
On the Verification Problem for Weak Memory Models

Mohamed Faouzi Atig Ahmed Bouajjani
LIAFA, University Paris Diderot, Paris, France

{atig,abou}@liafa.jussieu.fr

Sebastian Burckhardt Madanlal Musuvathi
Microsoft Research, Redmond, WA, USA
{sburckha,mandanm}@microsoft.com

Abstract
We address the verification problem of finite-state concurrent pro-
grams running under weak memory models. These models capture
the reordering of program (read and write) operations done by mod-
ern multi-processor architectures for performance. The verification
problem we study is crucial for the correctness of concurrency li-
braries and other performance-critical system services employing
lock-free synchronization, as well as for the correctness of compiler
backends that generate code targeted to run on such architectures.

We consider in this paper combinations of three well-known
program order relaxations. We consider first the “write to read”
relaxation, which corresponds to the TSO (Total Store Ordering)
model. This relaxation is used in most hardware architectures avail-
able today. Then, we consider models obtained by adding either (1)
the “write to write” relaxation, leading to a model which is essen-
tially PSO (Partial Store Ordering), or (2) the “read to read/write”
relaxation, or (3) both of them, as it is done in the RMO (Relaxed
Memory Ordering) model for instance.

We define abstract operational models for these weak memory
models based on state machines with (potentially unbounded) FIFO
buffers, and we investigate the decidability of their reachability and
their repeated reachability problems.

We prove that the reachability problem is decidable for the TSO
model, as well as for its extension with “write to write” relax-
ation (PSO). Furthermore, we prove that the reachability problem
becomes undecidable when the “read to read/write” relaxation is
added to either of these two memory models, and we give a con-
dition under which this addition preserves the decidability of the
reachability problem. We show also that the repeated reachability
problem is undecidable for all the considered memory models.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification.

General Terms Verification, Theory, Reliability.

Keywords Program verification, Relaxed memory models, Infi-
nite state systems, Lossy channel systems.

1. Introduction
Shared-memory multiprocessor architectures are now ubiquitous.
For performance reasons, most contemporary multiprocessors im-
plement relaxed memory consistency models [Adve and Ghara-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

POPL’10, January 17–23, 2010, Madrid, Spain.
Copyright c© 2010 ACM 978-1-60558-479-9/10/01. . . $10.00

chorloo 1996]. Such memory models relax the ordering guarantees
of memory accesses. For example, the most common relaxationis
that writes to shared memory may be delayed past subsequent reads
from memory. This write-to-read relaxation is commonly attributed
to store buffersbetween each processor and the main memory. The
corresponding memory model is historically called TSO, fortotal-
store-order. Similarly, many models relax under certain conditions
read-to-read order, read-to-write order, and write-to-write order.

Programmers usually assume that all accesses to the shared
memory are performed instantaneously and atomically, which is
guaranteed only by the strongest memory model, sequential con-
sistency (SC) [Lamport 1979]. Nevertheless, this assumption is in
fact safe for most programs. The reason is that the recommended
methodology for programming shared memory (namely, to use
threads and locks in such a manner as to avoid data races) is usu-
ally sufficient to hide the effect of memory ordering relaxations.
This effect is known as the DRF guarantee, because it appliesto
data-race-free programs.

However, while very useful for mainstream programs, the DRF
guarantee does not apply in all situations. For one, the implemen-
tors of the synchronization operations need to be fully aware of
the hardware relaxations to ensure sufficient ordering guarantees
(it is their responsibility to uphold the DRF guarantee). For ex-
ample, Dekker’s mutual exclusion protocol does not function cor-
rectly on TSO architectures (Fig. 1). Secondly, many concurrency
libraries and other performance-critical system services(such as
garbage collectors) bypass conventional locking protocoland em-
ploy lock-free synchronization techniques instead. Such algorithms
need to be aware of the memory model. They may either be im-
mune to the relaxations by design, or contain explicit memory or-
dering fences to prevent them. Most algorithms choose the latter
option; however, two recent implementations of a work-stealing
queue [Michael et al. 2009, Leijen et al. 2009] are using algorithms
that are specifically written to perform well on TSO architectures
without requiring fences.

Reasoning about the behavior of such algorithms on relaxed
memory models is much more difficult than for sequentially con-
sistent memory, and it is not clear how to apply standard reasoning
techniques or finite-state abstractions. This highlights the need for
more research on automatic verification techniques for programs on
relaxed memory models [Burckhardt et al. 2007, Huynh and Roy-
choudhury 2006, Park and Dill 1995, Yang et al. 2004].

Classic results show that for finite-state programs under SC,
the reachability problem, as well as the repeated reachability prob-
lem (relevant for checking liveness properties), are both PSPACE-
complete [Sistla and Clarke 1985]. To our knowledge, no analo-
gous decidability/complexity results are known for relaxed mem-
ory models. We thus investigate in this paper the verification prob-
lem for several variations of shared-memory systems with different
relaxations.

We start by building a formal model of concurrent finite-state
programs executing on a TSO system that is, a shared-memory sys-

Initially: X = Y = 0
Proc1 Proc2

a: X = 1 p: Y = 1
b: r1 = Y q: r2 = X
c: if(r1 == 0) enter crit r: if(r2 == 0) enter crit

Eventually: r1 = r2 = 0 and X = Y = 1

Figure 1. Snippet of Dekker’s mutual exclusion protocol (top).
The sequence (bottom) is possible on most contemporary multi-
processors and shows how the protocol fails to achieve mutual ex-
clusion on TSO.

tem with thew→ r relaxation. This model consists of a finite-state
control representing the local program states of each thread along
with unbounded FIFO queues representing the contents of thestore
buffers. Note that although the store buffers in actual machines are
necessarily finite, we may not assume any fixed bound, so a finite-
state model is not sufficient to verify a general algorithm. At this
point, it is not clear yet whether the reachability/repeated reach-
ability problems is decidable at all, because general FIFO queue
automata are Turing powerful.

To solve this problem, we establish a close connection between
TSO systems andlossyFIFO channel machines. Specifically, we
first prove that TSO systems can be simulated by lossy FIFO chan-
nel machines, which implies that their control point reachability
problem is decidable [Abdulla and Jonsson 1993]. The translation
to lossy channel machines is not trivial since turning simply (TSO)
store buffers to lossy channels is obviously unsound. Conversely,
we prove that TSO systems can simulate lossy FIFO channel ma-
chines, which implies that the complexity of their reachability prob-
lem is non-primitive recursive [Schnoebelen 2002] and thattheir re-
peated reachability problem (and therefore their verification prob-
lem for liveness properties) is undecidable [Abdulla and Jonsson
1994].

Next, we consider models obtained by adding either (1) the
w→ w relaxation (leading to a model which is essentially PSO),
or (2) ther→ r/w relaxation, or (3) both of them (as it is done in
the RMO model for instance).

In fact, it is not difficult to show that all the results for TSO
hold also for its write-to-write relaxation (PSO). Moreover, we
prove that adding ther→ r/w relaxation to either TSO or PSO
makes the reachability problem undecidable. This is due to the
fact that allowing writes to overtake reads amounts to guessfor
each delayed read operation the value it will have later whenit
will be executed. Then, undecidability comes from the fact that
there might be an unbounded number of such guessed read values.
Intuitively, allowing writes to overtake an unbounded number of
reads requires memorizing unbounded sequences of values (the
guessed read values) in order to validateall of them later, and
this requires in some sense the use ofperfectunbounded FIFO
queues (instead of lossy ones). However, when we impose thatat
each point in time the number of guessed read values is bounded,
then the state reachability problem becomes decidable (again by
reduction to the reachability in lossy channel machines) since the
amount of information that needs to be stored in a “perfect” manner

is always bounded (and can be encoded using strong symbols inthe
channels).

1.1 Relation to Commercial Multiprocessor Architectures

In general, it is quite difficult to establish a precise relationship
between abstract memory models (described as a collection of re-
laxation rules in the style of [Adve and Gharachorloo 1996])and
actual memory models of commercially available multiprocessors.
Many of those models are not fully formalized. The official spec-
ifications are often quite complicated, incomplete, and sometimes
simply incorrect [Owens et al. 2009]. Since the goal of this paper
is foundational research, we focus on building precise and simple
models that contain just a few of the most common relaxations.

Our main model (a shared-memory system with thew→ r re-
laxation) corresponds to the SPARC TSO weak memory model
[Weaver and Germond 1994] and the latest formalization of the x86
memory model, x86-TSO [Owens et al. 2009]. Traditionally, TSO
is specified using both formal axiomatic and informal operational
descriptions [Burckhardt and Musuvathi 2008. Extended Version
as Tech Report MSR-TR-2008-12, Microsoft Research, Park and
Dill 1995, Sindhu et al. 1991, Weaver and Germond 1994]. Equiv-
alence proofs of the two appear in [Owens et al. 2009] and the ap-
pendix of [Burckhardt and Musuvathi 2008. Extended Versionas
Tech Report MSR-TR-2008-12, Microsoft Research]. Our opera-
tional model follows the general structure of those models (but adds
a finite-state control to represent the program state). Notethat our
operations are sufficient to model most synchronization operations
on SPARC TSO and x86-TSO: the atomic read-write can represent
the atomic SWAP, LDSTUB, and CAS instruction on SPARC TSO
and locked operations on x86-TSO, and it can simulate a full fence
(because a fence is equivalent to executing an atomic-read-write to
an irrelevant location).

1.2 Related Work

Previous work on verifying programs on relaxed memory models
has used underapproximation to keep the problem finite-state, and
falls into two categories: (1) explicit-state model checking with op-
erational finite-state models [Huynh and Roychoudhury 2006, Park
and Dill 1995], and (2) bounded model checking with axiomatic
memory models [Burckhardt et al. 2007, Yang et al. 2004]. Our
work, in contrast, precisely handles the infinite state introduced by
unbounded store buffers.

Much previous work has also addressed the loosely related, but
qualitatively quite different problem of verifying whether a hard-
ware implementation properly implements a given memory model.
For instance, it is known to be undecidable whether a finite-state
memory system implementation guarantees sequential consistency
[Alur et al. 1996]. Compared to our work, the latter work consid-
ers a tougher correctness condition (sequential consistency instead
of reachability) but a simpler model of the hardware (finite state
instead of FIFO queues). For practical purposes, approximative al-
gorithms [Roy et al. 2005, Baswana et al. 2008] and the “TSOTool”
[et al. 2004] are useful to check whether a given individual execu-
tion trace satisfies the desired memory model, a problem which is
known to be NP-complete for SC [Gibbons and Korach 1992].

