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Abstract

We address the verification problem of finite-state concuinpeo-
grams running under weak memory models. These models eaptur
the reordering of program (read and write) operations dgnmad-
ern multi-processor architectures for performance. Thiieation
problem we study is crucial for the correctness of concuydn
braries and other performance-critical system serviceslayimg
lock-free synchronization, as well as for the correctnéssmpiler
backends that generate code targeted to run on such atarétec
We consider in this paper combinations of three well-known
program order relaxations. We consider first the “write tad'e
relaxation, which corresponds to the TSO (Total Store Omdgr
model. This relaxation is used in most hardware architestavail-
able today. Then, we consider models obtained by addingreith
the “write to write” relaxation, leading to a model which issen-
tially PSO (Partial Store Ordering), or (2) the “read to reade”
relaxation, or (3) both of them, as it is done in the RMO (Rethx
Memory Ordering) model for instance.

We define abstract operational models for these weak memory

models based on state machines with (potentially unboyrieleeD
buffers, and we investigate the decidability of their resdiility and
their repeated reachability problems.

We prove that the reachability problem is decidable for t8BOT
model, as well as for its extension with “write to write” refa
ation (PSO). Furthermore, we prove that the reachabilibplem
becomes undecidable when the “read to read/write” relemas

added to either of these two memory models, and we give a con-

dition under which this addition preserves the decidabitit the
reachability problem. We show also that the repeated réddlya
problem is undecidable for all the considered memory models

Categories and Subject Descriptors  D.2.4 [Software Engineer-
ing]: Software/Program Verification.

General Terms Verification, Theory, Reliability.
Keywords Program verification, Relaxed memory models, Infi-
nite state systems, Lossy channel systems.

1. Introduction

Shared-memory multiprocessor architectures are now itbigg
For performance reasons, most contemporary multiproce#se

plement relaxed memory consistency models [Adve and Ghara-
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chorloo 1996]. Such memory models relax the ordering guaesn

of memory accesses. For example, the most common relaxation
that writes to shared memory may be delayed past subseqasts r
from memory. This write-to-read relaxation is commonlyiatited

to store bufferdetween each processor and the main memory. The
corresponding memory model is historically called TSO téal-
store-order. Similarly, many models relax under certaimditions
read-to-read order, read-to-write order, and write-tdenorder.

Programmers usually assume that all accesses to the shared
memory are performed instantaneously and atomically, kvisc
guaranteed only by the strongest memory model, sequemtial ¢
sistency (SC) [Lamport 1979]. Nevertheless, this asswonps in
fact safe for most programs. The reason is that the recomedend
methodology for programming shared memory (namely, to use
threads and locks in such a manner as to avoid data races)-is us
ally sufficient to hide the effect of memory ordering relaaas.
This effect is known as the DRF guarantee, because it aptlies
data-race-free programs.

However, while very useful for mainstream programs, the DRF
guarantee does not apply in all situations. For one, theeémph-
tors of the synchronization operations need to be fully anafr
the hardware relaxations to ensure sufficient orderingajiaes
(it is their responsibility to uphold the DRF guarantee)r Eg-
ample, Dekker’s mutual exclusion protocol does not functior-
rectly on TSO architectures (Fig. 1). Secondly, many caomnay
libraries and other performance-critical system servigegh as
garbage collectors) bypass conventional locking protacol em-
ploy lock-free synchronization techniques instead. Sugbrahms
need to be aware of the memory model. They may either be im-
mune to the relaxations by design, or contain explicit megnuo¥
dering fences to prevent them. Most algorithms choose titer la
option; however, two recent implementations of a work-stga
queue [Michael et al. 2009, Leijen et al. 2009] are using r@igms
that are specifically written to perform well on TSO architees
without requiring fences.

Reasoning about the behavior of such algorithms on relaxed
memory models is much more difficult than for sequentiallp-co
sistent memory, and it is not clear how to apply standardordag
techniques or finite-state abstractions. This highlighésrteed for
more research on automatic verification techniques fornarag on
relaxed memory models [Burckhardt et al. 2007, Huynh and-Roy
choudhury 2006, Park and Dill 1995, Yang et al. 2004].

Classic results show that for finite-state programs under SC
the reachability problem, as well as the repeated readtyaibb-
lem (relevant for checking liveness properties), are b@RACE-
complete [Sistla and Clarke 1985]. To our knowledge, no@nal
gous decidability/complexity results are known for reldxaem-
ory models. We thus investigate in this paper the verificagimb-
lem for several variations of shared-memory systems withraint
relaxations.

We start by building a formal model of concurrent finite-stat
programs executing on a TSO system that is, a shared-meysry s



Initially: X=Y =0
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Figure 1. Snippet of Dekker’s mutual exclusion protocol (top).

is always bounded (and can be encoded using strong symhbks in
channels).

1.1 Relation to Commercial Multiprocessor Architectures

In general, it is quite difficult to establish a precise relaship
between abstract memory models (described as a colledtia@ o
laxation rules in the style of [Adve and Gharachorloo 1936ij
actual memory models of commercially available multipssmes.
Many of those models are not fully formalized. The officiaésp
ifications are often quite complicated, incomplete, and etomes
simply incorrect [Owens et al. 2009]. Since the goal of trapgr
is foundational research, we focus on building precise amgle
models that contain just a few of the most common relaxations
Our main model (a shared-memory system withithe- r re-
laxation) corresponds to the SPARC TSO weak memory model
[Weaver and Germond 1994] and the latest formalizationek86

The sequence (bottom) is possible on most contemporaryi-mult Memory model, x86-TSO [Owens et al. 2009). Traditionallgr

processors and shows how the protocol fails to achieve rhetua
clusion on TSO.

tem with thew — r relaxation. This model consists of a finite-state
control representing the local program states of each dhatang
with unbounded FIFO queues representing the contents sfdhe
buffers. Note that although the store buffers in actual rmeshare
necessarily finite, we may not assume any fixed bound, so a-finit
state model is not sufficient to verify a general algorithm tiis
point, it is not clear yet whether the reachability/repdateach-
ability problems is decidable at all, because general FIE€ug
automata are Turing powerful.

To solve this problem, we establish a close connection ketwe
TSO systems antbssyFIFO channel machines. Specifically, we
first prove that TSO systems can be simulated by lossy FIF@-cha
nel machines, which implies that their control point reduligy
problem is decidable [Abdulla and Jonsson 1993]. The tediosi
to lossy channel machines is not trivial since turning sin{piSO)
store buffers to lossy channels is obviously unsound. Qaelg

is specified using both formal axiomatic and informal opersl
descriptions [Burckhardt and Musuvathi 2008. Extendedsider
as Tech Report MSR-TR-2008-12, Microsoft Research, Padk an
Dill 1995, Sindhu et al. 1991, Weaver and Germond 1994]. &qui
alence proofs of the two appear in [Owens et al. 2009] andfhe a
pendix of [Burckhardt and Musuvathi 2008. Extended Versisn
Tech Report MSR-TR-2008-12, Microsoft Research]. Our aper
tional model follows the general structure of those modeal$ ¢dds

a finite-state control to represent the program state). Mateour
operations are sufficient to model most synchronizationmatfpns

on SPARC TSO and x86-TSO: the atomic read-write can represen
the atomic SWAP, LDSTUB, and CAS instruction on SPARC TSO
and locked operations on x86-TSO, and it can simulate adoltté
(because a fence is equivalent to executing an atomicweielto

an irrelevant location).

1.2 Related Work

Previous work on verifying programs on relaxed memory medel
has used underapproximation to keep the problem finite;stad
falls into two categories: (1) explicit-state model chagkwith op-
erational finite-state models [Huynh and Roychoudhury 2666k

we prove that TSO systems can simulate lossy FIFO channel ma-and Dill 1995], and (2) bounded model checking with axiomati

chines, which implies that the complexity of their reactighprob-
lem is non-primitive recursive [Schnoebelen 2002] and it re-
peated reachability problem (and therefore their verificaprob-
lem for liveness properties) is undecidable [Abdulla ands3on
1994].

memory models [Burckhardt et al. 2007, Yang et al. 2004]. Our
work, in contrast, precisely handles the infinite stateoihticed by
unbounded store buffers.

Much previous work has also addressed the loosely related, b
qualitatively quite different problem of verifying whetha hard-

Next, we consider models obtained by adding either (1) the ware implementation properly implements a given memoryehod

w — w relaxation (leading to a model which is essentially PSO),

or (2) ther — r/w relaxation, or (3) both of them (as it is done in
the RMO model for instance).

