
Paxos Made Parallel
Zhenyu Guo, Chuntao Hong, Mao Yang, Dong Zhou, Lidong Zhou and Li Zhuang

Microsoft Research Asia

Abstract
Standard state-machine replication involves consensus
on a sequence of totally ordered requests through, for ex-
ample, the Paxos protocol. Serialized request processing
seriously limits our ability to leverage prevalent multi-
core servers. This tension between concurrency and con-
sistency is not inherent because the total-ordering of re-
quests is merely a simplifying convenience that is un-
necessary for consistency. Replicated state machines can
be made parallel by consensus on partial-order traces,
rather than on totally ordered requests, that capture
causal orders in one replica execution and to be replayed
in an order-preserving manner on others. The result is a
new multi-core friendly replicated state-machine frame-
work that achieves strong consistency while preserving
parallelism in multi-threaded applications. On 12-core
machines with hyper-threading, evaluations on typical
applications show that we can scale with the number of
cores, achieving up to a 16 times throughput increase
over standard replicated state machines.

1 INTRODUCTION

Server applications that power on-line services typically
run on a cluster of multi-core commodity servers. These
applications must leverage an underlying multi-core ar-
chitecture for highly concurrent request-processing, but
must also often resort to replication to guard against the
failure of commodity components. To guarantee consis-
tency, replicas in the standard replicated state-machine
approach [26, 36] start from the same initial state and
process the same set of requests in the same total or-
der deterministically. They use a consensus protocol to
agree on each request in a total order that implies se-
quential request processing, leading to performance loss
on a multi-core machine as many requests are in practice
non-conflicting and can be processed concurrently.

We present Tribble, a new replication framework that
maintains replica consistency while preserving concur-
rency in request processing, thereby refuting the miscon-
ception that serialized execution is necessary for state-
machine replication. Tribble processes multiple requests
concurrently on replicas; application writers provide pro-
cessing logic that uses a set of synchronization primitives
(e.g., locks and semaphores) for coordinating concurrent
access to shared data. Tribble achieves replica consis-
tency with the following key techniques. First, Tribble

has a primary replica process requests concurrently, with
others as secondary replicas that concurrently replay the
primary execution. Second, Tribble uses a consensus
protocol, such as Paxos, to maintain consistency even
when replicas fail and the primary changes. Rather than
agreeing on a sequence of total-ordering requests, Trib-
ble replicas agree on a partially ordered trace that cap-
tures causal dependencies among synchronization events
that occur in request processing. Replay of the trace on
a secondary preserves these causal dependencies and the
replica reaches the same consistent state as the primary,
while still allowing for concurrency during replay.

Tribble is the first practical replication framework
that approaches the ideal of achieving both high re-
liability through Paxos and high performance through
concurrent multi-threaded execution. We design Trib-
ble to be the new “replicated state-machine” approach
that is multi-core friendly. To evaluate whether Tribble
preserves concurrency in request processing under var-
ious circumstances and to understand its overhead, we
have further developed a set of micro-benchmarks and
identified several representative applications, including
a global lock service, a thumbnail service, a key/value
store, a simple file system, and Google’s LevelDB. Our
experiments on 12-core servers with hyper-threading
have shown that applications achieve as high as 16 times
the throughput on Tribble when compared to standard
replicated state-machine.

The rest of the paper is organized as follows. Sec-
tion 2 presents an architectural overview of Tribble. Sec-
tion 3 details how Tribble uses replica consensus to agree
on a trace. Section 4 presents how Tribble captures causal
orders in traces during execution and replays execution
while respecting the causal orders. We discuss state di-
vergence and Tribble application scope in Section 5. Sec-
tion 6 presents experimental results on both our micro-
benchmarks and representative applications. We survey
related work in Section 7 and conclude in Section 8.

2 OVERVIEW

We consider on-line service applications that serve in-
coming client requests with request handlers and a
thread pool with a fixed number of threads to process
requests. In contrast to standard state-machine replica-
tion, where totally ordered requests execute sequentially,
request handlers in Tribble are executed concurrently us-

ing a set of standard synchronization primitives to coor-
dinate their access to shared data. Each handler executes
deterministically, where Tribble requires that the order-
ing of synchronization events be the only source of non-
determinism. Tribble degrades into state-machine repli-
cation if each request handler uses the same lock to pro-
tect the entire execution.

2.1 Causal-Order Traces
Figure 1 shows how request handlers use synchroniza-
tion primitives. Two threads are working on two different
requests, where lock L is used to coordinate the access to
shared data. Lock and Unlock calls introduce causal de-
pendencies between the two threads, which are shown as
edges. Because each replica has the same request-handler
code, an execution is uniquely determined by the set of
incoming requests with their assignments to threads, as
well as the synchronization events and their causal or-
ders, which collectively constitute a trace. In a trace, a
synchronization event is identified by its thread id and a
local clock that increases for each local event; a causal
order between two synchronization events is recorded as
a directed causal edge, that is identified by a pair of event
identifiers. As shown in Figure 1, a causal edge exists
from the Unlock event (t1, 3) to the Lock event (t2, 2),
where the Unlock event must precede the Lock event.

Lock(L)

Thread t1 Thread t2

Unlock(L)

Lock(L)

New Request

c2

c1

1

2

3

4

1

2

3

New Request

Lock(L)

Unlock(L)

Figure 1: Request handlers & synchronization primitives.

The trace is growing as Tribble continuously handles
incoming requests. We pick an event in a thread as a cut
point for that thread. The collection of cut points, one for
each thread, defines a cut on a trace. A cut includes all
events up to the cut points in the threads, as well as the
causal orders among them. A trace trp is considered a
prefix of another trace tr if trp is a cut on tr. A cut is
consistent if, for any causal edge from event e1 to e2 in
the trace, e2 being in the cut implies that e1 is also in-
cluded in the cut. An execution reaches only consistent
cuts. Figure 1 shows two cuts c1 and c2, where c1 is con-
sistent, but c2 is inconsistent because event (t1, 4) is in
the cut, but (t2, 3) is not.

2.2 Execution, Consensus, and Replay
Figure 2 compares Tribble’s processing steps with those
in state-machine replication. Both use a consensus pro-

tocol such as Paxos as a basic building block. In its sim-
plest form, the consensus module allows clients to pro-
pose values in consensus instances and notifies clients
when a value is committed in an instance. The consensus
protocol ensures that a value committed is the value that
was proposed in that instance and that no other values
are committed in the same consensus instance, despite
possible failure of a minority of replicas.

With state-machine replication, replicas send client
requests ri as proposals to the consensus module (step
1), reach consensus on a sequence of requests (step 2),

and process those requests in this order (step 3).
A Tribble primary executes first by processing re-

quests concurrently and records causal orders in a trace
tri (step 1). A primary periodically proposes the cur-
rent cut as the value for the next consensus instance (step
2). Even in the presence of multiple primary replicas,

replicas can reach consensus to commit on a sequence of
traces (step 3). Once committed, a trace can be replayed
on secondary replicas (step 4).

Clients
r7 r6 r5

Replicates State-
Machine

①

Consensus Protocol (Paxos)

…… (4, r4) (3, r3) (2, r2)

Primary

r1

State m
ach

in
e

②

③

Consensus Protocol (Paxos)

…… (4, r4) (3, r3) (2, r2)

Secondary

r1

State m
ach

in
e

②

③

Clients

Primary Secondary

r8 r7 r6 r5 r4

Consensus Protocol (Paxos)

…… (3, tr3) (2, tr2) (1, tr1)

Trib
b

le

….

r1 r2 r3

tr3

tr2

tr1

Consensus Protocol (Paxos)

…… …… (3, tr3) (2, tr2)

Trib
b

le

….

r1 r2 r3
tr1

①

②

③

④

Tribble

Figure 2: State-machine replication vs. Tribble.

