage only depends on the
solutions in the previous stage and (b) this dependence is
linear in the tropical semiring. In other words, si[j], the so-
lution to subproblem j in stage i of LTDP, is given by the
recurrence equation

si[j] = max
k

(si−1[k] +Ai[j, k]) (1)

for appropriate constants Ai[j, k]. This linear dependence
allows us to view LTDP as computing a sequence of vectors
~s1, ~s2, . . . , ~sn, where

~si = Ai�~si−1 (2)

for an appropriate matrix of constants Ai derived from the
recurrence equation. In this equation, we will call ~si as the
solution vector at stage i and call Ai as the transformation
matrix at stage i. Also, ~s0 is the initial solution vector ob-
tained from the base case of the recurrence equation.

Predecessor Product Once all of the subproblems are
solved, finding the solution to the underlying optimization
problem of LTDP usually involves tracing the predecessors
of subproblems. A predecessor of a subproblem is the sub-
problem for which the maximum in Equation 1 is reached.
For ease of exposition, we define the predecessor product of
a matrix A and a vector ~s as the vector A?~s such that

(A?~s)[j] = arg max
k

(~s[k] +A[j, k])

1 LTDP_Seq (vector s0, matrix A1..An) {

2 vector pred [1..n]; vector res;

3 // forward

4 s = s0;

5 for i in (1..n) {

6 pred[i] = Ai ? s; // pred[i] = ~pi
7 s = Ai � s; // s = ~si
8 }

9 // backward

10 res[n+1] = 0; // res = ~r
11 for i in (n..1) {

12 res[i] = pred[i][res[i+1]]; }

13 return res; }

Figure 2: LTDP implementation that computes the stages se-
quentially. An implementation can possibly employ wave-
front parallelization within a stage.

Note the similarity between this definition and Equation 1.
We assume that ties in arg max are broken deterministically.
The following lemma shows that predecessor products do
not distinguish between parallel vectors, a property that will
be useful later.

Lemma 3. ~u ‖ ~v =⇒ ∀A : A?~u = A?~v

This follows from the fact that parallel vectors in the tropical
semiring differ by a constant and that arg max is invariant
when a constant is added to all its arguments.

Sequential LTDP Figure 2 shows the sequential algorithm
for LTDP phrased in terms of matrix multiplications and
predecessor products. This algorithm is deemed sequential
because it computes the stages one after the other based on
the data-dependence in Equation 1. However, the algorithm
can utilize wavefront parallelism to compute the solutions
within a stage in parallel.

The inputs to the sequential algorithm are the initial so-
lution vector ~s0 and transformation matrices A1, . . . , An,
which respectively capture the base and inductive case of the
LTDP recurrence equation. The algorithm consists of a for-
ward phase and a backward phase. The forward phase com-
putes the solutions in each stage ~si iteratively. In addition,
it computes the predecessor product ~pi that determines the
predecessor for each solution in a stage. The backward phase
iteratively follows the predecessors computed in the forward
phase. The algorithm assumes that the first subproblem in
the last stage, ~vn[0], contains the desired solution to the un-
derlying optimization problem. Accordingly, the backward
phase starts with 0 in Line 10. The resulting vector res is
the solution to the optimization problem at hand (e.g., the
longest-common-subsequence of the two input strings).

The exposition above consciously hides a lot of details
in the � and ? operators. An implementation does not need
to represent the solutions in a stage as a vector and perform
matrix-vector operations. It might statically know that the
current solution depends on some of the subproblems in the
previous stage (a sparse matrix) and only accesses those.

Finally, as mentioned above, an implementation might use
wavefront parallelism to compute the solutions in a stage
in parallel. All these implementation details are orthogonal
to how the parallel algorithm described in this paper paral-
lelizes across stages.

4. Parallel LTDP Algorithm
This section describes an efficient algorithm for parallelizing
the sequential algorithm in Figure 2 across stages.

4.1 Breaking Data-Dependences Across Stages
Viewing LTDP computation as matrix multiplication in the
tropical semiring provides a way to break data-dependences
among stages. Consider the solution vector at the last stage
~sn. From Equation 2, we have

~sn = An�An−1 . . . A2�A1�~s0

Standard techniques [11, 16] can parallelize this compu-
tation using the associativity of matrix multiplication. For
instance, two processors can compute the partial products
An� . . .�An/2+1 and An/2� . . .�A1 in parallel, and
multiply their results with ~s0 to obtain ~sn.

However, doing so converts a sequential computation that
performs matrix-vector multiplications to a parallel compu-
tation that performs matrix-matrix multiplications. This re-
sults in a parallelization overhead linear in the size of the
stages and thus requires linear number of processors to ob-
serve constant speed ups. In practice, the size of stages can
easily be hundreds or larger and thus is not practical on real
problems and hardware.

The key contribution of this paper is a parallel algorithm
that avoids the overhead of matrix-matrix multiplications.
This algorithms relies on the convergence of matrix rank
in the tropical semiring as discussed below. Its exposition
requires the following definition.

Partial Product For a given LTDP instance, the partial
product Mi→j , defined for stages j ≥ i, is given by

Mi→j = Aj � . . . Ai+1�Ai

Partial product determines how a later stage j depends on
stage i as ~sj = Mi→j �~si.

4.2 Rank Convergence
Rank of the product of two matrices is not greater than the
rank of the individual matrices.

rank(A�B) ≤ min(rank(A), rank(B)) (3)

This is because, if rank(A) = r, then A = C �R for some
matrix C with r columns. Thus, A�B = (C �R)�B =
C �(R�B) implying that rank(A�B) ≤ rank(A). Simi-
lar argument shows that rank(A�B) ≤ rank(B).

Equation 3 implies that for stages k ≥ j ≥ i

rank(Mi→k) ≤ rank(Mi→j) ≤ rank(Ai)

𝑠0

𝑠𝑛

𝑠𝑎 𝑠𝑏

𝑠0 𝑟𝑎 𝑟𝑏

 𝑠𝑛 𝑠𝑏𝑠𝑎
𝑠0 𝑠𝑎 𝑠𝑏

 𝑠𝑛 𝑠𝑏𝑠𝑎

a)

b)

c)

𝑃0 𝑃𝑎 𝑃𝑏

Correct Solution Parallel to Correct Incorrect Solution

Figure 3: Parallelization algorithm using rank convergence.

In effect, as the LTDP computation proceeds, the rank of the
partial products will never increase. Theoretically, there is a
possibility that the ranks do not decrease. However, we have
only observed this for carefully crafted problem instances
that are unlikely to occur in practice. On the contrary, the
rank of these partial products is likely to converge to 1, as
will be demonstrated in Section 6.1.

Consider a partial product Mi→j whose rank is 1. In-
tuitively, this implies a weak dependence between stages
i and j. Instead of the actual solution vector, ~si, say the
LTDP computation starts with a different vector ~ti at stage i.
From Lemma 2, the new solution vector at stage j, ~tj =
Mi→j �~ti, is parallel to the actual solution vector ~sj =
Mi→j �~si. Essentially, the direction of the solution vector
at stage j is independent of stage i. The latter stage only de-
termines its magnitude. In the tropical semiring, where the
multiplicative operator is +, this means that the solution vec-
tor at stage j will be off by a constant if one starts stage iwith
an arbitrary vector.