In fact, it is not difficult to show that all the results for TSO
hold also for its write-to-write relaxation (PSO). Moreoveve
prove that adding the — r/w relaxation to either TSO or PSO
makes the reachability problem undecidable. This is dueh¢o t
fact that allowing writes to overtake reads amounts to gdess
each delayed read operation the value it will have later wihen
will be executed. Then, undecidability comes from the féett t

there might be an unbounded number of such guessed read value

Intuitively, allowing writes to overtake an unbounded naniof

reads requires memorizing unbounded sequences of values (t

guessed read values) in order to validate of them later, and
this requires in some sense the usepeffectunbounded FIFO
queues (instead of lossy ones). However, when we imposeathat

For instance, it is known to be undecidable whether a firtaes
memory system implementation guarantees sequentialstensy
[Alur et al. 1996]. Compared to our work, the latter work coRs
ers a tougher correctness condition (sequential consisiastead
of reachability) but a simpler model of the hardware (finitates
instead of FIFO queues). For practical purposes, apprdiienal-
gorithms [Roy et al. 2005, Baswana et al. 2008] and the “TS0To
[et al. 2004] are useful to check whether a given individualogi-
tion trace satisfies the desired memory model, a problemhaikic
known to be NP-complete for SC [Gibbons and Korach 1992].

2. Preliminary definitions and notations
Letk € N such thak > 1. Then, we denote b the set of integers
{1,...,k}.

Let = be a finite alphabet. We denote By (resp.=") the set

each point in time the number of guessed read values is bdunde of all words (resp. non empty words) ovér, and bye the empty

then the state reachability problem becomes decidablen(dya
reduction to the reachability in lossy channel machines}esthe
amount of information that needs to be stored in a “perfecthner

word. We denote by, the se U {e}.
The length of a wordv is denoted bytength(w). (We assume
thatlength(e) = 0.) For everyi € [length(w)], let w(i) denote the



symbol at position in w. Fora € Z andw € Z*. We writea € w if
aappears iw, i.e.,3i € [length(w)] s.t.a=w(i).

Given a sub-alphabé C ¥ and a wordu € Z*, we denote by
U|o the projectionof u over @, i.e., the word obtained frora by
erasing all the symbols that are not@n

A substitutiono overZ is a mapping fronk to . We writew[o]
to denote the word such that for evarg [lengthw)], wio](i) =

o(w(i)).This definition is generalized to sets of words as follows:

ForeveryL C 2*, L[o] = {w[o] | we L}.

Assume thak = {ay,...,an}. Then, to define the substitutian
applied to a wordv, we use the notatiow[o(a;)/as,...,0(an)/an]
where, for the sake of conciseness, we an(#;)/a; wheno(a) =

a;, for anyi € [n]. This notation is extended straightforwardly to

sets of words.

Letk > 1 be an integer andl be a set. Lee= (ey,...,&) € EK
be ak-dim vector ovelE. For everyi € [K], we usee]i] to denote the
i-th component oé (i.e.,€[i] = g). For everyj € k] and€ € E, we
denote bye[j < €] thek-dim vectore’ over E defined as follows:
€[j]=¢€ and€[l]=¢€]l] forall | # j.

Let E andF be two sets. We denote ¥ — F] the set of
all mappings fromE to F. Assume that is finite and thatt =

{e1,...,&} for some integek > 1. Then, we sometimes identify a

mappingg € [E — F] with ak-dim vector overF (i.e., we consider
thatg € FX with g[i] = g for all i € [k]).

3. TSO/PSO concurrent systems
We introduce in this section an operational semantics focao

rent systems under the TSO memory model (correspondingeto th
w — r program order relaxation). A similar operational model can

be defined in order to take into account beth— r andw — w
relaxations, leading to the PSO memory model.

3.1 Shared memory concurrent systems

Let D be a finite data domain, and [Et= {xi,...,xm} be a finite
set of variables valued iD. From now on, we denote by the set
D™, i.e., the set of all possible valuations of the variableX.in

Then, for a given finite set of process identitietet Q(1,D, X)
be the smallest set of operations which contains (1)tbeopera-
tion” nop, (2) theread operations(i, x,d), (3) thewrite operations
w(i,x,d), and (4) theatomic read-write operationsrw(i,x,d,d’),
wherei € |, x€ X, andd,d’ € D.

A concurrent systeroverD andX is a tupleal = (1, ...,%n)
where for everyi € [n], i = (R,4) is a finite-state process
where (1)R is a finite set of control states, and (&) C P x

Q({i},D,X) x B is a finite set of labeled transition rules. For con-

venience, we writepﬂq p instead of(p,op,p’) € 4, for any
p,p’ € R andope Q({i},D,X).

The behaviors of concurrent systems are usually defineddcco

ing to the interleaving semantics. The weak semantics spored-

ing to thew — r program order relaxation is obtained by allowing

that read operations “overtake” (along a computation)e\xsjiera-
tions performed by the same process when these operatinosrco
different variables, i.e., a sequence of operatiofisy,d’)r(i,x,d)
(executable from left to right), whepe# y, can always be replaced
by the sequence(i,x, d)w(i,y,d’). However, in this semantics the

order between write operations performed by the same Boces

must be maintained, and each atomic read-write is consldese

an operation that cannot permute with no other operatiomgf a

kind. Moreover, a “cancellation rule” is applied which cists in
considering that any sequeneéi,x,d)r(i,x,d) of a write followed

3.2 An operational model for TSO

Our operational model consists in associating with eacltge®
a FIFO buffer. This buffer is used to store the write operaio
performed by the process\ite to store). Memory updates are
then performed by choosing nondeterministically a proeeskby
executing the first write operation in its buffauddate). A read
operation by the process to the variablex; can overtake the
write operations stored in its own buffer if all these opienag
concern variables that are different froqn(Read memory). When
the buffer contains some write operations g then the read
value must correspond to the value of the last of such a write
operation Read own write). Finally, atomic read-write operation
can be executed only when the buffer is emptR\).

Let us now define formally the model. LBt=P; x --- x P, and
for everyi € [n], letB; = {i} x [m] x D be the alphabet of the store
buffer associated wittr;. A configurationof A is a tuple(p,d, u)
wherep € P,d € M, andu € B] x --- x Bfj is a valuation of the store
buffers.

We define the transition relatios-, on configurations of\(
to be the smallest relation such that, for evprp’ € P, for every
u,u’ € B} x --- x By, and for evenyd,d’ € M, we have(p,d,u) =,
{p,d’,u’) if there is ani € [n], and there are, p’ € R, such that
pli] = p, p’ = p[i < p], and one of the following cases hold:

1. Nop: p—24;p/,d=d’, andu = u'.
2. Write to store: pMi P, U =ufi < (i, j,d)uli]], andd =
d.

3. Update: p=p/, and3j € [m]. 3d € D. u = U'[i < U'[i](i, j,d)]
andd’ =d[j < d]

4. Read: p —>r(i"xj )

* Read own write: Jug,Up € B (ufi] = uy(i,j,d)u, and
Wik d) €y k£ ).

¢ Read memory: V(i,k,d’) € u[i]. k# j, andd[j] = d.

arw(i.xj,d,d’

ip,d=d,u=u,and

5. ARW: p L, uli] = & u =, andd[j] = d, and

d' =d[j — d.

Let="* denote the reflexive-transitive cIosure@fN.

In the rest of the paper, we cdil — r)-relaxed memory system
a concurrent systermy with the operational semantics induced by
the transition relatiors, defined above.

3.3 Adding thew — w relaxation

The w — w relaxation consists in allowing that write operations
overtake other write operations by the same process if theyern
different variables. The consideration of bath— r andw — w
relaxations leads to a memory model which is essential\PB©
model.

An operational model fofw — r/w)-relaxed memory systems
can be defined by modifying the model in the subsection 3.2 so
that each process hasstore buffers instead of a single one (one
per variable). Then, two consecutive write operation(s,x;,d)
andw(i,x,d’) by the same process are stored in two different
buffers, which allows to reorder these write operations. aivet
here the formal description of the model since it should béequ
obvious to the reader.

3.4 Reachability problems
We assume that we are giveva — r)-relaxed memory system.

by a read of the same value to the same variable by the same pro-Then, thestate reachability probleris to determine, for two given

cess is equivalent to the operatiafi,x,d). In the next section, we
define an operational model that captures this weak memodgmo

vectors of control stateg,p’ € P, and two given memory states
d,d’ € M, whether(p,d, ") é;[ (p’,d’,eM).