Tribble executes on the primary before a consen-
sus is reached, whereas consensus precedes execution in
state-machine replication. This has a subtle implication
on defining when the processing of a request is com-
pleted and when the service can respond to clients. In
state-machine replication, request processing starts after
reaching a consensus on that request and thus the primary

2

can respond to clients right after execution. In Tribble,
a primary cannot respond to clients right after finishing
processing a request, but must wait until a trace contain-
ing the processing of that request and all its depending
events has been committed in a consensus instance (step
3). However, the primary does not have to wait for the

completion of the replay on a secondary.
Tribble reaches consensus on a sequence of traces,

while replicated state machines agree on a sequence of
requests. While requests in different consensus instances
are independent, traces in different consensus instances
are not: replicas must reach consensus on a sequence of
growing traces that satisfy the prefix condition, where a
trace committed in instance i is a prefix of the trace com-
mitted in instance i+1. The prefix condition must also
hold during a primary change: a new primary must first
learn what has been committed in previous consensus in-
stances and replay to the trace of the last completed con-
sensus instance, before it can continue execution to cre-
ate longer traces as proposals to subsequent consensus
instances.

2.3 Correctness and Concurrency

Correctness of Tribble can be defined as equivalent to a
valid single-machine execution, and follows from the fol-
lowing three properties: (i) Consensus: all replicas reach
a consensus on a sequence of traces, (ii) Determinism: a
replica execution that conforms to the same trace reaches
the same consistent state, and (iii) Prefix: a trace com-
mitted in an earlier consensus instance is a prefix of any
trace committed in a later one. The first two properties
ensure consistency across replicas, while the third prop-
erty ensures that the sequence of traces constitute cuts on
the same valid single machine execution. How Tribble
satisfies the consensus and prefix properties is the sub-
ject of Section 3, while Section 4 presents how Tribble
achieves the determinism property.

Compared to state-machine replication, where re-
quest processing is serialized, Tribble preserves concur-
rency in request processing: a primary processes requests
concurrently using Tribble synchronization primitives,
while recording causal orders that matter to the execu-
tion; a secondary replays the execution by respecting
recorded causal orders and preserves the inherent par-
allelism of an application. Tribble introduces overhead
in both execution of a primary for recording causal or-
ders and execution of secondary replicas for respecting
those orders. Our evaluations in Section 6 show that the
overhead is manageable and higher concurrency leads to
significant performance improvement on multi-core ma-
chines.

3 CONSENSUS ON A GROWING TRACE

Tribble uses Paxos to ensure the consensus and prefix
properties in Section 2.3. As in state-machine replica-
tion, Tribble manages a sequence of consensus instances
with the Paxos protocol [28] so replicas can agree on
a trace. Across instances, Tribble must also ensure the
prefix property. In this section, we describe how Tribble
reaches consensus on a growing trace.

3.1 Consensus in Tribble

Tribble uses the classic two-phase Paxos protocol that re-
lies on a failure detection and leader election module to
detect replica failures and instruct a replica to become a
leader (e.g., after suspecting that the current leader has
failed). To become a new leader, a replica must exe-
cute the first phase of the Paxos protocol. When multiple
replicas compete to become the new leader, their ballot
numbers decide the winner. In this phase, the new leader
must learn any proposal that could have been committed
and proposes the same values to ensure consistency. A
leader carries out the second phase to get a proposal com-
mitted in a consensus instance and does so in a round-trip
when a majority of the replicas cooperate.

Beyond standard consensus, Tribble makes two note-
worthy design decisions. First, Tribble has at most one
active consensus instance at any time. A primary pro-
poses to an instance only after it learns that any earlier
instance has a proposal committed. This decision greatly
simplifies the design of Tribble in the following three
ways. First, Tribble does not have to manage multiple
active instances or deal with “holes” where a later in-
stance reaches an agreement before an earlier instance
does. Second, the decision makes it easy to guarantee the
prefix condition: during primary changes, the new pri-
mary simply learns the trace committed in the last in-
stance, replays that trace, and uses that trace as the start-
ing point for further execution. Finally, the design en-
ables a simple optimization where a proposal to a new
instance can contain not the full trace, but only the ad-
ditional information on top of the committed trace in the
previous instance. There is no risk of mis-interpretation
because the base trace has already been committed.

This simplification does not come at the expense of
performance. Normally, when a primary is ready to pro-
pose to instance i + 1, the proposal for instance i has
already been committed. Even when a primary wants to
propose to instance i + 1 before a consensus is reached
in all previous instances, the primary can simply piggy-
back all the not-yet-committed proposals for previous in-
stances in the proposal to the new instance: a secondary
accepts the proposal for instance i+1 only if it accepted

3

the proposal for the previous instances.
Second, Tribble co-locates the primary with the

leader in Paxos. This is a natural choice because the
primary plays a similar role in Tribble as the leader
in Paxos: they are both ideally unique and stable. Also
primary or leader changes both affect performance ad-
versely. To facilitate such co-location, Tribble’s Paxos
implementation exposes leader changes in the interface,
in addition to the standard Paxos interface, as follows.
Propose(i, p) is used to propose p to instance i;
OnCommitted(i, p) allows Tribble to provide a call-
back to be invoked when proposal p is committed in
instance i; OnBecomeLeader() is the callback to be
invoked when the local replica becomes the leader in
Paxos; OnNewLeader(r) is the callback to be invoked
when another replica r becomes the new leader.

Normally, a single primary is co-located with the
leader, processes client requests, and periodically creates
traces as proposals for consensus. Those traces satisfy
the prefix condition naturally as they are cuts of the same
execution. A secondary does not have to finish replaying
before responding to the primary; a secondary replays
only to catch up with the primary in order to speed up
primary changes or to serve non-updating queries.

In Tribble, leader changes trigger primary changes.
A new leader in Paxos will become the new primary; the
old primary will downgrade itself to a secondary when
a new leader emerges. In the (rare) cases where there
are multiple leaders, multiple replicas might assume the
role of the primary. The consensus through Paxos ensures
correctness by choosing only one trace in such cases, al-
though executions that are not selected are wasted and
require rollbacks.
Promotion to primary. Our Paxos implementation sig-
nals OnBecomeLeader() when the local replica com-
pletes phase 1 of the Paxos protocol (across all instances)
without encountering a higher ballot number. In that
phase, the new leader must have learned all instances
that might have a proposal committed and will re-execute
phase 2 to notify all replicas about those proposals com-
mitted. The replica learns the trace committed in the last
instance, replays that trace, and then switches from a sec-
ondary to a primary. Once the replica becomes the pri-
mary, it starts executing from the state corresponding to
the last committed trace to create new proposals, thereby
ensuring the prefix condition.
Concurrency and inconsistent cut. A new primary
must replay the last committed trace to the end, which
is feasible as long as the trace forms a consistent cut.
Even though execution of a primary results in a consis-
tent cut at any time, concurrent thread executions might

log synchronization events and their causal edges in an
order that is different from the execution order, thereby
leading to the possibility of having an inconsistent cut
as the trace for consensus. If an event e gets logged be-
fore another event e′ that is causally ordered before e.
A secondary would not be able to replay e fully because
it would be blocked waiting for e′. This is particularly
problematic when a secondary is promoted to a primary.
In that case, the promotion is forever blocked. Instead of
making each cut consistent, Tribble defines the last con-
sistent cut contained in a trace as the meaning of the pro-
posal. The residual of the trace after that consistent cut is
ignored in the case of primary changes. Tribble attaches
a ballot number in each proposal to indicate a primary
change because a new leader/primary will use a higher
ballot number.
Primary demotion. Our Paxos implementation signals
OnNewLeader(r) whenever it learns a higher ballot
number from some replica r. If the local replica is the
primary, but is no longer a leader, the replica must down-
grade itself to a secondary. As in Tribble where a primary
executes speculatively, a downgrading replica must also
roll back its execution to the point of the last committed
trace. One way to roll back is through checkpointing, as
described next.

