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Abstract

As multi-core architectures with Thread-Level Speculation (TLS)

are becoming better understood, it is important to focus on TLS

compilation. TLS compilers are interesting in that, while they do

not need to fully prove the independence of concurrent tasks, they

make choices of where and when to generate speculative tasks that

are crucial to overall TLS performance.

This paper presents POSH, a new, fully automated TLS com-

piler built on top of gcc. POSH is based on two design decisions.

First, to partition the code into tasks, it leverages the code struc-

tures created by the programmer, namely subroutines and loops.

Second, it uses a simple profiling pass to discard ineffective tasks.

With the code generated by POSH, a simulated TLS chip multipro-

cessor with 4 superscalar cores delivers an average speedup of 1.30

for the SPECint 2000 applications. Moreover, an estimated 26% of

this speedup is a result of the implicit data prefetching provided by

squashed tasks.

Categories and Subject Descriptors D.1.3 [Programming Tech-

niques]: Concurrent Programming—Parallel programming; C.1.4

[Processor Architectures]: Parallel Architectures

General Terms Algorithms, Design, Measurement, Performance

Keywords Thread-level speculation, TLS compiler, profiling,

multi-core architecture, prefetching

1. Introduction

Although parallelizing compilers have made significant advances,

they still fail to parallelize many codes. Examples of hard-to-

parallelize codes are those with accesses through pointers or sub-

scripted subscripts, possible interprocedural dependences, or input-

dependent access patterns.

∗ This work was supported in part by the National Science Foundation under

grants EIA-0072102, EIA-0103610, CHE-0121357, and CCR-0325603;

DARPA under grant NBCH30390004; DOE under grant B347886; and gifts

from IBM and Intel.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute

to lists, requires prior specific permission and/or a fee.

PPoPP’06 March 29–31, 2006, New York, New York, USA.

Copyright c© 2006 ACM 1-59593-189-9/06/0003. . . $5.00.

One potential way to execute these codes in parallel is to

use multi-core architectures with Thread-Level Speculation (TLS)

(e.g., [6, 8, 16, 17, 18, 19]). The general approach is to build tasks

from the code, and speculatively run them in parallel, hoping not to

violate sequential semantics. As tasks execute, special architectural

support checks that no cross-task dependence is violated. If any is,

the offending tasks are automatically squashed, the polluted state

is repaired, and the tasks are re-executed.

Key to the acceptance of TLS architectures is the development

of TLS compilers. Such compilers are unique in that they do not

need to fully prove the absence of dependences across concurrent

tasks — the hardware will ultimately guarantee it. However, their

choices on how to break the code into speculative tasks and when

to spawn them have a crucial impact on the performance of the

resulting TLS system.

There are several instances of TLS compiler infrastructure in

the literature (e.g., [1, 3, 4, 7, 13, 20, 21, 24]). In some of these

compilers, tasks are built exclusively out of loop iterations [4, 24].

The reason is that loops are often the best source of parallelism. In

other compilers [3, 7, 21], a dependence analysis pass identifies

the most likely data dependences in the code and partitions the

code into tasks to minimize cross-task dependences. In general,

identifying likely dependences, often interprocedurally, is hard in

irregular codes.

In this paper we present POSH, a new, fully automated TLS

compiler infrastructure that we have developed. POSH adds several

TLS passes to gcc-3.5, which is an early version of the latest

gcc-4.0. These TLS passes operate on a static single assignment

(SSA) tree used as the high-level intermediate representation in

gcc [11]. Building on gcc allows us to leverage a complete compiler

infrastructure and makes POSH very portable.

In the design of POSH, we have made two main design deci-

sions. First, to partition the code into tasks, we rely on the code

structures created by the programmer, namely subroutines and

loops. This decision simplifies the TLS algorithms significantly.

The second design decision is to add a simple profiling pass that

takes into account both the parallelism and the data prefetching

effects provided by the speculative tasks. The profiling pass prunes

some tasks if it estimates that they are not beneficial. This profiling

pass is invoked with a small input data set.

To enhance parallelism and data prefetching, POSH performs

aggressive hoisting of task spawns. Moreover, it supports software

value prediction. Finally, to maximize applicability, POSH targets

a Chip Multiprocessor (CMP) architecture with relatively simple



TLS hardware. In particular, it assumes that processors can only

communicate through shared memory.

Overall, the contributions of this paper are as follows:

• We present POSH, a complete TLS compiler infrastructure.

Two main characteristics of POSH are that it leverages the code

structure (loop iterations and subroutines of any nesting level)

to generate tasks, and that it uses a profiling pass to discard

ineffective tasks.

• We show that, through speculative parallelization, POSH can

significantly speed-up applications that are very hard to ana-

lyze. Specifically, whole SPECint 2000 applications running on

a simulated TLS CMP with 4 superscalar cores are sped up by

1.30 on average.

• We perform a detailed characterization of speedup sources and

task behavior. We find that, for best performance, both subrou-

tine and loop iteration parallelism should be exploited. More-

over, an estimated 26% of the TLS speedup is a result of the im-

plicit data prefetching provided by squashed tasks. Finally, both

task profiling and value prediction contribute to the speedups.

This paper is organized as follows. Section 2 gives some back-

ground on TLS; Section 3 gives an overview of POSH; Section 4

describes the main algorithms and design issues in POSH; Sec-

tion 5 and Section 6 evaluate POSH; Section 7 discusses related

work, and Section 8 concludes.

