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ABSTRACT
Chip Multiprocessors (CMP) with Thread-Level Speculation (TLS)
have become the subject of intense research. However, TLS is sus-
pected of being too energy inefficient to compete against conventional
processors. In this paper, we refute this claim. To do so, we first
identify the main sources of dynamic energy consumption in TLS.
Then, we present simple energy-saving optimizations that cut the en-
ergy cost of TLS by over 60% on average with minimal performance
impact. The resulting TLS CMP, populated with four 3-issue cores,
speeds-up full SPECint 2000 codes by 1.27 on average, while keep-
ing the fraction of the chip’s energy consumption due to TLS to only
20%. Compared to a 6-issue superscalar at the same frequency, the
TLS CMP is on average faster, while consuming only 85% of its total
on-chip power.

1 Introduction
Substantial research effort is currently being devoted to speeding
up hard-to-parallelize non-numerical applications such as SPECint
codes. Designers build sophisticated out-of-order processors, with
carefully-tuned execution engines and memory subsystems. Unfor-
tunately, these systems tend to combine high design complexity with
diminishing performance returns, motivating the search for design al-
ternatives.

One such alternative is Thread-Level Speculation (TLS) on a Chip
Multiprocessor (CMP) [9, 10, 13, 21, 22, 25, 26]. Under TLS, these
hard-to-analyze applications are partitioned into tasks, which are then
optimistically executed in parallel, hoping that no data or control de-
pendence will be violated. Special hardware support monitors the
tasks’ control flow and data accesses, and detects violations at run
time. Should one occur, the hardware transparently rolls back the
incorrect tasks and, after repairing the state, restarts them.

Published results show that TLS CMPs can speed up difficult non-
numerical applications. This is significant because CMPs are attrac-
tive platforms; they provide a low-complexity, energy-efficient archi-
tecture, and have a natural advantage for explicitly-parallel codes.

However, TLS is suspected of being too energy inefficient to se-
riously challenge conventional processors. The rationale is that ag-
gressive speculative execution is not the best course at a time when
processors are primarily constrained by energy and power issues. Our
initial experiments, shown in Figure 1, appear to agree: assuming
constant frequency, a high-performance TLS CMP with four 3-issue
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cores is on average faster than a 6-issue superscalar for SPECint
codes, but consumes on average 15% more on-chip power.

In this paper, we refute the claim that TLS is energy ineffi-
cient. This paper is the first one to show that, perhaps contrary to
commonly-held views, a TLS CMP can be a very desirable design
for high-performance, power-constrained processors, even under the
very challenging SPECint codes.

Fundamentally, the energy cost of TLS can be kept modest by us-
ing a lean TLS CMP microarchitecture and by minimizing wasted
TLS work. Then, such a TLS CMP provides a better energy-
performance trade-off than a wider-issue superscalar simply because,
as the size of the processor structures increases, energy scales super-
linearly and performance sublinearly.

This paper offers three contributions. The first one is to identify
and quantify the main sources of energy consumption in TLS. These
sources are task squashing, hardware structures in the cache hierar-
chy for data versioning and dependence checking, additional traffic
in the memory subsystem due to the same two effects, and additional
instructions induced by TLS.

The second contribution is to present and evaluate simple energy-
saving optimizations for TLS. They are based on reducing the num-
ber of checks, reducing the cost of individual checks, and eliminating
work with low performance returns. These optimizations cutthe en-
ergy cost of TLSby over 60% on average, with minimal performance
impact.

The third contribution is to show that the resulting TLS CMP
can provide a very desirable energy-performance trade-off, even for
SPECint codes. Specifically, a TLS CMP with four 3-issue cores
speeds-up full SPECint 2000 codes by 1.27 on average, while keep-
ing the fraction of the chip’s energy consumption due to TLS to only
20%. Moreover, compared to a 6-issue superscalar at the same fre-
quency, the TLS CMP is on average faster, while consuming only
85% of its total on-chip power. Finally, we expect better results for
floating point, multimedia, or more parallel codes.

This paper is organized as follows: Section 2 provides a back-
ground; Section 3 examines why TLS consumes more energy; Sec-
tion 4 outlines our TLS architecture and compiler; Section 5 describes
simple optimizations to save energy in TLS; Sections 6 and 7 present
our methodology and evaluation; and Section 8 lists related work.

2 Thread-Level Speculation (TLS)
Overview. In TLS, a sequential program is divided into tasks, which
are then executed in parallel, hoping not to violate sequential seman-
tics. The sequential code imposes a task order and, therefore, we
use the terms predecessor and successor tasks. The safe (or non-
speculative) task precedes all speculative tasks. As tasks execute,
special hardware support checks that no cross-task dependence is vi-
olated. If any is, the incorrect tasks are squashed, any polluted state
is repaired, and the tasks are re-executed.
Cross-Task Dependence Violations.Data dependences are typically
monitored by tracking, for each individual task, the data written and
the data read with exposed reads. An exposed read is a read that is
not preceded by a write to the same location within the same task. A
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Figure 1:Comparing the performance (a) and power (b) of a high-performance TLS CMP with four 3-issue cores (TLS) and a
6-issue superscalar (Wide) for SPECint codes. The experiments, which are described in detail later, use a constant frequency. The
bars in (a) are normalized to the performance of a 3-issue superscalar.

data dependence violation occurs when a task writes a location that
has been read by a successor task with an exposed read. A control de-
pendence violation occurs when a task is spawned in a mispredicted
branch path. Dependence violations lead to task squashes, which in-
volve discarding the work produced by the task.
State Buffering. Stores issued by a speculative task generate specu-
lative state that cannot be merged with the safe state of the program
because it may be incorrect. Such state is stored separately, typi-
cally in the cache of the processor running the task. If a violation is
detected, the state is discarded. Otherwise, when the task becomes
non-speculative, the state is allowed to propagate to memory. When
a non-speculative task finishes execution, it commits. Committing
informs the rest of the system that the state generated by the task is
now part of the safe program state.
Data Versioning. A task has at most a single version of any given
variable. However, different speculative tasks that run concurrently in
the machine may write to the same variable and, as a result, produce
different versions of the variable. Such versions must be buffered
separately. Moreover, readers must be provided the correct versions.
Finally, as tasks commit in order, data versions need to be merged
with the safe memory state also in order.
Multi-Versioned Caches.A cache that can hold state from multiple
tasks is called multi-versioned [5, 8, 22]. There are two performance
reasons why multi-versioned caches are desirable: they avoid proces-
sor stall when tasks are imbalanced, and enable lazy commit.

If tasks have load imbalance, a processor may finish a task and the
task still be speculative. If the cache can only hold state for a single
task, the processor has to stall until the task becomes safe [6]. An
alternative is to move the task’s state to some other buffer, but this
complicates the design. Instead, the cache can retain the state from
the old task and allow the processor to execute another task. If so, the
cache has to be multi-versioned.