3.2 Checkpointing and Garbage Collection
Tribble supports checkpointing (i) to allow a replica to
recover from failures, (ii) to implement rollback on a
downgrading replica, and (iii) to facilitate garbage col-
lection. Although it is sometimes possible for an appli-
cation writer to write application-specific checkpointing
logic, Tribble resorts to a general checkpointing frame-
work to alleviate this burden.

Having the primary checkpoint periodically during
its execution turns out to be undesirable for several rea-
sons. First, the primary’s current state is speculative and
might have to be rolled back; an extra mechanism is
needed to check whether a checkpoint eventually corre-
sponds to some committed state. Second, the primary is
on the critical path of request processing, being respon-
sible for taking requests, processing them, and creating
traces for consensus. Any disruption to the primary leads
directly to service unavailability. In contrast, due to re-
dundancies needed for fault tolerance, a secondary can
take the responsibility of creating checkpoints without
significant disruptions, by coordinating with the primary.

Checkpointing cannot be done on a state where a re-
quest has not been processed completely because Tribble
does not have sufficient information for a replica to con-
tinue processing an incomplete request when re-starting
from that checkpoint. When Tribble decides to create a

4

checkpoint, the primary sets the checkpoint flag, so that
all threads will pause before taking on any new request.
Threads working on background tasks (e.g., for com-
paction in LevelDB) must also pause (and resume) at a
clean starting point. Instead of taking the checkpoint di-
rectly when all threads are paused, the primary marks
this particular cut (as a list of the local virtual clock val-
ues for each thread) and passes the checkpoint request
with the cut information in the proposal for consensus. A
secondary receiving such a request waits until the replay
hits the cut points in the checkpoint request and creates a
snapshot through a checkpointing callback to the appli-
cation. Some policy is put in place to decide how often
to checkpoint and which secondary should create a snap-
shot. Once created, a secondary continues its replay and
copies the checkpoint in the background to other repli-
cas. When a checkpoint is available on a replica, any
committed trace before the cut points of that checkpoint
is no longer needed and can be garbage collected.

4 CAPTURING AND EXECUTING TRACES

In addition to consensus, Tribble leverages record (on a
primary) and replay (on a secondary) to achieve the de-
terminism property in Section 2.3. The unique setting in
Tribble imposes two requirements that make previous ap-
proaches of record and replay insufficient. First, Tribble
demands the ability of mode change from replay to live
execution, when a secondary is promoted as the primary.
As a result, resources cannot be faked during replay, as is
often done in traditional record and replay systems, such
as R2 [19] and Respec [30]. For example, a record and
replay tool often records the return value of a fopen call
during recording and simply returns the value without
executing during replay. Because the file resource is
faked, the system cannot switch from replay to live exe-
cution after replaying fopen. The subsequent calls (e.g.,
fread, fwrite, and fclose) on this resource would fail
without actually executing fopen first.

Second, Tribble demands online replay [30]: both
record (on a primary) and replay (on a secondary) need
to be carried out efficiently as they both affect the per-
formance of a live system. This is in contrast to offline
replay for scenarios such as debugging. In Tribble, re-
play performance should be comparable to record per-
formance so that a secondary can catch up to ensure sta-
ble system throughput. In particular, Tribble must enable
concurrency during replay.

None of the previous record-and-replay systems offer
a satisfactory solution for Tribble to support both mode
change and online replay, although many of the con-
cepts and approaches are useful to Tribble. To support
mode change, replay must maintain system resources

class TribbleLock;
class TribbleReadWriteLock;
class TribbleCond;
class TribbleRequest {
virtual int Execute(Tribble* rsm);
virtual ostream& Marshall(ostream& os);
virtual istream& UnMarshall(istream& is);
. . . }

class Tribble {
virtual bool Start(int numThread);
virtual int WriteCheckPoint(ostream& os);
virtual int ReadCheckPoint(istream& is);
. . .

int AddTimer(Callback cb, int interval);
}

Figure 3: Programming API in Tribble.

faithfully by re-executing operations on resources. To
ensure that these executions produce the same effect,
Tribble must ensure the appropriate execution order of
these operations. Tribble therefore provides wrappers for
synchronization operations in order to record their or-
der of execution, similar to RecPlay [34] and JaRec [17].
This way, the difference between record and replay lies
purely in the working mode of the wrappers, making it
easy to switch from replay to live execution while be-
ing transparent to applications. By wrapping basic syn-
chronization primitives, Tribble introduces enough non-
determinism in a programming-friendly way to allow
sufficient concurrency. To support online replay, we in-
tentionally avoid providing programming abstractions
that are not record-replay friendly, such as OS upcalls,
and decide against developing a complete deterministic
record and replay tool for arbitrary full-fledged concur-
rent programs due to the inherent complexity and perfor-
mance overhead.

4.1 Application Model and Assumptions
Tribble supports a constrained application model, with
its programming API shown in Figure 3. A program-
mer builds an application by inheriting the Tribble
and TribbleRequest classes. The processing logic for
a request is encoded in an Execute function as a re-
quest handler. The Tribble class implements initializa-
tion and also the functions used for checkpointing, as de-
scribed in Section 3.2. During initialization, the applica-
tion can add background tasks such as garbage collection
using the AddTimer method, which implicitly creates a
background thread. Multiple instances of request han-
dlers and background tasks might be executed concur-
rently, using built-in Tribble synchronization primitives
(e.g., TribbleLock) to coordinate.

Just as all request processing must be determinis-

5

int last thread id;
int last local clock;
MarkCausalEdge() {
CausalEdge ce;

ce.SrcThreadId = last thread id;

ce.SrcThreadClock = last local clock;

ce.DstThreadId = my thread id;

ce.DstThreadClock = ++my local clock;

Runtime::MarkCausalEdge(ce);

last thread id = my thread id;

last thread clock = my local clock; }
Lock() {
AcquireLock(real lock);

MarkCausalEdge(); }
Unlock() {
MarkCausalEdge();

ReleaseLock(real lock); }

Figure 4: Wrappers for Lock and Unlock.

tic in the standard state-machine replication, we assume
that there is no non-determinism other than the order of
the Tribble synchronization operations. This assumption
makes mode switch easy. We discuss the cases where
such an assumption might be violated, with potential
countermeasures, in Section 5.

4.2 Capturing Causal Orders

In Tribble, a primary captures causal orders among syn-
chronization events during its execution, while a sec-
ondary replays the execution by preserving those causal
orders. To capture causal orders, Tribble implements
a set of wrappers for commonly used synchronization
primitives. Figure 4 shows the pseudo code of the wrap-
pers for Lock and Unlock. The wrapper maintains a
real mutex lock real lock and the identifier for the last
Lock/Unlock event. For each lock event, Tribble cre-
ates a causal edge from the recorded last Unlock event.
The wrappers must ensure atomicity of an event and its
causal edge logging for faithful recording. Intuitively, an
additional lock can be used to combine the event invo-
cation and logging for atomicity. In this case, the mutex
lock already ensures the atomicity when applications use
Lock and Unlock properly.

The example in Figure 4 is deceivingly simple. We
use TryLock to illustrate the subtle complications that
could arise in implementing those wrappers. A TryLock
call does not block even if it fails to obtain the lock. We
use TryLock(F) to refer to a TryLock event that returns
failure and TryLock(T) to a TryLock event that returns
success. The subtle complication is related to two char-
acteristics of TryLock: the non-blocking nature that af-
fects thread safety and the partial-order nature of causal
orders for better replay concurrency. The same type of

RealLock data lock;

Lock() {
AcquireLock(real lock);

AcquireLock(data lock);

. . .