2. Background on TLS

A TLS compiler breaks a hard-to-analyze sequential code into

tasks, and speculatively executes them in parallel, hoping not to

violate sequential semantics (e.g., [1, 3, 4, 7, 13, 20, 21, 24]). The

control flow of the sequential code imposes a control dependence

relation between the tasks. This relation establishes an order of the

tasks, and we can use the terms predecessor and successor to ex-

press this order. The sequential code also yields a data dependence

relation on the memory accesses issued by the different tasks that

parallel execution cannot violate.

A task is speculative when it may perform or may have per-

formed operations that violate data or control dependences with its

predecessor tasks. When a non-speculative task finishes execution,

it is ready to commit. The role of commit is to inform the rest of

the system that the data generated by the task are now part of the

safe, non-speculative program state. Among other operations, com-

mitting always involves passing the non-speculative status to a suc-

cessor task. Tasks must commit in strict order from predecessor to

successor. If a task reaches its end and is still speculative, it cannot

commit until it acquires non-speculative status.

As tasks execute in parallel, the system must identify any vio-

lations of cross-task data dependences. Typically, this is done with

special hardware support that tracks, for each individual task, the

data written and the data read without first writing it. A data de-

pendence violation is flagged when a task modifies a datum that

may have been loaded earlier by a successor task. At this point, the

consumer task is squashed and all the state that it has produced is

discarded. Its successor tasks are also squashed. Then, the task is

re-executed.

TLS architectures can discard the state produced by a spec-

ulative task and re-start the task thanks to special hardware that

buffers all speculative modifications, and a checkpointing mecha-

nism that enables rollback. Discussion of such hardware (e.g. [6,

8, 16, 17, 18, 19]) is beyond this paper’s scope. Note that, thanks

to these buffers, anti and output dependences across tasks do not

cause squashes.

3. Overview of POSH

The POSH framework is composed of two parts closely tied to-

gether: a compiler and a profiler (Figure 1). The compiler performs

task selection, inserts task spawn points, and generates the code.

The profiler is a simple software module that provides feedback to

the compiler to improve task selection.
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Figure 1. Structure of the POSH framework.

3.1 Target TLS Hardware Assumptions

POSH makes several assumptions on the target TLS hardware, in-

cluding how live-ins are passed to tasks, how dependences are en-

forced between tasks, and how tasks are created and terminated.

First, POSH does not assume any special hardware support to

transfer registers between tasks — all live-ins to a task must be

passed through memory. This model corresponds to a standard

CMP, where the different cores only communicate through mem-

ory. Consequently, it is the responsibility of POSH to guarantee

that any value in a register that may be needed by any successor

task is written to memory. Second, POSH assumes that the hard-

ware will detect data dependence violations through memory, and

will squash and restart tasks accordingly, as is the norm in most

TLS architectures proposed.

Finally, POSH assumes an ISA with spawn and commit instruc-

tions to initiate and to successfully complete a task, respectively.

The spawn instruction takes as an argument the address of the first

instruction in the child task. Execution of the spawn instruction ini-

tiates the child task in an idle processor. Execution of the commit

instruction indicates to the hardware that the task has completed its

work. It is the job of the compiler to insert the spawn and commit

instructions.

3.2 Compiler Phases

There are three main compiler phases: Task Selection, Spawn Hoist-

ing, and Task Refinement (Figure 1). In the task selection phase,

POSH identifies as tasks many subroutines, subroutine continua-

tions, loop iterations, and loop continuations. By subroutine or loop

continuation, we mean the code that follows the subroutine or loop,

respectively. All these programmer-generated structures are taken

as hints to delineate code sections with a relatively independent and

sizable amount of work. For each task, POSH identifies the instruc-

tion where it begins (begin point). Because the begin point of one



task is the end point of another, POSH then adds commit instruc-

tions right before each begin point. The output of the task selection

phase is a set of begin points.

Immediately after task selection, POSH invokes the Value Pre-

diction pass (Figure 1). This pass predicts the values of certain

kinds of variables that cross task boundaries, hoping to reduce the

number of data dependence violations. Specifically, POSH predicts

the values of function return variables and variables that are or be-

have like loop induction variables.

In the spawn hoisting phase, POSH inserts task spawn instruc-

tions at the begin points of all tasks, creating what we call spawn

points. Then, POSH considers each of the spawn instructions and

tries to hoist them as much as possible in the intermediate repre-

sentation of the program. The goal of hoisting the spawn points is

to enhance parallelism and prefetching as much as possible. There

are, however, three constraints on how far can POSH hoist a spawn

instruction. These constraints are discussed in Section 4.2 and are

represented in the figure as the Dependence Restriction box.

In the task refinement phase, POSH makes the final decisions

on which tasks will make it into the final binary. This phase is com-

posed of a number of passes, whose goal is to improve the quality

of the final set of tasks chosen for execution. From the perspective

of the compiler, the profiler is part of this task refinement process.

The refinement phase includes the Parallelism, Small Tasks,

Register Dependence and Profiled steps. The first three steps elim-

inate tasks that have certain characteristics, namely they are not

spawned farther than some threshold number of instructions from

their begin point, are smaller than certain threshold static task size,

or have too many live-ins, respectively. The last step (Profiled) ac-

cepts input from the profiler and uses it to eliminate a final set of

tasks.

In the Finalize-Tasks step, the compiler inserts all instructions

needed to correctly spawn, execute, and commit tasks, as well

as to perform value prediction. The final code generation varies

depending on whether we plan to profile or not. If we do, then extra

information (e.g., task id) is encoded into each task to allow the

profiler to communicate back to the compiler.

We built these phases as a part of gcc-3.5, which was later

merged into gcc-4.0. This allows us to leverage a complete com-

piler infrastructure. We perform our transformations in the tree SSA

high-level intermediate representation [11].