The repeated state reachability probleia to determine, for
givenp,p’ € Pandd,d’ € M, whether there is an infinite sequence
{Po,do, Uo) (p1,d1,u) - such that: (1Xp,d,e") = (po.do, Uo),
and (2)(pi, di, ui) = (Pit+1,di1,Uisa), Pi = P’ andd; = d’ for
alli >o0.

The definitions of the two problems above can be extended
straightforwardly to the case @fv — r/w)-relaxed memory sys-
tem. We address in the next sections the decidability oktipesb-
lems.

Notice that we consider in the definition of the state reaiitab
problem that the buffers at the targeted configuration meispty
instead of being arbitrary. This is only for the sake of siicip
and does not constitute at all a restriction. Indeed, we taws
that the “arbitrary buffer” state reachability problem educible
to the “empty buffer” state reachability problem. The iddahe
reduction is to add to the system a special process, let Ug cal
(for observer), that guesses nondeterministically the emirwhen
the system reaches the targeted control and memory statesd-A
ditional shared variable is used as a flag. This flag is (1) ke
by all the original processes in the system before each af dipe
erations, and (2) it is switched (using an atomic read-vojiera-

guards ovelC. The definition of|= is extended to regular guards
overC and to mappings fron® to >* as follows: For evenyg €
Guard(C) andu € [C — Z*], we writeu |= giff u(c) = g(c) for all
ceC.

Operations. For a given channet € C, a channel operatioron
c is either anop (no operation), or an operation of the forfa
(receive) for some € , or of the formc[o]!a (send), whera € X
ando is a substitution oveX. We write simplyclainstead of[o]!a
whenao is the identity substitution.

The operatiorc?a checks if the first element af is equal to
a and then erases it, whereelg]!a applies the substitutioo to
¢ and then adds to the end of the channel (as the last element).
Formally, we associate with each operation a relation oveds/
(channel contents) as follows: For evary/ € *, we have (1)
[nop](u,u) iff u=u, (2) [c[o]!a])(u,u) iff U =a-u[o], and (3)
[c?a]j(u, ) iff u=u"-a.

A channel operation oveZ is a mappingp that associates with
each channet € C a channel operation on Let Op(C) be the set
of channel operations ov€r. The definition of - ]] is extended to
channel operations ov€& and to pairs of mappings frod to ~*
as follows: For everg € Guard(C) andu,u’ € [C — Z*], we have

tion) by o when it guesses that the target state is reached in order [[op]](u,u’) if and only if [op(c)]|(u(c),u’(c)) holds for allc € C.

to signal to the other processes that they must stop theipatan
tions (and stay at their control location). After switchitig flag,

4.2 FIFO channel machines

the proces® checks that the memory state is indeed the targeted A channel machinés a tupleas = (Q,C,%,A,A) whereQ is a

one. Then, since the buffers can always be flushed by exegcaitin
pending write operations (which potentially modifies thenmoey
state but keeps unchanged the control states of all prajegsf-
fices to check (as an “empty buffer” state reachability peab)lthat
each process is at its targeted control state (and some mahate
among the finitely many possible states).

4. Perfect/Lossy Channel Machines
FIFO channel machines are finite control machines suppligd w

unbounded FIFO queues on which they can perform send and

receive operations. When the channels lassy symbols in the

channels can be lost at any position and at any time. We give

in this section the formal definition of these machines, amd w
recall results concerning the decidability and the comipteaf
their reachability and repeated reachability problems.

In fact, we need to use in this paper a version of these maghine
which extends (syntactically) the basic version usuallysidered
in the literature (e.g., in [Abdulla and Jonsson 1993, 19%8eh-
noebelen 2002]). In our version, machines can also cheakaeg
constrains on the channels, and apply a substitution onaigmob-
curring in the channels. Moreover, we admit that there isumtded
number of special symbols (called strong symbols) that cabe
lost by the channels. The extensions that we consider donrot i
crease the power of the lossy channel machines, but theysafelu
for describing our results in the next sections.

4.1 Channel constraints and operations

finite set of control state<C is a finite set of channels; is a
finite channel alphabet) is a finite set of transition labels, and
A C Qx Ng x Guard(C) x Op(C) x Q is a set of transitions. We

write q [’g—lo')m q instead of(g,¢,9,0p,q ) € A.

A configurationof 4/ is a pair(g,u) whereq € Q andu €
[C — Z*]. Let Conf(ar) denote the set of configuration of.
Given a configuratiory = (q,u), let Statdy) = g. This definition
is generalized to sequences of configurations as followse¥ery
Y1,---,Ym € Conf(ar), Statéys - - ym) = Statdy; ) - - - Statéym).

For everyl € /¢, the transition relatioaéw, between config-
urations ofa/, is defined as follows: For everyq € Q andu,u’ €

[C— Z*], (g,u) :€>M (d,u’) if and only if there isqé’g—mpmq’

such thatu = g and [[op]|(u,u’). Let =,,= Uren, éM and let
=, be the reflexive-transitive closure ef .

Given(qg,u), (¢, u’) € Conf(as), afinite runp of ar from (g, u)
to (d,u’) is a finite sequencédp, Up)?1(a1,U1)¢2- - ¢m{0m,Um)
such that the following conditions are satisfied: ()= q and

4
Gm =, (2) Uo = u andum = u’, and (3){0i—1,Ui—1)==4, (0, Ui)
for all i € [m] . Thetraceof a finite runp is the sequence of labels
pla- We write{(q,u) :)‘>M (¢,u’) when there is a rup from (g, u)
to (¢, u’) with a traceh (i.e.,p|p = A).

Letg,q € Q be two control states. We denote Byq) () the
set of traces of all finite runs off from the configuratior{q, &/°!)
to the configuratioriq, €/Cl).

Given a control statg € Q, aninfinite runof ar starting from

Let C be a set of channels. We consider that the content of eachq s an infinite sequencép, Up)¢1(a1,us)f2--- such thatgg = q,

channel is a word oveX (i.e., an element at*).

Guards: For a given channet € C, aregular guardon c is a
constraint of the form ¢ € L”, where L C Z* is a regular set
of words. Given a guardc'e L", and a wordu € ¥, we write
ulE“cel”ifandonlyifuelL.

For notational convenience, we write (1 € ¢ instead of
“ce Xfax*”, (2) “c=¢" instead of ‘t € {€}", and (3) ‘c: A"
instead of € € A*”, forany AC Z.

A regular guard ove€ is a mappingg that associates a regular
guard with each channele C. Let Guard(C) be the set of regular

uo = €€, and(gi_1,ui_1)=25, (G, uj) for alli > 1.

4.3 Lossy Channel Machines

In this section, we define the semantics of channel machihesw
the channels may loose some of their contents.

Subword relations; Let <C Z* x 2* be thesubword relation
defined as follows: For every = a;---ap € Z*, and everyv =
by --bm € Z*, u 2 vif and only if there ardy,...,in € [m] such
thati; <i» <...<ipandaj = by, forall j € [n].



Let SC X be a set of §trong symbolsand letk € N. Then, for
everyu,v e 2*, letu j'év hold if and only ifu < v, uls = v|s, and
length(uls) < k. (Notice that<)==<.)

4.4 Product of channel machines:

We define the synchronous product between channel machmines i
the usual manner: Given two machimeg = (Q1,Cq,2,A, A1) and

The subword relations defined above are extended to mappingsas, = (Q,,C,,5,A,Ay) such thatC; NCy = 0, let a6 ® M, =

fromC to Z* as follows: For every,v € [C — Z*],u j'gv holds if
and only ifu(c) <X v(c) holds for allc € C.

Lossytransitions:  Now, we define a transition relatioﬁ[£>(M,Sk>
between configurations aff by allowing that the channels can
loose some of their symbols, provided that these symbolsiatre
in S, and under the restriction that the numbeBafymbols in each
channel is bounded Wy Formally, for everyl € A¢, g,q € Q, and

u,u’ € [C— 5*], (q,u) =€><M73k) (d,U) if and only if there are
v,V € [C — =] such thav <K u, v :[>M v/, andu’ <KV,

The notions of a finite/infinite run and of a finite trace are
defined as in the non-lossy case by replacing, with =(,/ g

Given two control stateg,q € Q, we denote b)LTEiE?)(M ) the

set of traces of all finite runs off from the configuratior(q, &/°!)
to the configuratior(q’,dq) according to the semantics defined by
= (ar,5k)- Notice that, by definition ot (,, ), in all reachable
configurations along runs off, the channels contain less thkn
symbols inS.