4.3 Parallel Algorithm Overview
The parallel algorithm uses this insight to break dependences
between stages as shown pictorially in Figure 3. The figure
uses three processors as an example. Figure 3(a) represents
the forward phase of the sequential algorithm described in
Figure 2. Each stage is represented as a vertical column of
cells and an arrow between stages represents a multiplica-
tion with an appropriate transformation matrix. Processor P0

starts from the initial solution vector s0 and computes all its
stages. Processor Pa waits for sa, the solution vector in the
final stage of P0, in order to start its computation. Similarly,
processor Pb waits for sb the solution vector at the final stage
of Pa.

In the parallel algorithm shown in Figure 3(b), proces-
sors Pa and Pb start from arbitrary solutions ra and rb re-
spectively in parallel with P0. Of course, the solutions for

1 LTDP_Par(vector s0, matrix A1..An) {

2 vector s[1..n]; vector pred [1..n];

3 vector conv;

4 // proc p owns stages (lp..rp]

5 ∀p: lp = n/P*(p-1); rp = n/P*p;

6 // parallel forward phase

7 parallel.for p in (1..P) {

8 local s = (p == 1 ? s0 : nz);

9 for i in (lp+1..rp) {

10 pred[i] = Ai ? s;

11 s = s[i] = Ai � s; }}

12 ----- barrier -----

13 do { // till convergence (fix up loop)

14 parallel.for p in (2..P) {

15 conv[p] = false;

16 // obtain final soln from prev proc

17 s = s[lp];

18 for i in (lp+1..rp) {

19 pred[i] = Ai ? s;

20 s = Ai � s;

21 if(s is parallel to s[i]) {

22 conv[p] = true;

23 break; }

24 s[i] = s; }}

25 ----- barrier -----

26 conv =
∧
p

conv[p];

27 } while (!conv);

28
29 // parallel backward phase is in Figure 5

30 return Backward_Par(pred);

Figure 4: Parallel algorithm for the forward Pass of LTDP
that relies on rank convergence for efficiency. All interpro-
cessor communication is shown in magenta.

the stages computed by Pa and Pb will start out as com-
pletely wrong (shaded dark in the figure). However, if rank
convergence occurs then these erroneous solution vectors
will eventually become parallel to the actual solution vec-
tors (shaded gray in the figure). Thus, Pa will generate some
solution vector ¯̄sb parallel to sb and Pb will generate some
solution vector ¯̄sn parallel to sn.

In a subsequent fix up phase, shown in Figure 3(c), Pa

uses sa computed by P0 and Pb uses ¯̄sb computed by P1 to
fix stages that are not parallel to the actual solution vector at
that stage. After the fix up, the solution vectors at each stage
are either the same as or parallel to the actual solution vector
at those respective stages.

For LTDP, it is not necessary to compute the actual so-
lution vectors. As parallel vectors generate the same prede-
cessor products (Lemma 3), following the predecessors in
Figure 3(c) will generate the same solution as the following
the predecessors in Figure 3(a).

The next sections describe the parallel algorithm in more
detail.

4.4 Parallel Forward Phase
The goal of the parallel forward phase in Figure 4 is to
compute a solution vector s[i] at stage i that is parallel
to the actual solution vector ~si, as shown in Figure 3. During
the execution of the algorithm, we say that a stage i has
converged if s[i] computed by the algorithm is parallel to
its actual solution vector ~si.

The parallel algorithm splits the stages equally among
P processors such that a processor p owns stages between
lp (exclusive) and rp (inclusive), as shown in line 5. While
processor 1 starts its computation from ~s0, other processors
start from some vector nz (line 8). This initial vector can
be arbitrary except none of its entries can be 0 = −∞.
Section 4.5 explains the importance of this constraint.

The loop starting in line 9 is similar to the sequential for-
ward phase (Figure 2) except that the parallel version addi-
tionally stores the computed s[i] needed in the convergence
loop below.

Consider a processor p 6= 1 that owns stages (lp =
l . . . r = rp]. If there exists a stage k in (l . . . r] such that
rank(Ml→k) is 1, then stage k converges, irrespective of
the initial vector nz (Lemma 2). Moreover, by Equation 3,
rank(Ml→j) is 1 for all stages j in [k . . . r], implying that
these stages converge as well (Figure 3(b)). However, pro-
cessor p is not cognizant of the actual solution vectors and,
thus, does not know the value of k or whether such a k exists.

The fix up loop starting at line 13 (fix up phase in Fig-
ure 3(c)) fixes stages i < k. In this loop, processor p re-
ceives the vector at stage l computed by the previous proces-
sor p − 1. (Figure 4 shows all such interprocessor commu-
nication in magenta.) Processor p then updates s[i] for all
stages till the new value becomes parallel to the old value of
s[i] (line 21). This ensures that all stages owned by p have
converged, under the assumption that stage l has converged.

In addition, the Boolean variable conv[p] indicates
whether processor p advertised a converged value for its
last stage to processor p+ 1 at the beginning of the iteration.
Thus, when conv (line 26) is true, all stages have converged.
In the ideal case, every processor has a partial product with
rank 1, and thus, the fix up loop executes exactly one itera-
tion. Section 6 shows that we observe the best case for many
practical instances.

Say, however, conv[p] is not true for processor p. This
indicates that the stages (lp . . . rp] was not large enough to
generate a partial product with rank 1. In the next iteration
of the fix up phase, processor p + 1, in effect, searches for
rank convergence in the wider range (lp . . . rp+1]. The fix
up loop iteratively combines the stages of the processors till
all processors converge. In the worst case, the fix up loop
executes P −1 iterations and the parallel algorithm devolves
to the sequential case.

Important to note is that even though the discussion above
refers to partial products, the algorithm does not perform any
matrix-matrix multiplications. Like the sequential algorithm,

the presentation hides many implementation details in the ?
and � operations (in lines 10,11,19,and 20). In fact, the par-
allel implementation can reuse efficient implementations of
these operations, including those that use wavefront paral-
lelism, from existing sequential implementations. Also, the
computation of conv at line 26 is a standard reduce opera-
tion that is easily parallelized, if needed.

When compared to the sequential algorithm, the parallel
algorithm has to additionally store s[i] per stage required
to test for convergence in the fix up loop. If space is a
constraint, then the fix up loop can be modified to recompute
s[i] in each iteration, trading compute for space.

4.5 All-Non-Zero Invariance
A subtle issue with the correctness of the algorithm above
is that starting the LTDP computation midway with an arbi-
trary initial vector nz could produce a zero vector (one with
all 0 = −∞ entries) at some stage. If this happens, all subse-
quent stages will produce a zero vector resulting in an erro-
neous result. To avoid this, we ensure that nz is all-non-zero,
i.e. none of its elements are 0 = −∞.