3.3 Profiler

The profiler provides a list of tasks that are beneficial for perfor-

mance. The compiler uses this information to eliminate the non-

beneficial tasks. The profiler also informs the compiler of the ef-

fectiveness of value prediction.

When the profiler runs, it collects information about each task.

The information can be used to estimate the amount of paral-

lelism the task enables, the likelihood that the task is squashed, and

whether the task may offer benefits due to prefetching. A more de-

tailed explanation of the profiler algorithms is given in Section 4.4.

On average, a profiler run takes about 5 minutes on an Intel 3GHz

desktop.

4. Algorithms and Design Issues

4.1 Task Selection

Task selection is easier for TLS compilers than for conventional

parallelizing compilers. The reason is that dependences are allowed

to remain across tasks, since the hardware ultimately guarantees

correct execution. In practice, a variety of heuristics can be used

to choose tasks. The resulting tasks should ideally have no cross-

task dependences, enough work to overcome overheads, and few

live-ins. Choosing tasks that provide the optimal performance im-

provement is NP-hard [1].

POSH’s heuristic to select tasks is to rely on the structure that

the programmer gave to the code. Specifically, POSH uses the

following modules as potential tasks: (i) subroutines at any nesting

level, (ii) their continuations, (iii) loop iterations at any nesting

level, and (iv) loop continuations. We refer to the first two types of

tasks as “subroutines” and the last two types as “loop iterations”.

As an example, Figure 2 shows how POSH generates tasks out

of a subroutine and its continuation (Chart (a)), or out of loop

iterations (Chart (c)). Chart (a) shows a code segment with a call

to subroutine S1. POSH identifies two tasks: the call to S1 and its

continuation code (the code that follows the call). Consequently, it

inserts begin points BP2 and BP1, respectively.

Chart (c) shows a loop as it is typically represented in the

intermediate representation of gcc-3.5. The representation typically

places the update of the induction variable (i in the example) right

before the backward jump. POSH identifies loops in the program by

computing the set of strongly connected nodes in the control flow

graph. Then, it tries to identify the update to the induction variable,

and it places the task begin point for iteration n (BP in the figure),

right before the update of the induction variable in iteration n-1.

With this approach, induction variables neither need to be predicted

nor cause dependence violations. In the cases where gcc-3.5 does

not follow this pattern, POSH does predict the values of induction

variables.

4.2 Spawn Hoisting

In the spawn hoisting phase, POSH places a spawn instruction at

the begin point of every task, and then tries to hoist it as much

as possible in the intermediate representation of the program. The

amount of hoisting is limited by three constraints. First, the spawn

instruction should not be before the definition of any variable used

or very likely used in the task — except if value prediction is

used. Second, the spawn should be in a location that is execution

equivalent to the start of the task1. This constraint ensures that a

task is spawned if and only if it needs to be executed.

Finally, if a task spawns multiple children tasks, the spawn

instructions should be placed so that children tasks are spawned

in strict reverse sequential order. This means that the child task that

is latest in sequential order should be spawned first, and similarly

for the other children tasks. As explained in [15], the reason for

this convention is to simplify the CMP microarchitecture, while

still enabling a high degree of task spawn flexibility and high

performance.

Figure 2(b) shows the code from Chart (a) after transformation.

The continuation task in Chart (a) (the one starting at BP1) has the

live-in variable y. Consequently, we need to ensure that y is written

to memory before the continuation task is invoked, and that y is

read from memory inside the continuation task. POSH ensures this

by declaring a volatile variable v y (Chart (b)). Updates to such a

1 We say that location l1 in the control flow graph is execution equivalent to

location l2 of the start of the task when the instruction in l2 executes if and

only if the instruction in l1 has executed, and both instructions are executed

the same number of times and in an interleaved manner.



commit;

v_y=y;

y= ;

volatile int v_y;

SP1

SP2spawn Task_2;

int y;

spawn Task_1;

(d)(a)

 =y;

(b)

y=v_y

 =y;

Task_1:
commit;

Task_2:y= ;

int y;

BP1

BP2

BP2

BP1
S1();

S1();

if(i>99)

i=i+1;

goto loop;

loop:

   goto lend;

lend:

int i=0;

<LOOP BODY>

BP

if(i>99)
loop:

   goto lend;

commit;

i=i+1;

i=v_i;

lend:

goto loop;

v_i=i;

volatile int v_i;

int i=0;

v_i=i;

spawn Task_1;

Task_1:

SP

BP

<LOOP BODY>

(c)

Figure 2. Generating tasks out of a subroutine and its continuation, and out of loop iterations. In Charts (c) and (d), the loop

body is assumed to contain potential cross-iteration dependences.

variable will always be propagated to memory. Then, before the

continuation task is spawned, POSH copies y to v y. Inside the

continuation task, v y is read from memory and copied to y.

As Chart (b) shows, the spawn for the continuation task is

hoisted all the way up to after the update to v y (spawn point

SP1). It cannot be hoisted further due to the first constraint above.

The spawn for the subroutine task (Task 2) is hoisted up to right

after spawn point SP1. POSH does not hoist it earlier because of

the third constraint described above: since Task 2 is earlier than

Task 1 in sequential order and both tasks are spawned from the

same task, Task 2 should be spawned after Task 1 is spawned. A

valid alternative but possibly worse for parallelism is for Task 2 to

spawn earlier and for Task 1 to spawn from Task 2.

Figure 2(b) also includes the commit statements for the tasks.

Recall that a commit statement is placed at the end of each task,

which is right before the begin point of the next task.