Lazy commit [17] is an approach where, when a task commits, it
does not eagerly merge its cache state with main memory through
ownership requests [22] or write backs [10]. Instead, the task sim-
ply passes the commit token to its successor. Its state remains in the
cache and is lazily merged with main memory later, usually as a result
of cache line replacements. This approach improves performance be-
cause it speeds up the commit operation. However, it requires multi-
versioned caches.
Tagging Multi-Versioned Caches.Multi-versioned caches typically
require that we tag each cache line with a version ID, which records
what task the line belongs to. Intuitively, such version ID could be
the long global ID of the task. However, to save space, it is best to
translate global task IDs into some arbitrary Local IDs (LIDs) that are
much shorter [22]. These LIDs are used only locally in the cache, to
tag cache lines. Their translations into global IDs are kept in a small,
per-cache table that we call LID Table. Each cache has a different
LID Table.
Architecture and Environment Considered. While TLS can be
supported in different ways, we use a CMP because it is a low-
complexity, energy-efficient platform. Moreover, to maximize the
use of commodity hardware, our CMP has no special hardware sup-
port for inter-processor register communication. Processors can only

communicate via the memory system. In addition, to gain usability,
our speculative tasks are generated automatically by a TLS compiler.
Finally, we concentrate on SPECint 2000 applications because they
are very challenging to speed-up.

3 Sources of Energy Consumption in TLS
Enhancing aW-wide superscalar into a CMP with severalW-wide
cores and TLS support causes the energy consumption to increase.
We loosely call the increasethe energy cost of TLS(∆ETLS). In
practice, a portion of∆ETLS simply comes from having multiple
cores and caches on chip, and from inefficiencies of parallel execu-
tion. However, most of∆ETLS is due to TLS-specific sources. We
are interested in the latter.

We propose to classify TLS-specific sources of energy consump-
tion into four main groups: (1) task squashing, (2) hardware struc-
tures in the cache hierarchy needed to support data versioning and
dependence checking, (3) additional traffic in the memory system due
to these same two effects, and (4) additional dynamic instructions in-
duced by TLS. These sources are detailed in Table 1.

TLS-Specific Source Optimization

Task squashing
Work of the tasks that

StallSq, TaskOptget squashed
Task squash operations

Hardware structures Storage & logic for data
Indirect

in the cache hierarchy version IDs and access bits
for data versioning and

Tag-group operations NoWalk
dependence checking

Evictions and misses due
—

Traffic due to data to higher cache pressure
versioning and Selection & combination

TrafRed
dependence checking of multiple versions

Fine-grain data
dependence tracking

Additional dynamic Side-effects of breaking
TaskOptinstructions induced the code into tasks

by TLS TLS-specific instructions

Table 1:Main TLS-specific sources of energy consumption.

3.1 Task Squashing

An obvious TLS source of energy consumption is the work of tasks
that ultimately get squashed. In the TLS CMP that we evaluate in
Section 7, 22.6% of all graduated instructions belong to such tasks.
Note, however, that not all such work is wasted: a squashed task may
bring useful data into the caches or train the branch predictor.

The actual squash operation also consumes energy: a squash sig-
nal is sent to the target processor, and a hardware finite-state machine
(FSM) is activated to repair the state. In our system, such repair only
involves restoring the program counter and stack pointer, and setting
the task’s LID Table entry to invalid. In our system, the frequency of
squashes is only 1 per 3211 instructions on average. Consequently,
the total energy consumed by the actual squash operations is negligi-
ble.



3.2 Hardware Structures for Data Versioning and
Dependence Checking

The two most characteristic operations of TLS systems are maintain-
ing data versioning and performing dependence checking. These op-
erations are largely supported in the cache hierarchy. Data versioning
is needed when the cache hierarchy can hold multiple versions of
the same datum. Such versions appear when speculative tasks have
WAW or WAR dependences with predecessor tasks. The version cre-
ated by the speculative task is buffered, typically in the processor’s
cache. If multiple speculative tasks co-exist in the same processor, a
cache may have to hold multiple versions of the same datum. In such
cases, data versions are identified by tagging the cache lines with a
version ID — in our case an LID (Section 2).

To perform dependence checking, caches record how each datum
was accessed. Typically, this is supported by augmenting each cached
datum with two access bits: an exposed-read and a write bit. They
are set on an exposed read and a write, respectively.

The LID and access bits are read or updated in hardware in a vari-
ety of cache access operations. For example, on an external access to
a cache, the (translated) LID of an address-matching line in the cache
is compared to the ID of the incoming message. From the compar-
ison and the value of the access bits, the cache may conclude that a
violation occurred, or can instead supply the data normally.

A distinct use of these TLS structures is intag-group opera-
tions. They involve changing the tag state of groups of cache lines.
There are three main cases. First, when a task is squashed, all its
cache lines need to be eventually invalidated. Second, in eager-
commit systems [6], when a task commits, all its dirty cache lines
are merged with main memory through write backs [10] or owner-
ship requests [22]. Finally, in lazy-commit systems, when a cache
has no free LIDs left, it needs to recycle one. This is typically done
by selecting a long-committed task and writing back all its dirty cache
lines to memory. Then, that task’s LID becomes free and can be re-
assigned.

These TLS tag-group operations often induce significant energy
consumption. Specifically, for certain operations, some schemes use
a hardware FSM that, periodically and in the background, repeatedly
walks the tags of the cache. For example, to recycle LIDs in [17], a
FSM periodically selects the LID of a committed task from the LID
Table, walks the cache tags writing back to memory the dirty lines
of that task, and finally frees up the LID. The FSM operates in the
backgroundeagerly, using free cache cycles. Other schemes per-
form similar hardware walks of tags while stalling the processor to
avoid causing races. For example, to commit a task in [22], a spe-
cial hardware module sequentially requests ownership for a group of
cache lines whose addresses are stored in a buffer. Since the pro-
cessor stalls, execution takes longer and, therefore, consumes more
energy. Finally, some schemes use “one-shot” hardware signals that
can change the tag state of a large group of lines in a handful of cy-
cles. For example, this is done to invalidate the lines of a squashed
task. Such hardware is reasonable when the cache can hold data for
only a single or very few speculative tasks [5, 9, 22]. However, in
caches with many versions, it is likely to adversely affect the cache
access time. For example, in our system, we use 6-bit LIDs per cache
line. A “one-shot” clear of the valid bit of all the lines belonging to
a given task would require to keep, for each line tag, 6 NXOR gates
that feed into one (possibly cascaded) AND gate. Having such logic
per tag entry is likely to slow down the common case of a plain cache
access, and result in longer, more energy-consuming executions.

3.3 Additional Traffic for Data Versioning and
Dependence Checking

A TLS CMP system generates more traffic than a superscalar. The in-
crease is 460% in our system (Section 7). While some of the increase
is the result of parallel execution, there are three main TLS-specific
sources of additional traffic (Table 1).

One reason is that caches do not work as well. Caches often have

to retain lines from older tasks that ran on the processor and are
still speculative. Only when such tasks become safe can the lines
be evicted. As a result, there is less space in the cache for data that
may be useful to the task currently running locally. This higher cache
pressure increases evictions of useful lines and subsequent misses.

The presence of multiple versions of the same line in the system
also causes additional messages. Specifically, when a processor re-
quests a line, multiple versions of it may be provided, and the co-
herence protocol then selects what version to use. Similarly, when a
committed version of a line is to be evicted to L2, the protocol first
invalidates all the other cached versions of the line that are older —
they cannot remain cached anymore.

Finally, it is desirable that the speculative cache coherence proto-
col track dependences at a fine grain, which creates additional traf-
fic. To see why, recall that these protocols typically track depen-
dences by using the write and exposed-read bits. If this access in-
formation is kept per line, lines that exhibit false sharing may appear
to be involved in data dependence violations and, as a result, cause
squashes [5]. For this reason, many TLS proposals keep some ac-
cess information at a finer grain, such as per word. Unfortunately,
per-word dependence tracking may induce higher traffic: a distinct
message (such as an invalidation) may need to be sent for every word
of the line.