In the rest of the paper, we say that is an (S k)-LCM (or
simply a LCM if no confusion is possible) when its operationa
semantics is defined by, g)-

Basic Lossy Channel Machines: A basic LCM is a(0,0)-LCM
where all the guards are trivial (i.e., of the forrre 2*) and all
the substitutions in the send operationgo]!a are equal to the
identity substitution. We can prove the following fact.

PROPOSITIONL. Letar = (Q,C,Z,A,A) be a(S k)-LCM for some
SC s and ke N. Then, itis possible to construct a basic LGMW =

(Q.C,%, A1), with QC Q and C 3/, such that Lo ) (a)

LTES:%(M’) forallg,q € Q.

Applying substitutions can be easily simulated using cleann
rotations. A channel rotation over € C corresponds to send a
special market to ¢ to delimit the current tail position, and then
iterate, using some extra control states, a sequence oiveece
check/substitute, and send operations, untis found. Channel
rotations are also used to check regular guards. Given adguar
c € L, the machinem’ uses during the rotation af the content
of this channel as input to simulate the runs of some giverefini
state automaton that recognizes the regular languagken, if the

markerg is encountered in a non accepting state of this automaton,

M’ goes to a special blocking control state. To guarantee that a
the strong symbols in the channelssaf are not lost, the machine
M’ stores in its control state (in addition to the control stater)
their sequences corresponding to each of the channels efRker

(Q1 x Q2,C1 UCy, 2, /\,A12) denote the product ofif1 and a»
whereA is defined by synchronizing transitions having the same
label in A and gathering their guards and operations (notice that
they concern disjoint sets of channels), and lettirgansitions
asynchronous. The following fact is easy to show:

PROPOSITION2. Let 0] € Q1, O, 05 € Q2, and letq = (qg, )
andq’ = (dj,dp). Then,

. T(q_’q/) (Mr1@Mp) = T<q17qu) (M1)N T(Qqué) (ar2), and

o LT(SK _ sk (SK)
LT gy (1@ 802) = LT (00 (901) LT 70 (ar2), for every
SCXandkeN.

The product operatio® can be extended straightforwardly to
any finite number of channel machines.

4.5 Decision problems on LCM

Letar = (Q,C,%,A,A) be an(S k)-LCM for someSC ~andk € N.

The control state reachability problens to determine whether,
for two given control stateg and ¢, there is a finite rurp of
ar from (q,&ll) to (¢,€/€l). Clearly, this is equivalent to check
WhetherLTEqS;?) (M) #£0.

Therepeéted control state reachability problesito determine
whether, for two given control statggndd, there is an infinite run
p of ar starting from(q, €/°l) such thaty occurs infinitely often in
Statep|qx (ic—x)))-

PrRopPOSITION3. For every SC X and ke N, the control state
reachability problem for(S k)-LCM’s is decidable, whereas their
repeated control state reachability problem is undecidabl

The proposition above follows immediately from Propositib
and from well-known results on the reachability and the atpe
reachability problems in basic lossy channel machines {#ad
and Jonsson 1993, 1994]. The decidability of the contrdiesta
reachability problem of basic lossy channel machines isthasn
the theory of well-structured systems [Abdulla et al. 19BiBikel
and Schnoebelen 2001].

Actually, it is also possible to prove that this problem is de
cidable for (nonbasic}S, k)-LCM directly using the same theory,
without going through the simulation of Proposition 1. Fbatt
it suffices to see that (ljsg is a well-quasi ordering on the set
of words with less thark symbols inS (which follows from the
fact that= is well-known to be a WQO (by Higman’s lemma), and
that WQO's are closed under product and disjoint union), thatl
2) j'g defines a simulation relation on the configuration$®k)-
LCM’s (if a configuration can perform a transition, a greaten-
figuration w.r.t. this ordering can also perform the samaditéon
to reach the same target). Then, by standard results in [lksbdu

that these sequences are of bounded sizes by assumption). Wet al. 1996, Finkel and Schnoebelen 2001], a simple itexdtack-

consider that the control state®f corresponding to a control state

g € Q of & coupled with an empty sequence of strong symbols is
identified withg. Then, after each simulation of an operatiomof

the machine updates the sequences of strong symbols imit®to
state, and also checks, using channel rotations over at@snels,
that all strong symbols that are supposed to be in the chauanel
indeed present. If for some channel the sequence of strangdyg

is different from the one stored in its control state, the e’
goes to a blocking control state.

ward reachability analysis procedure {&k)-LCM'’s (using finite
representations o_fg-upward closed sets of configurations by their
minimals) is guaranteed to always terminate. It has beewrsho
[Schnoebelen 2002] that this procedure may take in generaha
primitive recursive time to converge. Nevertheless, effitialgo-
rithms and tools for the analysis of well-structured systesuch
as vector addition systems and lossy channel machines leave b
developed, based arcompleteabstract reachability analysis tech-
nigues [Geeraerts et al. 2006, Ganty et al. 2006].



5. Simulating TSO/PSO by lossy channels

We show that the state reachability problem far— r)-relaxed
memory systems can be reduced to the control state reachabil
ity problem for lossy channel machines. From this reductiod
Proposition 3, we obtain the following fact.

THEOREM1. The state reachability problem fdw — r)-relaxed
memory systems is decidable.

The rest of the section is mainly devoted to the descriptfaheo
reduction. We address in a last subsection the extensiohafrém
1 to the case of PSO models.

Given a concurrent system = (?1,...,%n) overD andX =
{X1,...,Xm}, we construch lossy channel machine®1,..., My,
one per process i, such that the reachability problem g
can be reduced to the reachability problem in the product of
ﬂ’[l7 ey Mn.

Turning simply the store buffers to lossy channels (i.dppkg
some write operations) leads to unsound memory states. (ie.
TSO semantics). For example, consider two procegsaad 7
sharing two variablex andy, and assume that the transitions
of ¢ are po—>w<x’l) p1 —>W<y"l> p2> and that the transitions aof’
are p’oﬂ p&M% (We omit here the identities of the
processes in the description of the actions.) Then, asguthit
the starting state i$po, pp, X = 0,y = 0), it can be checked that,
according the TSO semantics, the sigig, p,,x = 1,y = 0) is not
reachable. However, if the operatiery, 1) of processp is lost by
its store buffer (if we consider it as a lossy channel), thes state
becomes reachable.

In fact, lossyness can be tolerated only if the information i
the channels is always sufficient to obtain sound memonge stat
when read operations must be performed. Then, the ideafts tha
channels should contain sequences of sound memory stdtiss. T
means that for the simulation, instead of sending in the mélan
a write operation, a process must send the state that the rpemo
(in the simulated system) will have right after the exeauid this
write operation (i.e., at the moment when in the simulatestesy
this operation will be taken from the store buffer and used fo
updating the memory state). For instance, in the examplgeabo
the sequence of sound memory states that must be considere
is (x=0,y=1)(x=1y = 1). Assume now that process has
sent this sequence (from left to right) to its channel, aral the
memory is updated successively by copying these stateseto th
global store, but some state, s@y= 0,y = 1), has been lost. In
this case the state of the memory goes directly f(am 0,y = 0)
to (x=1,y = 1). But this is perfectly sound since several memory
updates are possible before any process can observe thgeshian
the memory state.

Now, let us see how a process can send a sequence of soun
states to its channel. Obviously, if the process is the only i
the system to perform write operations (as in the exampleegbo
knowing what is the memory state after executing a write aper
tion is easy to determine: The process can maintain in ittraon
state the last memory state sent to the channel, and thethéeor
next write operation, the process can compute a new statéstha
(memorized in its control state and) sent to the channel.diffie
culty comes of course from the fact that in presence of corauy,
the memory state that the process should send to the chamsel m
take into account the interferences of the other proce3$ese-
fore, each process mugtiesghe sequence of memory update op-
erations (along a computation) resulting from the writerapiens
performed by all the processes in the system. In other wohés,
process has to guess the write operations by all processeslas
the order (after their interleaving) in which they will beesxited.
Given such a sequence of write operations, the simulaticthef

behavior of a process by a lossy channel machine can be done. |
fact, since the buffer contains a sequence of sound mematgsst
loosing some of the channel content can be seen as skippaim un
servable states. Indeed a process observes the memorytdhéy a
moment read operations are performed. Between these mement
several changes to the memory (due to the writes sent byetiffe
processes) may occur, but even if the intermediary memaitg st
resulting from these changes are not observed (and can b&eon
ered as lost by the channel), each observed state is sowalisin
accumulates the effect of all the operations performediso fa

For this simulation, a control state of; is composed by a con-
trol state ofe;, a vector of datal. € M corresponding to the current
memory state, and a vector of datg representing the (guessed)
memory state that should be obtained after executing athpleea-
tions in the buffer. Then, an element of the channel alphabef;
is of the form(k, j,d) wherek € [n], j € [m] andd € D™. (We will
see shortly that we need also some other kind of elementg) Th
vector of datad in such an element represents the memory state
supposed to be reached after executing the operatikyx;,d[j]).
There is however a technical issue which requires some tare:
order to simulate correctly “Read own write” operationgsihec-
essary to forbid the loss of the states stored in the chahattor-
respond to the last write operation on each of the variaBblegu-
nately, the number of such states is bounded (skifinite), and
therefore we can consider them as strong symbols (see aefinft
sub-word relations). Technically, these special statéisdrchannel
are marked and have the for(tk, j,d),#); let Z» be the set of these
marked states. Then, the alphabet of the channel includezal
and after each write operation, the marking in the channedtmu
of course be maintained coherent. In order to impose thakedar
states are not lost, we considdi to be a(2,,m)-LCM.