A transformation matrix A is non-trivial, if every row of
A contains at least one nonzero entry. In Equation 1, the j
row of matrix Ai captures how the subproblem j in stage i
depends on the subproblems in stage i − 1. If all entries in
this row are −∞, then the subproblem j is forced to be −∞
for any solution to stage i− 1. Such trivial subproblems can
be removed from a given LTDP instance. So, we can safely
assume that transformation matrices in LTDP instances are
non-trivial.

Lemma 4. For a non-trivial transformation matrix A,

~v is all-non-zero =⇒ A�~v is all-non-zero

(A�~v)[i] = maxk(A[i, k] + ~v [k]). But A[i, k] 6= −∞ for
some k ensuring that at least one of the arguments to max
is not −∞. Here we rely on the fact that no element has an
inverse under max, except −∞. As such this lemma is not
necessarily true in other semirings.

Thus, starting with a all-non-zero vector ensures that
none of the stages result in a zero vector.

4.6 Parallel Backward Phase
Once the parallel forward phase is done, performing the
sequential backward phase from Figure 2 will generate the
right result, even though s[i] is not exactly the same as
the correct solution ~si. In many applications, the forward
phase overwhelmingly dominates the execution time and
parallelizing the backward phase is not necessary. If this is
not the case, the backward phase can be parallelized using
the same idea as the parallel forward phase as described
below.

The backward phase recursively identifies the predeces-
sor at stage i starting from stage n. One way to obtain

1 Backward_Par(vector pred [1..n]) {

2 vector res; vector conv;

3 // proc p owns stages (lp..rp]

4 ∀p: lp = n/P*(p-1); rp = n/P*p;

5 // parallel backward phase

6 parallel.for p in (P..1){

7 // all processors start from 0

8 local x = 0;

9 for i in (rp..lp+1) {

10 x = res[i] = pred[i][x]; }}

11 ----- barrier -----

12 do { // till convergence (fix up loop)

13 parallel.for p in (P -1..1) {

14 conv[p] = false;

15 // obtain final result from next proc

16 local x = res[rp+1];

17 for i in (rp..lp+1) {

18 x = pred[i][x];

19 if (res[i] == x)

20 conv[p] = true;

21 break; }

22 res[i] = x; }

23 ----- barrier -----

24 conv =
∧
p

conv[p];

25 } while (!conv)

26 return res; }

Figure 5: Parallel algorithm for the backward phase of LTDP
that relies on rank convergence for efficiency. All interpro-
cessor communication is shown in magenta.

this predecessor is by iteratively looking up the predeces-
sor products pred[i] computed during the forward phase.
Another way to obtain this is through repeated matrix multi-
plication as Mi←n ?~si, where Mi←n is the backward partial
product An� . . . Ai+1. Using the same rank convergence
argument, the rank of Mi←n will converge to 1 for large
enough number of matrices (small enough i). Lemma 5 be-
low shows that the predecessor at stages beyond i do not
depend on the initial value used for the backward phase.

Lemma 5. For a matrix A of rank 1 and any vector ~v, all
elements of A?~v are equal.

This lemma follows from the fact that the rows in a rank-
1 matrix only differ by a constant and arg max is invariant
when an offset is added to all its arguments.

The algorithm in Figure 4 uses this insight for a paral-
lel backward phase. Every processor starts the predecessor
traversal from 0 (line 8) on the stages it owns. Each proces-
sor enters a fix up loop whose description and correctness
mirror those of the forward phase above.

4.7 Optimizing using Delta Computation
The fix up loop in Figure 4 recomputes solutions s[i] for
the initial stages for each processor. We have observed that
the ranks of the partial products converges to a small rank
much faster than to rank 1. Intuitively, the old and new values
of s[i] are almost parallel to each other for these low-rank

stages, but still the fix up loop redundantly updates all of
their solutions. Delta computation optimizes this redundant
computation.

Consider parallel vectors [1, 2, 3, 4]ᵀ and [3, 4, 5, 6]ᵀ. In-
stead, if we represent the vector as the delta between adja-
cent entries along with the first entry, these vectors, repre-
sented as [1, 1, 1, 1]ᵀ and [3, 1, 1, 1]ᵀ, are exactly the same
except for the first entry. Extending this intuition, if the
partial-product at a stage is low-rank, many (but not all) of
the entries in the vectors will be the same when represented
as deltas. If one modifies the recurrence Equation 1 to oper-
ate on deltas, then only the deltas that are different between
the old and new values of s[i] need to be propagated to the
next iteration. This optimization is crucial for instances, such
as LCS and Needleman-Wunsch for which the number of so-
lutions in a stage is large and the convergence to low-rank is
much faster than the convergence to rank 1.

4.8 Rank Convergence Discussion
One can view solving a LTDP problem as computing short-
est/longest paths in a graph. In this graph, each subproblem
is a node and directed edges represent the dependences be-
tween subproblems. The weights on edges represent the con-
stants Ai[j, k] in Equation 1. In LCS for instance (Figure 1),
each subproblem has incoming edges with weight 0 from the
subproblem above and to its left, and an incoming edge with
weight δi,j from its diagonal neighbor. Finding the optimal
solution to the LTDP problem amounts to finding the longest
path in this graph from the subproblem 0 in the last stage to
subproblems in the first stage, given initial weights to the
latter. Alternately, one can negate all the weights and change
the max to a min in Equation 1 to view this as computing
shortest paths.

Entries in the partial product Ml→r represent the cost of
the shortest (or longest) path from a node in stage l to a node
in stage r. The rank of this product is 1 if these shortest paths
go through a single node in some stage between l and r.
Road networks have this property. For instance, the fastest
path from any city in Washington state to any city in Mas-
sachusetts is highly likely to go through Interstate I-90 that
connects the two states. Routes that use I-90 are overwhelm-
ingly better than those that do not; choices of the cities at the
beginning and at the end do not drastically change how in-
termediate stages are routed. Similarly, if problem instances
have optimal solutions that are overwhelmingly better than
other solutions, one should expect rank convergence.

5. LTDP Examples
This sections shows four important optimization problems
as LTDP — Viterbi, Longest Common Subsequence, Smith-
Waterman, and Needleman-Wunsch. Our goal in choosing
these particular problems is to provide an intuition on how
problems with different structure can be viewed as LTDP.

Other problems are LTDP, but not evaluated in this paper,
include dynamic time warping and seam carving.

Viterbi The Viterbi algorithm [30] finds the most likely se-
quence of states in a (discrete) hidden Markov model (HMM)
for a given sequence of n observations. Its recurrence equa-
tion is shown in Figure 1(a). Here, pi,j represents the prob-
ability of the most likely state sequence ending in state j of
the HMM that explains the first i observations. The meaning
of the term tk,j is not important here (see [30]). The solution
to a Viterbi instance is given by the maximum value of pn,j
as we are interested in the most likely sequence ending in
any HMM state.

The subproblems along a column in Figure 1(a) form
a stage and they only depend on the subproblems in the
previous column. This dependence is not directly in the
desired form of Equation 1. But applying logarithm on both
sides to the recurrence equation brings it to this form. By
transforming the Viterbi instance into one that calculates
log-probabilities instead of probabilities, we obtain a LTDP
instance.