3.4 Additional Dynamic Instructions Due to TLS

TLS systems with compiler-generated tasks such as ours often exe-
cute more dynamic instructions than non-TLS systems. This is the
case even counting only tasks that are not squashed. In our system,
the increase is 12.5%. These additional instructions come from two
sources (Table 1): side-effects of breaking the code into tasks and,
less importantly, TLS-specific instructions.

The first source dominates. It accounts for 88.3% of the increase.
One reason for this source is that conventional compiler optimiza-
tions are not very effective at optimizing code across task boundaries.
Therefore, TLS code quality is lower than non-TLS code. In addition,
in CMPs where processors communicate only through memory, the
compiler must spill registers across task boundaries.

TLS-specific instructions are the other source. They include task
spawn and commit instructions. The spawn instruction sends some
state from one processor to another. Task commit in lazy implemen-
tations sends the commit token between processors [17]. These in-
structions contribute with 11.7% of the instruction increase.

4 TLS Architecture and Compiler
Before we examine ways to reduce TLS energy consumption, it is
helpful to outline the high-performance TLS CMP architecture and
compiler that we use as baseline in our work. More details can be
found in [18, 19, 27].

4.1 TLS CMP Architecture

The CMP connects four modest-issue processors in a virtual ring.
Each processor has a private, multi-versioned L1. The ring is also
connected to a small, multi-versioned victim cache. Finally, there
is a plain, shared L2 that only holds safe data (Figure 2-(a)). We
use a ring interconnect to minimize races in the coherence protocol.
The victim cache is included to avoid the more expensive alternative
of designing a multi-versioned L2. Figures 2-(b) and (c) show the
extensions required by TLS to the processors, L1s, and victim cache.
Each structure shows its fields in the form bitcount:fieldname.

Each processor has an array ofTaskHolders, which are hardware
structures that hold some state for the tasks that are currently loaded
on-chip (Figure 2-(b)). Each TaskHolder contains the task’s LID, its
spawn address (PC), its stack pointer (SP), and a few additional bits
that will be discussed later. The register state is kept on the stack.

A copy of the LID for the task currently going through rename is
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(b) Processor Modifications
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(c) L1 and Victim Cache Modifications

Figure 2:Proposed architecture of a high-performance TLS CMP.

kept in theCurrentID register of the load-store queue (Figure 2-(b)).
This register is used to tag loads and stores as they are inserted in the
load-store queue. With this support, when a load or store is sent to the
L1, it includes the task’s LID. Note that a processor can have in-flight
instructions from multiple tasks.

In the L1s and the victim cache, each line tag is augmented with an
LID and, for each word in the line, with one Write and one Exposed-
Read bit (Figure 2-(c)). As per Section 2, each cache keeps its own
LID Table to translate LIDs to global task IDs (Figure 2-(c)). The
LID Table is direct mapped. Each entry has information for one LID.

A novel feature of this architecture is that each LID Table entry
also contains a Killed bit and a Committed bit for the corresponding
task, and a counter of the number of lines in the cache with that LID.
These fields are used to speed-up some of the tag-group operations
of Section 3.2, as we will see in Section 4.2. Each entry also has a
pointer to the corresponding TaskHolder.

The architecture does not include special hardware for regis-
ter communication between cores. All dependences are enforced
through memory. The reason is to minimize changes to off-the-shelf
cores.

4.2 Example: Use of the LID Table

To show that our baseline TLS architecture is efficient, we give as
an example the novel use of the LID Table for tag-group operations.
Each LID Table entry is extended with summary-use information:
the number of lines that the corresponding task still has in the cache,
and whether the task has been killed or committed. With this extra
information, all the tag-group operations of Section 3.2 are performed
efficiently.

Specifically, when a task receives a squash or commit signal, its
LID Table entry is updated by setting the Killed bit (Figure 3-(a)) or
the Committed bit, respectively. No tag walking is performed.

(a) (b)

Killed Committed Line
Count

1 60

34

Killed Committed Line
Count

1 0 6

10

L1 Cache

LID 1

LID 1
LID 2

LID 1

LID 2

LID TableLID Table

Tag Data

Figure 3: Using the LID Table on a task kill (a) and on a
cache line replacement (b).

At any time, when a processor issues a load, if the load’s address
and the LID match one of the L1 tag entries, a hit occurs. In this
case, the LID Table isnot accessed. In all other cases, a miss occurs
and the LID Table is accessed. We index the LID Table with the
request’s LID, obtain the corresponding global task ID, and include it
in a request issued to the ring. Moreover, to decide which line to evict

from the L1, we also index the LID Table with the LIDs of the lines
that are currently using the cache set where space is needed (LID1
and LID2 in Figure 3-(b)). These are not time-critical accesses. If
we find entries that have the Killed bit set (LID1 in the example), the
count of cached lines is decremented, and the corresponding line in
the cache is either chosen as the replacement victim or invalidated.
Otherwise, if we find an entry with the Committed bit set (LID2 in
the example), we use the line as the victim (possibly after a write back
to memory), and decrement the count. If any one of these counters
reaches zero, that LID is recycled.

4.3 TLS Compiler

We have built a TLS compiler [27] that adds several passes to a devel-
opment branch of gcc 3.5. The branch uses a static single-assignment
tree as the high-level intermediate representation [7]. With this ap-
proach, we leverage a complete compiler infrastructure. Our TLS
passes generate tasks out of loop iterations and the code that follows
(i.e., the continuation of) subroutines. The compiler first marks the
tasks, and then tries to place spawn statements for each of these tasks
as early in the code as it can. Only spawns that have moved up the
code significantly are retained.

Before running the compiler, we run SGI’s source-to-source op-
timizer (copt from MIPSPro), which performs PRE, loop unrolling,
inlining, and other optimizations. As a result, the non-TLS code has
a quality comparable to the MIPSPro SGI compiler for integer codes
at O3. Code quality when TLS is enabled is not as good, as explained
in Section 3.4.

The compilation process includes a simple profiler. The profiler
takes the initial TLS executable, runs a tiny data set, and identifies
those tasks that should be eliminated because they are unlikely to be
of much benefit (Section 5.3.2). Then, the compiler re-generates the
executable by eliminating these tasks.

5 Energy-Saving TLS Optimizations
To reduce the energy consumed by the TLS sources of Table 1, we can
use many performance-oriented TLS optimizations proposed else-
where. Examples are improvements to the cache hierarchy to min-
imize conflicts [5] or enhancements to the coherence protocol to re-
duce communication latency [23]. While these optimizations im-
prove performance, they typically also reduce the energy consumed
by a program.

In this paper, we are not interested in these optimizations. If they
are cost-effective, they should already be included in any baseline
TLS design. Instead, we are interested inenergy-centricoptimiza-
tions. These are optimizations that do not increase performance no-
ticeably; in fact, they may even slightly reduce it. However, they re-
duce energy consumption significantly. They would not necessarily
be included in a performance-centric TLS design.



We propose three guidelines to identify energy-centric optimiza-
tions: (1) reduce the number of checks, (2) reduce the cost of indi-
vidual checks, and (3) eliminate work with low performance returns.
As examples, we propose simple, yet effective techniques. They are
shown in the last column of Table 1.