Now, the last step is to check that all processes have gudssed
same sequence of write operations and the same orderingiof th
execution. For that, each machine makes visible the tiansitor-
responding to its own write operations, as well as to the gpees
write operations (concerning the other processes), and the
product of these machines is taken with synchronizatiorherat-
phabet of write operations. In fact, if the machines agretherse-
guence of write operations, they have necessarily storeddame

c?equence of states in their channels. Although each charlnsky

and the different channels may loose different elemetitg) se-
quence of observations made by each process (using thenafor
tions in its own channel and control state) is guaranteed tohnd.
Therefore, the reachability problem in the original systenme-
ducible to a reachability problem in a lossy channel macHhimer-
der to be able to present the correctness proof (which widjiben
in the next section), we need to label also update transitjand
not only transitions corresponding to write operationshaugh
his is not necessary for the decision procedure itself. \(lleuse
his labeling to relate sequences of updates and writeg alom-
putations.)
Let us now give the formal description of the reduction.

5.1 Constructing the machinesi;
Leti € [n]. Then,at; = (Q, {ci },Z, A, Ay) where:
e Qi =P xM x M whereM = D™,
e G is the single channel ofr;.
e ¥ =%;UZy;whereX; = [n] x [m x D™andZ, = 23 x {t}.
® A=Ay UM\ pg UNarw Where:
= Aw ={w(k,xj,d) : ke [n],j € [m],de D}
* Aarw = {arw(k,xj,d,d’) : ke [n],j € [m],d,d’ € D}
* Aupd = {upd(k,xj,d) : ke [n],j € [m],d e D}



e A\ is the smallest set of transitions such thi@t p’ € Q;, and
Vde, dg € M,

€,Ci:Z|nop
o

= Nop: If pﬂn p’ then(p,dc7dg) Ai(p7dc,dg)

= Write to store: If pﬂli p’, whereop = w(i,x;,d) for some
j € [m] andd € D, then for everyd € M,

(p.de, dg) 2P 2AClGR/@INE 1y g

(p7dC7dg) Ai(p,7dC7d/g)
wherea = (i, j,d), dg = dg[j —d], @ = ((i, j,dg),£), and
© =2\ ({i} x{j} xM).
» Guess write: VK € [n]. k#1, Vj € [m], Vd € D,
w(kx;,d),c:Z |G
(p:d&dg) ( ak )CI |CI 2 Ai(p7dC7d/g)
wheredy = dg[j < d] anda = (k, j,dg).
» Update: VK € [n], V] € [m], Vd € M,
G| ¢ ?(k, ). d
(p.de, dg) op,ci:Z |6k, j,d) dg)
(p:d&dg) Ai(p:dé:dg)
whereop = upd(k,xj,d[j]) anddg = dc[j < d].
r(i,Xjﬁd)
=d,

€, (af)€ci|nop
_—

dg)

op,ci:O|cla
_—

Ay (p7 di:

op,Gi:Z|¢i2((kj,d).b)

* Read: If p
vd e M. d[j]

(P, de,dg) — (P, de, dg) € A
(p,d,dg) =21, (1, d, dg)
wherea= (i, j,d) and®@ =2\ ({i} x {j} x M).

« ARW: If D arw(i,xj,d,d")

thenvd € M. d[” _d,
(p.d,d) arw(ix;,d.d'), ¢ =€ nop

whered’ =d[j «— d].

i p/ for somej € [m andd € D, then

i p for somej € [m] andd,d’ € D,

a(p,dd)

5.2 Composing the machinesr;

To simulate the system, we consider for eache [n] the (X3, m)-
LCM 9« obtained fromas; by substituting each transition label
arw(k,xj,d,d’) by a labelw(k,x;j,d"), and each labalpd(k, x;,d)
by €, and then we take simply the product of the machinest;.
This ensures that the machines agree on the sequences ef writ
operations performed in the simulated system. (Here atogaid-
write operations are also considered as write operations.)

The precise link between’ and the so obtaine®,, m)-LCM
is given by the following proposition:

PROPOSITION4. Letp,p’ € P, and letd,d’ € M. Then,
(= ) |ﬁﬂ

where, for everyE[ nj, g = (p [l] d,d)andd =
ow = (w(kXj,d )/arW(k,Xpd,d ))ke[n],]e[m],d,d’eD

Theorem 1 follows immediately from Proposition 4. The proof
of this proposition is presented in the Section 6.

5.3 The case of PSO

We prove the same result as Theorem 1 far— r/w)-relaxed
memory systems. It is indeed again possible for these sgstem
reduce the state reachability problem to the control sthtessy
channel machines. The reduction is even simpler in this.dase
fact, while turning store buffer to lossy channels is unsbiwor
TSO systems, it can be shown that this is actually possible$®.

sz
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p'(i],d’,d"), and

Consider again the example given in the beginning of thefproo
of Theorem 1. This time, since we are considering the PSO se-
mantics, the operations(x,1) andw(y,1) are stored in different
buffers. Then, it is possible to reach the stgtg, p,,x= 1,y =0)
since it is possible to update the variabl®efore the variablg.
Therefore, loosing the operatian(y, 1) does not lead in this case
to an unsound state.

In general, since all the write operations in a same channel
concern a same variable, skipping some operations can heasee
equivalent to executing a sequence of updates to a samélearia
and therefore, the reached state corresponds to the laateufm
this variable (and it is necessarily sound). Some care hdmeto
taken, however, concerning the last operation in the huiffehe
process using this buffer does not read on its correspondirigble
(as in the example above), then loosing this operation isanot
problem. However, to simulate in general the read operstithe
last write operation in each buffer must be kept since thees®
must read its value if this operation has not been executéd ye
Then, by marking the last symbol in each channel and corisgler
it as a strong symbol, the translation to lossy channel nnashis
straightforward.

THEOREM?2. The state reachability problem is decidable for
(w — r/w)-relaxed memory systems.

6. Correctness proof

We present the proof of Proposition 4 in three steps.

First we relate the reachability problem f{iw — r)-relaxed
memory system to the reachability problem in perfect chbmae
chines. We show that checking state reachabilityiis equivalent
to check the control state reachability in the product of 4hgs,
seen aperfectchannel machines, when they are synchronized over
the udpate transitions (see Proposition 5). Showing tlegptbduct
of the channel machines simulatgds rather straightforward. The
reverse direction is proved by establishing a kind of weakusi-
tion relation between the configurations of the two systems.

Then, we observe that when thg's are considered as perfect
channel machines, the reachability problem in their syoebus
product ovemupdatetransitions, and the same problem considered
in the synchronous product overite transitions, are mutually re-
ducible to each other (see Proposition 6). (We considerativaic
read-writes are considered both as writes and updates JsT$im-
ply due to the fact that for a perfect channel the sequenaepofts
is always equal to the sequence of outputs.

Finally, we prove that checking the reachability problenthia
synchronous product of thperfectmachinesas; over the write
transitions is equivalent to checking the same problem énsgm-
chronous product of thiessychannel machiness; over the write
transitions (see Proposition 7). The proof is based on ttietffiat
our encoding of the memory states stored in the channeldisto
w.r.t. lossyness.

Let us state these fact more formally. We need first to in-
troduce a notion ofconsistent configurationA configuration
((p,dc,dg),u) € Conf(a;) is consistent if, eitheru = € and
dec =dg, orue {(kj,dg)w : k#i,j € [m,we X}, orue
{(i,],dg),§)w : j € [m,w e Z*}. Consistency means simply that
the value of the memory state obtained after executing tlee-op
ations in the buffer coincides with the one encoded in the con
trol state of the configuration. In all the relations betwesys-
tems described above, the configuration consistency ofitaenel
machines is assumed. This is not a restriction since ilyitiae
consider configurations of the forifip,d,d),e") that are clearly
consistent, and it can easily be checked that the transitioeach
i preserve consistency.