Invoking the parallel algorithm in Figure 4 requires one
additional transformation. The algorithm assumes that the
solution to LTDP is given by the first subproblem in the last
stage n. To account for this, we introduce an additional stage
n + 1 in which every subproblem is the maximum of all
subproblems in stage n. Essentially, stage n + 1 is obtained
from multiplying a matrix with 0 in all entries with stage n.

Longest Common Subsequence LCS finds the longest
common subsequence of two input strings A and B [12].
The recurrence equation of LCS is shown in Figure 1 (b).
Here, Ci,j is the length of the longest common subsequence
of the first i characters of A and the first j characters of B.
Also, δi,j is 1 if the ith character of A is the same as the
jth character of B and 0 otherwise. The LCS of A and B
is obtained by following the predecessors from the bottom-
rightmost entry in the table in Figure 1(b).

Some applications of LCS, such as the diff utility tool,
are only interested in solutions that are at most a width w
away from main diagonal - ensuring that the LCS is still rea-
sonably similar to the input strings. For these applications,
the recurrence relation can be modified such that Ci,j is set
to −∞ whenever |i − j| > w. Using a smaller width also
reduces the memory requirements of LTDP as the entire ta-
ble need not be stored in memory. Smaller width limits the
scope of wavefront parallelism due to smaller sizes of stages,
which emphasizes the need for parallelizing across stages as
proposed by this paper.

Grouping the subproblems of LCS into stages can be
done in two ways, as shown in Figure 6. In the first approach,
the stages correspond to anti-diagonals, such as the stage
consisting of zis in Figure 6 (a). This stage depends on two
previous stages (on xis and yis) and does not strictly follow
the rules of LTDP. One way to get around this is to define
stages as overlapping pairs of anti-diagonals, like stages

x2

y1

z1

x1

z3

x3

y2

z2

x1

y1

x2

y2

x3

z1

y1

z2

y2

z3

Stage x-y Stage y-z

x2

y2

x1

y1

x4

y4

x3

y3

x1

x2

x3

x4

y1

y2

y3

y4

Stage x Stage y

(a) (b)

Figure 6: Two ways of grouping the subproblems in LCS
into stages such that each stage only depends on one previ-
ous stage.

x-y and stage y-z in Figure 6 (a). Subproblems yis are
replicated in both stages, allowing stage y-z to depend only
on stage x-y. While this representation has the downside
of doubling the size of each stage, it can sometimes lead
to efficient representation. For LCS, one can show that the
difference between solutions to consecutive subproblems in
a stage is either 1 or 0. This allows compactly representing
the stage as a sequence of bits [13]).

In the second approach, the stages correspond to the rows
(or columns) as shown in Figure 6 (b). The recurrence needs
to be unrolled to avoid dependences between subproblems
within a stage. For instance, yi depends on all xj for j ≤
i. In this approach, since the final solution is obtained from
the last entry, the predecessor traversal in Figure 2 has to be
modified to start from this entry, say by adding an additional
matrix at the end to move this solution to the first solution in
the added stage.

Needleman-Wunsch This algorithm [23] finds a global
alignment of two input sequences, commonly used to align
protein or DNA sequences. The recurrence equation is very
similar to the one in LCS (Section 5).

si,j = max

 si−1,j−1 +m[i, j]
si−1,j − d
si,j−1 − d

In this equation, si,j is the score of the best alignment for the
prefix of length i of the first input and the prefix of length j
of the second input,m[i, j] is the matching score for aligning
the last characters of the respective prefixes, and d is the
penalty for an insertion or deletion during alignment. The
base cases are defined as si,0 = −i ∗ d and s0,j = −j ∗ d.

Grouping subproblems into stages can done using the
same approach as in LCS. Abstractly, one can think of LCS
as an instance of Needleman-Wunsch for appropriate values
of matching scores and insert/delete penalties. However, the

implementation details differ sufficiently enough for us to
consider them as two different algorithms.

Smith-Waterman This algorithm [26] performs a local se-
quence alignment, in contrast to Needleman-Wunsch. Given
two input strings, Smith-Waterman finds the substrings of
the input that have the best alignment, where longer sub-
strings have a better alignment. In its simplest form, the re-
currence equation is of the form

si,j = max


0
si−1,j−1 +m[i, j]
si−1,j − d
si,j−1 − d

Key difference from Needleman-Wunsch is the 0 term in
max which ensures that alignments “restart” whenever the
score goes to zero. Because of this term, the constants in Ai

matrices in equation 1 need to be set accordingly. This slight
change has significant difference to the convergence proper-
ties of Smith-Waterman as we will see later in Section 6.1.
Our implementation uses a more complex recurrence equa-
tion that allows for affine gap penalties when aligning se-
quences [8].

Also, the solution to Smith-Waterman requires finding the
maximum of all subproblems in all stages and performing
a predecessor traversal from that subproblem. To account
for this in our LTDP formulation, we add one “running
maximum” subproblem per stage that contains the maximum
of all subproblems in the current stage and previous stages.

6. Evaluation
This section evaluates the parallel LTDP algorithm on the
four problems discussed in Section 5. Section 6.1 empiri-
cally evaluates the occurrence of rank convergence in prac-
tice. Section 6.3 evaluates scalability, speed up and effi-
ciency of our implementation. Finally, Section 6.4 compares
the parallel algorithm with wavefront parallelization.

6.1 LTDP Rank Convergence
Determining whether the LTDP parallel algorithm benefits
a dynamic programming problem requires: 1) the problem
to be LTDP (discussed in Section 4); 2) rank convergence
happens in reasonable number of steps. This section demon-
strates how rank convergence can be measured and evaluates
it for the 4 LTDP problems discussed in Section 5.

Rank Convergence is an empirical property of a sequence
of matrix multiplications that depends on both the LTDP re-
currence relation in addition to the input. Table 1 empirically
evaluates the number of steps required for rank convergence
across different algorithms and inputs. For a LTDP instance,
defined by the algorithm (Column 1) and input (Column 2),
we first compute the actual solution vectors at each stage.
Then, starting from a random all-non-zero vector at 200 dif-
ferent stages, we measured the number of steps required to
generate a vector parallel to the actual solution vector (i.e.,

Steps to Converge to Rank-1 Min Median Max

Viterbi Decoder

Voyager: 26 22 40 104
LTE: 26 18 30 62
CDMA: 28 22 38 72
MARS: 214 46 112 414

Smith-Waterman

Query-1: 603 2 6 24
Query-2: 884 4 8 24
Query-3: 1227 4 8 24
Query-4: 1576 4 8 24

Needleman-Wunsch

Width: 1024 1, 580 19, 483 192, 747
Width: 2048 3, 045 44, 891 378, 363
Width: 4096 5, 586 101, 085 404, 4374
Width: 8192 12, 005 267, 391 802, 991

LCS

Width: 8192 9, 142 79, 530 370, 927
Width: 16384 19, 718 270, 320 −
Width: 32768 42, 597 626, 688 −
Width: 65536 86, 393 − −

Table 1: Number of steps to converge to rank 1.

convergence). Columns 3,4, and 5 respectively show the
minimum, median, and maximum number of steps needed
for convergence. For each input, Column 2 specifies the
computation width (the size of a stage or the size of each Ai

matrices). Each algorithm has a specific definition of width:
for Viterbi decoder, width is the number of states for each
decoder, in Smith-Waterman, it is the size of each query, and
in LCS and Needleman-Wunsch, it is a fixed-width around
the diagonal of each stage. LCS never converged so we
leave those entries blank. The rate of convergence is specific
to the algorithm and input (i.e., Smith-Waterman converges
fast while LCS sometimes does not converge) and, generally
speaking, wider widths require more steps to converge. We
will use this table later in Section 6.3 to explain scalability
of out approach.