2. Preliminary definitions and notations
Let k∈N such thatk≥ 1. Then, we denote by[k] the set of integers
{1, . . . ,k}.

Let Σ be a finite alphabet. We denote byΣ∗ (resp.Σ+) the set
of all words (resp. non empty words) overΣ, and byε the empty
word. We denote byΣε the setΣ∪{ε}.

The length of a wordw is denoted bylength(w). (We assume
that length(ε) = 0.) For everyi ∈ [length(w)], let w(i) denote the

symbol at positioni in w. Fora∈ Σ andw∈ Σ∗. We writea∈ w if
a appears inw, i.e.,∃i ∈ [length(w)] s.t.a = w(i).

Given a sub-alphabetΘ ⊆ Σ and a wordu ∈ Σ∗, we denote by
u|Θ the projectionof u over Θ, i.e., the word obtained fromu by
erasing all the symbols that are not inΘ.

A substitutionσ overΣ is a mapping fromΣ to Σ. We writew[σ]
to denote the word such that for everyi ∈ [length(w)], w[σ](i) =
σ(w(i)).This definition is generalized to sets of words as follows:
For everyL⊆ Σ∗, L[σ] = {w[σ] | w∈ L}.

Assume thatΣ = {a1, . . . ,an}. Then, to define the substitutionσ
applied to a wordw, we use the notationw[σ(a1)/a1, . . . ,σ(an)/an]
where, for the sake of conciseness, we omitσ(ai)/ai whenσ(ai) =
ai , for any i ∈ [n]. This notation is extended straightforwardly to
sets of words.

Let k≥ 1 be an integer andE be a set. Lete= (e1, . . . ,ek) ∈ Ek

be ak-dim vector overE. For everyi ∈ [k], we usee[i] to denote the
i-th component ofe (i.e.,e[i] = ei). For everyj ∈ [k] ande′ ∈ E, we
denote bye[j ←֓ e′] thek-dim vectore′ overE defined as follows:
e′[j] = e′ ande′[l] = e[l] for all l 6= j .

Let E and F be two sets. We denote by[E → F] the set of
all mappings fromE to F . Assume thatE is finite and thatE =
{e1, . . . ,ek} for some integerk≥ 1. Then, we sometimes identify a
mappingg∈ [E→ F] with ak-dim vector overF (i.e., we consider
thatg∈ Fk with g[i] = ei for all i ∈ [k]).

3. TSO/PSO concurrent systems
We introduce in this section an operational semantics for concur-
rent systems under the TSO memory model (corresponding to the
w→ r program order relaxation). A similar operational model can
be defined in order to take into account bothw→ r and w→ w

relaxations, leading to the PSO memory model.

3.1 Shared memory concurrent systems

Let D be a finite data domain, and letX = {x1, . . . ,xm} be a finite
set of variables valued inD. From now on, we denote byM the set
Dm, i.e., the set of all possible valuations of the variables inX.

Then, for a given finite set of process identitiesI , let Ω(I ,D,X)
be the smallest set of operations which contains (1) the“no opera-
tion” nop, (2) theread operationsr(i,x,d), (3) thewrite operations
w(i,x,d), and (4) theatomic read-write operationsarw(i,x,d,d′),
wherei ∈ I , x∈ X, andd,d′ ∈ D.

A concurrent systemover D andX is a tupleN = (P1, . . . ,Pn)
where for everyi ∈ [n], P i = (Pi,∆i) is a finite-state process
where (1)Pi is a finite set of control states, and (2)∆i ⊆ Pi ×
Ω({i},D,X)×Pi is a finite set of labeled transition rules. For con-
venience, we writep

op
−−→i p′ instead of(p,op, p′) ∈ ∆i , for any

p, p′ ∈ Pi andop∈Ω({i},D,X).
The behaviors of concurrent systems are usually defined accord-

ing to the interleaving semantics. The weak semantics correspond-
ing to thew→ r program order relaxation is obtained by allowing
that read operations “overtake” (along a computation) write opera-
tions performed by the same process when these operations concern
different variables, i.e., a sequence of operationsw(i,y,d′)r(i,x,d)
(executable from left to right), wherex 6= y, can always be replaced
by the sequencer(i,x,d)w(i,y,d′). However, in this semantics the
order between write operations performed by the same process
must be maintained, and each atomic read-write is considered as
an operation that cannot permute with no other operation of any
kind. Moreover, a “cancellation rule” is applied which consists in
considering that any sequencew(i,x,d)r(i,x,d) of a write followed
by a read of the same value to the same variable by the same pro-
cess is equivalent to the operationw(i,x,d). In the next section, we
define an operational model that captures this weak memory model.

3.2 An operational model for TSO

Our operational model consists in associating with each process
a FIFO buffer. This buffer is used to store the write operations
performed by the process (Write to store). Memory updates are
then performed by choosing nondeterministically a processand by
executing the first write operation in its buffer (Update). A read
operation by the processP i to the variablex j can overtake the
write operations stored in its own buffer if all these operations
concern variables that are different fromx j (Read memory). When
the buffer contains some write operations tox j , then the read
value must correspond to the value of the last of such a write
operation (Read own write). Finally, atomic read-write operation
can be executed only when the buffer is empty (ARW).

Let us now define formally the model. LetP= P1×·· ·×Pn and
for everyi ∈ [n], let Bi = {i}× [m]×D be the alphabet of the store
buffer associated withP i . A configurationof N is a tuple〈p,d,u〉
wherep∈P, d∈M, andu∈B∗1×·· ·×B∗n is a valuation of the store
buffers.

We define the transition relation⇒N on configurations ofN
to be the smallest relation such that, for everyp,p′ ∈ P, for every
u,u′ ∈B∗1×·· ·×B∗n, and for everyd,d′ ∈M, we have〈p,d,u〉⇒N
〈p′,d′,u′〉 if there is ani ∈ [n], and there arep, p′ ∈ Pi , such that
p[i] = p, p′ = p[i ←֓ p′], and one of the following cases hold:

1. Nop: p
nop
−−−→i p′, d = d′, andu = u′.

2. Write to store: p
w(i,x j ,d)
−−−−−−→i p′, u′ = u[i ←֓ (i, j ,d)u[i]], andd =

d′.

3. Update: p = p′, and∃ j ∈ [m]. ∃d ∈ D. u = u′[i ←֓ u′[i](i, j ,d)]
andd′ = d[j ←֓ d]

4. Read: p
r(i,x j ,d)
−−−−−→i p′, d = d′, u = u′, and

• Read own write: ∃u1,u2 ∈ B∗i .
(

u[i] = u1(i, j ,d)u2 and
∀(i,k,d′) ∈ u1. k 6= j

)

.

• Read memory: ∀(i,k,d′) ∈ u[i]. k 6= j , andd[j] = d.

5. ARW: p
arw(i,x j ,d,d′)
−−−−−−−−→i p′, u[i] = ε, u = u′, and d[j] = d, and

d′ = d[j ←֓ d′].

Let⇒∗
N

denote the reflexive-transitive closure of⇒N .
In the rest of the paper, we call(w→ r)-relaxed memory system

a concurrent systemN with the operational semantics induced by
the transition relation⇒N defined above.

3.3 Adding thew→ w relaxation

The w→ w relaxation consists in allowing that write operations
overtake other write operations by the same process if they concern
different variables. The consideration of bothw→ r and w→ w

relaxations leads to a memory model which is essentially thePSO
model.

An operational model for(w→ r/w)-relaxed memory systems
can be defined by modifying the model in the subsection 3.2 so
that each process hasm store buffers instead of a single one (one
per variable). Then, two consecutive write operationsw(i,x j ,d)
andw(i,xk,d′) by the same processP i are stored in two different
buffers, which allows to reorder these write operations. Weomit
here the formal description of the model since it should be quite
obvious to the reader.

3.4 Reachability problems

We assume that we are given a(w→ r)-relaxed memory systemN .
Then, thestate reachability problemis to determine, for two given
vectors of control statesp,p′ ∈ P, and two given memory states
d,d′ ∈M, whether〈p,d,εn〉 ⇒∗

N
〈p′,d′,εn〉.

The repeated state reachability problemis to determine, for
givenp,p′ ∈ P andd,d′ ∈M, whether there is an infinite sequence
〈p0,d0,u0〉〈p1,d1,u1〉 · · · such that: (1)〈p,d,εn〉 ⇒∗

N
〈p0,d0,u0〉,

and (2)〈pi ,di ,ui〉 ⇒
∗
N
〈pi+1,di+1,ui+1〉, pi = p′, anddi = d′ for

all i ≥ 0.
The definitions of the two problems above can be extended

straightforwardly to the case of(w→ r/w)-relaxed memory sys-
tem. We address in the next sections the decidability of these prob-
lems.

Notice that we consider in the definition of the state reachability
problem that the buffers at the targeted configuration must be empty
instead of being arbitrary. This is only for the sake of simplicity
and does not constitute at all a restriction. Indeed, we can show
that the “arbitrary buffer” state reachability problem is reducible
to the “empty buffer” state reachability problem. The idea of the
reduction is to add to the system a special process, let us call it O
(for observer), that guesses nondeterministically the moment when
the system reaches the targeted control and memory states. An ad-
ditional shared variable is used as a flag. This flag is (1) checked
by all the original processes in the system before each of their op-
erations, and (2) it is switched (using an atomic read-writeopera-
tion) by O when it guesses that the target state is reached in order
to signal to the other processes that they must stop their computa-
tions (and stay at their control location). After switchingthe flag,
the processO checks that the memory state is indeed the targeted
one. Then, since the buffers can always be flushed by executing all
pending write operations (which potentially modifies the memory
state but keeps unchanged the control states of all processes), it suf-
fices to check (as an “empty buffer” state reachability problem) that
each process is at its targeted control state (and some memory state
among the finitely many possible states).

4. Perfect/Lossy Channel Machines
FIFO channel machines are finite control machines supplied with
unbounded FIFO queues on which they can perform send and
receive operations. When the channels arelossy, symbols in the
channels can be lost at any position and at any time. We give
in this section the formal definition of these machines, and we
recall results concerning the decidability and the complexity of
their reachability and repeated reachability problems.