5.1 Reducing the Number of Checks

5.1.1 Avoid Eagerly “Walking” the Cache Tags in
the Background (NoWalk)

With the LID Table design described in Section 4.2, tag-group opera-
tions are very efficient. A task squash or commit only involves setting
the Killed or Committed bit, respectively, in the LID Table. As lines
belonging to squashed or committed tasks are eliminated from the
cache due to replacements, the corresponding counts in the LID Ta-
ble are decremented. When a count reaches zero, its associated LID
can be recycled. Consequently, LID recycling is also very fast.

However, always waiting for LIDs to get “naturally” recycled in
this way may hurt performance because we may run out of LIDs.
Consequently, our baseline TLS architecture recycles LIDs in a more
aggressive manner, inspired in previous work [17]. Specifically, it has
a hardware FSM that periodically walks the tags of the cache in the
background when the cache is idle. It uses the LID Table to identify
tasks with the Killed bit set and then, when the cache is idle, it walks
the cache tags to invalidate their lines and free up their LIDs. It also
performs a similar operation to eagerly free up the LIDs of long-
committed tasks [18]. With this approach, performance is highest
because we never run out of LIDs. However, we spend energy with
many checks.

The energy optimization that we propose is to avoid in most cases
any eager walk of the cache tags. Instead, we rely on the “natural”
LID recycling when the associated count reaches zero, as described
above. We only activate a background walk of the tags like in the
baseline TLS architecture in one case: when there is only one free
LID left. With this optimization, we occasionally may have to stall
due to temporary lack of LIDs. However, we eliminate many tag
checks.

5.1.2 Lower Traffic to Check Version-IDs (TrafRed)

In TLS, many messages are sent to check version IDs. For example,
when a processor writes to a non-exclusive line, all the caches with a
version of the requested line are typically checked, to see if there is
an exposed read to the line from a more speculative task. Such task
will be squashed. Similarly, on displacement of a committed line to
L2, those same caches are checked, to invalidate older versions of the
line. Such versions cannot remain cached anymore.

We propose a simple optimization to reduce the number of checks
needed and, therefore, the traffic. Cache lines are extended with a
Newestand anOldestbit. Every time that a line is loaded into a
cache, we set the Newest and/or Oldest bit if the line contains the
latest and/or the earliest cached version, respectively, of the corre-
sponding address. As execution proceeds, Newest may be reset on
an access by another task. With this support, if a processor writes on
a Newest line cached locally, there is no need to check other caches
for exposed reads. Similarly, if a processor displaces a committed
line with the Oldest bit set, there is no need to check other caches for
older versions. This optimization applies to two rows in Table 1.

5.2 Reducing the Cost of Individual Checks

A simple example is to tag cache lines with short LIDs rather
than global task IDs. This approach of using indirection is well
known [22]. Consequently, we already use it in the baseline TLS
CMP and do not evaluate its impact. We call itIndirect in Table 1.

5.3 Eliminating Low-Return Work

5.3.1 Stall a Task After Two Squashes (StallSq)

A simple technique is to limit the number of times that a task is al-
lowed to restart after a squash. After a task has been squashedN
times, it is not given a CPU again until it becomes non-speculative.

We performed experiments always restarting tasks immediately af-
ter they are squashed. We found that 73.0% of the tasks are never
squashed, 20.6% are squashed once, 4.1% twice, 1.4% three times,
and 0.9% four times or more. Restarting a task after its first squash
can be beneficial, as the L2 cache and branch predictor have been
warmed up. Restarting after further squashes delivers low perfor-
mance returns while steadily consuming more energy. Consequently,
we reset and stall a task after its second squash. This is accomplished
with two bits per TaskHolder entry (Figure 2): the Restarted bit is set
after the task has been squashed and restarted once; the Stalled bit is
set after the second squash.

5.3.2 Energy-Aware Task Pruning (TaskOpt)

The profiler in our compilation pass includes a simple model that
identifies tasks that should be eliminated because they are unlikely to
be beneficial. The main focus is on tasks that cause squashes. For
the baseline TLS architecture, the model minimizes the duration of
the program. The energy-centric optimization is to use a model that
minimizes the productEnergy ×Delay2 for the program.

Our compiler generates a binary with task spawn instructions (Fig-
ure 4-(a)). The profiler runs the binary sequentially, using theTrain
data set for SPECint codes. As the profiler executes a task, it records
the variables written. When it executes tasks that would be spawned
earlier, it compares the addresses read against those written by pre-
decessor tasks. With this, it can detect potential run-time violations.
The profiler also models a simple cache to estimate the number of
misses in the machine’s L2. For performance, cache timing is not
modeled. On average, the profiler takes around 5 minutes to run on a
3 GHz Pentium 4.

The profiler estimates if a task squash will occur and, if so, the
number of instructions squashedIsquashed (Figure 4-(b)) and the fi-
nal instruction overlap after re-executionIoverlap (Figure 4-(c)). In
addition, the profiler estimates the number of L2 missesMsquashed

in the squashed instructions. These misses will have a prefetching
effect that will speed up the re-execution ofT2.

(a) Code with spawn

T1

T2
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(c) Estimated re−execution
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re−execution

Figure 4:Modeling task squash and restart. T1 and T2 are tasks.

Assuming that each instruction takesTi cycles to execute, and an
L2 miss stalls the processor forTm cycles, the estimated execution
time reduction (Tred) is Ioverlap×Ti +Msquashed×Tm. Assuming
that the energy consumed by each instruction isEi, the approximate
increase in energy (Einc) is Isquashed × Ei.

Our profiler focuses on tasks that have a rate of squashes per com-
mit higher thanRsquash. In the baseline architecture, it eliminates
a task if Tred is less than a thresholdTperf . In our our energy-
optimized architecture, it eliminates a task if subtractingTred from
the program time and addingEinc to the program energy, the pro-
gram’sE × D2 product increases. In this case, voltage-frequency
scaling could (ideally) do better.

The values of the thresholds and parameters used are listed in Ta-
ble 2. This optimization has significant impact: on average, the pro-
filer eliminates 39.9% of the static tasks in performance mode, and
49.2% in energy mode.



TLS CMP with four 3-issue cores (TLS4-3i)

Processor

Frequency:5.0 GHz@ 70 nm
Branch penalty: 13 cyc (min)
RAS: 32 entries
BTB: 2K entries, 2-way assoc.
Branch predictor (spec. update):

bimodal size: 16K entries
gshare-11 size: 16K entries

Fetch/issue/comm width: 6/3/3
I-window/ROB size: 68/126
Int/FP registers: 90/68
LdSt/Int/FP units: 1/2/1
Ld/St queue entries: 48/42
TaskHolders/processor: 8
TaskHolder access time, energy: 1 cyc, 0.25nJ

Cache D-L1 VC L2 D-L1 VC

Size: 16KB 4KB 1MB
RT: 3 cyc 8 cyc 10 cyc
Assoc: 4-way 4-way 8-way
Line size: 64B 64B 64B
Ports: 1 1 1
Pend ld/st: 16 64 64

LID Table:
entries/ports: 64/2 32/1
acc time/energy: 1cyc/0.11nJ 1cyc/0.07nJ

Latency from spawn to new thread: 14 cyc

6-issue superscalar chip (Uni-6i)

Processor

Frequency:5.0 GHz@ 70 nm
Branch penalty: 13 cyc (min)
RAS: 32 entries
BTB: 2K entries, 2-way assoc.
Branch predictor (spec. update):

bimodal size: 16K entries
gshare-11 size: 16K entries

Fetch/issue/comm width: 6/6/6
I-window/ROB size: 104/204
Int/FP registers: 132/104
LdSt/Int/FP units: 2/4/2
Ld/St queue entries: 66/54