6.2 Environmental Setup
We conducted experiments on a shared memory machine
and on a distributed memory machine. A shared memory
machine favors fast communication and is ideal for wave-
front approach. Likewise, a distributed machine has a larger
number of processors and so we can better understand how
our parallel algorithm scales. Next, we describe these two
machines.

Distributed-Memory Machine: Stampede [27], a Dell
PowerEdge C8220 Cluster with 6,400 nodes. At the time of
writing this paper, Stampede is ranked 6th on the Top500 [28]
list. Each node contains 2 8-core Intel Xeon E5-2600 pro-
cessor @ 2.70 GHz (16 cores in total) and 32 GB of memory.
The interconnect topology is a fat-tree, FDR InfiniBand in-
terconnect. On this cluster, we used the MPI MVAPICH 2 li-
brary [21] and the Intel C/C++ compiler version 13.0.1 [14].

Shared-Memory Machine: an unloaded Intel 2.27GHz
Xeon (E7) workstation with 40 cores (80 threads with hyper-
threading) and 128GB RAM. We use the Intel C/C++ com-
piler (version 13.0.1) [14] and the Intel MPI library (version
4.1) [15].

We report scalability results on Stampede but results from
the shared-memory machine are qualitatively similar. We
used the shared-memory machine to compare our parallel
algorithm with wavefront parallelization. Unless specified
otherwise, the reported results are from Stampede runs.

We use MPI/OMP timer to measure process runtime.
We do not measure setup costs — only the time it takes
to execute one invocation of a LTDP problem. When we
compare against a baseline, we modify that code to take the
same measurements.

Finally, to get statistically significant results, we run each
experiment multiple times and report the mean and 95%
confidence interval of the mean when appropriate. We do not
include confidence intervals in the graphs if they are small.

6.3 Parallel LTDP Benchmarks and Performance
This section evaluates the parallel algorithm on four LTDP
problems. To substantiate our scalability results, we evaluate
each benchmark across a wide variety of real-world inputs.
We break the results down by the LTDP problem.

6.3.1 Viterbi Decoder
Viterbi decoder uses the Viterbi algorithm (Section 5) to
communicate over noisy and unreliable channels, such as
cell phone communications [30]. Given a potentially cor-
rupted convolution-encoded message [24], Viterbi decoding
finds the most likely unencoded message.

Baseline We used Spiral’s [25] Viterbi decoder: a highly
optimized (via auto-tuning) decoder that utilizes SIMD to
parallelize decoding within a stage. To the best of our knowl-
edge, there is no efficient multi-processor algorithm for
Viterbi decoders since the amount of parallelism in each
stage is limited.

Our Implementation Spiral code is heavily optimized and
even small changes negatively affect performance. There-
fore, the performance-critical internal loop of the Spiral code
is used as a black box. Each processor starts from an arbi-
trary all-non-zero vector (except the first, which uses the ini-
tial vector) and uses Spiral to execute its set of stages. Each
processor (except the last) then communicates its result to
the next processor.

Data We use four real-world convolution codes; Voyager,
the convolution codes used on NASA’s deep space Voy-
ager. Mars, the convolution codes used to communicate with
NASA’s mars rovers, and both CDMA and LTE, two con-
volution codes commonly used in modern cell-phone net-
works. For each of these 4 convolution codes, we investigate
the impact of 4 network packet sizes (2048, 4096, 8192, and
16384), which determine the number of stages in the com-
putation. For each size, we used Spiral’s input generator to
create 50 network packets.

Performance and Scalability Figure 7 shows the perfor-
mance, the speed up, and the efficiency of each 4 decoders.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 1 8 16 32 48 64 80 96 112 128
 0

 2

 4

 6

 8

 10

M
b
/s

S
p
e
e
d
 U

p

Number of Cores

Voyager Performance and Speed Up

2048
4096

8192
16384

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 8 16 32 48 64 80 96 112 128

Number of Cores

Voyager Efficiency

 0

 100

 200

 300

 400

 500

 600

 700

 800

 1 8 16 32 48 64 80 96 112 128
 0

 2

 4

 6

 8

 10

 12

M
b
/s

S
p
e
e
d
 U

p

Number of Cores

LTE Performance and Speed Up

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 8 16 32 48 64 80 96 112 128

Number of Cores

LTE Efficiency

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 1 8 16 32 48 64 80 96 112 128
 0

 5

 10

 15

 20

M
b
/s

S
p
e
e
d
 U

p

Number of Cores

CDMA Performance and Speed Up

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 8 16 32 48 64 80 96 112 128

Number of Cores

CDMA Efficiency

 0

 1

 2

 3

 4

 5

 6

 1 8 16 32 48 64 80 96 112 128
 0

 5

 10

 15

 20

 25

M
b
/s

S
p
e
e
d
 U

p

Number of Cores

MARS Performance and Speed Up

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 8 16 32 48 64 80 96 112 128

Number of Cores

MARS Efficiency

Figure 7: Performance (Mb/S), speed up and efficiency of 4 Viterbi decoders. The non-filled data points demonstrates where
processors have too few iterations to converge to rank 1

To evaluate the impact of different decoder sizes, each plot
has four lines (one per network packet size). A point (x, y)
in a performance/speed up plot with the primary y-axis on
left, gives the throughput y (the number of bits processed in
a second) in megabits per second (Mb/S) as a function of the
number of processors x used to perform the Viterbi Decod-
ing. The same point with the secondary y-axis on right shows
the speed up y with x number of processors over the sequen-
tial performance. Note that Spiral sequential performance at
x = 1 is almost the same for different packet sizes. The filled
data points in the plots show that convergence occurred in
the first iteration of the fix-up loop in Figure 4 algorithm (i.e.
each processor’s stage is large enough for convergence). The
non-filled data points show multiple iterations of the fix-up
loop were required. Similarly, a point in an efficiency plot
provides the speed up of our parallel implementation over
the sequential performance of Spiral generated code divided
by the number of processors. Each point is the mean of 50
random packets.