Finally, Figure 2(d) shows the code from Chart (c) after trans-

formation. As in Chart (b), POSH introduces a volatile variable to

ensure that variable i is written to memory at every iteration and

read from memory by the successor iteration. Note that the spawn

for Task 1 can be hoisted only up to the beginning of the loop body

because of the execution equivalence constraint. POSH also inserts

the commit statement.

4.3 Prefetching Effects

The speedup of TLS comes from two effects: task parallelism and

data prefetching. Figure 3 shows how two TLS tasks, Task 1 and

Task 2 (Chart (a)) can benefit from parallelism and prefetching.

TLS benefits from parallelism when the two tasks run concurrently

(Chart (b)). TLS benefits from data prefetching when a task suffers

a cache miss on datum A, the task is then squashed, and later a

second task that will not be squashed obtains A from the cache.

This second task can be the re-execution of the squashed task or a

different task.

Figure 3(c) illustrates this effect when the task that benefits from

prefetching is the one that was squashed. In its first execution,

Task 2 suffers a miss on variable A. Later, due to a dependence

violation, Task 2 is squashed and restarted. In the re-execution,

when Task 2 accesses A again, it finds the data already in the cache.

Consequently, while there is little parallelism between Task 1 and

(a) Sequential Execution (b) Parallelism

Task 2

Task 1

o
v
e
rla

p

spawn

(c) Prefetching

Task 2

Task 2

execution

Task 1

Task 1

spawn

squash

re−execution

initial

load

time

Task 2

LD A

LD A

Figure 3. The two potential benefits of TLS: parallelism

and prefetching.

Task 2 in Figure 3(c), TLS speeds up the program because Task 2

benefits from automatic data prefetching.

Figure 4 shows a code snippet from the SPECint 2000 gap

application that illustrates prefetching. The while loop has loop-

carried dependences in hdP, hdL, and i. Consequently, existing TLS

compilers are unlikely to parallelize this loop. However, paralleliz-

ing this loop yields significant performance gains due to prefetch-

ing. Specifically, ProdInt() calculates the product of two integer

numbers. The numbers are stored in memory in a tree data struc-

ture. As a result, ProdInt() has poor locality and suffers many L2

misses. Fortunately, the squashed tasks bring in lines into the cache

that are very likely to be needed later.

i = HD_TO_INT(hdR);

  if ( i % 2 == 1 )  hdP = ProdInt( hdP, hdL );

  if ( i     >  1 )  hdL = ProdInt( hdL, hdL );

  i = i / 2;

}

while ( i != 0 ) {

Figure 4. Code snippet from the SPECint 2000 gap appli-

cation that illustrates prefetching.

POSH exploits prefetching implicitly. In addition, the profiler

tries to expose its effect. We examine the profiler next.



4.4 Profiler

The profiler runs the applications with the Train input set. The exe-

cution of the tasks is serial, does not assume any TLS architectural

support, and models only some rudimentary timing. In addition,

the profiling analysis is not tied to any number of processors; in-

stead, it assumes that an unlimited number of processor cores will

be available.

With so few constraints, the profiling framework is widely us-

able in a variety of circumstances. The profiler also models a sim-

ple cache (without modeling time) to estimate the number of L2

cache misses. The latter are used for prefetching analysis. Simulat-

ing a cache without modeling time introduces only a small over-

head. Overall, an average profiler run takes about 5 minutes on a

desktop.

4.4.1 Profiler Execution

The profiler assumes that every instruction executed takes CI cy-

cles, except for loads and stores that miss in the L2 cache, which

take CL2Miss cycles. It also assumes some constant overhead

for squashing a task and its successors and restarting the task

(Ovhdsquash), and for spawning a task (Ovhdspawn). With all

this information, the profiler can build a rudimentary model of the

TLS execution.

Let us consider an example (Figure 5-(a)). Although the profiler

executes the code sequentially, it assigns a time to each instruction

as if the tasks were executed in parallel. Specifically, when the

profiler executes the first instruction of Task 2, it rewinds the time

back to when the task would be spawned (T1) plus the spawn

overhead (Ovhdspawn).

NewCurrTime

T

execution

Task 1

ST Xst

LD X

initial

LD X

re−execution

CurrTime

spawn

spawnT

T Task 2

Task 2

Tend

(b)

Task 2

Task 1

spawn

2

+Ovhdspawn

T

1T

(a)

1

Figure 5. Example of profiler models.

For each spawn instruction, the profiler records the time and the

target task. For each store, it records the time and the address stored

to. When the profiler encounters a load to an address, it checks the

table of recorded stores to find the latest store that wrote to that

address. If the time of the load is less than the time of the store, the

profiler has detected a potential dependence violation. At this point,

the profiler conceptually squashes the consumer task and updates

the times of its instructions.

An example is shown in Figure 5-(b). In the figure, the profiler

executed the STX in Task 1 and assigned time Tst to it. Later,

the profiler encounters the LDX in Task 2 at a time that we

call CurrT ime. Since CurrT ime < Tst, it means that Task 2

needs to be squashed. As a result, the profiler updates the times

of all instructions in Task 2. In particular, the new LDX time is

NewCurrT ime:

NewCurrT ime =Tst + Ovhdsquash

+ CurrT ime − Tspawn − Ovhdspawn

− NL2Miss × (CL2Miss − CI)

In this formula, Tspawn is the time associated with the initial spawn

of Task 2, and NL2Miss is the number of L2 misses suffered by

the first execution of Task 2 until it reached LDX . With this

method, the profiler models the squash and re-execution with a

single sequential run.