Now, let us consider the following notation. Fgre {w,upd},
let f, be the mapping fronA\* to A\; such that, for every € A*,
fn(u) = (u[on])|r, where

on = (n(k,Xj, d’)/arw(k, Xj7dvd/))ke[n];je[m];d,d’eD

This definition is generalized to sets of words.
We state hereafter the relation between the reachabild-pr
lems inal and in the product of the perfect channel machimgs

PROPOSITIONS. Letp,p’ € Pandd,d’ € M. Then,(p,d, ") :>’;\/

(', d’,€" iff Ny fupd (Tiq.q) (i) # O where, for every & [n],
G = (p[|]7dd) and q = (p/md/d/)

The “only if direction” is easy and omitted here. To prove tifie
direction” we need to define a mapping which converts cossist
configurations in the product of the;’s to configurations im.

Let d € M, and for eachi € [n], lety = (qi,u;) be a con-
sistent configuration ofi; such thatqi[2] = d. Then, we define
M(Y1,---,Yn) to be the configuratiodp,d,u) of A¢ such that, for
everyk € [n], p[k] = ak[1] andulk] = (uj[01](02])[;, whereoy =
(a/(a,1))aes,, and oz = ((1,J,d[j])/(1,],d))ie[n];jemdem- (Re-
call thatBj = {i} x [m| x D.)

Then, Proposition 5 follows from the two next lemmas.

LEMMA 1. For every i€ [n], let yi = (qi,u;) be a consistent
configuration ofas;. Assume thati,l € [n]. i[2] = q/[2]. Then,

Vi € [n], Wy € Conf(ar;), if v; éﬁm y, for somel; € A}, then

MY, - Yn) =5 (Yoo Vn)-

LEMMA 2. For every i€ [n], lety; = (q,u) andy = (qf,u) be

consistent configurations ofj, and leté; € Aypg U/ Aarnw. ASSume
thatVi, j € [n]. gi[2] = q;[2], ¢ [2] = q’j (2], and {54 (4i) = fupd(4j)-

Then,Vi € [n], if y; éM. Y., then Wy, ..., Yn) = (Y- -5 Yh)-

Proof. For everyj € [m], let®; =3\ ({i} x {j} x M) be a set of
labels andG =g e {¢: 2,6 : ©j,(a,) €c|j € [m,ac X} bea
set of guards. It is easy to see that, for any gupedG, if ul=g

thenv = g sinceu jg \

Now, let us suppose thafg,u) :€>Mi (d,Uu). This implies

¢,glop
E—

that there is a transitiod = q A 9 such thatu = g, and

[op](u,u’). Then, we consider the four cases depending on the

type of the label:

e If £ =¢, thenop=nop, u= U, andg € G. This implies that
(V) =54, (V) because = g.

o If £ € Ay, thenop= ¢[o]!d, for somed’ € 5 and substitution
o, U =2 -u[o], andg € G. This implies thatg, v) =[>MI d,v)
with vV = a' - v[a] sincev = g.

o If £ € Aarw, thenop = nop, g € {c¢ = €}, q2] = q[3], and
U = u=¢&. This implies thaw can be any sequence Xij since
u jg v. Moreover, the perfect channel machimg can apply a
sequence of update operations in order to empty its buffés. T
means thatv; has a rur(g,v) %Mi (g,€) whereX € Nipd:
since(q, V) is consistent and[2] = q[3]. From the configuration
(g,€), the perfect channel machimg; can apply the transition
d to reach the configuratioft/, €). Thus,{q, V) =A>Mi (d,€) is
a finite run ofas; whereA = A’¢. Notice that we have indeed
fw(0) = fw(N).

e If £ € Aypd, thenop= g2 for somed € %, g € {¢ : 2},
andu = U -&. Sinceu jg v, there arew € 2} andV ¢ *
such thatv =V -a& -w andu j)ﬂ_‘z Vv -d. Moreover, the perfect
channel machiner; can apply starting fronig,v) a sequence
of update operations corresponding to the sequemc&his

means thawv; has the following rurq,v) é% o',V -d)

where)’ € Nopd andq”’[2] = q[2 < d] if w(0) = (k, j,d). Now,

Lemma 1 and 2 state thatlefines a simulation relation between . ] g
from the configurationq”,Vv - &), the machinnew; can apply
E3

A and the product of thef; synchronized on the update transitions.
Lemma 1 concerns the case of sequences of transitions withou
updates, whereas Lemma 2 concerns the case whese;thenust is a finite run ofas;, whereh = A'/. Notice that we have again
synchronize on some update operation. The proofs of thesades fu(€) = fw(N).
are not difficult and are omitted here.

The following proposition follows, as said in the introdioct m|
of this section, from the definition of perfect fifo channéls.( the
sequence of inputs is equal to the sequence of outputs).

the transitiond sincev - & = g. Therefore(q, V) =A>Mi (d,v)

Letq;, g € Q;, and letp be a=> (a5, m-Tun of the lossy channel
machinea/; betweerg; andg. Then, using Lemma 3 it is possible
to construct a=,,-run p’ of the perfect channel maching;
from g; to of such thafp andp’ have the same sequence of write
transitions, i.e.fw(p|an) = fw(p’|a). This terminates the proof of
Proposition 7.

PROPOSITIONG. Vi € [n],Va,q € Qi, fupd(T(qq)(94i)) # O iff
fw (Tiqq) (911)) # 0.

Finally, we establish the link between computations in getrf
channel and lossy channel machines.

PROPOSITION?. For every i€ [n], and for every off € Qj,

(Zz:m) 7. Simulating lossy channels by TSO/PSO
fW(T(qsq/)(Mi)) = fw(LT<q7d1) (a6i)).

We show hereafter that basic lossy channel machines camilpe si

The proof of the left-to-right inclusion is straightforvearFor lated by(w — r)-relaxed memory systems.

the other direction, we establish the following fact whidhtes
that there is a simulation relation between the lossy angeéniect
channel systems.

THEOREM3. The control state reachability problem as well as
the repeated control state reachability problem for basissly

channel machines are reducible to their corresponding [enots

LEMMA 3. For every consistent configurationg, u), (of,u’) of for (w — r) relaxed memory systems.
o, and for every € Ag, if (g, u) :[>(Mi.,22.,m) (¢ ,U), thenvve =*
s.t. u=% v and (q,v) is consistent, 3V € * 3\ € A* s.it. (1)
(q,V) is a consistent, (2)'u=3, V, (3) fw(A) = fw(¢), and (4)

(@) 2y (V).

Proof. Leta = (Q,C,%,A\,A) be a basic LCM. We assume w.l.0.g.
that ¢ has a single channa (since every basic LCM can be
simulated by a single-channel basic LCM [Abdulla and Jonsso
1993]), and tha\ = 0. We simulates using a(w — r)-relaxed
memory system with two processesand®; and two variables;
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Figure 2. The communication graph of(av — r)-relaxed memory
system simulating a basic lossy channel machine
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andx,. As shown in Figure 2, the process (resp.®») writes to
the variablex; (resp.x2) and reads from the variable (resp.x1).

A send operatiom!a of 4/ is simulated by a write operation of the
value a to the variablex; by the proces®;. A receive operation
c?a of o is simulated by a read operation of the valu&gom x»
by 21. (A nop operation ofa is simulated by aop operation of
?,.) The role of e, is to transfer the successive valuesxpto x
(so that they can be read by in the FIFO order).

To avoid multiple reads of the same valuexgfby #1 (which
would correspond to multiple receptionsdn of a same message),
we introduce a markersuch that every read (resp. write) of a value
ac€ Z (by any of the processes) is followed by a read (resp. write) o
f. Then, the sequence of values writterxi@ndx, alternate values
from X with §. This ensures that a write operationgaf (resp.?,)
can validate at most one read operatiorrp{resp.?;).