Figure 7 demonstrates (i) our approach provides signif-
icant speed ups over the sequential baseline and (ii) differ-
ent convolution codes and network packet sizes have differ-
ent performance characteristics. For example, with 64 pro-
cessors, our CDMA Viterbi Decoder processing packets of
size 16384 decodes at a rate of 434 Mb/S which is 24×
faster than the sequential algorithm. Note that for the same
network packet size and number of processors, our MARS
decoder only processes at 4.4 Mb/S because the amount

of computation per bit (size of each stage) is significantly
greater than CDMA.

The performance of our approach — and thus our speed
up numbers — depend on the rate of rank convergence
for each pair of convolution codes and network size as
shown in Table 1. Larger network packet size provide bet-
ter performance across all convolution codes (i.e., a network
packet size of 16384 is always the fastest implementation,
regardless of convolution code) because the amount of re-
computation (i.e., the part of the computation that has not
converged), as a proportion of the overall computation de-
creases with larger network packet size.

Also, as it can be seen in Figure 7, efficiency plots drop as
the packet sizes decrease and this is again because the ratio
of the amount of re-computation to the whole computation
decreases. Note that with 48 processors, our algorithm for
CDMA can reach efficiency of more than 0.4.

6.3.2 Smith-Waterman
As described in Section 5, Smith-Waterman is an algo-
rithm for local sequence alignment [26] often used to align
DNA/protein sequences.

Baseline We implemented the fastest known CPU version,
Farrar’s algorithm, which utilizes SIMD to parallelize within
a stage [8].

Our Implementation Our parallel implementation of Smith-
Waterman uses Farrar’s algorithm as a black-box.

 0

 200

 400

 600

 800

 1000

 1 8 16 32 48 64 80 96 112 128
 0

 20

 40

 60

 80

 100

 120

G
ig

a
C

U
P
S S

p
e
e
d
 u

p

Number of Cores

Smith-Waterman Performance and Speed Up

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 8 16 32 48 64 80 96 112 128

Number of Cores

Smith-Waterman Efficiency

Figure 8: Smith-Waterman performance, speed up and effi-
ciency

Data We aligned chromosomes 1, 2, 3 and 4 from the hu-
man reference genome hg19 as databases and four randomly
selected expressed sequence tags as queries. All the inputs
are publicly available to download from [22]. We report the
average of performance across all combinations of DNA and
query (16 in total).

Performance and Scalability A point (x, y) in the perfor-
mance/speed up plot in Figure 8 with the primary y-axis on
left, gives the performance y in Giga cell updates per second,
or (GigaCUPS) as a function of the number of processors
used to perform the Smith-Waterman alignment. GigaCUPS
is a standard metric used in bioinformatics to measure the
performance of DNA based sequence alignment problems
and refers to the number of cells (in a dynamic program-
ming table) updated per second. Similar to the Viterbi de-
coder plots, the secondary y-axis on the left show the speed
up for each number of processors. We run Smith-Waterman
on all combinations of 4 DNA databases and 4 DNA queries
(we run each combination 5 times). Unlike the prior Viterbi
results, we do not see large variability in performance as
a function of the problem data. In other words, the DNA
database and query pairs do not significantly impact our per-
formance numbers. This can also be confirmed from Table 1
where the number of steps to converge to rank 1 is signifi-
cantly smaller than a DNA database size which is more than
100 million long. Thus, we plot the average, across all com-
binations of DNA databases and queries.

The performance gain of our approach for this algorithm
is significant: the efficiency plot in Figure 8 demonstrates
that our approach has efficiency ∼ 1 for any number of
processors which means almost linear speed up with up-
to 128 processors. This can be also confirmed from the
performance/speed up plot. Our algorithm would scale more
with more number of processors but we only report up-to
128 processors to keep Figure 8 consistent with the others.

6.3.3 Needleman-Wunsch
In contrast to Smith-Waterman, which performs a local
alignment between two sequences, Needleman-Wunsch glob-
ally aligns two sequences and is often used in bioinformatics
to align protein or DNA sequences [23].

 0

 5

 10

 15

 20

 25

 30

 35

 1 8 16 32 48 64 80 96 112 128
 0

 10

 20

 30

 40

 50

 60

 70

 80

G
ig

a
C

U
P
S S

p
e
e
d
 U

p

Number of Cores

NW Performance and Speed Up

1024
2048

4096
8192

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 8 16 32 48 64 80 96 112 128

Number of Cores

NW Efficiency

(a) Chromosome pair (X,Y): the best performing

 0

 5

 10

 15

 20

 25

 30

 35

 1 8 16 32 48 64 80 96 112 128
 0

 10

 20

 30

 40

 50

 60

 70

 80

G
ig

a
C

U
P
S S

p
e
e
d
 U

p

Number of Cores

NW Performance and Speed Up

1024
2048

4096
8192

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 8 16 32 48 64 80 96 112 128

Number of Cores

NW Efficiency

(b) Chromosome pair (21, 22): the worst performing

Figure 9: Performance, speed up and efficiency results of
Needleman-Wunsch

Baseline We utilized SIMD parallelization within a stage
for this benchmark by using the grouping technique shown
in Figure 6 a.

Our Implementation We implemented the incremental op-
timization described in Section 4.7 using the baseline code.

Data We used 4 pairs of DNA sequences as inputs: Human
Chromosomes (17, 18), (19, 20), (21, 22) and (X,Y) from
the human reference genome hg19. We only used the first 1
million elements of the sequences since Stampede does not
have enough memory on a single node to store the cell values
for the complete chromosomes. We also tried 4 different
width sizes: 1024, 2048, 4096 and 8192 since we found that
widths larger than 8192 do not affect the final alignment
score.

Performance and Scalability Figure 9 shows the perfor-
mance, speed up and efficiency of Needleman-Wunsch algo-
rithm parallelized using our approach for two pairs of chro-
mosomes: (X,Y) and (21, 22). Instead of averaging perfor-
mance numbers over all 4 pairs, we separated them and re-
ported the best performing pair ((X,Y) in Figure 9a) and
the worst performing pair ((21, 22) in Figure 9b). This is be-
cause the performance varies significantly between different
pairs as can be seen in Figures 9a and 9b. The figures show
results for each of the width sizes: 1024, 2048, 4096 and
8192. Similar to the Viterbi decoder benchmark, filled/non-
filled data points show whether convergence occurred in the
first iteration of the fix up phase.

 0

 50

 100

 150

 200

 250

 300

 1 8 16 32 48 64 80 96 112 128
 0

 10

 20

 30

 40

 50

G
ig

a
C

U
P
S S

p
e
e
d

 U
p

Number of Cores

LCS Performance and Speed Up

8192
16384

32768
65536

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 8 16 32 48 64 80 96 112 128

Number of Cores

LCS Efficiency

(a) Chromosome pair (X,Y): the best performing

 0

 50

 100

 150

 200

 250

 300

 1 8 16 32 48 64 80 96 112 128
 0

 10

 20

 30

 40

 50

G
ig

a
C

U
P
S S

p
e
e
d

 U
p

Number of Cores

LCS Performance and Speed Up

8192
16384

32768
65536

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 8 16 32 48 64 80 96 112 128

Number of Cores

LCS Efficiency

(b) Chromosome pair (21, 22): the worst performing

Figure 10: Performance, speed up and efficiency results of
Longest Common Subsequence

The figures show great variability in performance for dif-
ferent inputs based on the variability in convergence. Also,
as it can be seen from non-filled data points and Table 1, rank
convergence in this benchmark is not as fast as in Viterbi de-
coder or Smith-Waterman.

