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Abstract
String-manipulating programs are an important class of programs
with applications in malware detection, graphics, input sanitization
for Web security, and large-scale HTML processing. This paper ex-
tends prior work on BEK, an expressive domain-specific language
for writing string-manipulating programs, with algorithmic insights
that make BEK both analyzable and data-parallel. By analyzable
we mean that unlike most general purpose programming languages,
many algebraic properties of a BEK program are decidable (i.e., one
can check whether two programs commute or compute the inverse
of a program). By data-parallel we mean that a BEK program can
compute on arbitrary subsections of its input in parallel, thus ex-
ploiting parallel hardware. This latter requirement is particularly
important for programs which operate on large data: without data
parallelism, a programmer cannot hide the latency of reading data
from various storage media (i.e., reading a terabyte of data from
a modern hard drive takes about 3 hours). With a data-parallel ap-
proach, the system can split data across multiple disks and thus hide
the latency of reading the data.

A BEK program is expressive: a programmer can use condi-
tionals, switch statements, and registers—or local variables—in or-
der to implement common string-manipulating programs. Unfortu-
nately, this expressivity induces data dependencies, which are an
obstacle to parallelism. The key contribution of this paper is an al-
gorithm which automatically removes these data dependencies by
mapping a BEK program into a intermediate format consisting of
symbolic transducers, which extend classical transducers with sym-
bolic predicates and symbolic assignments. We present a novel al-
gorithm that we call exploration which performs symbolic loop un-
rolling of these transducers to obtain simplified versions of the orig-
inal program. We show how these simplified versions can then be
lifted to a stateless form, and from there compiled to data-parallel
hardware.

To evaluate the efficacy of our approach, we demonstrate up
to 8x speedups for a number of real-world, BEK programs, (e.g.,
HTML encoder and decoder) on data-parallel hardware. To the best
of our knowledge, these are the first data parallel implementation
of these programs. To validate that our approach is correct, we use
an automatic testing technique to compare our generated code to
the original implementations and find no semantic deviations.
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1. Introduction
BEK is a popular DSL for string-manipulating programs [15]. Be-
cause of its expressiveness and popularity, we have chosen to use
it for our experiments. While much of our results can be applied
broadly to symbolic finite-state transducers, our focus is on provid-
ing correct and performant implementations of symbolic finite-state
transducers; BEK gives us a platform for doing so. The reader can
browse some BEK programs online at http://rise4fun.com/Bek
or read the BEK tutorial [23] to build his or her intuition. Typical
BEK programs are string encoders and decoders, security sanitiz-
ers, etc.

Why BEK: The advantage of a domain-specific language is that,
unlike most general-purpose languages, many algebraic properties
are decidable for basic BEK (BEK programs that do not use reg-
isters). In particular, one can check whether such BEK programs
commute or are idempotent; one can compute the inverse of a BEK
program, and given an output, compute all inputs that lead to it.

While previous work has focused on algorithms for reasoning
about basic BEK programs [15, 32], they did not provide a clear
strategy for either running BEK on a variety of platforms, thus
hindering its adoption, or providing algorithms that first transform
BEK programs to their basic analyzable form. These are important
problems as BEK programs are useful tools that developers use
to secure both client-side web browsers and Internet scale web
services. The goal of this paper is to demonstrate how to compile
a BEK program to their basic form. Then, as a concrete application
we show how to compile BEK programs into scalable data-parallel
code.

Previous work has shown that special state variables, called reg-
isters in BEK, are often needed to express common functional-
ity (Section 3). Unfortunately registers introduce data dependen-
cies that are obstacles to parallelism and also make many forms of
BEK analysis undecidable. Manually removing registers requires
developers to reason about complex state, which is error-prone and
time-consuming.