Cache D-L1 L2

Size: 16KB 1MB
RT: 2 cyc 10 cyc
Assoc: 4-way 8-way
Line size: 64B 64B
Ports: 2 1
Pend ld/st: 16 64

I-L1 Size: 16KB; RT: 2 cyc; assoc: 2-way; line size: 64B; ports: 1
Bus & Memory FSB frequency: 533MHz; FSB width: 128bit; memory: DDR-2; DRAM bandwidth: 8.528GB/s; memory RT: 98ns
Profiling parameters Rsquash: 0.8;Ti: 1; Tm: 200 cyc;Ei: 8pJ;Tperf : 90 cyc;Sizeenergy : 45;Sizeperf : 30;Hoistenergy : 120;Hoistperf : 110

Table 2: TLS CMP with four 3-issue cores (TLS4-3i) and 6-issue superscalar chip (Uni-6i) modeled. In the table, RAS, FSB,
RT, and VC stand for Return Address Stack, Front-Side Bus, minimum Round-Trip time from the processor, and Victim Cache,
respectively. Cycle counts refer to processor cycles.

5.3.3 Eliminate Low-Return Tasks (TaskOpt)

Another energy-centric optimization is for the compilation pass to
aggressively remove tasks whose size is small or whose spawn point
has not been moved up in the code much. We use a threshold
size Sizeenergy and threshold spawn hoist distanceHoistenergy

that are more aggressive than their performance-centric counterparts
(Sizeperf andHoistperf ). These optimizations reduce task bound-
aries and code bloat. They eliminate 36.1% of the static tasks in
energy mode compared to 34.7% in performance mode. For ease of
presentation, we combine this technique and the previous one into
TaskOptin our evaluation, since they are very related.

5.4 Summary

We place the optimizations in the corresponding row of Table 1. As
indicated in Section 5.2,Indirect is not evaluated.

6 Evaluation Setup
To assess the energy efficiency of TLS, we compare an TLS CMP to
a non-TLS chip that has a single processor of the same or wider issue
width. We use execution-driven simulations, with detailed models
of out-of-order superscalars and advanced memory hierarchies, en-
hanced with models of dynamic and leakage energy from Wattch [3],
Orion [28], and HotLeakage [29].

6.1 Architectures Evaluated

The TLS CMP that we propose has four 3-issue cores, the microar-
chitecture of Section 4, and the energy-centric TLS optimizations of
Section 5. We call the chipTLS4-3i. The non-TLS chips have a single
superscalar with a conventional L1 and L2 on-chip cache hierarchy.
We consider two: one is a 6-issue superscalar (Uni-6i) and the other a
3-issue superscalar (Uni-3i). We choose to compare theTLS4-3iand
Uni-6i designs because both chips have approximately the same area,
as can be estimated from [11, 20].

Table 2 shows the parameters forTLS4-3iandUni-6i. As we move
from 3-issue to 6-issue cores, we scale all the processor structures
(e.g., ports, FUs, etc) according to the issue width of the core. We
try to create a balanced processor as much as possible, by scaling the
processor resources. This is the same approach used in IBM’s Power
4.

In our comparison, we favorUni-6i. We assume thatUni-6i has
the same frequency and the same pipeline depth as the cores inTLS4-
3i. This helpsUni-6i because, in practice, a 6-issue core would not

cycle as fast as a 3-issue core with the same pipeline. For exam-
ple, according to CACTI [20], the access time of the register file and
the instruction window inUni-6i would be at least 1.25 times higher
and 1.35 times higher, respectively, than in theTLS4-3icores. More-
over, extrapolating results from [15], the bypass network would have
2.6 times longer latency inUni-6i (assuming a fully-connected by-
pass network). In our simulations, however, we assume the same
frequency forUni-6i andTLS4-3i.

Since both processors have the same pipeline depth and branch
misprediction penalty, we feel that it is fair to also give them the
same branch predictor. In addition, both processors have an integer
and an FP cluster. Since we run integer codes in the evaluation, the
FP cluster is clock-gated almost all the time.

The tag array inTLS4-3i’s L1 caches is extended with the LID, and
the Write and Exposed-Read bits (Figure 2). At worst, the presence
of these bits increases the access time of the L1 only slightly. To see
why, note that the LID bits can simply be considered part of the line
address tag, as a hit requires address and LID match. Moreover, in
our protocol, the Write and Exposed-Read bits are not checked before
providing the data to the processor; they may be updated after that.
However, to be conservative, we increase the L1 access latency in
TLS4-3ione cycle overUni-6i, to 3 cycles.

Uni-3i is like Uni-6i except that the core is 3-issue, like those in
TLS4-3i, and the L1 cache only has 1 port. For completeness, we also
evaluate one additional chip:TLS2-3i. TLS2-3iis a TLS CMP like
TLS4-3i, but with only two cores.

To maximize the use of commodity hardware, the TLS CMP has
no special hardware support for inter-processor register communica-
tion. [18, 19] have more details on the architecture evaluated.

6.2 Energy Considerations

We estimate and aggregate the dynamic and leakage energy con-
sumed in all chip structures, including processors, cache hierar-
chies, and on-chip interconnect. For the dynamic energy, we use the
Wattch [3] and Orion [28] models. We apply aggressive clock gat-
ing to processor structures in all cores. In addition, unused cores in
the TLS CMP are also clock gated. Activating and deactivating core-
wide clock gating takes 100 cycles each time. Clock-gated structures
are set to consume 5% of their original dynamic energy, which is one
of the options in Wattch. We extend the Wattch models to support
our deeper pipelines and to take into account the area when comput-
ing the clock energy. The chip area is estimated using data from [11]
and CACTI [20].

Leakage energy is estimated with HotLeakage [29], which models
both sub-threshold and gated leakage currents. We use an iterative ap-



Squashed Busy Pruned Task ED2 Ratio of Tag Traffic Add’l Instruct.
Apps Instructions CPUs Tasks Size Reduc. Accesses (TLS/ in Non-Squashed

(%) (%) (Instructions) (%) (TLS/Uni-3i) Uni-3i) Dyn. Tasks (%)
No Stall Task No Stall Task Task No Task Task No No No Traf No Stall
Opt Sq Opt Opt Sq Opt Opt Opt Opt Opt Opt Walk Opt Red Opt Sq

bzip2 9.9 7.5 9.9 1.40 1.35 1.41 21.8 743.4 751.7 -0.3 3.2 1.3 14.0 2.5 5.6 5.6
crafty 26.2 25.4 18.9 1.97 1.95 1.70 6.2 932.0 1064.0 6.8 2.9 2.0 7.1 3.6 5.6 5.6
gap 35.2 31.6 35.1 2.07 1.94 2.06 14.6 1270.3 1280.4 -0.8 3.6 2.2 16.7 8.4 3.8 3.8
gzip 14.0 14.0 11.9 1.49 1.48 1.49 7.5 626.6 634.2 0.3 3.5 1.9 12.3 4.0 6.5 6.5
mcf 28.8 28.7 28.8 2.38 2.38 2.38 0.4 47.9 47.9 0.0 3.8 2.7 42.0 11.5 31.9 31.9
parser 39.3 29.9 13.8 2.03 1.85 1.25 18.9 167.3 261.6 26.4 3.6 3.2 9.8 7.1 20.8 18.0
twolf 4.4 4.4 4.4 1.62 1.62 1.62 0.4 409.4 409.4 0.0 3.3 1.6 55.9 3.2 6.5 6.5
vortex 15.7 15.4 7.7 1.82 1.81 1.49 9.2 488.3 881.5 16.0 2.9 1.9 7.4 3.9 7.5 7.4
vpr 29.5 29.2 27.9 3.14 3.13 2.61 17.0 212.9 389.1 10.4 3.2 3.1 10.9 6.4 23.9 21.2
Avg 22.6 20.7 17.6 2.00 1.95 1.78 10.7 544.2 635.5 6.5 3.3 2.2 19.6 5.6 12.5 11.9