In Figure 9, larger widths perform poorer than smaller
ones since the convergence rate depends on the size of each
stage in a LTDP instance. Note that we used the same se-
quence size (1 million element) for all plots.

6.3.4 LCS
Longest Common Subsequence is a method to find the
largest subsequence common to two candidate sequences [12]
(See Section 5 for description).

Baseline We adapted the fastest known single-core algo-
rithm for LCS that exploits bit-parallelism to parallelize the
computation within a column [6, 13]. This approach uses the
the grouping technique shown in Figure 6 b.

Our Implementation Similar to Needleman-Wunsch, we
implemented the incremental optimization described in Sec-
tion 4.7 using the bit-parallel baseline code.

Data We used the same input data as with Needleman-
Wunsch except that we used the following width range:
8192, 16384, 32768 and 65536. We report performance
numbers in the same way as in Needleman-Wunsch.

Performance and Scalability The performance, speed up
and efficiency plots in Figure 10 are very similar to Figure 9.

 0

 1

 2

 3

 4

 5

 6

 1 5 10 15 20 25 30 35 40
 0

 5

 10

 15

 20

G
ig

a
C

u
p

s S
p

e
e
d

 U
p

Number of Cores

NW Performance and Speed Up

1024
2048

4096
8192

 1
 2

 4

 6

 8

 1 5 10 15 20 25 30 35 40

Number of Cores

NW Speed-up Over Wavefront

 0

 5

 10

 15

 20

 25

 1 5 10 15 20 25 30 35 40
 0

 1

 2

 3

 4

 5

G
ig

a
C

u
p

s S
p

e
e
d

 U
p

Number of Cores

LCS Performance and Speed Up

8192
16384

32768
65536

 1

 2

 4

 6

 1 5 10 15 20 25 30 35 40

Number of Cores

LCS Speed-up over Wavefront

Figure 11: Performance/speed up results and comparison of
LTDP and Wavefront for Needleman-Wunsch and LCS

We used the same two pairs of chromosomes: (X,Y) and
(21, 22) as they are the best and worst performing pairs
respectively. The 4 lines in each plot corresponds to one of
following width sizes: 1024, 2048, 4096 and 8192. Likewise,
the input pair has a great impact on rank convergence as it
can be seen in Figure 10a and Figure 10b.

6.4 Wavefront vs LTDP
Our goal in this section is to directly compare across-
stage parallelism with wavefront parallelism. We focus on
Needleman-Wunsch and LCS as the size of the stages in
Viterbi and Smith-Waterman is very small for wavefront
parallelism to be viable. We should note that the two ap-
proaches are complementary. Exploring the optimal way to
distribute a given budget of processors to simultaneously use
across-stage parallelism and within-stage parallelism is left
for future work. Furthermore, note that we implemented the
best known wavefront algorithm for each of our benchmarks.

We used OpenMP for wavefront implementations and
compared it with our MPI implementation used in our Stam-
pede experiments above, but running on our shared-memory
machine. This difference in implementation choice should at
the worst bias the results against our parallel algorithm.

Wavefront for Needleman-Wunsch: We used tiling to
group cells of the computation table and used SIMD in
each tile. Wavefronts proceed along the anti-diagonal of
these tiles. Tiling greatly reduces the number of barriers
involved [19]. On the other hand, processing cells in a tile
by utilizing SIMD has computation overhead over the base-

line that we used for our parallel approach (without tiling).
Therefore, the sequential performance of the baseline with
tiling is slower than the baseline without tiling. We investi-
gated different tiling parameters and chose the best perform-
ing configuration.

Wavefront for LCS: Similar to the baseline of Needleman-
Wunsch, we tiled the cells. For computation in each cell, we
used the same bit-parallelism to parallelize the computation
within a column of each tile. Likewise, we parallelized com-
putation of tiles that are in the same anti-diagonal.

Figure 11 compares the performance of our approach
with an optimized wavefront based approach for both LCS
and Needleman-Wunsch. The plots on the left in Figure 11
show the performance and speed up (over sequential non-
tiled baseline) of our approach for Needleman-Wunsch and
LCS. Plots on the right, a point (x, y) gives the speed up (y
as runtime of wavefront divided by runtime of our approach)
as we change the number of processors allocated to each
approach (x). We plot 4 lines, one for each of four widths.
Small widths are better for our approach (as wavefront ap-
proach incurs more barriers per unit of compute) while large
widths are better for wavefront approach (as our approach is
less likely to reach rank 1). As we add more processors, our
approach utilizes each additional processor more efficiently
than a wavefront based approach, particularly so when the
width is small (i.e., our approach is ∼ 9× faster than wave-
front approach with 40 processors for Needleman-Wunsch
and ∼ 6× faster than wavefront approach for LCS with
width size 8192).

7. Related Work
There has been a lot of prior work in parallelizing dy-
namic programming. Predominantly, implementations use
wavefront parallelism to parallelize within a stage. In con-
trast, this paper exploits parallelism across stages in addi-
tion to wavefront parallelism. For instance, Martins et al.
build a message passing based implementation of sequence
alignment dynamic programs (i.e., Smith-Waterman and
Needleman-Wunsch) using wavefront parallelism [19]. Our
baseline for Needleman-Wunsch builds on this work.

Stivala et al. use an alternate strategy for parallelizing dy-
namic programming. They use a “top-down” approach that
solves the dynamic programming problem by recursively
solving the subproblems in parallel. To avoid redundant so-
lutions to the same subproblem, they use a lock-free data
structure that memorizes the result of the subproblems. This
shared data structure makes it difficult to parallelize across
multiple machines.

There is also a large body of theoretical work analyz-
ing the parallel complexity of dynamic programming. Va-
lient et al. [29] show that straight-line programs that compute
polynomials in a field, which includes classical dynamic pro-
gramming, belong to NC, the class of asymptotically effi-
ciently parallelizable problems. Subsequent work [3, 10] has

improved both the time complexity and processor complex-
ity of this result. These works view dynamic programming
as finding a shortest path in an appropriate grid graph, com-
puting all-pairs shortest paths in partitions of the graph in
parallel, and combining the results from each partition effi-
ciently. The works differ in how they use the structure of the
underlying graph for efficiency. While it is not clear if these
asymptotically efficient algorithms lead to efficient imple-
mentation, using the structure of the underlying computation
for parallel efficiency is an inspiration for this work.

There are many dynamic programming problem specific
implementations. For example, much like we do in this pa-
per, LCS can exploit bit-parallelism (e.g., [1], [5], [13]).
And, Aluru et al. describe a prefix-sum approach to LCS[2]
which exploits the fact that LCS only uses binary values in
its recurrence equation.