4.4.2 Benefit of a Squashed Task

Based on the previous discussion, the profiler estimates the ex-

pected performance benefit of a squashed task. The benefit is a

combination of (i) any task overlap remaining after re-execution,

and (ii) prefetching effects, as follows:

Benefit =Overlap + Prefetch

=(Tend − Tst − Ovhdsquash)

+ (CL2Miss − CI) × ML2Miss

In the formula, Tend and Tst are the times when Task 1 finishes

and executes ST X, respectively (Figure 5-(b)). ML2Miss is the

number of misses suffered by the first execution of Task 2 until Task

1 executed ST X and squashed Task 2. This simple model assumes

that all these missing data will be re-accessed by Task 2 or another

non-squashed task.

4.4.3 Task Elimination

The profiler uses three criteria to identify the tasks that need to be

eliminated: task size, hoisting distance, and squash frequency. First,

due to the overhead of task spawning, small tasks are unlikely to

provide much benefit. Consequently, we eliminate a task if its size

is smaller than threshold Thsz and it spawns no other task. We treat

small tasks that spawn other tasks with care. The reason is that if

such small tasks can be hoisted significantly (see next criteria), their

callees would benefit substantially.

Second, we examine the hoisting distance, namely the number

of instructions between the spawn point of a task and the begin

point of that task. Short hoisting distances do not expose much

overlap between tasks, while long hoisting distances are likely to

introduce too many data dependences. Consequently, we eliminate

the tasks that have a hoisting distance smaller than Thmin hd or

larger than Thmax hd. This dynamic algorithm complements one

of our compiler steps that eliminated tasks that had small static

hoisting distances.

Finally, task squashes are very expensive. Consequently, we

eliminate tasks with an average number of squashes per task com-

mit that is higher than a squash threshold Thsq . However, based

on Section 4.4.2, we know that some squashes may result in a net

positive performance effect due to partial overlap or prefetching.

Consequently, we apply a correction to this rule. Specifically, if a

task to be eliminated due to squashes has a performance benefit

(Benefit as defined in Section 4.4.2) higher than a squash benefit

threshold Thsb, the task is not eliminated.



4.5 Software Value Predictor

There are some specific locations in the code where value predic-

tion has been shown profitable in previous studies (e.g., [9, 12, 22]).

In POSH, we use value prediction in three cases: some function re-

turn variables, loop induction variables, and some variables in loops

that have a behavior similar to induction variables. For these cases,

POSH uses a software value prediction scheme similar to the one

in [9]. Such scheme leverages the TLS dependence tracking hard-

ware to squash a task that used a wrong prediction.

5. Methodology

5.1 Simulated Architecture

Since there is no hardware platform that supports TLS, we tar-

get POSH to SESC, a cycle-accurate execution-driven simula-

tor [14]. The simulator models out-of-order superscalar processors

and memory subsystems in detail. The TLS architecture modeled

is shown in Table 1. It is a four-processor CMP with TLS support.

Each processor is a 3-issue core and has a private L1 cache that

buffers the speculative data. The L1 caches are connected through

a crossbar to an on-chip shared L2 cache. The CMP uses a TLS co-

herence protocol with lazy task commit and speculative L1 caches

similar to [15]. There is no special hardware for communicating

register values between cores.

Frequency 4 GHz ROB 132
Fetch width 8 I-window 68
Issue width 3 LD/ST queue 48/42
Retire width 3 Mem/Int/Fp unit 1/2/1
Branch predictor: Spawn Overhead 12 cycles

Mispred. Penalty 14 cycles Squash Overhead 20 cycles
BTB 2K, 2-way

L1 Cache: L2 Cache:
Size, assoc, line 16KB, 4, 64B Size, assoc, line 1MB, 8, 64B
Latency 3 cycles Latency 12 cycles

Memory:
Lat. to remote L1 at least 8 cycles Latency 500 cycles

Bandwidth 10GB/s

Table 1. Architecture simulated. All cycle counts are in
processor cycles.

In our evaluation, we report the speedups of this TLS CMP ar-

chitecture over the sequential execution of the original application

binaries running on a single-processor non-TLS architecture. The

non-TLS architecture has one 3-issue core, one L1 cache, and one

L2 cache like those in Table 1.

5.2 Profiler Parameters

Table 2 shows the parameters used to configure the profiler. We

assume 1 cycle per instruction and a 200-cycle execution for an

instruction that misses in L2. The latter is lower than the time to

get to memory because the architecture we model is an out-of-

order processor that can hide some of the latency by executing

independent instructions.

CI 1 cycle Thsz 30 instructions
CL2Miss 200 cycles Thmin hd 150 instructions

Thmax hd 5M instructions
Ovhdspawn 12 cycles Thsq 0.55
Ovhdsquash 20 cycles Thsb 0

Table 2. Profiler parameters.

In the rightmost column of Table 2, we show the threshold val-

ues used in our profiler. Thsz is set to 30 to prevent selecting very

small tasks. The minimum and maximum spawn distance thresh-

olds, Thmin hd and Thmax hd, respectively, are set to conservative

values. The squash threshold Thsq is set to 0.55, which means that

a task squashed more than about once out of 2 commits will typ-

ically be eliminated. Finally, we set Thsb = 0, so that no task is

eliminated if there is any benefit at all from squashing.

5.3 Applications Evaluated

We run the SPECint 2000 applications using the Ref data set. The

profiler uses the Train data set. All of the SPECint 2000 codes are

included except three that fail our compilation pass (gcc, perlbmk,

and eon — the latter because C++ is not currently supported).

The baseline binaries for sequential execution have no TLS

or any other additional instructions. For the TLS binaries, POSH

rearranges the code into tasks and adds extra instructions for spawn,

commit, passing live-ins through memory, and value prediction.