Table 3:Architectural characteristics of the 4-core TLS CMP related to sources of energy consumption and their optimization.

proach suggested by Suet al.[24]: the temperature is estimated based
on the current total power, the leakage power is estimated based on
the current temperature, and the leakage power is added to the total
power. This is continued until convergence. The maximum temper-
ature at the junction for any application is not allowed to go beyond
85◦C, as recommended by the SIA Roadmap [1].

From our calculations, the average power consumed by theUni-
3i andUni-6i chips for the SPECint 2000 applications is 32 and 60
W, respectively (more data will be shown later). Of this power, leak-
age accounts for 38% and 32%, respectively. The majority of the
dynamic power increase fromUni-3i to Uni-6i is due to five struc-
tures that more than double their contribution, largely because they
double the number of ports. These are the rename table, register file,
I-window, L1 data cache, and data TLB. In addition, the data for-
warding network also increases its dynamic contribution by 70%.

6.3 Applications Evaluated

We measure full SPECint 2000 applications with theReferencedata
set excepteon, which is in C++, andgcc and perlbmk, which our
compiler infrastructure does not compile. By full applications, we
mean that we include all the code in the measurement, not just the
more parallel sections such as loops.Uni-3i andUni-6i run the bi-
naries compiled with our TLS passes disabled. Such binaries have a
code quality comparable to integer codes generated by the MIPSPro
SGI compiler withO3 (Section 4.3).

TLS and non-TLS binaries are very different. Therefore, we can-
not compare the execution of a fixed number of instructions. Instead,
we insert “simulation markers” in the code and simulate for a given
number of markers. After skipping the initialization (several billion
instructions), we execute up to a certain number of markers so that
Uni-6i graduates from 750 million to 1.5 billion instructions.

7 Evaluation
In our evaluation, we first characterize the TLS CMP architecturally,
with and without the energy optimizations. Then, we examine the
energy cost of TLS and the savings of the optimizations. Finally, we
compare the energy, power, and performance of the different chips.
In the following,NoOptis TLS4-3iwithout the optimizations.

7.1 Architectural Characterization of the TLS CMP

We measure architectural characteristics of the 4-core TLS CMP that
are related to Table 1’s sources of TLS energy consumption and op-
timizations. The data are shown in Table 3. In the table, we compare
the chip before optimization (NoOpt), to the chip with one optimiza-
tion at a time (StallSq, TaskOpt, NoWalk, or TrafRed).

The first TLS source of energy consumption in Table 1 is task
squashing. Column 2 of Table 3 shows that, on average,NoOptloses
to task squashes 22.6% of the dynamic instructions executed. This is
a significant waste. With our optimizations, we reduce the number of

such instructions. Specifically, the average fraction becomes 20.7%
with StallSq(Column 3) and 17.6% withTaskOpt(Column 4). Al-
though not shown in the table, the fraction becomes 16.9% with both
optimizations combined.

The next few columns of Table 3 provide more information on the
impact ofStallSqandTaskOpt. UnderNoOpt, the average number
of busy CPUs is 2.00 (Column 5). SinceStallSqstalls tasks that are
likely to be squashed andTaskOptremoves them, they both reduce
CPU utilization. Specifically, the average number of busy CPUs is
1.95 and 1.78 withStallSqandTaskOpt, respectively (Columns 6 and
7). With both optimizations, the average can be shown to be 1.75.

TaskOpthas a significant impact on the tasks. Recall from Sec-
tions 5.3.2 and 5.3.3 that, on average,NoOptalready prunes 74.6%
of the static tasks using performance-only models. On top of that,
TaskOptprunes an additional 10.7% of the static tasks (Column 8).
As a result,TaskOptincreases the average task size from 544 instruc-
tions in NoOpt(Column 9) to 635 (Column 10). Moreover, the av-
erageE ×D2 of the applications, a metric for time and energy effi-
ciency of computation [14], decreases by 6.5% (Column 11).

The second TLS source of energy in Table 1 is dominated by ac-
cesses to L1 cache tags. Such accesses in TLS are both more ex-
pensive (since tags have version IDs) and more frequent (e.g., due to
tag-group operations). Column 12 of Table 3 shows that, on average,
NoOpthas 3.3 times the number of tag checks inUni-3i. However,
with our NoWalkoptimization, we eliminate many of these checks.
Specifically, Column 13 shows that, withNoWalk, TLS only has 2.2
times as many tag checks asUni-3i. Note that these figures include
the contribution of squashed tasks.

The third TLS source of energy is additional traffic. Column 14
of Table 3 shows that, on average,NoOpthas 19.6 times the traffic
of Uni-3i. To compute the traffic, we add up all the bytes of data
or control passed between caches. This traffic increase is caused by
the factors described in Section 3.3. However, after we apply our
TrafRedoptimization, the traffic reduces considerably. On average,
with TrafRed, TLS only has 5.6 times the traffic ofUni-3i (Column
15).

The fourth TLS source of energy is additional instructions. Col-
umn 16 shows thatNoOptexecutes on average 12.5% more dynamic
instructions in non-squashed tasks thanUni-3i. The TaskOptopti-
mization, by eliminating small and inefficient tasks, reduces the ad-
ditional instructions to 11.9% on average (Column 17).

7.2 The Energy Cost of TLS ( ∆ETLS)

In Section 3, we defined the energy cost of TLS (∆ETLS) as the
difference between the energy consumed by our TLS CMPs andUni-
3i. Figure 5 characterizes∆ETLS for our 4-core TLS CMP. The
figure shows six bars for each application. They correspond to the to-
tal energy consumed by the chip without any optimization (NoOpt),
with individual optimizations enabled (StallSq, TaskOpt, NoWalk,
andTrafRed), and with all optimizations applied (TLS4-3i). For each
application, the bars are normalized to the energy consumed byUni-
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Figure 5: Energy cost of TLS (∆ETLS) for our 4-core TLS CMP chip with and without energy-centric optimizations. The
percentages listed above the average bars are the decrease in∆ETLS when the optimizations are enabled.

3i. Consequently, thedifference between the top of the bars and 1.00
is ∆ETLS .

Each bar in Figure 5 is broken into the contributions of the TLS-
specific sources of energy consumption listed in Table 1. These
include task squashing (∆ESquash), additional dynamic instruc-
tions in non-squashed tasks (∆EInst), hardware for data version-
ing and dependence checking (∆EV ersion), and additional traffic
(∆ETraffic). The rest of the bar (Non-TLS) is energy that we do
not attribute to TLS.