Observe that, however, the read operations performeea,by
can miss some of the values written by, and conversely. This
is due to the asynchrony of the two processes (\ecan execute
pending writes more often than the reads). Therefore, theesee
of values transfered ta, by ®, (and that can be read by;)
can be any subsequence of the sequence of values written by
to x;. Moreover, the sequence of values readshycan also be
any subsequence of the sequence of values writtembip Xo.
Therefore,; can read fromx, any subsequence of values written
by itself tox;. This encodes the lossyness of the channel of

Formally, letD = XU {#} be the finite data domain arXi =
{x1,%2} be the set of two variables valued . The (w — r)-
relaxed memory systeng = (21, ?7) is defined froms as follows:

e 71 = (Py,A) is a finite-state process where: @)= QU (Q x
{1,?}) is a finite set of control states, and ®)s the smallest
set of transition rules such that:

€,C:Z|nop
—_—

= Nop: If q A0, theng /2, ¢f

* Send: If qﬂmq’, then
w(1,x1,a) ) sy W)
qg——>1(d,!)) and (d,!)——>1q

= Write: If qﬂmq’, then

r(1x,a)
—

(g, and (q,7) 22 g

e 2, = (P, /) is afinite-state process where: &)= {p1, p2} U
(D x {!}) is a finite set of control states, ar{@) A, is the
smallest set of transition rules such that for every syralzob,
we have:

L O I W) e B
) r(2,%1,4) Z(ﬁl) (ﬁ,‘) w(2,%2,1) o1

Theorem 3 is an immediate consequence of the following
lemma:

LEMMA 4. Let g € Q. The control state ‘gis (infinity often)
reachable by from q iff (p’,d) is (infinity often) reachable by
A from (p,d) wherep = (q, p1), p' = (o, ), d = (8,%).

The proof of the lemma above is straightforward. It condists
establishing a bisimulation relation betwegrand /. m|

From Theorem 3, [Schnoebelen 2002] and [Abdulla and Jons-
son 1994], we deduce that:

THEOREM4. The state reachability problem f@w — r)-relaxed
memory systems is hon-primitive recursive, and their regzbstate
reachability problem is undecidable.

The same results established above in this section stitl hol
when we consider in addition the — w relaxation. In fact, in the
systema built for the proof of Theorem 3 each process writes
to only one single variable, which implies that the behawbr
A remains the unchanged if we also consider whe> w relax-
ation. Therefore, our results concerning the TSO model falds
w — w relaxation (PSO) as well.

THEOREMS5. The state reachability problem féw — r/w)-relaxed
memory systems is non-primitive recursive, and their regbstate
reachability problem is undecidable.

8. Adding ther — r/w relaxation

In addition to thew — r relaxation, we consider now that a read or a
write operations on some variabtg can overtake a read operation
(by the same process) if the latter concerns a variablerdiffdrom

Xj. As before, we consider that atomic read-write operati@amsot
permute with any operation, and we also consider the caxticell
rule concerning a read that immediately follows a write &f same
value on the same variable (by the same processes).

8.1 An operational model

We define hereafter an operational model to capture thisrs@raa
Our model has again one buffer per process, but this timeutffierb
is used to store write operations as well as read operativnise
operations are stored as before in the buffer to allow okesgta
by read operationswWrite to store). When a write operation to a
variablex; is present in the buffer of a procegs, assume that
w(i,xj,d) is the last of such an operation, then if a read operation
r(i,xj,d) is the next operation performed b® concerningx;,
this operation is validated immediatelRgad own write). If the
previous situation does not hold and a read operat{ayx;,d)
is performed, then the read operation is stored in the bufieis
corresponds to guessing thatwill have the valued sometime in
the future Guess). The guess is validated whefi, xj,d) becomes
the first operation ow; in the buffer, and the value assignedxjo
in the global memory at that time is preciselyValidate). Finally,
memory updates are done by executing an operati¢inx;,d)
which must be the first (read or write) operation in the butiér
#; concerningxj, i.e., it can only be preceded by read operations
on different variablesipdate). The formal definition of the model
is as follows.

Let P=P; x --- x P, and for everyi € [n], let B; = {w,r} x
{i} x [m x D. A configurationof 4( is a tuple(p,d, u) wherep € P,
deM, andu € B] x--- x B,

We define the transition relatios-, on configurations of\(
to be the smallest relation such that, for evprp’ € P, for every
u,u’ € B x --- x Bf, and for evenyd, d’ € M, we have(p,d,u) =,
{p,d’,u’) if there is ani € [n], and there are, p’ € R, such that
pli] = p, p’ = p[i < p], and one of the following cases hold:



1. Nop: p—2,;p/,d=d’, andu = U'.

2. rite to store: p— Y v d— o', andu’ = ufi — (w, i, j,d)ufi]].

3. Update: p=p/, and3j € [m]. 3d € D. Juy, up € By such that:
(@) uli] = uz(w,i, j,d)up, andV(op,i,k,d’) € up. (op = r and

k#J),
(b) o = d[j —d],
(c) U'[i] = ugup, andvk #i. u'[k] = u[K]
4. Read: pmi p,d=d, and

* Read own write: u = u’ if Jug, up € Bf such that: (ajfi] =
ur(wi, j,d)uz, and (b)¥(op,i,k,d’) € u. k# j, or

e Guess: U' = U[i < (r,i, j,d)uli]] otherwise.
5. Validate: p= p/,d =d’, and3j € [m. 3d € D. 3up,up € B s.t.
(@) ufi] = uy(r,i, j,d)up, andv(op,i,k,d’') € up. k # j,
(b) d[j]=d,
(c) U'[i] = ugup, andvk #i. u'[k] = u[K].

arw(i.x;,d,d’
b LR AN

6. ARW: p ) ip, ulil=¢ u=1, andd[j] = d, and
d' =d[j —d].

We call{w — r,r — r/w}-relaxed memory system a concurrent
systema_ with the operational semantics defined by, . Let
= denote as usual the reflexive-transitive closure=gf. The

state reachability, and the repeated state reachabilityl@ms are
defined as in the case of TSO systems in Section 3.4.

8.2 Adding thew — w relaxation

Again, thew — w relaxation can be taken into account in addition
to {w — r,r — r/w} simply by associating to each procesdlif-
ferent buffers instead of a single one, one per variableiailyto
the relaxation from TSO to PSO.

9. (Un)decidability results

We prove in this section that the addition of the> r /w relaxation
to either TSO or PSO models leads to the undecidability oftate
reachability problem. On the other hand, if we consider n®de
where the number of (quessed) reads stored in the buffelgags
bounded, this problem becomes decidable.

9.1 The general case
We prove hereafter the following fact:

THEOREMG6. The state reachability problem is undecidable for
{w — r,r — r/w}-relaxed memory systems.

The proof of Theorem 6 is by a reduction of the Post's Cor-
respondence Problem (PCP), well-known to be undecidalust [P
1946]. We recall that PCP consists in, given two finite seqasn
{u1,...,un} and{vy,...,vn} of nonempty words over some alpha-
betZ, checking whether there is a sequence of indiges. , ik € [n]
such thal.li1 “oUj = Vij -+ Vi«

Then, let{uy,...,un} and{vi,...,vn} be an instance of PCP.
We construct a system with two processe®; and #, sharing
a set of four variableX = {x1,%2,X3,X4} such that, two specific
states i/ are related by a run if and only if PCP has a solution
for the considered instance.

The idea of the reduction is as follows: Procegsguesses the
solution of PCP as a sequence of indi¢ges..,ix and performs
iteratively a sequence of operations: It (1) writes sudeebsto x;
the symbols ofy;, (2) reads fronxs the symbols ot (3) writes

to X, the indexij, and (4) reads; from x4, for j ranging backward
from k to 1. Moreover, each write (resp. read) operation to (resp.
from) a variable is followed by a write (resp. read) openatas

the markerf. The insertion of the markers allows to ensure that a
written value to a variable by one of the processes can beakead
most once by the other process. In parallel, progesaiso guesses
the solution of PCP and performs the same operatioms,a&xcept
that it writes (resp. reads) symbols of the wowjsand the indices

ij tox3 andx4 (from x; andxy), respectively.

Then, we prove that PCP has a solution if and only if it is
possible to reach a state of the systanhwhere both store buffers
are empty. In other words, a full computationagfchecks that the
two processes have guessed the same sequence of indicésand t
this sequence is indeed a solution for the considered P@&hires

The “only if direction” can be shown using the fact that the
ordering in the buffers between reads and writes (as wekagden
reads and other reads) can be relaxed, it is possible toroohst
run of the Al where the execution of each write done by one of
the processes is immediately followed by its correspondewy
operation done by the other process.

The argument for the reverse direction is the followinghkite
is a run which empties both buffers, then it can be seen thiat, d
to the fact that a read can validate at most one write, theesegu
of read symbols by process is a subword of the sequence of
written symbols byr;, and vice versa. The same holds also for
the sequences of indices guessed by both processes. (Here ag
permuting operations in the buffers is necessary in ordenatch
reads by one of the processes to writes by the other one.eThes
facts imply that the processes have indeed guessed the sght} (
solution to the given instance of PCP.