In both the TLS and non-TLS compilations, we first run SGI’s

source-to-source optimizer (copt from MIPSPro) on the SPECint

code. This pass performs partial redundancy elimination, loop un-

rolling, inlining, and other optimizations.

To accurately compare the performance of the different binaries,

we cannot simply time a fixed number of instructions. The reason

is that TLS binaries have more instructions. Instead, “simulation

markers” are inserted in the code of each binary, and simulations

are run for a given number of markers. After skipping the initial-

ization (typically over 1 billion instructions), a certain number of

markers are executed, so that the baseline binary graduates from

500 million to 1 billion instructions.

6. Evaluation

To evaluate POSH, we examine several issues: task selection, static

and dynamic task characteristics, memory behavior, prefetching,

and effectiveness of the profiler and value prediction.

6.1 Impact of Task Selection

To evaluate the performance impact of selecting tasks based on

different types of code structure, we conduct three experiments.

In the experiments, we select as tasks: (1) only subroutines and

subroutine continuations (Subr), (2) only loop iterations and loop

continuations (Loop), or (3) all such tasks (Subr+Loop). Figure 6.1

shows the speedup obtained by these three selection algorithms

over the sequential execution.
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Figure 6. Speedup of the TLS execution over the sequential

one for different task selection algorithms.

As shown in the figure, the best speedups are obtained when

both types of tasks are selected (Subr+Loop). With this task selec-



App. # of Subr # of Loops with # of Register Live-Ins # of Register Live-Outs
Tasks Loop Tasks All Subr Loop All Subr Loop

bzip2 6 11 3.1 3.0 3.1 4.3 5.6 4.1
crafty 38 4 6.6 6.6 8.0 8.0 8.0 9.0
gap 18 3 5.1 3.2 6.5 5.3 2.8 7.0
gzip 11 4 2.8 3.3 2.1 4.1 4.7 3.0
mcf 2 2 3.4 6.0 3.4 4.3 5.5 4.3
parser 95 35 6.7 9.3 1.6 8.4 11.7 2.2
twolf 15 4 3.8 5.0 2.6 3.8 5.0 2.6
vortex 105 1 7.0 7.0 9.0 5.1 5.1 9.0
vpr 0 2 12.1 0.0 12.1 13.8 0.0 13.8
Average 32.2 7.3 5.7 4.8 5.4 6.3 5.4 6.1

Table 3. Static task information.

App. # of Tasks (%) # of Instructions (%) Avg. Size (Insts) Busy
Success Restart Kill Success Restart Kill Success Restart Kill CPUs

bzip2 56.7 14.5 28.8 93.3 3.8 2.9 965.8 153.4 59.1 1.35
crafty 47.9 22.6 29.5 77.4 8.5 14.1 1175.0 271.9 346.9 1.74
gap 19.1 29.4 51.5 59.9 27.7 12.4 553.8 166.2 42.3 2.08
gzip 32.5 21.9 45.6 52.8 18.9 28.3 202.6 107.3 77.3 2.14
mcf 77.1 13.4 9.5 84.1 13.0 2.9 68.1 60.1 19.1 2.94
parser 35.7 24.5 39.8 67.8 20.6 11.6 279.9 124.0 43.0 1.86
twolf 65.7 14.4 19.9 88.7 7.3 4.0 308.7 116.5 45.5 1.67
vortex 54.0 24.8 21.2 81.1 9.6 9.3 391.4 101.0 114.1 2.27
vpr 22.7 28.5 48.8 56.2 28.8 15.0 334.9 136.8 41.5 2.82
Average 45.7 21.6 32.7 73.5 15.3 11.2 475.6 137.5 87.7 2.10

Table 4. Dynamic task information.

tion algorithm, TLS delivers speedups that reach 2.08 in mcf, and

have a geometric mean of 1.30. Of the other two algorithms, while

some applications perform better with Subr, others perform better

with Loop. Consequently, selecting only either Subr or Loop is not

enough to get the best results. In the rest of the paper, we use both

types of tasks.

These significant Subr+Loop speedups make POSH an attrac-

tive TLS compiler infrastructure, given that they are obtained in

a fully automated manner for hard-to-analyze, pointer-based pro-

grams such as SPECint.

6.2 Task Characterization

6.2.1 Static Information

Table 3 gives static information on the tasks selected by POSH after

all the passes, including the profiler. The second column shows

the number of subroutine and subroutine continuation tasks, while

the third column shows the number of loops whose iterations and

continuations are given out as tasks. The average figures for these

parameters are 32.2 and 7.3, respectively. Their relative value is

not surprising, given that SPECint applications usually have many

subroutine calls. Vpr is an interesting case, with only two static

loops, yet yielding a speedup of 1.41 with Loop (Figure 6.1).

The last two groups of columns show the average number of

register live-ins and live-outs, respectively, per task. These numbers

are small. On average, a task has about 6 register live-ins and 6

register live-outs.

6.2.2 Dynamic Information

Figure 7 shows the cumulative distribution of the dynamic size of

tasks that commit. The bulk of the committing tasks have 50-500

instructions and seldom have more than 4,000 instructions.
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Figure 7. Distribution of the average size of dynamic tasks

that commit, in number of instructions.

Table 4 shows information on the dynamic behavior of tasks.

Tasks are grouped into those that successfully commit (Success),

those that cause a dependence violation and have to be re-executed

(Restart), and those that are successors of Restart tasks and, there-

fore, are killed (Kill). Columns 2-4 show the fraction of tasks of

each type, while Columns 5-7 show the fraction of instructions be-

longing to each type of task, and Columns 8-10 show the average

size of the tasks of each type.