Ideally,∆ETLS should be roughly equal to the addition of the four
TLS-specific sources of energy consumption and, therefore,Non-TLS
should equal 1. In practice, this is not the case because a given pro-
gram runs on the TLS CMP and onUni-3i at different speeds and
temperatures. As a result, the “non-TLS” dynamic and leakage en-
ergy varies across runs, causingNon-TLSto deviate from 1. In fact,
since for all applications the TLS CMP is faster thanUni-3i (i.e., the
TLS bars in Figure 1-(a) are over 1),Non-TLSis less than 1: non-
TLS hardware structures have less time to leak or to spend dynamic
energy cycling idly.

If we consider theNoOptbars, we see that the energy cost ofunop-
timizedTLS (∆ETLS) is significant. On average, unoptimized TLS
adds 70.4% to the energy consumed byUni-3i. We also see that all
four of our TLS sources of energy consumption contribute noticeably.
Of them, task squashing consumes the most energy, while additional
instructions consumes the least.

7.3 The Impact of Energy-Centric Optimizations

The rest of the bars in Figure 5 show the impact of our energy-centric
optimizations on the TLS energy sources. From the figure, we see
that each optimization effectively reduces the TLS energy sources
that it is expected to minimize from Table 1. This is best seen from
the average bars.

ConsiderTaskOptfirst. In Figure 5,TaskOptreduces∆ESquash

and ∆EInst — its targets in Table 1. This is consistent with Ta-
ble 3, whereTaskOptreduces the fraction of squashed instructions
from 22.6% to 17.6%, and decreases the additional dynamic instruc-
tions in non-squashed tasks from 12.5% to 11.9%.

Consider nowNoWalk. In Figure 5, NoWalk mostly reduces
∆EV ersion — its target in Table 1. This was expected from Table 3,
whereNoWalkreduces the number of tag accesses relative toUni-3i
from 3.3 times to 2.2 times. In addition, since it reduces the temper-
ature, it also reduces the leakage component inNon-TLSslightly.

If we considerTrafRedin Figure 5, we see that it mostly reduces
∆ETraffic — its target in Table 1. Again, this is consistent with
Table 3, whereTrafRedreduces the traffic relative toUni-3i from
19.6 times to 5.6 times on average.

Finally, StallSqonly addresses∆ESquash, which is its target in
Table 1. As expected from the modest numbers in Table 3, where it
reduces squashed instructions from 22.6% to 20.7%, it has a small
impact in Figure 5.

This analysis shows that each ofTaskOpt, NoWalk, andTrafRed

effectively reduces a different energy source, and that the three tech-
niques combined cover all sources considered. Consequently, when
we combine all four optimizations inTLS4-3i, all TLS sources of
consumption decrease substantially. The resultingTLS4-3ibar shows
thetrue energy costof TLS. If we measure the section of the bar over
1.00, we see that this cost is on average only 25.4%. We feel that this
is a remarkably low energy overhead for TLS.

With our simple optimizations, we have been able to eliminate on
average 64% of∆ETLS . Compared to the overall on-chip energy
consumed byNoOpt, this is a very respectable energy reduction of
26.5%. Moreover, as we will see later, the applications have only
been slowed down on average by less than 2%.

Finally, an analysis of individual applications reveals many inter-
esting facts. Unfortunately, space limitations prevent any deep dis-
cussion. We only note thatmcfhas a negative∆ETLS in some cases.
The reason is that, without TLS, the L2 suffers frequent misses; with
TLS, tasks prefetch data for other tasks, removing misses and speed-
ing up the execution significantly (Section 7.5). The result is that the
TLS CMP has less time to leak and to spend dynamic energy cycling,
henceNon-TLSis very small.

7.4 Comparing Energy Consumption Across Chips

Figure 6 compares the energy consumed by our optimizedTLS4-3i
chip andUni-3i, Uni-6i and, for completeness,TLS2-3i. Each bar
is normalized toUni-3i and broken down into dynamic energy con-
sumed by the clock, core, and memory subsystem, and leakage en-
ergy. The memory category includes caches, TLBs, and interconnect.
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Figure 6:Comparing the energy consumption after TLS CMP
optimization. All bars are normalized toUni-3i.

Consider firstUni-6i. Its core, clock, and memory categories are
larger than inUni-3i because of the bigger structures in the wide pro-
cessor. Specifically, the rename table, register file, I-window, L1 data
cache, and data TLB have twice the number of ports. This roughly
doubles the energy per access [20]. Furthermore, all these structures
but the cache and TLB also have more entries. Finally, the forwarding
network also increases its complexity and, therefore, its consumption.
The figure also shows that leakage has increased. The reason is that,
while Uni-6i is faster thanUni-3i, it consumes the highest average
power (Section 7.5) and, therefore, has a higher temperature. Tem-
perature has an exponential impact on leakage.

Compared toUni-6i, TLS4-3ihas smaller core and clock energies
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Figure 7:Execution speedup relative toUni-3i (a), and average power consumption (b) for different chips. Note that the mean
used for speedups is the geometric one.

because it has the simpler hardware structures ofUni-3i. Its leakage
is also smaller because its average power (Section 7.5) and, there-
fore, temperature are lower thanUni-6i. Its memory category, how-
ever, is slightly higher thanUni-6i. The reason isTLS4-3i’s higher
consumption in structures and traffic to support data versioning and
dependence checking.

7.5 Comparing Performance/Power Across Chips

Finally, we take the optimizedTLS4-3iand compare its performance,
and average power to other chips. Figure 7-(a) shows application
speedups relative to execution onUni-3i, while Figure 7-(b) shows
the average power consumed during execution. As usual,TLS2-3iis
also shown. As a reference, the arithmetic mean of the average IPC
of the applications onTLS4-3iis 1.38.

Figure 7-(a) shows that, on average,TLS4-3idelivers a speedup of
1.27 overUni-3i. This shows that our TLS compiler successfully ex-
tracts good tasks from these irregular codes. This speedup is slightly
lower than the 1.29 speedup shown in Figure 1-(a). The reason is that
our energy-centric optimizations reduce performance slightly.

Figure 7-(a) also shows thatTLS4-3iis on average faster thanUni-
6i. The speculative parallelism enabled byTLS4-3i in these hard-
to-parallelize codes is more effective than doubling the issue width.
This is a good result, especially because it conservatively assumes the
same frequency for both chips. In practice, designing the wider issue
processor at this high frequency is likely to be more challenging.

Note that while theTLS4-3ispeedup for most codes ranges from
1.10 to 1.35,mcf exhibits a higher speedup. As indicated in Sec-
tion 7.3,mcf benefits from constructive data prefetching into L2 by
TLS tasks. Without consideringmcf, the geometric mean ofTLS4-
3i’s speedup is 1.18, which is still comparable toUni-6i’s, always
assuming the same frequency.

On the other hand, Figure 7-(b) shows that the average on-chip
power consumed byTLS4-3i is typically lower thanUni-6i’s. On
average, it is 15% lower. Moreover, it never reaches the high values
thatUni-6i dissipates in some applications. If we compare Figure 7-
(b) to Figure 1-(b), we see the effectiveness of our optimizations at
reducing the power consumed by the four-core TLS CMP.

We also compare the averageE ×D2 of TLS4-3iandUni-6i. Un-
fortunately, due to lack of space, we cannot show the complete set of
data. On average,TLS4-3i’s E × D2 is 7.6% lower thanUni-6i’s.
We conclude, therefore, thatTLS4-3i is more energy-efficient than
Uni-6i.