Exploration: A key contribution of this work is a novel exploration
algorithm that is a form of loop unrolling combined with symbolic
function composition. Loops are unrolled symbolically while data
dependencies exist between consecutive iterations. Such unrolling
is achieved by introducing new states for finite projections of reg-
isters. In this process, several characters may be grouped together
into tokens by folding some part of a register symbolically into la-
bels, while another part is folded into concrete states. Intuitively,



grouping changes the granularity of what is to be considered as a
single input element. For example, if we take a program such as a
UTF8 decoder, then grouping would create tokens that correspond
to subsequences between 1 and 4 bytes,1 while for a Base64 de-
coder it would create subsequences of fixed length 4.

While the algorithm is not guaranteed to work in all cases
because it is undecidable, e.g. it is easy to encode reachability
of two counter machines which is undecidable [16], when it does
work, it produces a transducer that is behaviorally equivalent to the
original up to grouping of the input sequence, but without register
variables. We have not found any typical BEK programs, such as
sanitizers, encoders or decoders, for which the technique would
fail to terminate. A case when it does not work is a loop that for
example counts the number of elements in the input or, in general,
has arbitrarily long dependencies between input elements.
Data parallelism: There are two key benefits to a BEK program
after exploration. First, registers induce data dependencies which
limit parallelism and thus exploration is a necessary first step in
exploiting parallelism. Second, after exploration, by construction,
a BEK program has little intermediate state (e.g., complexity of a
program is pushed to the edges rather than encoded as states). The
overhead of our data parallel implementation of a BEK program
is linearly related to the size of the BEK program’s intermediate
state and thus exploration enables the automatic transformation
from an expressive BEK program, with registers, into a data parallel
one. This ultimately relieves the programmer from the burden of
explicitly describing parallelism in a BEK program, an error-prone
and difficult task.

1.1 Contributions
This paper makes the following contributions.

• Previous work on BEK introduced an extension to symbolic
transducers with registers [32]. Use of registers is essential for
modeling real sanitizers but makes their analysis difficult. In
this paper, we present a novel exploration algorithm that is a
form of symblic loop unrolling that works modulo arbitrary
decidable background theories. The algorithm terminates for
a class of transduces that only need a bounded lookahead and
the algorithm outputs a new transducer that is equivalent to the
input transducer but does not need registers.

• We integrated the exploration algorithm into a BEK to sym-
bolic finite transducer (SFT) compiler. It has several interest-
ing features. First, it uses an SMT solver as an oracle dur-
ing the exploration algorithm, both for satisfiability checking
and for model (witness) generation. Second, it combines ex-
ploration with grouping. Third, it uses the simplification mech-
anism present in modern SMT solvers for code generation of
conditions and update functions.

• We demonstrate how exploration enables data parallelism. In
particular, we show how to encode a BEK program, with infinite
alphabets and registers, into one with a finite set of equivalence
classes and no registers. Further, we demonstrate a data parallel
implementation of this registerless intermediate form based on
recent work in parallel finite state machines[25]. To the best of
our knowledge, this is the first fully-automatic parallelization
of string-manipulating code that combines advanced automata
theory with state-of-the-art SMT technology to produce a par-
allel implementation.

• We have experimented with a number of BEK programs. We
frequently observed exponential reductions in the number of

1 Assuming standard Unicode text processing where code points are limited
to 10FFFF16, in which case 4 bytes are enough, otherwise longer encodings
up to 6 bytes are possible.

p r i v a t e s t a t i c s t r i n g EncodeHtml ( s t r i n g t ) {
i f ( t == n u l l ) { re turn n u l l ; }
i f ( t . Length == 0) { re turn s t r i n g . Empty ; }
S t r i n g B u i l d e r b u i l d e r =

new S t r i n g B u i l d e r ( ” ” , t . Length ∗2 ) ;
foreach ( char c in t ) {

i f ( ( ( c>’ ‘ ’ )&&(c<’{ ’ ) ) | |
( ( c>’@’ )&&(c<’ [ ’ ) ) | | ( c== ’ ’ ) | |
( ( c>’ / ’ )&&(c<’ : ’ ) ) | | ( c== ’ . ’ ) | |
( c== ’ , ’ ) | | ( c== ’−’ ) | | ( c== ’ ’ ) ) {
b u i l d e r . Append ( c ) ;

} e l s e {
b u i l d e r . Append ( ”&#” +

( ( i n t ) c ) . T o S t r i n g ( ) + ” ; ” ) ;
}

}
re turn b u i l d e r . T o S t r i n g ( ) ;

}

Figure 1. Code for AntiXSS.EncodeHtml version 2.0.

states due to the application of our exploration algorithm. To
validate the correctness of our translation, we used random test-
ing of thousands of strings, observing no semantic differences
when compared to independent C# serial implementations. For
the range of hardware configurations we have experimented
with, we observe a near-linear speedups as significant as 8x.