ReleaseLock(data lock); }
TryLock() {
AcquireLock(data lock);

bool ret = TryAcquireLock(real lock);
. . .

MarkCausalEdge();

ReleaseLock(data lock);

. . . }

Figure 5: Wrappers for Lock and TryLock.

techniques can be applied to other synchronization prim-
itives, such as Readers/Writer locks and semaphores, as
well as covering the case where an application inappro-
priately invokes Unlock multiple times.

Thread safety through detection and retry. With
TryLock, Tribble can no longer rely on the real lock
for thread safety because it is possible to have concur-
rent TryLock calls, even along with a concurrent Lock.
Tribble therefore has to introduce a second mutex lock
data lock to protect the context in each lock wrap-
per, as shown in Figure 5. Now a Lock operation needs
to acquire both real lock and data lock atomically.
This cannot be done because acquiring a lock is a block-
ing call. While TryLock can acquire data lock first,
Lock must acquire the real lock first because acquir-
ing data lock first and holding it when it acquires
the real lock would cause deadlocks: no one can ac-
quire the data lock when this thread blocks on the
real lock. However, the implementation in Figure 5 is
not yet thread safe. Figure 6 shows a case where thread
safety is violated. We consider a thread interleaving,
where thread t1 calls Lock. Thread t2 executes TryLock
completely after t1 acquires the real lock, but before
it acquires the data lock. t2 will get the context before
the completion of Lock because t1 has not updated the
context. This leads to the false causal orders (in dotted ar-
rows) shown on the right of Figure 6, where the TryLock
event is falsely considered to be causally ordered after
the Unlock event. In reality, it should be causally or-
dered after the Lock event in order to return false cor-
rectly. The root cause of the problem is the loss of atom-
icity between acquiring the real lock and updating the
context accordingly.

Rather than preventing such bad cases from happen-
ing, Tribble uses a detection and retry approach to ad-
dress this problem, as shown in Figure 7. We add a flag
locked to indicate that the lock is being held. The code

6

AcquireLock(
 real_lock);

t1

AcquireLock(data_lock);
...
MarkCausalEdge();
// outdated data !!!
...
ReleaseLock(data_lock);AcquireLock(

 data_lock);
…
ReleaseLock(
 data_lock);

Lock
2

TryLock

1

1
Unlock

1

t2 t1 t2

Figure 6: Thread safety violation in TryLock.

bool locked;
Lock() {
AcquireLock(real lock);

AcquireLock(data lock);

. . .

locked = true;
ReleaseLock(data lock); }

Unlock() {
AcquireLock(data lock);

. . .

locked = false;
ReleaseLock(data lock);

ReleaseLock(real lock); }
TryLock() {
bool ret = TryAcquireLock(real lock);
AcquireLock(data lock);

while (ret == false && !locked) {
ReleaseLock(data lock);

ret = TryAcquireLock(real lock);

AcquireLock(data lock);

}
if (ret) locked = true;
. . .

ReleaseLock(data lock); }

Figure 7: Thread safety through detection and retry.

of TryLock checks the consistency between the return
value of the call and the flag. Any inconsistency indicates
a race condition, causing the TryLock to re-execute.

4.3 Processing Requests on a Secondary

A secondary in Tribble processes requests while re-
specting causal orders captured in a primary’s execution.
When processing requests on a secondary, a synchroniza-
tion event e is triggered only after the execution of all
events causally ordered before e. In the case where e in
thread t has to wait for the execution of an event e′ in
thread t′, Tribble pauses thread t just before e and reg-
isters with t′ to have it signal t after it executes e′. This
way, a secondary attempts to execute in the same causal
orders on the same set of threads. Due to differences in
thread interleaving, a replay on a secondary might intro-
duce extra waiting. For example, in the execution on a

primary, thread t1 might get a lock before t2; during re-
play, t2 might be scheduled first and gets to the point of
acquiring the lock before t1 does. In this case, t2 still has
to wait for t1 to respect the same ordering as in the ex-
ecution of the primary. Causal dependencies captured in
causal edges decide the level of concurrency during re-
play. To achieve better performance and concurrency, we
discuss a couple of implementation tradeoffs and opti-
mizations below in Section 4.4.

4.4 Tradeoffs and Optimizations
TryLock. With only Lock and Unlock, causal orders are
simply the total order of all events on the same lock. Such
total ordering turns out to be overly stringent for mu-
tex locks that support TryLock (and similarly for read-
ers/writer locks and semaphores). Figure 8 shows an ex-
ample with three threads. If Tribble imposed a total order
on all those events, it would have to record edges (A, B,
C, D). For correctness only, the causal orders between
the TryLock(F)s in t2 and the TryLock(F) in t3 are
unnecessary, while all these TryLock(F)s have causal
orders with Lock and Unlock on t1 (edges A, D, W, X,
Y, Z). For example, the execution would be equivalent
even if the TryLock(F) in t3 executes before the two
TryLock(F)s in t2, as long as it is after the Lock in t1
and before the corresponding Unlock.

Lock

1

2

1

2

Unlock

A

B

TryLock(F)

1

TryLock(F)

TryLock(F)D

C

Lock

1

2

1

2

Unlock

A

TryLock(F)
1

TryLock(F)

TryLock(F)

WX

D
Z

Y

t1 t2 t3 t1 t2 t3

Figure 8: Total order vs. partial order.

To capture these causal orders precisely, Tribble’s im-
plementation tracks not only the last Lock, TryLock(T),
and Unlock events, but also all the TryLock(F) events
before an Unlock event that releases the lock that
cause those TryLock calls to fail. A TryLock(F)

event is causally ordered after the preceding Lock or
TryLock(T) event. An Unlock event is causally ordered
after all preceding TryLock(F) events that fail due to
the corresponding Lock or TryLock(T) event. Captur-
ing the precise partial order helps improve replay con-
currency, but often at the expense of increased complex-
ity in capturing those causal orders while sometimes also
increasing the total number of events.
Removing unnecessary causal edges. In the implemen-

7

tation, Tribble makes a simplifying assumption that all
replicas initiates a thread pool of the same number of
threads. With this assumption, causal orders within each
thread are preserved. In the example of Figure 8, causal
edge X is unnecessary because it follows from causal
edge A and the intra-thread causal order in thread t2. The
same is true for causal edge Y. Tribble remove unneces-
sary causal edges if the causal order indicated by an edge
has been implicitly decided from other edges.

5 THE TROUBLE WITH TRIBBLE

Tribble is no panacea and does have limitations, which
we elaborate here.
Guarding against state divergence. Tribble request
handlers must contain no sources of non-determinism be-
yond synchronization events. We discuss several cases
where this requirement is violated, causing replica-state
divergence.

An application could use non-deterministic APIs
such as those related to random numbers and time. Be-
cause Tribble achieves replica consistency via replay on
a secondary, it is straightforward to extend the current
implementation to cover these simple sources of non-
determinism. The results of those calls during the exe-
cution of the primary will be added to the trace, so that
a secondary can simply use those values during replay to
maintain consistency with the primary.

Developers could potentially write applications that
contain races and other concurrency problems, causing
replicas to diverge. Some races are bugs in applications;
others might actually be benign in that they do not af-
fect correctness. For example, an application that needs
highly concurrent appends to a file might allow concur-
rent appends to be non-deterministic in terms of the or-
der of those appends for better performance. A replay on
a secondary might cause concurrent appends to result in
different orders, causing state divergence. To make such
an application deterministic, the application must serial-
ize append calls, leading to performance loss. We have
not seen such cases in the applications we have studied,
but this example shows the limitation of Tribble in terms
of exposing full concurrency.