We can get further insight if we analytically applyideal voltage-
frequency scaling. We assume that performance is linearly propor-
tional to frequency and scale frequency and voltage proportionally.
We also assume that average dynamic power is proportional to the
cube of frequency and that average leakage power is linearly propor-
tional to voltage [4]. Then, for each chip, we can derive a curve that
relates the average power consumption with performance as:

P total
new = P dyn

orig ×
„

Speedupnew

Speeduporig

«3

+ P leak
orig ×

„
Speedupnew

Speeduporig

«
Figure 8 shows the resulting curves forTLS4-3iandUni-6i. Each

curve follows possible speedup-power working points for one chip.
The lower a curve is, the more energy-efficient the architecture is.
Each curve shows one data point, which corresponds to the actual
working conditions in our experiments.
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We can see thatUni-6i is less energy-efficient thanTLS4-3i. If we
scale downTLS4-3i’s frequency untilTLS4-3i’s performance is equal
to Uni-6i’s, TLS4-3iconsumes 20% less power thanUni-6i (horizon-
tal arrow). Alternatively, if we scale downUni-6i’s frequency until
Uni-6i’s power is equal toTLS4-3i’s, TLS4-3iis 13% faster thanUni-
6i (vertical arrow).

Finally, Figure 8 also shows a curve forTLS2-3i. The data shows
thatTLS2-3ihas a very small efficiency advantage overTLS4-3i.

7.6 Summary

The fundamental reason why TLS CMPs can be more energy-
efficient than wider-issue superscalars is that energy scales superlin-
early and performance sublinearly with the size of processor struc-
tures. Consequently, multiple simple TLS cores can be more efficient
than a single wide core, as long as (i) TLS’s hardware overheads and
(ii) TLS’s wasted work are kept to a minimum.

We have addressed these issues with a lean TLS CMP microar-
chitecture and a set of energy-centric optimizations. The efficient
operation of the finalTLS4-3iandTLS2-3idesigns is shown in Ta-
ble 4. Specifically, on average 1.40 and 1.75 cores inTLS2-3iand
TLS4-3i, respectively, are busy (Columns 2 and 3). Moreover, while
busy, these cores execute instructions from squashed tasks for only
10.3% and 16.9% of the cycles, respectively (Columns 4 and 5). This
is in contrast toNoOpt: on average, 2.00 cores are busy (Column 5 of
Table 3), and 22.6% of the instructions executed belong to squashed
tasks (Column 2 of Table 3).

8 Related Work
Past work on TLS CMP architectures has focused on performance
rather than energy (e.g., [9, 10, 13, 21, 22, 25, 26]). There has
been work on reducing the energy consumed in the pipeline due to
instruction-level speculation following a branch prediction [2, 12].
However, the issues addressed are very different.

Concurrently to our work, Petric and Roth [16] developed an in-
frastructure for selecting pre-execution (prefetching) threads in an
SMT processor. To select threads, they use models that minimize



Apps
Busy CPUs Squashed Instr. (%)

TLS2-3i TLS4-3i TLS2-3i TLS4-3i

bzip2 1.17 1.36 4.6 7.5
crafty 1.46 1.68 17.0 18.2
gap 1.56 1.93 21.7 31.4
gzip 1.40 1.48 14.5 13.2
mcf 1.68 2.38 7.1 28.7

parser 1.10 1.25 6.4 13.9
twolf 1.29 1.62 1.7 4.4
vortex 1.31 1.49 6.5 7.8

vpr 1.58 2.58 12.9 27.2
Avg 1.40 1.75 10.3 16.9

Table 4:Characterizing the optimizedTLS4-3iandTLS2-3ichips.

execution time, energy consumption, orE×D2. While their models
are somewhat similar to those used in ourTaskOptoptimization, the
environments are very different. Our models are focused on trading
off performance and energy in the event of atask squash. Such an
event does not exist in their models. Unlike our tasks, their threads
never get squashed, do not offload computation, are only spawned
from the main thread, and are used in an SMT processor.

9 Conclusions
This paper refutes the claim that TLS consumes excessive energy and
power. Its thesis is based on three contributions. The first one is iden-
tifying the main sources of energy consumption in TLS: task squash-
ing, structures for data versioning and dependence checking, addi-
tional traffic due to these two effects, and additional instructions. The
second contribution is proposing simple energy-saving optimizations
to mitigate these sources. These optimizations cut the energy cost of
TLS by over 60% on average, with minimal performance impact.

The third contribution is showing that the resulting TLS CMP of-
fers a very desirable energy-performance trade-off, even for SPECint
codes. A TLS CMP with four 3-issue cores delivers an average
speedup of 1.27 over a 3-issue superscalar on full SPECint 2000
codes, while consuming only 25% more energy. Moreover, compared
to a 6-issue superscalar with the same frequency, the TLS CMP is on
average faster, while consuming only 85% of its total on-chip power,
and yielding a 7.6% lowerE ×D2.

We hope that this work helps propel TLS into mainstream mi-
croprocessors. CMPs are attractive because they are more energy-
efficient, more scalable, and less complex than wide-issue super-
scalars. Moreover, they have an advantage for explicitly-parallel
codes. In this paper, we showed that TLS CMPs can also speed
up these most challenging SPECint codes, with lower power and en-
ergy consumption than wide superscalars. We expect better results
for more parallel codes.
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and J. Torrellas. Tradeoffs in Buffering Memory State for Thread-Level
Speculation in Multiprocessors. InInternational Symposium on High-
Performance Computer Architecture, pages 191–202, February 2003.

[7] SSA for Trees - GNU Project, May 2003. ”http://www.gccsummit.
org/2003/viewabstract.php?talk=2”.

[8] S. Gopal, T. Vijaykumar, J. Smith, and G. Sohi. Speculative Versioning
Cache. InInternational Symposium on High-Performance Computer
Architecture, pages 195–205, February 1998.

[9] L. Hammond, M. Willey, and K. Olukotun. Data Speculation Support
for a Chip Multiprocessor. InInternational Conference on Architectural
Support for Programming Languages and Operating Systems, pages 58–
69, October 1998.

[10] V. Krishnan and J. Torrellas. A Chip-Multiprocessor Architecture with
Speculative Multithreading.IEEE Trans. on Computers, pages 866–880,
September 1999.

[11] R. Kumar, K. Farkas, N. Jouppi, P. Ranganathan, and D. Tullsen. Single-
ISA Heterogeneous Multi-Core Architectures: The Potential for Proces-
sor Power Reduction. InInternational Symposium on Microarchitecture,
December 2003.

[12] S. Manne, A. Klauser, and D. Grunwald. Pipeline Gating: Speculation
Control for Energy Reduction. InInternational Symposium on Com-
puter Architecture, pages 132–141, July 1998.

[13] P. Marcuello and A. Gonzalez. Clustered Speculative Multithreaded
Processors. InInternational Conference on Supercomputing, pages 365–
372, June 1999.

[14] A. J. Martin, M. Nystroem, and P. Penzes. ET2: A Metric for Time and
Energy Efficiency of Computation. Technical Report CSTR:2001.007,
California Institute of Technology, December 2001.

[15] S. Palacharla, N. P. Jouppi, and J. E. Smith. Complexity-Effective Su-
perscalar Processors. InInternational Symposium on Computer Archi-
tecture, June 1997.

[16] V. Petric and A. Roth. Energy-Effectiveness of Pre-Execution and
Energy-Aware P-Thread Selection. Technical Report MS-CIS-03-34,
University of Pennsylvania, November 2003.
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