In fact, we need to use in this paper a version of these machines
which extends (syntactically) the basic version usually considered
in the literature (e.g., in [Abdulla and Jonsson 1993, 1994,Sch-
noebelen 2002]). In our version, machines can also check regular
constrains on the channels, and apply a substitution on symbols oc-
curring in the channels. Moreover, we admit that there is a bounded
number of special symbols (called strong symbols) that cannot be
lost by the channels. The extensions that we consider do not in-
crease the power of the lossy channel machines, but they are useful
for describing our results in the next sections.

4.1 Channel constraints and operations

Let C be a set of channels. We consider that the content of each
channel is a word overΣ (i.e., an element ofΣ∗).

Guards: For a given channelc ∈ C, a regular guardon c is a
constraint of the form “c ∈ L”, where L ⊆ Σ∗ is a regular set
of words. Given a guard “c ∈ L”, and a wordu ∈ Σ∗, we write
u |= “c∈ L” if and only if u∈ L.

For notational convenience, we write (1) “a ∈ c” instead of
“c ∈ Σ∗aΣ∗ ”, (2) “c = ε” instead of “c ∈ {ε}”, and (3) “c : A”
instead of “c∈ A∗ ”, for any A⊆ Σ.

A regular guard overC is a mappingg that associates a regular
guard with each channelc∈C. Let Guard(C) be the set of regular

guards overC. The definition of|= is extended to regular guards
over C and to mappings fromC to Σ∗ as follows: For everyg ∈
Guard(C) andu ∈ [C→ Σ∗], we writeu |= g iff u(c) |= g(c) for all
c∈C.

Operations: For a given channelc ∈C, a channel operationon
c is either anop (no operation), or an operation of the formc?a
(receive) for somea∈ Σ, or of the formc[σ]!a (send), wherea∈ Σ
andσ is a substitution overΣ. We write simplyc!a instead ofc[σ]!a
whenσ is the identity substitution.

The operationc?a checks if the first element ofc is equal to
a and then erases it, whereasc[σ]!a applies the substitutionσ to
c and then addsa to the end of the channel (as the last element).
Formally, we associate with each operation a relation over words
(channel contents) as follows: For everyu,u′ ∈ Σ∗, we have (1)
[[nop]](u,u′) iff u = u′, (2) [[c[σ]!a]](u,u′) iff u′ = a ·u[σ], and (3)
[[c?a]](u,u′) iff u = u′ ·a.

A channel operation overC is a mappingop that associates with
each channelc∈C a channel operation onc. Let Op(C) be the set
of channel operations overC. The definition of[[·]] is extended to
channel operations overC and to pairs of mappings fromC to Σ∗
as follows: For everyg∈Guard(C) andu,u′ ∈ [C→ Σ∗], we have
[[op]](u,u′) if and only if [[op(c)]](u(c),u′(c)) holds for allc∈C.

4.2 FIFO channel machines

A channel machineis a tupleM = (Q,C,Σ,Λ,∆) whereQ is a
finite set of control states,C is a finite set of channels,Σ is a
finite channel alphabet,Λ is a finite set of transition labels, and
∆ ⊆ Q×Λε ×Guard(C)×Op(C)×Q is a set of transitions. We

write q
ℓ,g|op
−−−−→∆ q′ instead of(q, ℓ,g,op,q′) ∈ ∆.

A configurationof M is a pair 〈q,u〉 where q ∈ Q and u ∈
[C→ Σ∗]. Let Conf(M) denote the set of configuration ofM .
Given a configurationγ = 〈q,u〉, let State(γ) = q. This definition
is generalized to sequences of configurations as follows: For every
γ1, . . . ,γm∈Conf(M), State(γ1 · · ·γm) = State(γ1) · · ·State(γm).

For everyℓ ∈ Λε, the transition relation
ℓ

=⇒M , between config-
urations ofM , is defined as follows: For everyq,q′ ∈Q andu,u′ ∈

[C→ Σ∗], 〈q,u〉 ℓ
=⇒M 〈q

′,u′〉 if and only if there isq
ℓ,g|op
−−−−→∆ q′

such thatu |= g and [[op]](u,u′). Let⇒M=
S

ℓ∈Λε

ℓ
=⇒M and let

⇒∗
M

be the reflexive-transitive closure of⇒M .
Given〈q,u〉,〈q′,u′〉 ∈Conf(M), afinite runρ ofM from 〈q,u〉

to 〈q′,u′〉 is a finite sequence〈q0,u0〉ℓ1〈q1,u1〉ℓ2 · · ·ℓm〈qm,um〉
such that the following conditions are satisfied: (1)q0 = q and

qm = q′, (2) u0 = u andum = u′, and (3)〈qi−1,ui−1〉
ℓi=⇒M 〈qi ,ui〉

for all i ∈ [m] . Thetraceof a finite runρ is the sequence of labels

ρ|Λ. We write〈q,u〉 λ
=⇒

∗

M 〈q
′,u′〉 when there is a runρ from 〈q,u〉

to 〈q′,u′〉 with a traceλ (i.e.,ρ|Λ = λ).
Let q,q′ ∈Q be two control states. We denote byT(q,q′)(M) the

set of traces of all finite runs ofM from the configuration〈q,ε|C|〉
to the configuration〈q′,ε|C|〉.

Given a control stateq∈ Q, an infinite runof M starting from
q is an infinite sequence〈q0,u0〉ℓ1〈q1,u1〉ℓ2 · · · such thatq0 = q,

u0 = ε|C|, and〈qi−1,ui−1〉
ℓi=⇒M 〈qi ,ui〉 for all i ≥ 1.

4.3 Lossy Channel Machines

In this section, we define the semantics of channel machines when
the channels may loose some of their contents.

Subword relations: Let �⊆ Σ∗ × Σ∗ be thesubword relation
defined as follows: For everyu = a1 · · ·an ∈ Σ∗, and everyv =
b1 · · ·bm ∈ Σ∗, u� v if and only if there arei1, . . . , in ∈ [m] such
that i1 < i2 < .. . < in anda j = bi j for all j ∈ [n].

Let S⊆ Σ be a set of “strong symbols” and letk∈ N. Then, for
everyu,v∈ Σ∗, let u�k

S v hold if and only ifu� v, u|S = v|S, and
length(u|S)≤ k. (Notice that�0

/0=�.)
The subword relations defined above are extended to mappings

fromC to Σ∗ as follows: For everyu,v ∈ [C→ Σ∗], u�k
S v holds if

and only ifu(c)�k
S v(c) holds for allc∈C.

Lossy transitions: Now, we define a transition relation
ℓ

=⇒(M ,S,k)
between configurations ofM by allowing that the channels can
loose some of their symbols, provided that these symbols arenot
in S, and under the restriction that the number ofSsymbols in each
channel is bounded byk. Formally, for everyℓ ∈ Λε, q,q′ ∈Q, and

u,u′ ∈ [C→ Σ∗], 〈q,u〉 ℓ
=⇒(M ,S,k) 〈q

′,u′〉 if and only if there are

v,v′ ∈ [C→ Σ∗] such thatv�k
S u, v ℓ

=⇒M v′, andu′ �k
S v′.

The notions of a finite/infinite run and of a finite trace are
defined as in the non-lossy case by replacing⇒M with ⇒(M ,S,k).

Given two control statesq,q′ ∈ Q, we denote byLT(S,k)
(q,q′)(M) the

set of traces of all finite runs ofM from the configuration〈q,ε|C|〉
to the configuration〈q′,ε|C|〉 according to the semantics defined by
⇒(M ,S,k). Notice that, by definition of⇒(M ,S,k), in all reachable
configurations along runs ofM , the channels contain less thank
symbols inS.

In the rest of the paper, we say thatM is an (S,k)-LCM (or
simply a LCM if no confusion is possible) when its operational
semantics is defined by⇒(M ,S,k).

Basic Lossy Channel Machines: A basic LCM is a(/0,0)-LCM
where all the guards are trivial (i.e., of the formc ∈ Σ∗) and all
the substitutionsσ in the send operationsc[σ]!a are equal to the
identity substitution. We can prove the following fact.

PROPOSITION1. LetM = (Q,C,Σ,Λ,∆) be a(S,k)-LCM for some
S⊆Σ and k∈N. Then, it is possible to construct a basic LCMM ′=

(Q′,C,Σ′,Λ,∆′), with Q⊆Q′ andΣ⊆ Σ′, such that LT(S,k)
(q,q′)(M) =

LT(/0,0)
(q,q′)(M

′) for all q,q′ ∈Q.

Applying substitutions can be easily simulated using channel
rotations. A channel rotation overc ∈ C corresponds to send a
special marker♯ to c to delimit the current tail position, and then
iterate, using some extra control states, a sequence of receive,
check/substitute, and send operations, until♯ is found. Channel
rotations are also used to check regular guards. Given a guard
c ∈ L, the machineM ′ uses during the rotation ofc the content
of this channel as input to simulate the runs of some given finite
state automaton that recognizes the regular languageL. Then, if the
marker♯ is encountered in a non accepting state of this automaton,
M ′ goes to a special blocking control state. To guarantee that all
the strong symbols in the channels ofM ′ are not lost, the machine
M ′ stores in its control state (in addition to the control stateof M)
their sequences corresponding to each of the channels. (Remember
that these sequences are of bounded sizes by assumption). We
consider that the control state ofM ′ corresponding to a control state
q∈ Q of M coupled with an empty sequence of strong symbols is
identified withq. Then, after each simulation of an operation ofM ,
the machine updates the sequences of strong symbols in its control
state, and also checks, using channel rotations over all itschannels,
that all strong symbols that are supposed to be in the channels are
indeed present. If for some channel the sequence of strong symbols
is different from the one stored in its control state, the machineM ′

goes to a blocking control state.