A developer might also introduce data races that are
benign to the application but hazardous to Tribble. Fig-
ure 9 shows the GetInstance member function of a
Singleton class, which causes a secondary to diverge
from the primary. On the primary, thread t1 executes
GetInstance before t2 and creates a new singleton ob-
ject. However, during replay, if t1 lags behind and t2 ex-
ecutes GetInstance before t1, so that t2 will enter the
code to create a new singleton object. This violates Trib-
ble’s assumption that each thread executes the same se-

Singleton* ptr;

Lock lock;

Singleton* GetInstance() {
if (!ptr) {
AcquireLock(lock);

if (!ptr) ptr = new Singleton;
ReleaseLock(lock);

}
return ptr;

}

Figure 9: Pseudo code for a singleton class.

quence of synchronization events and so the replay fails.
The root cause of this problem is non-determinism

that affects the control flow of an execution. This be-
nign race has to be prevented; for example, by using a
Readers-Writer lock to protect the pointer or to create
all singletons in the main thread before creating worker
threads. We plan to investigate the possibility of devel-
oping a tool to flag such problems automatically, possi-
bly leveraging previous work on detecting concurrency
bugs [35, 34, 20, 40]. The wrapping and logging for
record and replay in Tribble, as well as its checkpointing
facility, offer a powerful tool for debugging those prob-
lems. We have built a diff tool to compare the original
execution on a primary and its replay on a secondary to
detect divergence. We are also building an implementa-
tion model checker and have found that the simple in-
terface helps greatly in building such tools. Another in-
teresting approach is to tolerate such divergence through
verification and re-execution, following the speculative
Execute-Verify approach in, for example, Respec [30]
and Eve [22].
Database replication. Even though the Tribble’s idea of
introducing higher concurrency by preserving only par-
tial orders applies to other domains such as database
replication, Tribble’s approach is not necessarily always
ideal. Database engines use locks extensively, especially
those low-overhead interlocks. Handling those locks ap-
propriately as Tribble does currently is likely to intro-
duce significant overhead. Fundamentally, for database
systems, defining partial orders at the coarse granularity
of transactions is a better design choice, as transactions
are natural atomic units in such systems, compared to
defining partial orders on synchronization operations.

6 EVALUATION

We have implemented Tribble with about 30,000 lines
of C++ code, in which 17,500 lines are for implementing
Paxos and common libraries for RPC, logging, and so on.
The rest is almost equally divided into the implementa-
tion of the wrappers for synchronization primitives, of

8

the runtime support for replay, and test cases. We use a
combination of real applications and micro-benchmarks
to evaluate the following aspects of Tribble: (i) How well
does Tribble scale with the number of cores, especially
compared to the replicated state-machine approach? (ii)
How much overhead does Tribble introduce compared to
native execution without record and replay? (iii) What
factors are significant to Tribble’s relative performance
with respect to its replicated state-machine and native
counterparts? (iv) How do queries perform under differ-
ent semantics? And (v) How well does Tribble cope with
checkpointing, primary changes, and replica recovery?

6.1 Experimental Setup
All experiments are conducted on 12-core machines with
hyper-threading, 72 GB memory, 3 SCSI disks with
RAID5 supports, and interconnected via 40 Gbits switch.
We run applications on a group of three replicas to toler-
ate one fail-stop failure, with enough clients submitting
requests so that the machines are fully loaded. Requests
are batched to reduce the communication cost between
clients and primary.

6.2 Real Applications Performance
We have built or ported a set of real applications on top
of Tribble and found it easy to use its simple interface.
We first adapt each application to scale well on a single
multi-core machine and then port it to Tribble. The main
effort during porting has been to replace synchroniza-
tion primitives used in applications with those supported
by Tribble. Mutex locks with try-locks, semaphores, and
readers-writer locks are mostly sufficient for those appli-
cations. We did have to replace some more efficient inter-
locks with less efficient mutex locks, and find additional
sources of non-determinism.

Thumbnail server is an existing application that
manages picture thumbnails. It contains an in-memory
hash table to store metadata and an in-memory cache
to store thumbnails, using a set of keys to protect these
data structures. In each request, it computes the thumb-
nail of a picture and obtains locks to update data struc-
tures related to the thumbnail. Lock server is a dis-
tributed lock service similar to Chubby [10] that was
previously built on top of a replicated state-machine li-
brary. According to the report on Chubby [10], we create
a workload with 90% of requests for renewing leases of
locked files and the rest as “create” or “update” opera-
tions on locked files. File sizes vary from 100 bytes to 5k
bytes. In the file system workload experiment, we mea-
sure performance of synchronized random read/write on
64 files, each with a size of 128 MB. Each request is
16 KB with 2:8 read/write split. LevelDB [18] is a fast

key-value store library that provides an ordered mapping
from string keys to string values. Data is stored sorted
in skip lists with O(log n) lookup time. The database
is divided into 256 slices with one lock for each slice.
Kyoto Cabinet’s HashDB [25] is a lightweight hash
database library whose database is divided into 1024
slices with each slice protected by a readers-writer lock.
Memcached [1] is another in-memory key-value store
for object caching. We build replicated storage services
on top of Level DB, Kyoto Cabinet and Memcached by
wrapping the libraries they provide, and then replacing
the synchronization primitives by their Tribble counter-
parts. The benchmark used is a dataset with 1 million en-
tries where each operation has a 16-byte key and a 100-
byte value, which is commonly used in key-value stores.

We have measured each application with different
workload configurations, but we report only the one de-
scribed above due to space limit. Performance measured
under other configurations yields the same conclusions.

Each application runs in three modes: a native mode
where the application runs on a single server without
replication, a rsm mode where the application runs on
replicated state-machine, and a Tribble mode where the
application is replicated with Tribble. In the Tribble
mode, for fairness, we apply flow control on the pri-
mary to wait for secondary replicas. The throughput is
therefore the lower of the throughput on the primary and
on a secondary. It turns out that execution with record-
ing on the primary is not the bottleneck, incurring only
within 5% overhead compared to the native mode. The
end-to-end throughput in the Tribble mode essentially is
bounded by the throughput for replay. We vary the num-
ber of threads and record the throughput for each appli-
cation in each mode. The results are shown in Figure 10.

All applications except Memcached scale well as we
increase the number of working threads. Memcached
contains three frequently used global locks (slabs lock,
cache lock, and status lock), as well as interlocked (in-
crement and decrement) instructions which are replaced
in Tribble with locks. It has heavy lock contentions and
therefore does not scale well even in the native mode.
Figure 10 (f) shows that Tribble introduces an overhead
of 70%. Tribble clearly does not work well under heavy
lock contentions.

The scalability of Tribble is highly related to the
scalability of an application itself in native mode. The
thumbnail server is compute intensive and shows per-
fect performance scalability until the number of threads
exceeds CPU cores. The lock server scales well till the
number of CPU cores is reached. Both LevelDB and Ky-
oto Cabinet scale to about 8 cores. LevelDB is slightly