Smith-Waterman has been studied extensively due to its
importance to DNA sequencing. This paper uses Farrar’s
SIMD implementation [8] on multi-core, however, prior
work has also investigated other hardware (e.g., GPU [18]
and FPGA [17]).

Due to its importance in telecommunications, there has
been lots of work on parallel Viterbi decoding. Because this
algorithm is often implemented in hardware, one simple ap-
proach to increase performance is to pipeline via systolic
arrays (i.e. to get good throughput) and increase clock fre-
quency (i.e., to get good latency) [9]. The closest approach
to us is Fettweis and Meyr who frame Viterbi as linear op-
erations on the tropical semiring and utilize the associativity
of matrix-matrix multiplications. However, they suffer linear
overheads of this approach which is hidden by adding more
hardware.

8. Conclusions
This paper introduces a novel method for parallelizing
a class of dynamic programming problems called linear-
tropical dynamic programming problems, which includes
important optimization problems such as Viterbi and longest-
common subsequence. The algorithm uses algebraic proper-
ties of the tropical semiring to break data dependence effi-
ciently.

Our implementations show significant speed ups over op-
timized sequential implementations. In particular, the paral-
lel Viterbi decoding is up-to 24× faster (with 64 cores) than
a highly optimized commercial baseline.

While we evaluate our approach on a large shared mem-
ory multi-core machine, we expect equally impressive re-
sults on a wide variety of parallel hardware platforms (clus-
ters, GPUs and even FPGAs).

Acknowledgments
This material is based upon work supported by the National
Science Foundation under Grant No. CNS 1111407. The au-
thors thank the Texas Advanced Computing Center for pro-

viding computation time on the Stampede cluster. We also
thank Serdar Tasiran and anonymous reviewers for useful
feedback on the paper.

References
[1] L. Allison and T. I. Dix. A bit-string longest-common-

subsequence algorithm. Information Processing Letters, 23
(6):305–310, Dec. 1986.

[2] S. Aluru, N. Futamura, and K. Mehrotra. Parallel biological
sequence comparison using prefix computations. J. Parallel
Distrib. Comput., 63(3):264–272, 2003. ISSN 0743-7315.

[3] A. Apostolico, M. J. Atallah, L. L. Larmore, and S. Mc-
Faddin. Efficient parallel algorithms for string editing and
related problems. SIAM J. Comput., 19(5):968–988, 1990.

[4] R. Bellman. Dynamic Programming. Princeton University
Press, 1957.

[5] M. Crochemore, C. S. Iliopoulos, Y. J. Pinzon, and J. F. Reid.
A fast and practical bit-vector algorithm for the longest com-
mon subsequence problem. Information Processing Letters,
80(6):279 – 285, 2001.

[6] S. Deorowicz. Bit-parallel algorithm for the constrained
longest common subsequence problem. Fundamenta Infor-
maticae, 99(4):409–433, 2010.

[7] M. Develin, F. Santos, and B. Sturmfels. On the rank of a
tropical matrix. Combinatorial and computational geometry,
52:213–242, 2005.

[8] M. Farrar. Striped Smith-Waterman speeds database searches
six times over other SIMD implementations. Bioinformatics,
23(2):156–161, 2007.

[9] G. Fettweis and H. Meyr. Parallel Viterbi algorithm imple-
mentation: breaking the ACS-bottleneck. IEEE Transactions
on Communications, 37(8):785–790, 1989.

[10] Z. Galil and K. Park. Parallel algorithms for dynamic pro-
gramming recurrences with more than O(1) dependency. Jour-
nal of Parallel and Distributed Computing, 21(2):213–222,
1994.

[11] W. D. Hillis and G. L. Steele, Jr. Data parallel algorithms.
Communications of the ACM, 29(12):1170–1183, Dec. 1986.

[12] D. S. Hirschberg. A linear space algorithm for comput-
ing maximal common subsequences. Communications of the
ACM, 18(6):341–343, June 1975.

[13] H. Hyyro. Bit-parallel LCS-length computation revisited.
In In Proc. 15th Australasian Workshop on Combinatorial
Algorithms, pages 16–27, 2004.

[14] Intel C/C++ Compiler, http://software.intel.com/en-us/c-
compilers, 2013.

[15] Intel MPI Library, http://software.intel.com/en-us/intel-mpi-
library/, 2013.

[16] R. E. Ladner and M. J. Fischer. Parallel prefix computation.
Journal of the ACM, 27(4):831–838, Oct. 1980.

[17] I. Li, W. Shum, and K. Truong. 160-fold acceleration of the
Smith-Waterman algorithm using a field programmable gate
array (FPGA). BMC Bioinformatics, 8(1):1–7, 2007.

[18] L. Ligowski and W. Rudnicki. An efficient implementa-
tion of Smith Waterman algorithm on GPU using CUDA, for
massively parallel scanning of sequence databases. In IEEE
International Symposium on Parallel Distributed Processing
(IPDPS), pages 1–8, 2009.

[19] W. S. Martins, J. B. D. Cuvillo, F. J. Useche, K. B. Theobald,
and G. Gao. A multithreaded parallel implementation of a
dynamic programming algorithm for sequence comparison. In
In Pacific Symposium on Biocomputing, pages 311–322, 2001.

[20] Y. Muraoka. Parallelism exposure and exploitation in
programs. PhD thesis, University of Illinois at Urbana-
Champaign, 1971.

[21] MVAPICH: MPI over InfiniBand, http://mvapich.cse.ohio-
state.edu/, 2013.

[22] National Center for Biotechnology Information,
http://www.ncbi.nlm.nih.gov/, 2013.

[23] S. B. Needleman and C. D. Wunsch. A general method
applicable to the search for similarities in the amino acid
sequence of two proteins. Journal of Molecular Biology, 48:
443–453, 1970.

[24] W. W. Peterson and E. J. Weldon. Error-Correcting Codes.
MIT Press: Cambridge, Mass, 1972.

[25] M. Püschel, J. M. F. Moura, J. Johnson, D. Padua, M. Veloso,
B. Singer, J. Xiong, F. Franchetti, A. Gacic, Y. Voronenko,
K. Chen, R. W. Johnson, and N. Rizzolo. SPIRAL: Code
generation for DSP transforms. Proceedings of the IEEE,
Special issue on “Program Generation, Optimization, and
Adaptation”, 93:232–275, 2005.

[26] T. Smith and M. Waterman. Identification of common molecu-
lar subsequences. Journal of Molecular Biology, 147(1):195–
197, 1981.

[27] Stampede: Dell PowerEdge C8220 Cluster with Intel Xeon
Phi coprocessors. Texas Advanced Computing Center,
http://www.tacc.utexas.edu/resources/hpc.

[28] Top500 Supercompute Sites, http://www.top500.org, 2013.

[29] L. G. Valiant, S. Skyum, S. Berkowitz, and C. Rackoff. Fast
parallel computation of polynomials using few processors.
SIAM Journal of Computing, 12(4):641–644, 1983.

[30] A. Viterbi. Error bounds for convolutional codes and an
asymptotically optimum decoding algorithm. IEEE Transac-
tions on Information Theory, 13(2):260–269, 1967.