4.4 Product of channel machines:

We define the synchronous product between channel machines in
the usual manner: Given two machinesM 1 = (Q1,C1,Σ,Λ,∆1) and
M 2 = (Q2,C2,Σ,Λ,∆2) such thatC1 ∩C2 = /0, let M 1⊗M 2 =
(Q1×Q2,C1 ∪C2,Σ,Λ,∆12) denote the product ofM 1 andM 2
where∆12 is defined by synchronizing transitions having the same
label in Λ and gathering their guards and operations (notice that
they concern disjoint sets of channels), and lettingε-transitions
asynchronous. The following fact is easy to show:

PROPOSITION2. Let q1,q′1 ∈Q1, q2,q′2 ∈Q2, and letq = (q1,q2)
andq′ = (q′1,q

′
2). Then,

• T(q,q′)(M 1⊗M 2) = T(q1,q′1)
(M 1)∩T(q2,q′2)

(M 2), and

• LT(S,k)
(q,q′)(M 1⊗M 2) = LT(S,k)

(q1,q′1)
(M 1)∩LT(S,k)

(q2,q′2)
(M 2), for every

S⊆ Σ and k∈N.

The product operation⊗ can be extended straightforwardly to
any finite number of channel machines.

4.5 Decision problems on LCM

LetM = (Q,C,Σ,Λ,∆) be an(S,k)-LCM for someS⊆Σ andk∈N.
Thecontrol state reachability problemis to determine whether,

for two given control statesq and q′, there is a finite runρ of
M from 〈q,ε|C|〉 to 〈q′,ε|C|〉. Clearly, this is equivalent to check

whetherLT(S,k)
(q,q′)(M) 6= /0.

Therepeated control state reachability problemis to determine
whether, for two given control statesq andq′, there is an infinite run
ρ of M starting from〈q,ε|C|〉 such thatq′ occurs infinitely often in
State(ρ|Q×([C→Σ∗])).

PROPOSITION3. For every S⊆ Σ and k∈ N, the control state
reachability problem for(S,k)-LCM’s is decidable, whereas their
repeated control state reachability problem is undecidable.

The proposition above follows immediately from Proposition 1
and from well-known results on the reachability and the repeated
reachability problems in basic lossy channel machines [Abdulla
and Jonsson 1993, 1994]. The decidability of the control state
reachability problem of basic lossy channel machines is based on
the theory of well-structured systems [Abdulla et al. 1996,Finkel
and Schnoebelen 2001].

Actually, it is also possible to prove that this problem is de-
cidable for (nonbasic)(S,k)-LCM directly using the same theory,
without going through the simulation of Proposition 1. For that,
it suffices to see that (1)�k

S is a well-quasi ordering on the set
of words with less thank symbols inS (which follows from the
fact that� is well-known to be a WQO (by Higman’s lemma), and
that WQO’s are closed under product and disjoint union), andthat
(2)�k

S defines a simulation relation on the configurations of(S,k)-
LCM’s (if a configuration can perform a transition, a greatercon-
figuration w.r.t. this ordering can also perform the same transition
to reach the same target). Then, by standard results in [Abdulla
et al. 1996, Finkel and Schnoebelen 2001], a simple iterative back-
ward reachability analysis procedure for(S,k)-LCM’s (using finite
representations of�k

S-upward closed sets of configurations by their
minimals) is guaranteed to always terminate. It has been shown in
[Schnoebelen 2002] that this procedure may take in general anon-
primitive recursive time to converge. Nevertheless, efficient algo-
rithms and tools for the analysis of well-structured systems such
as vector addition systems and lossy channel machines have been
developed, based oncompleteabstract reachability analysis tech-
niques [Geeraerts et al. 2006, Ganty et al. 2006].

5. Simulating TSO/PSO by lossy channels
We show that the state reachability problem for(w→ r)-relaxed
memory systems can be reduced to the control state reachabil-
ity problem for lossy channel machines. From this reductionand
Proposition 3, we obtain the following fact.

THEOREM 1. The state reachability problem for(w→ r)-relaxed
memory systems is decidable.

The rest of the section is mainly devoted to the description of the
reduction. We address in a last subsection the extension of Theorem
1 to the case of PSO models.

Given a concurrent systemN = (P1, . . . ,Pn) over D andX =
{x1, . . . ,xm}, we constructn lossy channel machinesM 1, . . . ,M n,
one per process inN , such that the reachability problem inN
can be reduced to the reachability problem in the product of
M 1, . . . ,M n.

Turning simply the store buffers to lossy channels (i.e., skipping
some write operations) leads to unsound memory states (w.r.t. the
TSO semantics). For example, consider two processesP and P ′

sharing two variablesx and y, and assume that the transitions

of P are p0
w(x,1)
−−−−→ p1

w(y,1)
−−−−→ p2 and that the transitions ofP ′

are p′0
r(x,1)
−−−−→ p′1

r(y,0)
−−−−→ p′2. (We omit here the identities of the

processes in the description of the actions.) Then, assuming that
the starting state is(p0, p′0,x = 0,y = 0), it can be checked that,
according the TSO semantics, the state(p2, p′2,x = 1,y = 0) is not
reachable. However, if the operationw(y,1) of processP is lost by
its store buffer (if we consider it as a lossy channel), then this state
becomes reachable.

In fact, lossyness can be tolerated only if the information in
the channels is always sufficient to obtain sound memory state
when read operations must be performed. Then, the idea is that
channels should contain sequences of sound memory states. This
means that for the simulation, instead of sending in the channel
a write operation, a process must send the state that the memory
(in the simulated system) will have right after the execution of this
write operation (i.e., at the moment when in the simulated system
this operation will be taken from the store buffer and used for
updating the memory state). For instance, in the example above,
the sequence of sound memory states that must be considered
is (x = 0,y = 1)(x = 1,y = 1). Assume now that processP has
sent this sequence (from left to right) to its channel, and that the
memory is updated successively by copying these states to the
global store, but some state, say(x = 0,y = 1), has been lost. In
this case the state of the memory goes directly from(x = 0,y = 0)
to (x = 1,y = 1). But this is perfectly sound since several memory
updates are possible before any process can observe the changes in
the memory state.

Now, let us see how a process can send a sequence of sound
states to its channel. Obviously, if the process is the only one in
the system to perform write operations (as in the example above),
knowing what is the memory state after executing a write opera-
tion is easy to determine: The process can maintain in its control
state the last memory state sent to the channel, and then, forthe
next write operation, the process can compute a new state that is
(memorized in its control state and) sent to the channel. Thediffi-
culty comes of course from the fact that in presence of concurrency,
the memory state that the process should send to the channel must
take into account the interferences of the other processes.There-
fore, each process mustguessthe sequence of memory update op-
erations (along a computation) resulting from the write operations
performed by all the processes in the system. In other words,the
process has to guess the write operations by all processes aswell as
the order (after their interleaving) in which they will be executed.
Given such a sequence of write operations, the simulation ofthe

behavior of a process by a lossy channel machine can be done. In
fact, since the buffer contains a sequence of sound memory states,
loosing some of the channel content can be seen as skipping unob-
servable states. Indeed a process observes the memory only at the
moment read operations are performed. Between these moments
several changes to the memory (due to the writes sent by different
processes) may occur, but even if the intermediary memory states
resulting from these changes are not observed (and can be consid-
ered as lost by the channel), each observed state is sound since it
accumulates the effect of all the operations performed so far.

For this simulation, a control state ofM i is composed by a con-
trol state ofP i , a vector of datadc∈M corresponding to the current
memory state, and a vector of datadg representing the (guessed)
memory state that should be obtained after executing all theopera-
tions in the buffer. Then, an element of the channel alphabetof M i
is of the form(k, j ,d) wherek∈ [n], j ∈ [m] andd ∈ Dm. (We will
see shortly that we need also some other kind of elements.) The
vector of datad in such an element represents the memory state
supposed to be reached after executing the operationw(k,x j ,d[j]).
There is however a technical issue which requires some care:In
order to simulate correctly “Read own write” operations, itis nec-
essary to forbid the loss of the states stored in the channel that cor-
respond to the last write operation on each of the variables.Fortu-
nately, the number of such states is bounded (sinceX is finite), and
therefore we can consider them as strong symbols (see definition of
sub-word relations). Technically, these special states inthe channel
are marked and have the form((k, j ,d), ♯); let Σ2 be the set of these
marked states. Then, the alphabet of the channel includes alsoΣ2,
and after each write operation, the marking in the channel must
of course be maintained coherent. In order to impose that marked
states are not lost, we considerM i to be a(Σ2,m)-LCM.

Now, the last step is to check that all processes have guessedthe
same sequence of write operations and the same ordering of their
execution. For that, each machine makes visible the transitions cor-
responding to its own write operations, as well as to the guessed
write operations (concerning the other processes), and then, the
product of these machines is taken with synchronization on the al-
phabet of write operations. In fact, if the machines agree onthe se-
quence of write operations, they have necessarily stored the same
sequence of states in their channels. Although each channelis lossy
(and the different channels may loose different elements),the se-
quence of observations made by each process (using the informa-
tions in its own channel and control state) is guaranteed to be sound.
Therefore, the reachability problem in the original systemis re-
ducible to a reachability problem in a lossy channel machine. In or-
der to be able to present the correctness proof (which will begiven
in the next section), we need to label also update transitions (and
not only transitions corresponding to write operations), although
this is not necessary for the decision procedure itself. (Wewill use
this labeling to relate sequences of updates and writes along com-
putations.)

Let us now give the formal description of the reduction.

5.1 Constructing the machinesM i

Let i ∈ [n]. Then,M i = (Qi ,{ci},Σ,Λ,∆i) where:

• Qi = Pi×M×M whereM = Dm.

• ci is the single channel ofM i .

• Σ = Σ1∪Σ2 whereΣ1 = [n]× [m]×Dm andΣ2 = Σ1×{♯}.

• Λ = Λw ∪Λupd∪Λarw where:

Λw = {w(k,x j ,d) : k∈ [n], j ∈ [m],d ∈ D}

Λarw = {arw(k,x j ,d,d′) : k∈ [n], j ∈ [m],d,d′ ∈D}

Λupd = {upd(k,x j ,d) : k∈ [n], j ∈ [m],d ∈ D}

• ∆i is the smallest set of transitions such that∀p, p′ ∈ Qi , and
∀dc, dg ∈M,

Nop: If p
nop
−−−→i p′ then(p,dc,dg)

ε,ci :Σ |nop
−−−−−−−→∆i

(p,dc,dg)

Write to store: If p
op
−−→i p′, whereop= w(i,x j ,d) for some

j ∈ [m] andd ∈D, then for everyd ∈M,

(p,dc,dg)
op,(a,♯)∈ci |ci [a/(a,♯)]!a′
−−−−−−−−−−−−−−−→∆i

(p′,dc,d′g)

(p,dc,dg)
op,ci :Θ |ci !a′
−−−−−−−−→∆i

(p′,dc,d′g)

wherea = (i, j ,d), d′g = dg[j ←֓ d], a′ = ((i, j ,d′g), ♯), and
Θ = Σ\ ({i}×{ j}×M).