9

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 1 2 4 8 16 24 32
 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

th
ro

u
g
h
p
u
t

n
u
m

b
er

 o
f

ev
en

ts

number of threads

native
Tribble

RSM
waited events

(a) Thumbnail server

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 1 2 4 8 16 24 32
 0

 100

 200

 300

 400

 500

 600

 700

th
ro

u
g
h
p
u
t

(t
h
o
u
sa

n
d
s)

n
u
m

b
er

 o
f

ev
en

ts
 (

th
ou

sa
n
d
s)

number of threads

native
Tribble

RSM
waited events

(b) Lock Server

 0

 500

 1000

 1500

 2000

 2500

 3000

 1 2 4 8 16 24 32
 0

 10

 20

 30

 40

 50

 60

 70

th
ro

u
g
h
p
u
t

(t
h
o
u
sa

n
d
s)

n
u
m

b
er

 o
f

ev
en

ts
 (

th
ou

sa
n
d
s)

number of threads

native
Tribble

RSM
waited events

(c) LevelDB

 0

 500

 1000

 1500

 2000

 2500

 3000

 1 2 4 8 16 24 32
 0

 5

 10

 15

 20

 25

 30

 35

th
ro

u
g
h
p
u
t

(t
h
o
u
sa

n
d
s)

n
u
m

b
er

 o
f

ev
en

ts
 (

th
ou

sa
n
d
s)

number of threads

native
Tribble

RSM
waited events

(d) Kyoto Cabinet

 0

 200

 400

 600

 800

 1000

 1200

 1 2 4 8 16 24 32
 0

 50

 100

 150

 200

 250

 300

 350

th
ro

u
g
h
p
u
t

n
u
m

b
er

 o
f

ev
en

ts

number of threads

native
Tribble

RSM
waited events

(e) File System

 0

 100

 200

 300

 400

 500

 1 2 4 8 16 24 32
 0

 20

 40

 60

 80

 100

 120

th
ro

u
g
h
p
u
t

(t
h
o
u
sa

n
d
s)

n
u
m

b
er

 o
f

ev
en

ts
 (

th
ou

sa
n
d
s)

number of threads

native
Tribble

RSM
waited events

(f) Memcached

Figure 10: Throughput of real applications

better due to its use of light-weight mutex locks instead
of the readers/writer locks of Kyoto Cabinet. In the file
system experiment, batched requests allow the underly-
ing disk driver to optimize disk access, thus concurrent
execution increases the throughput.

We see up to a 25% overhead compared to the na-
tive version, but the increased concurrency more than
compensate for this overhead. To understand the main
factor of the overhead, we also count the number of
all causal orders, actually recorded causal edges, and
causal events that a secondary waits on during replay.
The waited events demonstrate the number of synchro-
nization events that causes a thread to wait for another
thread at secondary replicas. It strongly corresponds to
the performance gap between native and Tribble - the
more waited events there is, the wider the gap is. We also
see between 58% to 99% in causal-edge reduction with
the optimization to remove unnecessary causal edges de-
scribed in Section 4.4. Overall we see up to 3 to 16 times
the throughput compared to that of serialized execution
on replicated state-machine.

The log shipped from the primary to the secondary
replicas contains client requests, as well as the synchro-
nization events recorded by Tribble. Each synchroniza-
tion event adds around 16 bytes in the trace. Synchro-
nization events add 0 to 70% overhead to log sizes; the
exact number varies with applications and with the num-
ber of threads used. This overhead is never the bottleneck
of the whole system in our experiments.

6.3 Micro Benchmark
We study the impact of lock contention on Tribble in a
micro benchmark experiment. Each request does a total
of 200,000 multiplications, with 30% of them done when
holding a lock. Each request randomly picks a lock from
a pool of l locks. By changing the parameter l, we con-
trol the probability p of lock contention, where p = 1/l.
The experiment uses three modes: in addition to native
and Tribble modes, we measure a primary-only mode
to understand recording overhead. For each mode we
also count the number of all causal dependencies, logged
causal edges, and waited events during replay.

We first measure the scalability (in terms of through-
put) of Tribble with p = 0.1. In Figure 11 (a,b), our opti-
mization manages to reduce the number of logged events
to 15-45% of total events. Only 15-40% of logged events
introduce waiting at secondary replicas. Recording over-
head is about 5% while replay waiting overhead is about
20%, which is consistent with real application experi-
ments. We have also found that (i) the throughput gap
between the native mode and the primary-only mode in-
creases as the number of logged events increases, and
(ii) the gap between the native mode and Tribble mode
increases as the number of waited events increases.

We further vary p to see how the gap between Trib-
ble and the native mode changes. The gap widens first
and then narrows. The gap is small when the probabil-
ity of contention is below 0.02, indicating that Tribble
introduces little overhead. The native mode continues to
achieve higher throughput until the contention probabil-

10

 0

 5

 10

 15

 20

 25

 30

 1 2 4 8 16 24 32
 0

 5

 10

 15

 20

 25

 30

th
ro

u
g
h
p
u
t

(t
h
o
u
sa

n
d
s)

n
u
m

b
er

 o
f

ev
en

ts
 (

th
ou

sa
n
d
s)

number of threads

native
primary
Tribble

(a) Throughput (p = 0.1)

 0

 50

 100

 150

 200

 250

 300

 350

 1 2 4 8 16 24 32

#
 o

f
ca

u
sa

l
ev

en
ts

 (
th

o
u
sa

n
d
s)

number of threads

total
logged
waited

(b) # of causal events (p = 0.1)

 0

 5

 10

 15

 20

 25

 30

 0.01 0.02 0.05 0.1 0.2 0.3 0.5 1
 0

 5

 10

 15

 20

 25

 30

th
ro

u
g
h
p
u
t

(t
h
o
u
sa

n
d
s)

n
u
m

b
er

 o
f

ev
en

ts
 (

th
ou

sa
n
d
s)

contention probability

native
Tribble

(c) Throughput vs. contention probability

Figure 11: Micro benchmark results.

ity reaches 0.1. The number of causal edges increases as
lock contention becomes more severe, leading to higher
overhead in Tribble mode and a widening gap. However,
when the contention probability is higher than 0.1, the
throughput in the native mode drops quickly due to seri-
ous lock contention, causing the gap to narrow again and
eventually disappearing when p = 1.

6.4 Query Performance and its Impact

 0

 0.5

 1

 1.5

 2

 2.5

 1 2 4 8 16 24 32

th
ro

u
g
h
p
u
t

(m
ill

io
n
s)

number of updating threads

update
query

(a) Query secondary

 0

 0.5

 1

 1.5

 2

 2.5

 1 2 4 8 16 24 32

th
ro

u
g
h
p
u
t

(m
ill

io
n
s)

number of updating threads

update
query

(b) Query primary

Figure 12: Different query semantics

Tribble supports querying against latest committed
state by considering a query request as an update request,
while it can also execute a query directly on a replica
without going through the replication protocol. The se-
mantics offered to query requests differ: a request on a
secondary is executed on a committed but possibly out-
dated state, whereas a request on a primary might be ex-
ecuted speculatively on a yet-to-be committed state. This
is because a Tribble primary executes before consensus,
whereas a secondary executes after consensus. Because
requests are processed concurrently, query requests must
use synchronization primitives to access shared data.
Tribble maintains a separate thread pool to handle non-
updating queries that acquire only reader locks and ig-
nores any causal orders related to those events.

We use the lock server application to understand the
impact of these query semantics; normal request cases
are omitted here as it is already included in previous ex-
periments. We use 24 threads for processing query re-
quests (to keep all cores busy), while varying the num-
ber of threads for processing update requests from 1

to 32. Interestingly, query-primary and query-secondary
exhibit different behavior, as shown in Figure 12. In both
cases, the update throughput increases as the number of
cores for update requests increases. However, the query
throughput manages to stay mostly flat in Figure 10 (a)
(for query-secondary), while noticeably decreasing in
Figure 10 (b) (for query-primary) as the update through-
put goes up more significantly. Because we use readers-
write locks, waiting for other events during replay on a
secondary gives query processing more opportunity to
grab its lock. Overall, Tribble can support a high query
throughput when not under a heavy update request load.

6.5 Checkpointing and Primary Changes

0

1

2

3

4

5

1 11 21 31 41 51 61 71 81 91 101 111 121 131

th
ro

u
gh

p
u

t
(t

h
o

u
sa

n
d

s)

Timeline (sec)

CheckPointing

New primary started

A replica start to rejoinPrimary fail

Back to normal

Figure 13: Failover of thumbnail server

We have so far focused on normal-case performance.
In this experiment, we aim at understanding the impact of
potential disruptions, such as checkpointing and primary
changes. We take the thumbnail server that creates two
checkpoints at an interval of 50 seconds and then kill the
primary replica at the 71st second, restarting it 20 sec-
onds later. Figure 13 shows the throughput fluctuation.