The table shows that slightly over 50% of the dynamic tasks

get restarted or killed. Since the restarted or killed tasks do not

typically run to completion, they correspond to only around 26% of

all the instructions executed. The table also shows that the average

size of the tasks that commit is 476 instructions, while tasks that

get restarted or killed are on average much smaller.



The last column of Table 4 shows the number of busy CPUs.

On average, there are 2.10 busy CPUs. As shown in the previous

columns, some of the work is wasted in restarted and killed tasks.

6.3 Memory System Access Characterization

To gain insight into the speedups delivered by TLS, we analyze the

memory system accesses. Figure 8 breaks down the read requests

according to where they are satisfied from. A read request can be

satisfied by the processor’s load/store queue (Forwarded), the local

L1, a remote L1 (only for TLS execution), the L2 cache, and main

memory. For each application, Figure 8 shows the number of read

requests for the sequential (S) and TLS (T) executions. The bars are

normalized to the sequential execution. In the TLS execution, only

reads from committed tasks are considered.
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Figure 8. Distribution of where the reads are satisfied from.

In the figure, S and T refer to sequential and TLS execution,

respectively.

The figure shows that the TLS execution has more reads. On av-

erage, it has about 20% more reads. This is because the TLS binary

code is less efficient, as the compiler has a hard time optimizing

across task boundaries. Moreover, the TLS binary adds instructions

to pass task live-ins through memory. The figure also shows that, in

both sequential and TLS execution, most of the reads are satisfied

by the L1. However, in TLS, some of these accesses are satisfied by

a remote L1. Overall, TLS execution is less efficient in that it has

more reads and, on average, they take longer to complete.

The most expensive reads in Figure 8 are those that go to main

memory. Figure 9 considers such reads for the TLS execution.

They are labeled Committed in the figure, and are normalized to

the number of reads to main memory under sequential execution.

The figure also stacks up the reads to main memory issued by

squashed tasks. Such reads can bring useless data into the caches

(Wasted), or can bring useful data that are reused by a committed

task, either from the L2 cache or from the L1 cache (Prefetch to L2

and Prefetch to L1, respectively). Interestingly, Figure 9 shows that

the number of reads to main memory by squashed tasks that end

up prefetching data into L2 or L1 is significant. On average, they

account for slightly less than 20% of the reads to main memory.

These reads largely represent the prefetching effect of squashed

tasks.

Note that these measurements do not include the small prefetch-

ing effect of write misses to memory by squashed tasks. While a

write miss brings data into both L1 and L2, only L1 is updated.

Since the L2 line remains clean, when the task is squashed, the L2

line is not invalidated. Such line could later be reused by a commit-

ted task. In practice, however, write misses are much less frequent
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Figure 9. Total reads to main memory by committed and

squashed tasks in TLS execution. The bars are normalized to

the number of reads to main memory in sequential execution.

than read misses. Therefore, accounting for their prefetching effect

into L2 would not change our analysis significantly.

6.4 Contribution of Prefetching to TLS Speedup

The prefetching effect of squashed tasks contributes to the speedup

of TLS execution. To see its contribution, we simulated a TLS exe-

cution where the data brought in by the Prefetch to L2 and Prefetch

to L1 reads of Figure 9 are marked as invalid. Consequently, they

are not reused, and committed tasks have to re-request them from

main memory. We call this execution TLS NoPrefetch. Figure 10

compares the speedup of TLS NoPrefetch and TLS over sequential

execution. The difference between the two bars is the effect of data

prefetching induced by TLS.
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Figure 10. Speedup of TLS NoPrefetch and TLS over se-

quential execution.

From the difference between the two bars, we see that most ap-

plications benefit from this type of prefetching. The application that

benefits the most is gap. If we focus on the section of the geomet-

ric mean bars that is above 1, we see that TLS NoPrefetch is about

one quarter lower than TLS (i.e. 1.30−1.22

1.30−1.00
= 0.26). Consequently,

we conclude that, roughly speaking, about one quarter of the TLS

speedup comes from prefetching and the rest from parallelism.

6.5 Effectiveness of the Profiler

To assess the effectiveness of the profiler, we compare the TLS code

generated by POSH with and without the profiling pass. Figure 11

shows the speedups of such codes over the sequential execution.

The figure shows that, without the profiler, the TLS execution

obtains a minor average speedup of 1.04. If we apply the profiling

pass, we obtain the 1.30 average speedup already presented in

Section 6.1.

Table 5 gives insight into why the profiling pass is necessary in

POSH. The table shows the number of static tasks before and after
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Figure 11. Speedup of TLS with and without the profiling

pass over the sequential execution.

the profiling pass. Following Table 3, the figures in Table 5 add up

the number of subroutine and subroutine continuation tasks, and

the number of loops whose iterations and continuation are given

out as tasks. From the table, we see that the profiler reduces the

average number of such tasks from 198 to 39. Most of the tasks

eliminated are small tasks, tasks that have little hoisting, and tasks

that cause violations. In the current organization of POSH, we rely

on the profiler to identify these tasks. For this reason, the profiling

pass is needed for good performance.

App. #Tasks Before #Tasks After
Profiling Profiling

bzip2 120 17
crafy 424 42
gap 78 21
gzip 57 15
mcf 22 4
parser 587 130
twolf 75 19
vortex 396 106
vpr 26 2
Average 198.3 39.5

Table 5. Number of static tasks before and after the profil-
ing pass.

6.6 Effectiveness of Value Prediction

Finally, we consider the effectiveness of our value prediction tech-

niques. Figure 12 shows the speedup of TLS with and without value

prediction over the sequential execution. On average, the applica-

tions run about 7% slower if POSH does not use value prediction.