Guess write: ∀k∈ [n]. k 6= i, ∀ j ∈ [m], ∀d ∈ D,

(p,dc,dg)
w(k,x j ,d),ci :Σ |ci !a
−−−−−−−−−−−−→∆i

(p,dc,d′g)

whered′g = dg[j ←֓ d] anda = (k, j ,d′g).

Update: ∀k∈ [n], ∀ j ∈ [m], ∀d ∈M,

(p,dc,dg)
op,ci :Σ |ci ?(k, j,d)
−−−−−−−−−−−→∆i

(p,d′c,dg)

(p,dc,dg)
op,ci :Σ |ci ?((k, j,d),♯)
−−−−−−−−−−−−−→∆i

(p,d′c,dg)

whereop= upd(k,x j ,d[j]) andd′c = dc[j ←֓ d].

Read: If p
r(i,x j ,d)
−−−−−→i p′ for some j ∈ [m] and d ∈ D, then

∀d ∈M. d[j] = d,

(p,dc,dg)
ε,(a,♯)∈ci |nop
−−−−−−−−−→∆i

(p′,dc,dg) ∈ ∆i

(p,d,dg)
ε,ci :Θ |nop
−−−−−−−→∆i

(p′,d,dg)

wherea = (i, j ,d) andΘ = Σ\ ({i}×{ j}×M).

ARW: If p
arw(i,x j ,d,d′)
−−−−−−−−→i p′ for some j ∈ [m] andd,d′ ∈ D,

then∀d ∈M. d[j] = d,

(p,d,d)
arw(i,x j ,d,d′),ci=ε |nop
−−−−−−−−−−−−−−−→∆i

(p′,d′,d′)

whered′ = d[j ←֓ d′].

5.2 Composing the machinesM i

To simulate the systemN , we consider for eachi ∈ [n] the(Σ2,m)-
LCM M ′i obtained fromM i by substituting each transition label
arw(k,x j ,d,d′) by a labelw(k,x j ,d′), and each labelupd(k,x j ,d)
by ε, and then we take simply the⊗ product of the machinesM ′i .
This ensures that the machines agree on the sequences of write
operations performed in the simulated system. (Here atomicread-
write operations are also considered as write operations.)

The precise link betweenN and the so obtained(Σ2,m)-LCM
is given by the following proposition:

PROPOSITION4. Let p,p′ ∈ P, and letd,d′ ∈M. Then,

〈p,d,εn〉 ⇒∗
N
〈p′,d′,εn〉 iff

n
\

i=1

(LT(Σ2,m)
(qi ,q′i)

(M i)[σw])|Λw
6= /0

where, for every i∈ [n], qi = (p[i],d,d) and q′i = (p′[i],d′,d′), and
σw = (w(k,x j ,d′)/arw(k,x j ,d,d′))k∈[n]; j∈[m];d,d′∈D.

Theorem 1 follows immediately from Proposition 4. The proof
of this proposition is presented in the Section 6.

5.3 The case of PSO

We prove the same result as Theorem 1 for(w→ r/w)-relaxed
memory systems. It is indeed again possible for these systems to
reduce the state reachability problem to the control state of lossy
channel machines. The reduction is even simpler in this case. In
fact, while turning store buffer to lossy channels is unsound for
TSO systems, it can be shown that this is actually possible for PSO.

Consider again the example given in the beginning of the proof
of Theorem 1. This time, since we are considering the PSO se-
mantics, the operationsw(x,1) andw(y,1) are stored in different
buffers. Then, it is possible to reach the state(p2, p′2,x = 1,y = 0)
since it is possible to update the variablex before the variabley.
Therefore, loosing the operationw(y,1) does not lead in this case
to an unsound state.

In general, since all the write operations in a same channel
concern a same variable, skipping some operations can be seen as
equivalent to executing a sequence of updates to a same variable,
and therefore, the reached state corresponds to the last update to
this variable (and it is necessarily sound). Some care has tobe
taken, however, concerning the last operation in the buffer. If the
process using this buffer does not read on its correspondingvariable
(as in the example above), then loosing this operation is nota
problem. However, to simulate in general the read operations, the
last write operation in each buffer must be kept since the process
must read its value if this operation has not been executed yet.
Then, by marking the last symbol in each channel and considering
it as a strong symbol, the translation to lossy channel machines is
straightforward.

THEOREM2. The state reachability problem is decidable for
(w→ r/w)-relaxed memory systems.

6. Correctness proof
We present the proof of Proposition 4 in three steps.

First we relate the reachability problem in(w→ r)-relaxed
memory system to the reachability problem in perfect channel ma-
chines. We show that checking state reachability inN is equivalent
to check the control state reachability in the product of theM i ’s,
seen asperfectchannel machines, when they are synchronized over
the udpate transitions (see Proposition 5). Showing that the product
of the channel machines simulatesN is rather straightforward. The
reverse direction is proved by establishing a kind of weak simula-
tion relation between the configurations of the two systems.

Then, we observe that when theM i ’s are considered as perfect
channel machines, the reachability problem in their synchronous
product overupdatetransitions, and the same problem considered
in the synchronous product overwrite transitions, are mutually re-
ducible to each other (see Proposition 6). (We consider thatatomic
read-writes are considered both as writes and updates.) This is sim-
ply due to the fact that for a perfect channel the sequence of inputs
is always equal to the sequence of outputs.

Finally, we prove that checking the reachability problem inthe
synchronous product of theperfectmachinesM i over the write
transitions is equivalent to checking the same problem in the syn-
chronous product of thelossychannel machinesM i over the write
transitions (see Proposition 7). The proof is based on the fact that
our encoding of the memory states stored in the channels is robust
w.r.t. lossyness.

Let us state these fact more formally. We need first to in-
troduce a notion ofconsistent configuration. A configuration
〈(p,dc,dg),u〉 ∈ Con f(M i) is consistent if, eitheru = ε and
dc = dg, or u ∈ {(k, j ,dg)w : k 6= i, j ∈ [m],w ∈ Σ∗}, or u ∈
{(i, j ,dg), ♯)w : j ∈ [m],w ∈ Σ∗}. Consistency means simply that
the value of the memory state obtained after executing the oper-
ations in the buffer coincides with the one encoded in the con-
trol state of the configuration. In all the relations betweensys-
tems described above, the configuration consistency of the channel
machines is assumed. This is not a restriction since initially we
consider configurations of the form〈(p,d,d),εn〉 that are clearly
consistent, and it can easily be checked that the transitions in each
M i preserve consistency.

Now, let us consider the following notation. Forη ∈ {w,upd},
let fη be the mapping fromΛ∗ to Λ∗η such that, for everyu ∈ Λ∗,
fη(u) = (u[ση])|Λη where

ση = (η(k,x j ,d
′)/arw(k,x j ,d,d′))k∈[n]; j∈[m];d,d′∈D

This definition is generalized to sets of words.
We state hereafter the relation between the reachability prob-

lems inN and in the product of the perfect channel machinesM i .

PROPOSITION5. Let p,p′ ∈ P andd,d′ ∈M. Then,〈p,d,εn〉 ⇒∗
N

〈p′,d′,εn〉 iff
Tn

i=1 fupd(T(qi ,q′i)
(M i)) 6= /0 where, for every i∈ [n],

qi = (p[i],d,d) and q′i = (p′[i],d′,d′).

The “only if direction” is easy and omitted here. To prove the“if
direction” we need to define a mapping which converts consistent
configurations in the product of theM i ’s to configurations inN .

Let d ∈ M, and for eachi ∈ [n], let γi = 〈qi ,ui〉 be a con-
sistent configuration ofM i such thatqi [2] = d. Then, we define
µ(γ1, . . . ,γn) to be the configuration〈p,d,u〉 of N such that, for
everyk ∈ [n], p[k] = qk[1] andu[k] = (ui [σ1][σ2])|Bi , whereσ1 =
(a/(a, ♯))a∈Σ1 , and σ2 = ((l , j ,d[j])/(l , j ,d))l∈[n]; j∈[m];d∈M. (Re-
call thatBi = {i}× [m]×D.)

Then, Proposition 5 follows from the two next lemmas.

LEMMA 1. For every i∈ [n], let γi = 〈qi ,ui〉 be a consistent
configuration ofM i . Assume that∀i, l ∈ [n]. qi [2] = ql [2]. Then,

∀i ∈ [n], ∀γ′i ∈ Conf(M i), if γi
λi=⇒
∗

M i
γ′i for someλi ∈ Λ∗w, then

µ(γ1, . . . ,γn)⇒
∗
N

µ(γ′1, . . . ,γ
′
n).

LEMMA 2. For every i∈ [n], let γi = 〈qi ,ui〉 and γ′i = 〈q′i ,u
′
i〉 be

consistent configurations ofM i , and letℓi ∈ Λupd ∪Λarw. Assume
that∀i, j ∈ [n]. qi [2] = q j [2], q′i [2] = q′j [2], and fupd(ℓi) = fupd(ℓ j).

Then,∀i ∈ [n], if γi
ℓi=⇒M i

γ′i , then µ(γ1, . . . ,γn)⇒N µ(γ′1, . . . ,γ
′
n).

Lemma 1 and 2 state thatµdefines a simulation relation between
N and the product of theM i synchronized on the update transitions.
Lemma 1 concerns the case of sequences of transitions without
updates, whereas Lemma 2 concerns the case where theM i ’s must
synchronize on some update operation. The proofs of these lemmas
are not difficult and are omitted here.

The following proposition follows, as said in the introduction
of this section, from the definition of perfect fifo channels (i.e., the
sequence of inputs is equal to the sequence of outputs).

PROPOSITION6. ∀i ∈ [n],∀q,q′ ∈ Qi , fupd(T(q,q′)(M i)) 6= /0 iff
fw(T(q,q′)(M i)) 6= /0.

Finally, we establish the link between computations in perfect
channel and lossy channel machines.