We measure the result of a stress test where all CPUs
are saturated. As a result of our aggressive flow control,
any abnormal operation can lead to significant perfor-
mance variation. This does not have to be the case in
practice: a secondary can try to catch up over time with-
out impacting the overall performance as long as it does
not get promoted to the primary. During checkpointing,

11

the throughput drops for about 2 seconds and then recov-
ers. At the point where the primary fails, the throughput
drops to zero and recovers after five seconds when the
new primary takes over. The old primary replica is then
back as a new secondary and starts learning the commit-
ted traces that it has missed, causing the throughput to
drop for about 30 seconds due to our aggressive flow con-
trol under stress test. If the system were not fully loaded,
other replicas can proceed without waiting for the newly
joining replica, thus avoiding such performance impact.
However, in a stress test setting, a new replica may never
catch up if others do not wait. After all replicas are back,
the throughput is back to normal.

7 RELATED WORK

Tribble uses Paxos [27, 28] as its underlying consen-
sus protocol. It has become a standard practice [11, 23]
to build replicated state-machine [26, 36] using Paxos.
The Tribble approach can be applied to other replication
protocols, such as primary/backup replication [2] and its
variations (e.g., chain replication [37]).

Gaios [9] shows how to build a high performance
data store using the Paxos-based replicated state machine
approach. Gaios’ disk-efficient request processing satis-
fies both the in-order requirement for consistency as well
as the disk’s inherent need of concurrent request. Re-
mus [13] achieves high availability by frequently prop-
agating the checkpoints of a virtual machine to another.

Lamport points out in a generalized Paxos proto-
col [29] that defining an execution of a set of requests
does not require totally ordering them. It suffices to deter-
mine the order in which every pair of conflicting requests
are executed. The proposal does not address any practi-
cal issues of checking whether requests are conflicting,
but simply assumes that such information is available.

Eve [22] uses execute-verify, rather than agree-
execute in state-machine replication or execute-replay in
Tribble, and resorts to re-execution in cases of detected
divergence, which is complementary with Tribble. The
LSA algorithm in Basile et al. [5] ensures replica con-
sistency through enforcing the order of synchronization
operations on replicas, but it does not consider the com-
plications related to leader changes, as well as the result-
ing mode changes.

To capture and preserve partial orders among re-
quests, Tribble leverages previous work of faithful
record and replay of multi-threaded programs. An in-
complete sample of such work includes RecPlay [34],
JaRec [17], ReVirt [16], R2 [19], PRES [33], ODR [3],
SCRIBE [24], Respec [30] and its follow-on work [39,
38], and many others [31, 12]. Mode change and online
replay are the two requirements that drive the design of

Tribble. Most of the previous work on record and replay
(e.g., Revirt, PRES and ODR) target offline debugging
and forensics, where replay performance is not impor-
tant. For example, PRES reduces record-time overhead
by making the replay take the extra overhead of search-
ing for the identical execution, a reasonable tradeoff for
offline debugging, but undesirable for the scenarios of
Tribble. Although Respec is also designed for online re-
play, its implementation only allows replicas on the same
machine due to its use of multi-threaded fork, while Trib-
ble’s replay happens on different secondary servers. Trib-
ble further avoids using barriers, which introduces non-
negligible overhead.

Tribble ensures the atomicity of API invocations and
recording logic. The atomicity can be achieved in many
ways. For example, SCRIBE ensures such atomicity by
associating each shared resource with a wait queue and
a unique sequence number counter, serializing thread ac-
cess to it. During replay, the same serialized order is en-
forced when threads access the shared resource, which
guarantees the same execution order but downgrades the
parallelism of the system as some API calls that should
be able to run concurrently are now serialized.

Deterministic parallel execution is another promising
direction and can be done with new OS abstractions (e.g.,
Determinator [4] and dOs [8]), by runtime libraries (e.g.,
Kendo [32]) with compiler support (e.g., Coredet [6]), or
with hardware support (e.g., DMP [14], Calvin [21], and
RCDC [15]). With deterministic execution, traditional
state-machine replication can be applied directly. How-
ever, without architectural changes to provide hardware
support, determinism is achieved at the cost of degraded
expressiveness and/or performance. For instance, Deter-
minator allows only race-free synchronization primitives
natively such as fork, join as well as barrier, and sup-
ports others using emulation; Kendo supports determin-
istic lock/unlock using deterministic logical time, which
may sacrifice performance. Overall, the overhead of such
solutions (CoreDet, dOS, and Determinator) is not yet
low enough for production environments [7].

8 CONCLUDING REMARKS

The prevalence of the multi-core architecture has cre-
ated a serious performance gap between a native multi-
threaded application and its replicated state-machine
counterpart. Tribble closes this gap using a carefully de-
signed execute-replay approach. By defining a set of sim-
ple user-friendly APIs and by building on a well-known
consensus protocol, we hope that Tribble would con-
tribute to a new replication foundation that is appropriate
for the multi-core era, replacing the classic state-machine
replication approach.

12

REFERENCES

[1] memcached - a distributed memory object caching
system. http://memcached.org/.

[2] P. A. Alsberg and J. D. Day. A principle for resilient
sharing of distributed resources. In Proceedings of
the 2nd international conference on Software engi-
neering, ICSE ’76, pages 562–570, Los Alamitos,
CA, USA, 1976. IEEE Computer Society Press.

[3] G. Altekar and I. Stoica. ODR: output-
deterministic replay for multicore debugging. In
Proceedings of the ACM SIGOPS 22nd symposium
on Operating systems principles, SOSP ’09, pages
193–206, New York, NY, USA, 2009. ACM.

[4] A. Aviram, S.-C. Weng, S. Hu, and B. Ford. Ef-
ficient system-enforced deterministic parallelism.
In Proceedings of the 9th USENIX conference
on Operating systems design and implementation,
OSDI’10, pages 1–16, Berkeley, CA, USA, 2010.
USENIX Association.

[5] C. Basile, Z. Kalbarczyk, and R. K. Iyer. Active
replication of multithreaded applications. IEEE
Transactions on Parallel and Distributed Systems,
17(5):448–465, 2006.

[6] T. Bergan, O. Anderson, J. Devietti, L. Ceze, and
D. Grossman. Coredet: a compiler and runtime sys-
tem for deterministic multithreaded execution. In
Proceedings of the fifteenth edition of ASPLOS on
Architectural support for programming languages
and operating systems, ASPLOS ’10, pages 53–64,
New York, NY, USA, 2010. ACM.

[7] T. Bergan, J. Devietti, N. Hunt, and L. Ceze. The
deterministic execution hammer: How well does it
actually pound nails? WODET ’11, 2011.

[8] T. Bergan, N. Hunt, L. Ceze, and S. D. Gribble. De-
terministic process groups in dOs. In Proceedings
of the 9th USENIX conference on Operating sys-
tems design and implementation, OSDI’10, pages
1–16, Berkeley, CA, USA, 2010. USENIX Associ-
ation.

[9] W. J. Bolosky, D. Bradshaw, R. B. Haagens, N. P.
Kusters, and P. Li. Paxos replicated state ma-
chines as the basis of a high-performance data
store. In Proceedings of the 8th USENIX confer-
ence on Networked systems design and implemen-
tation, NSDI’11, pages 11–11, Berkeley, CA, USA,
2011. USENIX Association.

[10] M. Burrows. The Chubby lock service for loosely-
coupled distributed systems. In Proceedings of the

7th symposium on Operating systems design and
implementation, OSDI ’06, pages 335–350, Berke-
ley, CA, USA, 2006. USENIX Association.

[11] T. D. Chandra, R. Griesemer, and J. Redstone.
Paxos made live: an engineering perspective. In
Proceedings of the twenty-sixth annual ACM sym-
posium on Principles of distributed computing,
PODC ’07, pages 398–407, New York, NY, USA,
2007. ACM.