Consequently, we recommend its use.
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Figure 12. Speedup of TLS with and without value predic-

tion over the sequential execution.

This average hides variations across applications. For example,

vpr runs 31% slower without value prediction. According to Ta-

ble 3, there are only two static loops selected to generate tasks

in vpr. The induction variables of these two loops are highly pre-

dictable, and the loops show good parallelism. Prediction is needed

in these two cases because the induction variable updates occur

within an if-then-else statement — a solution like that in Fig-

ure 2(d) is not feasible.

On the other hand, some applications are hurt by value pre-

diction. For example, parser runs about 5% faster without value

prediction. The overhead of inserting extra instructions to support

value prediction is not compensated by the performance gains in

this application.

7. Related Work

Several compiler infrastructures for TLS have been proposed but

differ significantly in their scope. The Multiscalar compiler [21]

selects tasks by walking the Control Flow Graph (CFG) and accu-

mulating basic blocks into tasks using a variety of heuristics. The

task selection methodology for the Multiscalar compiler was re-

cently revisited by Johnson et al. [7]. Instead of using a heuristic

to collect basic blocks into tasks, the CFG is now annotated with

weights and broken into tasks using a min-cut algorithm. These

compilers assume special hardware for dispatching threads; they

do not specify when a thread should be launched.

A number of compilers focus only on loops [4, 5, 20, 24]. In

SPSM [5], loop iterations are selected by the compiler as spec-

ulative threads. An interesting part of the work is the use of the

fork instruction, very similar to our spawn instruction, that allows

the compiler to specify when tasks begin executing. In addition,

SPSM recognized the potential benefits from prefetching but pro-

posed no techniques to exploit it. Du et al. [4] present a cost-driven

compilation framework to statically determine which loops in a

program deserve speculative parallelization. They compute a cost

graph from the control flow and data dependence graphs and esti-

mate the probability that misspeculation will occur along different

paths in the graph. The cost graph, in addition to a set of criteria,

determine which loops in a program deserve speculation.

Bhowmik and Franklin [1] build a framework for specula-

tive multithreading on the SUIF-MachSUIF platform. Within this

framework, they consider dependence-based task selection algo-

rithms. Like Multiscalar, they focus on compiling the whole pro-

gram for speculation, but allow the compiler to specify a spawn

location as in SPSM. Mitosis [13] also focuses on parallelizing

hard-to-analyze applications. A feature of Mitosis is that it gener-

ates pre-computation slices to predict the live-ins of tasks. Since

the compiler does not need to guarantee the correctness of the pre-

computation slices, it performs aggressive optimizations to reduce

their overhead.

In each of the above efforts, the compiler statically splits the

program into tasks leveraging varying degrees of dependence anal-

ysis. In addition, all of these approaches use profiling to guide their

task selection by collecting probabilities for common execution

paths. In POSH, we use the program structure to identify tasks. We

also use profiling to eliminate some tasks after the compiler has

identified the tasks. Moreover, the profiler is prefetching-aware.

Some work has used dynamic information to improve selection

of tasks for TLS [2, 10, 23]. Jrpm [2] decomposes a Java program

into threads dynamically using a hardware profiler called TEST.



While the program runs in TEST, they identify important loops that

will provide the most benefit due to speculative parallelization and

recompile them with dynamic compilation support. POSH is differ-

ent from Jrpm in three aspects. First, POSH does not rely on a hard-

ware profiler. Second, POSH considers both loops and subroutine

continuations. Third, POSH takes into account prefetching effects

in the profiling pass. Marcuello and Gonzalez [10] use profiling to

identify tasks but are primarily interested in thread-spawning poli-

cies. POSH uses the profiling pass to refine a set of tasks already

selected by the compiler. Concurrently to our work, Whaley and

Kozyrakis [23] describe a scheme similar to POSH’s profiler. They

also identify the profiler as a convenient and effective technique to

improve task selection, and they show that simple profiling tech-

niques can provide large performance gains. However, they only

consider subroutine continuations as tasks, and they do not con-

sider prefetching effects in their profiler.

Many other works have looked at optimizations for speculative

threads. Chen et al. [3] calculate a probability for each points-

to relationship that might exist for a pointer at a given point in

the program. This probability can be used to determine whether

a squash is likely to occur due to a memory-carried dependence.

Zhai et al. [24] are concerned with task selection but primarily

for replacing dependences with synchronization and alleviating the

associated synchronization overheads. Oplinger et al. [12] look for

the best places within an application to speculate. One important

contribution is the use of value prediction to speculate past function

calls. We have incorporated some of the techniques from [24]

to move data dependences as far apart as possible, and we have

exploited the benefits of return value prediction as reported in [12].

8. Conclusions

A promising approach to leverage CMPs to speed-up hard-to-

analyze codes such as SPECint is to design architectures and com-

pilers for TLS. This paper has focused on TLS compilation and

made three main contributions.

First, this paper presented POSH, a new TLS compiler built

on top of gcc. POSH leverages the structure of the code (loop

iterations and subroutines of any nesting level) to generate tasks,

and uses a profiling pass to discard ineffective tasks. Second, this

paper showed that, through speculative parallelization, POSH can

significantly speed-up hard-to-analyze applications. Specifically,

whole SPECint 2000 applications running on a simulated TLS

CMP with 4 superscalar cores are sped up by 1.30 on average.

Finally, this paper performed a detailed characterization of speedup

sources and task behavior. In particular, it found that, for best

performance, both subroutine and loop iteration parallelism should

be exploited. Moreover, an estimated 26% of the TLS speedup is a

result of the implicit data prefetching provided by squashed tasks.
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