PROPOSITION7. For every i∈ [n], and for every q,q′ ∈ Qi ,

fw(T(q,q′)(M i)) = fw(LT(Σ2,m)
(q,q′) (M i)).

The proof of the left-to-right inclusion is straightforward. For
the other direction, we establish the following fact which states
that there is a simulation relation between the lossy and theperfect
channel systems.

LEMMA 3. For every consistent configurations〈q,u〉,〈q′,u′〉 of

M i , and for everyℓ∈Λε, if 〈q,u〉
ℓ

=⇒(M i ,Σ2,m) 〈q
′,u′〉, then∀v∈ Σ∗

s.t. u�m
Σ2

v and 〈q,v〉 is consistent,∃v′ ∈ Σ∗,∃λ ∈ Λ∗ s.t. (1)
〈q′,v′〉 is a consistent, (2) u′ �m

Σ2
v′, (3) fw(λ) = fw(ℓ), and (4)

〈q,v〉
λ

=⇒
∗

M i
〈q′,v′〉.

Proof. For every j ∈ [m], let Θ j = Σ \ ({i}×{ j}×M) be a set of
labels andG = g∈ {ci : Σ,ci : Θ j ,(a, ♯) ∈ ci | j ∈ [m],a∈ Σ1} be a
set of guards. It is easy to see that, for any guardg∈ G, if u |= g
thenv |= g sinceu�m

Σ2
v.

Now, let us suppose that〈q,u〉
ℓ

=⇒M i
〈q′,u′〉. This implies

that there is a transitionδ = q
ℓ,g|op
−−−−→∆i

q′ such thatu |= g, and
[[op]](u,u′). Then, we consider the four cases depending on the
type of the labelℓ:

• If ℓ = ε, thenop = nop, u = u′, andg ∈ G. This implies that

〈q,v〉
ℓ

=⇒M i
〈q′,v〉 becausev |= g.

• If ℓ ∈ Λw, thenop= ci [σ]!a′, for somea′ ∈ Σ and substitution

σ, u′ = a′ ·u[σ], andg∈G. This implies that〈q,v〉
ℓ

=⇒M i
〈q′,v′〉

with v′ = a′ ·v[σ] sincev |= g.

• If ℓ ∈ Λarw, then op = nop, g ∈ {ci = ε}, q[2] = q[3], and
u′ = u = ε. This implies thatv can be any sequence inΣ∗1 since
u�m

Σ2
v. Moreover, the perfect channel machineM i can apply a

sequence of update operations in order to empty its buffer. This

means thatM i has a run〈q,v〉
λ′

=⇒M i
〈q,ε〉 whereλ′ ∈ Λ∗upd,

since〈q,v〉 is consistent andq[2] = q[3]. From the configuration
〈q,ε〉, the perfect channel machineM i can apply the transition

δ to reach the configuration〈q′,ε〉. Thus,〈q,v〉
λ

=⇒M i
〈q′,ε〉 is

a finite run ofM i whereλ = λ′ℓ. Notice that we have indeed
fw(ℓ) = fw(λ).

• If ℓ ∈ Λupd, then op = ci?a′ for somea′ ∈ Σ, g ∈ {ci : Σ},
and u = u′ · a′. Sinceu �m

Σ2
v, there arew ∈ Σ∗1 and v′ ∈ Σ∗

such thatv = v′ ·a′ ·w andu�m
Σ2

v′ ·a′. Moreover, the perfect
channel machineM i can apply starting from〈q,v〉 a sequence
of update operations corresponding to the sequencew. This

means thatM i has the following run〈q,v〉
λ′

=⇒M i
〈q′′,v′ · a′〉

whereλ′ ∈ Λ∗
upd

andq′′[2] = q[2 ←֓ d] if w(0) = (k, j ,d). Now,
from the configuration〈q′′,v′ ·a′〉, the machinneM i can apply

the transitionδ sincev′ ·a′ |= g. Therefore,〈q,v〉
λ

=⇒
∗

M i
〈q′,v′〉

is a finite run ofM i , whereλ = λ′ℓ. Notice that we have again
fw(ℓ) = fw(λ).

2

Let qi ,q′i ∈Qi , and letρ be a⇒(M i,Σ2,m)-run of the lossy channel
machineM i betweenqi andq′i . Then, using Lemma 3 it is possible
to construct a⇒M i

-run ρ′ of the perfect channel machineM i

from qi to q′i such thatρ andρ′ have the same sequence of write
transitions, i.e.,fw(ρ|Λ) = fw(ρ′|Λ). This terminates the proof of
Proposition 7.

7. Simulating lossy channels by TSO/PSO
We show hereafter that basic lossy channel machines can be simu-
lated by(w→ r)-relaxed memory systems.

THEOREM3. The control state reachability problem as well as
the repeated control state reachability problem for basic lossy
channel machines are reducible to their corresponding problems
for (w→ r) relaxed memory systems.

Proof. LetM = (Q,C,Σ,Λ,∆) be a basic LCM. We assume w.l.o.g.
that M has a single channelc (since every basic LCM can be
simulated by a single-channel basic LCM [Abdulla and Jonsson
1993]), and thatΛ = /0. We simulateM using a(w→ r)-relaxed
memory system with two processesP1 andP2 and two variablesx1

P1
write . . . (1,1,a) ♯ (1,1,b) ♯ . . . update x1

read

P2
update

. . . (2,2,c) ♯ (2,2,d) ♯ . . . writex2

read

Figure 2. The communication graph of a(w→ r)-relaxed memory
system simulating a basic lossy channel machine

andx2. As shown in Figure 2, the processP1 (resp.P2) writes to
the variablex1 (resp.x2) and reads from the variablex2 (resp.x1).
A send operationc!a of M is simulated by a write operation of the
valuea to the variablex1 by the processP1. A receive operation
c?a of M is simulated by a read operation of the valuea from x2
by P1. (A nop operation ofM is simulated by anop operation of
P1.) The role ofP2 is to transfer the successive values ofx1 to x2
(so that they can be read byP1 in the FIFO order).

To avoid multiple reads of the same value ofx2 by P1 (which
would correspond to multiple receptions inM of a same message),
we introduce a marker♯ such that every read (resp. write) of a value
a∈ Σ (by any of the processes) is followed by a read (resp. write) of
♯. Then, the sequence of values written tox1 andx2 alternate values
from Σ with ♯. This ensures that a write operation ofP1 (resp.P2)
can validate at most one read operation ofP2 (resp.P1).

Observe that, however, the read operations performed byP2
can miss some of the values written byP1, and conversely. This
is due to the asynchrony of the two processes (i.e.,N can execute
pending writes more often than the reads). Therefore, the sequence
of values transfered tox2 by P2 (and that can be read byP1)
can be any subsequence of the sequence of values written byP1
to x1. Moreover, the sequence of values read byP1 can also be
any subsequence of the sequence of values written byP2 to x2.
Therefore,P1 can read fromx2 any subsequence of values written
by itself tox1. This encodes the lossyness of the channel ofM .

Formally, letD = Σ∪ {♯} be the finite data domain andX =
{x1,x2} be the set of two variables valued inD. The (w→ r)-
relaxed memory systemN = (P1,P2) is defined fromM as follows:

• P1 = (P1,∆1) is a finite-state process where: (1)P1 = Q∪ (Q×
{!,?}) is a finite set of control states, and (2)∆ is the smallest
set of transition rules such that:

Nop: If q
ε,c:Σ |nop
−−−−−−→∆ q′, thenq

nop
−−−→1 q′

Send: If q
ε,c:Σ |c!a
−−−−−−→∆ q′, then

q
w(1,x1,a)
−−−−−−→1(q′, !) and (q′, !)

w(1,x1,♯)
−−−−−−→1q′

Write: If q
ε,c:Σ |c?a
−−−−−−→∆ q′, then

q
r(1,x2,a)
−−−−−−→1(q′,?) and (q′,?)

r(1,x2,♯)
−−−−−→1q′

• P2 = (P2,∆2) is a finite-state process where: (1)P2 = {p1, p2}∪
(D× {!}) is a finite set of control states, and(2) ∆2 is the
smallest set of transition rules such that for every symbola∈ Σ,
we have:

p1
r(2,x1,a)
−−−−−−→2(a, !) (a, !)

w(2,x2,a)
−−−−−−→2p2

p2
r(2,x1,♯)
−−−−−→2(♯, !) (♯, !)

w(2,x2,♯)
−−−−−−→2p1

Theorem 3 is an immediate consequence of the following
lemma:

LEMMA 4. Let q,q′ ∈ Q. The control state q′ is (infinity often)
reachable byM from q iff (p′,d) is (infinity often) reachable by
N from (p,d) wherep = (q, p1), p′ = (q′, p1), d = (♯, ♯).

The proof of the lemma above is straightforward. It consistsin
establishing a bisimulation relation betweenN andM . 2

From Theorem 3, [Schnoebelen 2002] and [Abdulla and Jons-
son 1994], we deduce that:

THEOREM4. The state reachability problem for(w→ r)-relaxed
memory systems is non-primitive recursive, and their repeated state
reachability problem is undecidable.

The same results established above in this section still hold
when we consider in addition thew→ w relaxation. In fact, in the
systemN built for the proof of Theorem 3 each process writes
to only one single variable, which implies that the behaviorof
N remains the unchanged if we also consider thew→ w relax-
ation. Therefore, our results concerning the TSO model holdfor its
w→ w relaxation (PSO) as well.

THEOREM5. The state reachability problem for(w→ r/w)-relaxed
memory systems is non-primitive recursive, and their repeated state
reachability problem is undecidable.

8. Adding the r→ r/w relaxation
In addition to thew→ r relaxation, we consider now that a read or a
write operations on some variablex j can overtake a read operation
(by the same process) if the latter concerns a variable different from
x j . As before, we consider that atomic read-write operations cannot
permute with any operation, and we also consider the cancellation
rule concerning a read that immediately follows a write of the same
value on the same variable (by the same processes).