Let us define more formally the reduction. It 2 U {f,—} U
[n] be the set of data manipulated by processeand®s.

To simplify the presentation, we need to introduce some-nota
tions. Leti € [2], j € [4], s€ D*, op € {w,r}, m= length(s) and

(ix),9)

such thatm > 2. We use the macro transitiqmui p to

denote the sequence of consecutive transitio 2p(x;.S() i P1,

p 2SI foralll € [m—2), andpr_g 29Xy
whereps,. .., pm are extra intermediary control statesmfthat are
not used anywhere else (and that we may omit from the set of con
trol states ofp;). We use alsdop, i, j,s) to denote the fact that the
store buffer ofe; contains the following sequence of consecutive
operationgop,i, j,S(1))--- (op,i, j,s(m)).

Let v be a mapping fronk* to D* such that for every word
u=ag---ame Z*’\)(u) :ﬁ.al...ﬁ.am.

Then, a computation of the process (resp.?») is a sequence
of phases where each phase consists in the following opesati

1. Choose a humbére [n]:

nop nop
p——1p (resp.g——20))
2. Write the sequence of datéy ) (respv(v)) toxy (resp.
X3):
p YD g1 (resp.g 2L oy
3. Read the sequence of dat@) (resp.v(v)) from X3
(respxq):
pll r(lﬁX3A,\}<U|)) 1p|2 (requll r(2,X1,\)(v|)) 2q|2)

4. Write the sequence of datal to X, (resp.xs):

w(1xo, 8| w(2,Xg, 8
pp ), g8 (resp.o? X )
5. Read the sequence of dgtad from x4 (resp.xo):
r(1,Xa, 81 r(2,%2,4:1

pf——1P



Next, we establish the link between the state reachabitiipp
lem for the{w — r,r — r/w}-relaxed memory system’ and the
existence of a solution for the PCP.

LEMMA 5. Thereisi,...,ix € [n such that g - - - uj, =V, - -V, if
and only if the configuratior{(p,q), (#,1,4,1),€%) is reachable in
¢ from the initial configuration{(p,q), (-, —, —,—),&%).

Proof. (The if direction:) Assume that(p,q), (t,%,1,1),82) is
reachable i from ((p,q),(—,—,—,—),&2). This means that all
the read operations af; and®; have been validated.
Then, assume thgt, . . ., i is the sequence of indices chosen by
2y and thatjy, ..., j1 is the sequence of indices chosendyy We
use the facts that (1) write and read operations by a samegsoc
to a same variable cannot be reordered, and that (2) eacé writ
operation ofr; can only validate a unique read operatiorpgfand
vice-versa (but of course some written values can be midsed s
processes are asynchronous), to show that the followirgioak
hold:
® Uiy Ui - - Uiy X Vj; Vi, o Vi,
® Vj Vi, - Vi, = Uiy Ui, - - - Uiy -
® igig-ik X j1j2- - jn-
® jaj2--jh Siadze ik
This implies thatuj, Ui, - - - Ui, = Vj,Vj,---Vj, andiqip---ix =
J1)2-+ In-
(The only-if direction:) Assume that there is a sequencenef i

dicesiy,...,ix € [n] such thatu;, - --uj, =V, ---vi,. Then, we can
construct the following run of\’ from the initial configuration
<(p7 q) (77 T 7)782> to the Conﬁguratior((pv q)7 (ﬁ?ﬁvﬁvﬁ)7€2>:

e First, 7, chooses the sequence of indiégs..,i; and stores
in its buffer seq ---seq where, for everyl € [k, seq is the
sequence of operations stored by during itsI™" phase (i.e.,
(r,1,4,8-11)(w,1,2,4-i))(r,1,3,v(u, ) (w,1,1,v(u,))).

e Then,?, chooses the sequence of indidgs..,i1 and stores
in its buffer seq ---seq where for everyl € [, seq is the
sequence of operations stored By during itsI™" phase (i.e.,
(r,2,2,8-11)(w,2,4,8-11)(r,2,1,v(vi, ) (W, 2,3,v(V;, )))-

¢ Finally, ¢ adopts the following run in order to execute the
writes and validate the reads in the buffers. This run isdaigi
into two steps:

= In the first stepa’ performs alternately the following ac-
tions: (1) execute the first write operation in the buffer of
1 concerning some variablesay, and then (2) validate the
corresponding read operation in the buffersef This read
operation is the first read operation »wim the buffer ofe,.
However, this read operation may occur behind some other
operations in the buffer, but by construction, they areall o
other variables. Therefore the read operation can be vali-

dated due to the relaxed memory semantics we consider.
The relaxation rules are also necessary to be able to take

successively write operations in the buffermf since this
requires overtaking the reads that occur between the writes

= In the second step, the role ®f and®, are interchanged.

This terminates the proof of Lemma 5. m|

Finally, Theorem 6 is an immediate consequence of Lemma 5.
Let us again mention that the same result holds when we additi
ally consider thev — w relaxation. In fact, the systesmy we con-
struct in the proof of Theorem 6 can be (re)used with the more

relaxed semantics. The effect of the relaxation is simphpia the
buffer of each of the processes into four different bufférg, this
does not affect the reasoning concerning the relationsdetwthe
sequences of reads and their corresponding sequenceges.wri

THEOREM?7. The state reachability problem is undecidable for
{w — r/w,r — r/w}-relaxed memory systems.

9.2 Bounded-guess — r/w relaxation

The undecidability result in the previous section uses #oe that
it is possible to perform an unbounded number of guesses on
read values before validating them. Therefore, a natued id to
bound the number of guesses made by a process at each tirge. Thi
corresponds to impose a bound on the number of reads stored in
each buffer (without bounding the number of writes in thefdms)).
Let us callbounded-gues®laxed memory systems the so restricted
systems. (It is of course straightforward to adapt the nmeodad
have defined previously to impose this restriction for agieund
on the number of reads in each buffer.)

Under the bounded-guess restriction, the state reactygtnitib-
lem becomes decidable. The reason is that it is possiblenstreat
lossy channel machines for these systems by adapting tis&raon
tion of Section 5. Indeed, it suffices to consider that theestoead
operations in the channels are “strong symbols” (in the esémat
they cannot be lost). This is clearly possible since the remalh
these reads is bounded by hypothesis.

THEOREMS8. The state reachability problem for bounded-guess
{w — r,r — r/w}-relaxed memory systems is decidable. The same
holds for bounded-gues$w — r/w,r — r/w}-relaxed memory
systems.

10. Conclusion

We have investigated the boundary between decidabilityuaie-
cidability for the verification problem of programs underrigas
weak memory models. We have considered models classified ac-
cording to the type of the order relaxations they involvelgfeing
the style of [Adve and Gharachorloo 1996]). We have showh tha
the reachability problem is decidable far— r-relaxed memory
systems (TSO) as well as for their— w relaxation (PSO). This
result is obtained through a non-trivial translation tesipshannel
machines. We have shown that, however, whenr ther /w relax-
ation is added to these models, the reachability problemrhes
undecidable. On the other hand, if we consider that the nuwfbe
read operations that are delayed (overtaken by other opesais
always bounded (i.e., at any point in time but not necegsiirive
consider the whole computation), then this problem is dsati
since in this case it can again be reduced to the reachapibity-
lem for lossy channel machines.

Moreover, we have established the complexity of the redthab
ity problem for these memory models (when it is decidableg W
have proved that lossy channel machines can be simulate§®y T
(as well as by its relaxations we consider such as PSO), vifnich
plies that the reachability problem for these models is pomitive
recursive. This shows that there is (in theory) an imporjiamip in
the complexity of the reachability problem when moving frtme
SC model (PSPACE-complete) to weak memory models. However,
the high theoretical complexity is not necessarily an afistéor
exploiting our decidability results in practice. Indeedcould be
possible to use for instance efficient verification techagjwcom-
bining effective symbolic representations and iteratindar/upper
approximate analysis, that are complete for well-strisgtusys-
tems such as lossy channel machines (see, e.g., [Geertalts e
2006, Ganty et al. 2006]). The design of efficient tools based
these techniques that are tailored for the automatic vetiic of



programs/algorithms under weak memory models is a chafigng
topic for future work.

The ability of relaxed memory systems to simulate lossy ehan

nel machines implies also that the repeated state reaithgiodb-
lem (and therefore verifying liveness properties) for thegstems
is undecidable. Investigating conditions under whichriess prop-
erties can be automatically and efficiently verified for weadm-
ory systems is again an interesting topic for future work.
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