[12] H. Cui, J. Wu, J. Gallagher, H. Guo, and
J. Yang. Efficient deterministic multithreading
through schedule relaxation. In Proceedings of the
Twenty-Third ACM Symposium on Operating Sys-
tems Principles, SOSP ’11, pages 337–351, New
York, NY, USA, 2011. ACM.

[13] B. Cully, G. Lefebvre, D. Meyer, M. Feeley,
N. Hutchinson, and A. Warfield. Remus: high avail-
ability via asynchronous virtual machine replica-
tion. In Proceedings of the 5th USENIX Sympo-
sium on Networked Systems Design and Implemen-
tation, NSDI’08, pages 161–174, Berkeley, CA,
USA, 2008. USENIX Association.

[14] J. Devietti, B. Lucia, L. Ceze, and M. Oskin.
Dmp: deterministic shared memory multiprocess-
ing. In Proceedings of the 14th international con-
ference on Architectural support for programming
languages and operating systems, ASPLOS ’09,
pages 85–96, New York, NY, USA, 2009. ACM.

[15] J. Devietti, J. Nelson, T. Bergan, L. Ceze, and
D. Grossman. Rcdc: a relaxed consistency deter-
ministic computer. In Proceedings of the sixteenth
international conference on Architectural support
for programming languages and operating systems,
ASPLOS ’11, pages 67–78, New York, NY, USA,
2011. ACM.

[16] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai,
and P. M. Chen. Revirt: enabling intrusion anal-
ysis through virtual-machine logging and replay.
In Proceedings of the 5th symposium on Operat-
ing systems design and implementation, OSDI ’02,
pages 211–224, New York, NY, USA, 2002. ACM.

[17] A. Georges, M. Christiaens, M. Ronsse, and K. D.
Bosschere. JaRec: a portable record/replay envi-
ronment for multi-threaded java applications. vol-
ume 34, pages 523–547, 2004.

[18] Google. LevelDB: A fast and lightweight key/value
database library by Google. http://code.

google.com/p/leveldb.

13

[19] Z. Guo, X. Wang, J. Tang, X. Liu, Z. Xu, M. Wu,
M. F. Kaashoek, and Z. Zhang. R2: an application-
level kernel for record and replay. In Proceedings
of the 8th USENIX conference on Operating sys-
tems design and implementation, OSDI’08, pages
193–208, Berkeley, CA, USA, 2008. USENIX As-
sociation.

[20] C. Hammer, J. Dolby, M. Vaziri, and F. Tip. Dy-
namic detection of atomic-set-serializability viola-
tions. In Proceedings of the 30th international con-
ference on Software engineering, ICSE ’08, pages
231–240, New York, NY, USA, 2008. ACM.

[21] D. Hower, P. Dudnik, M. D. Hill, and D. A. Wood.
Calvin: Deterministic or not? free will to choose. In
HPCA’11, pages 333–334, 2011.

[22] M. Kapritsos, Y. Wang, V. Quema, A. Clement,
L. Alvisi, and M. Dahlin. Eve: Execute-Verify
Replication for Multi-Core Servers. In Proceed-
ings of the 10th USENIX conference on Operat-
ing systems design and implementation (to appear),
OSDI’12.

[23] J. Kończak, N. Santos, T. Żurkowski, P. T. Woj-
ciechowski, and A. Schiper. JPaxos: State machine
replication based on the Paxos protocol. Technical
Report EPFL-REPORT-167765, Faculté Informa-
tique et Communications, EPFL, July 2011. 38pp.

[24] O. Laadan, N. Viennot, and J. Nieh. Transparent,
lightweight application execution replay on com-
modity multiprocessor operating systems. In Pro-
ceedings of the ACM SIGMETRICS international
conference on Measurement and modeling of com-
puter systems, SIGMETRICS ’10, pages 155–166,
New York, NY, USA, 2010. ACM.

[25] F. Labs. Kyoto Cabinet: a straightforward imple-
mentation of dbm. http://www.fallabs.com/
kyotocabinet/.

[26] L. Lamport. Time, clocks, and the ordering of
events in a distributed system. Commun. ACM,
21(7):558–565, July 1978.

[27] L. Lamport. The part-time parliament. ACM Trans.
Comput. Syst., 16(2):133–169, May 1998.

[28] L. Lamport. Paxos made simple. ACM SIGACT
News, 32(4):18–25, Dec. 2001.

[29] L. Lamport. Generalized Consensus and Paxos.
Technical Report MSR-TR-2005-33, Microsoft,
Mar. 2005.

[30] D. Lee, B. Wester, K. Veeraraghavan,

S. Narayanasamy, P. M. Chen, and J. Flinn.
Respec: Efficient online multiprocesor replay via
speculation and external determinism. In Pro-
ceedings of the 15th International Conference on
Architectural Support for Programming Languages
and Operating Systems, ASPLOS ’10, pages
77–90. ACM, March 2010.

[31] T. Liu, C. Curtsinger, and E. D. Berger. Dthreads:
efficient deterministic multithreading. In Proceed-
ings of the Twenty-Third ACM Symposium on Op-
erating Systems Principles, SOSP ’11, pages 327–
336, New York, NY, USA, 2011. ACM.

[32] M. Olszewski, J. Ansel, and S. Amarasinghe.
Kendo: efficient deterministic multithreading in
software. In Proceedings of the 14th international
conference on Architectural support for program-
ming languages and operating systems, ASPLOS
’09, pages 97–108, New York, NY, USA, 2009.
ACM.

[33] S. Park, Y. Zhou, W. Xiong, Z. Yin, R. Kaushik,
K. H. Lee, and S. Lu. PRES: probabilistic replay
with execution sketching on multiprocessors. In
Proceedings of the ACM SIGOPS 22nd symposium
on Operating systems principles, SOSP ’09, pages
177–192, New York, NY, USA, 2009. ACM.

[34] M. Ronsse and K. De Bosschere. RecPlay: a
fully integrated practical record/replay system. vol-
ume 17, pages 133–152, New York, NY, USA, May
1999. ACM.

[35] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro,
and T. Anderson. Eraser: a dynamic data race de-
tector for multithreaded programs. ACM Trans.
Comput. Syst., 15(4):391–411, Nov. 1997.

[36] F. B. Schneider. Implementing fault-tolerant ser-
vices using the state machine approach: a tutorial.
ACM Comput. Surv., 22(4):299–319, Dec. 1990.

[37] R. van Renesse and F. B. Schneider. Chain replica-
tion for supporting high throughput and availabil-
ity. In Proceedings of the 6th conference on Sym-
posium on Opearting Systems Design & Implemen-
tation - Volume 6, OSDI’04, pages 7–7, Berkeley,
CA, USA, 2004. USENIX Association.

[38] K. Veeraraghavan, P. M. Chen, J. Flinn, and
S. Narayanasamy. Detecting and surviving data
races using complementary schedules. In Proceed-
ings of the Twenty-Third ACM Symposium on Op-
erating Systems Principles, SOSP ’11, pages 369–
384, New York, NY, USA, 2011. ACM.

14

[39] K. Veeraraghavan, D. Lee, B. Wester, J. Ouyang,
P. M. Chen, J. Flinn, and S. Narayanasamy. Dou-
blePlay: Parallelizing sequential logging and re-
play. In Proceedings of the 16th International Con-
ference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’11,
pages 15–26. ACM, March 2011.

[40] W. Zhang, J. Lim, R. Olichandran, J. Scherpelz,
G. Jin, S. Lu, and T. Reps. ConSeq: detecting
concurrency bugs through sequential errors. In
Proceedings of the sixteenth international confer-
ence on Architectural support for programming
languages and operating systems, ASPLOS ’11,
pages 251–264, New York, NY, USA, 2011. ACM.

15