8.1 An operational model

We define hereafter an operational model to capture this semantics.
Our model has again one buffer per process, but this time the buffer
is used to store write operations as well as read operations.Write
operations are stored as before in the buffer to allow overtakes
by read operations (Write to store). When a write operation to a
variablex j is present in the buffer of a processP i , assume that
w(i,x j ,d) is the last of such an operation, then if a read operation
r(i,x j ,d) is the next operation performed byP i concerningx j ,
this operation is validated immediately (Read own write). If the
previous situation does not hold and a read operationr(i,x j ,d)
is performed, then the read operation is stored in the buffer. This
corresponds to guessing thatx j will have the valued sometime in
the future (Guess). The guess is validated whenr(i,x j ,d) becomes
the first operation onx j in the buffer, and the value assigned tox j
in the global memory at that time is preciselyd (Validate). Finally,
memory updates are done by executing an operationw(i,x j ,d)
which must be the first (read or write) operation in the bufferof
P i concerningx j , i.e., it can only be preceded by read operations
on different variables (Update). The formal definition of the model
is as follows.

Let P = P1× ·· · ×Pn and for everyi ∈ [n], let Bi = {w, r} ×
{i}× [m]×D. A configurationof N is a tuple〈p,d,u〉wherep∈P,
d ∈M, andu ∈ B∗1×·· ·×B∗n.

We define the transition relation⇒N on configurations ofN
to be the smallest relation such that, for everyp,p′ ∈ P, for every
u,u′ ∈B∗1×·· ·×B∗n, and for everyd,d′ ∈M, we have〈p,d,u〉⇒N
〈p′,d′,u′〉 if there is ani ∈ [n], and there arep, p′ ∈ Pi , such that
p[i] = p, p′ = p[i ←֓ p′], and one of the following cases hold:

1. Nop: p
nop
−−−→i p′, d = d′, andu = u′.

2. Write to store: p
w(i,x j ,d)
−−−−−−→i p′, d = d′, andu′= u[i ←֓ (w, i, j ,d)u[i]].

3. Update: p = p′, and∃ j ∈ [m]. ∃d ∈D. ∃u1,u2 ∈ B∗i such that:

(a) u[i] = u1(w, i, j ,d)u2, and∀(op, i,k,d′) ∈ u2. (op = r and
k 6= j),

(b) d′ = d[j ←֓ d],

(c) u′[i] = u1u2, and∀k 6= i. u′[k] = u[k]

4. Read: p
r(i,x j ,d)
−−−−−→i p′, d = d′, and

• Read own write: u = u′ if ∃u1,u2 ∈ B∗i such that: (a)u[i] =
u1(w, i, j ,d)u2, and (b)∀(op, i,k,d′) ∈ u1. k 6= j , or

• Guess: u′ = u[i ←֓ (r, i, j ,d)u[i]] otherwise.

5. Validate: p = p′, d = d′, and∃ j ∈ [m]. ∃d ∈D. ∃u1,u2 ∈ B∗i s.t.

(a) u[i] = u1(r, i, j ,d)u2, and∀(op, i,k,d′) ∈ u2. k 6= j ,

(b) d[j] = d,

(c) u′[i] = u1u2, and∀k 6= i. u′[k] = u[k].

6. ARW: p
arw(i,x j ,d,d′)
−−−−−−−−→i p′, u[i] = ε, u = u′, andd[j] = d, and

d′ = d[j ←֓ d′].

We call{w→ r, r→ r/w}-relaxed memory system a concurrent
systemN with the operational semantics defined by⇒N . Let
⇒∗
N

denote as usual the reflexive-transitive closure of⇒N . The
state reachability, and the repeated state reachability problems are
defined as in the case of TSO systems in Section 3.4.

8.2 Adding thew→ w relaxation

Again, thew→ w relaxation can be taken into account in addition
to {w→ r, r→ r/w} simply by associating to each processm dif-
ferent buffers instead of a single one, one per variable, similarly to
the relaxation from TSO to PSO.

9. (Un)decidability results
We prove in this section that the addition of ther→ r/w relaxation
to either TSO or PSO models leads to the undecidability of thestate
reachability problem. On the other hand, if we consider models
where the number of (guessed) reads stored in the buffers is always
bounded, this problem becomes decidable.

9.1 The general case

We prove hereafter the following fact:

THEOREM 6. The state reachability problem is undecidable for
{w→ r, r→ r/w}-relaxed memory systems.

The proof of Theorem 6 is by a reduction of the Post’s Cor-
respondence Problem (PCP), well-known to be undecidable [Post
1946]. We recall that PCP consists in, given two finite sequences
{u1, . . . ,un} and{v1, . . . ,vn} of nonempty words over some alpha-
betΣ, checking whether there is a sequence of indicesi1, . . . , ik∈ [n]
such thatui1 · · ·uik = vi1 · · ·vik .

Then, let{u1, . . . ,un} and{v1, . . . ,vn} be an instance of PCP.
We construct a systemN with two processesP1 andP2 sharing
a set of four variablesX = {x1,x2,x3,x4} such that, two specific
states inM are related by a run if and only if PCP has a solution
for the considered instance.

The idea of the reduction is as follows: ProcessP1 guesses the
solution of PCP as a sequence of indicesi1, . . . , ik and performs
iteratively a sequence of operations: It (1) writes successively to x1
the symbols ofui j , (2) reads fromx3 the symbols ofui j , (3) writes

to x2 the indexi j , and (4) readsi j from x4, for j ranging backward
from k to 1. Moreover, each write (resp. read) operation to (resp.
from) a variable is followed by a write (resp. read) operation of
the marker♯. The insertion of the markers allows to ensure that a
written value to a variable by one of the processes can be readat
most once by the other process. In parallel, processP2 also guesses
the solution of PCP and performs the same operations asP1, except
that it writes (resp. reads) symbols of the wordsvi j and the indices
i j to x3 andx4 (from x1 andx2), respectively.

Then, we prove that PCP has a solution if and only if it is
possible to reach a state of the systemN where both store buffers
are empty. In other words, a full computation ofN checks that the
two processes have guessed the same sequence of indices and that
this sequence is indeed a solution for the considered PCP instance.

The “only if direction” can be shown using the fact that the
ordering in the buffers between reads and writes (as well as between
reads and other reads) can be relaxed, it is possible to construct a
run of theN where the execution of each write done by one of
the processes is immediately followed by its correspondingread
operation done by the other process.

The argument for the reverse direction is the following: If there
is a run which empties both buffers, then it can be seen that, due
to the fact that a read can validate at most one write, the sequence
of read symbols by processP2 is a subword of the sequence of
written symbols byP1, and vice versa. The same holds also for
the sequences of indices guessed by both processes. (Here again
permuting operations in the buffers is necessary in order tomatch
reads by one of the processes to writes by the other one.) These
facts imply that the processes have indeed guessed the same (right)
solution to the given instance of PCP.

Let us define more formally the reduction. LetD = Σ∪{♯,−}∪
[n] be the set of data manipulated by processesP1 andP2.

To simplify the presentation, we need to introduce some nota-
tions. Let i ∈ [2], j ∈ [4], s∈ D∗, op ∈ {w, r}, m = length(s) and

such thatm≥ 2. We use the macro transitionp
op(i,x j ,s)
−−−−−−→i p′ to

denote the sequence of consecutive transitionsp
op(i,x j ,s(1))
−−−−−−−−→i p1,

pl
op(i,x j ,s(l+1))
−−−−−−−−−→i pl+1 for all l ∈ [m−2], andpm−1

op(i,x j ,s(m))
−−−−−−−−→i p′

wherep1, . . . , pm are extra intermediary control states ofP i that are
not used anywhere else (and that we may omit from the set of con-
trol states ofP i). We use also(op, i, j ,s) to denote the fact that the
store buffer ofP i contains the following sequence of consecutive
operations(op, i, j ,s(1)) · · ·(op, i, j ,s(m)).

Let ν be a mapping fromΣ∗ to D∗ such that for every word
u = a1 · · ·am∈ Σ∗, ν(u) = ♯ ·a1 · · ·♯ ·am.

Then, a computation of the processP1 (resp.P2) is a sequence
of phases where each phase consists in the following operations:

1. Choose a numberl ∈ [n]:

p
nop
−−−→1 pl (resp.q

nop
−−−→2 ql)

2. Write the sequence of dataν(ul) (resp.ν(vl)) to x1 (resp.
x3):

pl
w(1,x1,ν(ul))
−−−−−−−−→1 p1

l (resp.ql
w(2,x3,ν(vl))
−−−−−−−−→2 q1

l)

3. Read the sequence of dataν(ul) (resp.ν(vl)) from x3
(resp.x1):

p1
l

r(1,x3,ν(ul))
−−−−−−−−→1 p2

l (resp.q1
l

r(2,x1,ν(vl))
−−−−−−−−→2 q2

l)

4. Write the sequence of data♯ · l to x2 (resp.x4):

p2
l

w(1,x2,♯·l)
−−−−−−−→1 p3

l (resp.q2
l

w(2,x4,♯·l)
−−−−−−−→2 q3

l)

5. Read the sequence of data♯ · l from x4 (resp.x2):

p3
l

r(1,x4,♯·l)
−−−−−−→1 p (resp.q3

l
r(2,x2,♯·l)
−−−−−−→2 q)

Next, we establish the link between the state reachability prob-
lem for the{w→ r, r→ r/w}-relaxed memory systemN and the
existence of a solution for the PCP.

LEMMA 5. There is i1, . . . , ik ∈ [n] such that ui1 · · ·uik = vi1 · · ·vik if
and only if the configuration〈(p,q),(♯, ♯, ♯, ♯),ε2〉 is reachable in
N from the initial configuration〈(p,q),(−,−,−,−),ε2〉.

Proof. (The if direction:) Assume that〈(p,q),(♯, ♯, ♯, ♯),ε2〉 is
reachable inN from 〈(p,q),(−,−,−,−),ε2〉. This means that all
the read operations ofP1 andP2 have been validated.

Then, assume thatik, . . . , i1 is the sequence of indices chosen by
P1 and thatjh, . . . , j1 is the sequence of indices chosen byP2. We
use the facts that (1) write and read operations by a same process
to a same variable cannot be reordered, and that (2) each write
operation ofP1 can only validate a unique read operation ofP2 and
vice-versa (but of course some written values can be missed since
processes are asynchronous), to show that the following relations
hold:

• ui1ui2 · · ·uik � v j1v j2 · · ·v jh.

• v j1v j2 · · ·v jh � ui1ui2 · · ·uik .

• i1i2 · · · ik � j1 j2 · · · jh.

• j1 j2 · · · jh� i1i2 · · · ik.

This implies thatui1ui2 · · ·uik = v j1v j2 · · ·v jh and i1i2 · · · ik =
j1 j2 · · · jh.

(The only-if direction:) Assume that there is a sequence of in-
dices i1, . . . , ik ∈ [n] such thatui1 · · ·uik = vi1 · · ·vik . Then, we can
construct the following run ofN from the initial configuration
〈(p,q),(−,−,−,−),ε2〉 to the configuration〈(p,q),(♯, ♯, ♯, ♯),ε2〉:

• First, P1 chooses the sequence of indicesik, . . . , i1 and stores
in its buffer seq1 · · ·seqk where, for everyl ∈ [k], seql is the
sequence of operations stored byP1 during its l th phase (i.e.,
(r,1,4, ♯ · i l)(w,1,2, ♯ · i l)(r,1,3,ν(ui l))(w,1,1,ν(ui l))).

• Then,P2 chooses the sequence of indicesik, . . . , i1 and stores
in its buffer seq′1 · · ·seq′k where for everyl ∈ [k], seq′l is the
sequence of operations stored byP2 during its l th phase (i.e.,
(r,2,2, ♯ · i l)(w,2,4, ♯ · i l)(r,2,1,ν(vi l))(w,2,3,ν(vi l))).

• Finally, N adopts the following run in order to execute the
writes and validate the reads in the buffers. This run is divided
into two steps:

In the first step,N performs alternately the following ac-
tions: (1) execute the first write operation in the buffer of
P1 concerning some variablex say, and then (2) validate the
corresponding read operation in the buffer ofP2. This read
operation is the first read operation onx in the buffer ofP2.
However, this read operation may occur behind some other
operations in the buffer, but by construction, they are all on
other variables. Therefore the read operation can be vali-
dated due to the relaxed memory semantics we consider.
The relaxation rules are also necessary to be able to take
successively write operations in the buffer ofP1 since this
requires overtaking the reads that occur between the writes.

In the second step, the role ofP1 andP2 are interchanged.

This terminates the proof of Lemma 5. 2

Finally, Theorem 6 is an immediate consequence of Lemma 5.
Let us again mention that the same result holds when we addition-
ally consider thew→ w relaxation. In fact, the systemN we con-
struct in the proof of Theorem 6 can be (re)used with the more

relaxed semantics. The effect of the relaxation is simply tosplit the
buffer of each of the processes into four different buffers,but this
does not affect the reasoning concerning the relations between the
sequences of reads and their corresponding sequences of writes.

THEOREM7. The state reachability problem is undecidable for
{w→ r/w, r→ r/w}-relaxed memory systems.

9.2 Bounded-guessr→ r/w relaxation

The undecidability result in the previous section uses the fact that
it is possible to perform an unbounded number of guesses on
read values before validating them. Therefore, a natural idea is to
bound the number of guesses made by a process at each time. This
corresponds to impose a bound on the number of reads stored in
each buffer (without bounding the number of writes in the buffers).
Let us callbounded-guessrelaxed memory systems the so restricted
systems. (It is of course straightforward to adapt the models we
have defined previously to impose this restriction for a given bound
on the number of reads in each buffer.)

Under the bounded-guess restriction, the state reachability prob-
lem becomes decidable. The reason is that it is possible to construct
lossy channel machines for these systems by adapting the construc-
tion of Section 5. Indeed, it suffices to consider that the stored read
operations in the channels are “strong symbols” (in the sense that
they cannot be lost). This is clearly possible since the number of
these reads is bounded by hypothesis.

THEOREM8. The state reachability problem for bounded-guess
{w→ r, r→ r/w}-relaxed memory systems is decidable. The same
holds for bounded-guess{w→ r/w, r→ r/w}-relaxed memory
systems.

10. Conclusion
We have investigated the boundary between decidability andunde-
cidability for the verification problem of programs under various
weak memory models. We have considered models classified ac-
cording to the type of the order relaxations they involve (following
the style of [Adve and Gharachorloo 1996]). We have shown that
the reachability problem is decidable forw→ r-relaxed memory
systems (TSO) as well as for theirw→ w relaxation (PSO). This
result is obtained through a non-trivial translation to lossy channel
machines. We have shown that, however, when ther→ r/w relax-
ation is added to these models, the reachability problem becomes
undecidable. On the other hand, if we consider that the number of
read operations that are delayed (overtaken by other operations) is
always bounded (i.e., at any point in time but not necessarily if we
consider the whole computation), then this problem is decidable,
since in this case it can again be reduced to the reachabilityprob-
lem for lossy channel machines.

Moreover, we have established the complexity of the reachabil-
ity problem for these memory models (when it is decidable). We
have proved that lossy channel machines can be simulated by TSO
(as well as by its relaxations we consider such as PSO), whichim-
plies that the reachability problem for these models is non-primitive
recursive. This shows that there is (in theory) an importantjump in
the complexity of the reachability problem when moving fromthe
SC model (PSPACE-complete) to weak memory models. However,
the high theoretical complexity is not necessarily an obstacle for
exploiting our decidability results in practice. Indeed, it could be
possible to use for instance efficient verification techniques, com-
bining effective symbolic representations and iterative under/upper
approximate analysis, that are complete for well-structured sys-
tems such as lossy channel machines (see, e.g., [Geeraerts et al.
2006, Ganty et al. 2006]). The design of efficient tools basedon
these techniques that are tailored for the automatic verification of

programs/algorithms under weak memory models is a challenging
topic for future work.

The ability of relaxed memory systems to simulate lossy chan-
nel machines implies also that the repeated state reachability prob-
lem (and therefore verifying liveness properties) for these systems
is undecidable. Investigating conditions under which liveness prop-
erties can be automatically and efficiently verified for weakmem-
ory systems is again an interesting topic for future work.

Acknowledgments
The two first authors were partially supported by the projectANR-
06-SETI-001 AVERISS.

References
P. Abdulla and B. Jonsson. Verifying programs with unreliable channels.

In LICS, pages 160–170. IEEE Computer Society, 1993.

P. Abdulla and B. Jonsson. Undecidable verification problems for programs
with unreliable channels. InICALP, LNCS 820, pages 316–327.
Springer, 1994.

P. Abdulla and B. Jonsson. Verifying programs with unreliable channels.
Inf. Comput., 127(2):91–101, 1996.

P. Abdulla, K. Cerans, B. Jonsson, and Y-K. Tsay. General decidability
theorems for infinite-state systems. InLICS, pages 313–321, 1996.

S. Adve and K. Gharachorloo. Shared memory consistency models: a
tutorial. Computer, 29(12):66–76, 1996.

R. Alur, K. McMillan, and D. Peled. Model-checking of correctness
conditions for concurrent objects. InLogic in Computer Science (LICS),
pages 219–228, 1996.

S. Baswana, S. Mehta, and V. Powar. Implied set closure and its application
to memory consistency verification. InComputer-Aided Verification
(CAV), 2008.

S. Burckhardt and M. Musuvathi. Effective program verification for relaxed
memory models. InComputer-Aided Verification (CAV), pages 107–120,
2008. Extended Version as Tech Report MSR-TR-2008-12, Microsoft
Research.

S. Burckhardt, R. Alur, and M. Martin. CheckFence: Checkingconsistency
of concurrent data types on relaxed memory models. InPLDI, pages
12–21, 2007.

S. Hangal et al. TSOtool: A program for verifying memory systems
using the memory consistency model. InInternational Symposium on
Computer Architecture (ISCA), 2004.

A. Finkel and Ph. Schnoebelen. Well-structured transitionsystems
everywhere!Theor. Comput. Sci., 256(1-2):63–92, 2001.

P. Ganty, J. F. Raskin, and L. Van Begin. A complete abstract interpretation
framework for coverability properties of WSTS. InVMCAI’06, LNCS
3855, pages 49–64. Springer, 2006.

G. Geeraerts, J. F. Raskin, and L. Van Begin. Expand, enlargeand check:
New algorithms for the coverability problem of wsts.J. Comput. Syst.
Sci., 72(1):180–203, 2006.

P. B. Gibbons and E. Korach. The complexity of sequential consistency. In
Parallel and Distributed Processing, pages 317–325. IEEE, 1992.

T. Q. Huynh and A. Roychoudhury. A memory model sensitive checker for
C#. In Formal Methods (FM), LNCS 4085, pages 476–491. Springer,
2006.

L. Lamport. How to make a multiprocessor computer that correctly executes
multiprocess programs.IEEE Trans. Comp., C-28(9):690–691, 1979.

Daan Leijen, Wolfram Schulte, and Sebastian Burckhardt. The design of a
task parallel library. InOOPSLA, page to appear, 2009.

Maged Michael, Martin Vechev, and Vijay Saraswat. Idempotent work
stealing. InPPoPP, pages 45–54, 2009.

S. Owens, S. Sarkar, and P. Sewell. A better x86 memory model:x86-TSO
(extended version). Technical Report UCAM-CL-TR-745, Univ. of
Cambridge, 2009.

S. Park and D. L. Dill. An executable specification, analyzerand verifier for
RMO. In Symposium on Parallel Algorithms and Architectures (SPAA),
pages 34–41, 1995. ISBN 0-89791-717-0.

E. L. Post. A variant of a recursively unsolvable problem.Bull. of the
American Mathematical Society, 52:264–268, 1946.

A. Roy, C. Fleckenstein, S. Zeisset, and J. Huang. Fast and generalized
polynomial time memory consistency verification. InComputer-Aided
Verification (CAV), 2005.

Ph. Schnoebelen. Verifying lossy channel systems has nonprimitive
recursive complexity.Information Processing Letters, 83(5):251–261,
September 2002.

P. Sindhu, J.-M. Frailong, and M. Cekleov. Formal specification of memory
models. Technical Report CSL-91-11, Xerox Palo Alto Research Center,
1991.

A. P. Sistla and E. M. Clarke. The complexity of propositional linear
temporal logics.J. ACM, 32(3):733–749, 1985.

D. Weaver and T. Germond, editors.The SPARC Architecture Manual
Version 9. PTR Prentice Hall, 1994.

Y. Yang, G. Gopalakrishnan, G. Lindstrom, and K. Slind. Nemos: A frame-
work for axiomatic and executable specifications of memory consistency
models. InIPDPS, 2004. doi: 10.1109/IPDPS.2004.1302944.