The background theories that were relevant for us during this
work, were theories over linear arithmetic, bit-vectors, tuples, and
lists. These theories were used to represent characters, tokens and
strings. However, there were no dependencies on these particu-
lar theories. For example, one could also consider reals, rationals
and arrays. Pragmatically speaking, any theory, or combination of
theories, that is supported by an SMT solver works.

2. Background and Motivation
String-manipulating programs: Much of the practical motivation
for analyzing string-manipulating routines comes from the need to
analyze security sanitizers [15], such as the one shown in Figure 1.
These are key in protecting against cross site scripting (“XSS”) at-
tacks, which plague today’s web applications. These attacks happen
because the applications take data from untrusted users, and then
echo this data to other users of the application. Because web pages
mix markup and JavaScript, this data may be interpreted as code by
a browser, leading to arbitrary code execution with the privileges of
the victim.

The first line of defense against XSS is the practice of saniti-
zation, where untrusted data is passed through a sanitizer, a func-
tion that escapes or removes potentially dangerous strings. Multiple
widely used Web frameworks offer sanitizer functions in libraries,
and developers often add additional custom sanitizers due to per-
formance or functionality constraints.

Sanitizers are typically a small amount of code, perhaps tens
of lines. Furthermore, application developers know when they are
writing a new, custom sanitizer or set of sanitizers. Experience has
shown that if developers are willing to spend a little more time on
sanitizers, they can obtain fast and precise analyses of sanitizer
behavior, along with actual sanitizer code ready to be integrated
into both server- and client-side applications. Our approach here is
BEK, a language for modeling string transformations. The language
is designed to be (a) sufficiently expressive to model real-world
code, and (b) sufficiently restricted to allow fast, precise analysis,
without needing to approximate the behavior of the code.

Unfortunately, implementing sanitizers correctly is surprisingly
difficult. Anecdotally, in dozens of code reviews performed across
various industries, just about any custom-written sanitizer was



flawed with respect to security. SANER, for example, shows flaws
in custom-written sanitizers used by ten web applications [2]. In-
correct sanitization may be worse than no sanitization by enabling
rather than disabling JavaScript execution [4, 21].

The problem becomes even more complicated when consider-
ing that a web application may compose multiple sanitizers in the
course of creating a web page. In a recent empirical analysis, it
has been found that a large web application often applied the same
sanitizers twice, despite these sanitizers not being idempotent [29].
This analysis also found that the order of applying different sani-
tizers could vary, leading to questions about whether composition
of sanitizers is commutative.

BEK has been previously used to perform security-specific anal-
yses of sanitizers. For example, one can use BEK to determine
whether there exists an input to a sanitizer that yields any member
of a publicly available database of strings [27] (XSS Cheat Sheet)
known to result in cross site scripting attacks. Our analysis is fast
in practice; for example, we take two seconds to check the commu-
tativity of the entire set of Internet Explorer 8 XSS filters, and less
than 39 seconds to check an implementation of the HTMLEncode
sanitization function against target strings from the XSS Cheat
Sheet [15].
Beyond strings: BEK has been demonstrated as being useful for
applications beyond security sanitization. Other uses have been
proposed, as diverse as image blurring and geo-location privacy,
which fall outside the scope of this paper. The interested reader can
see [32] for more details.
Performance: To realize why performance is a concern in this con-
text, consider large-scale distributed data processing in the cloud.
Encoding is paramount in Web applications, especially with large
volumes of data. Google Docs or Office Web Apps, for example,
store multi-megabyte files from millions of users. XSS caused by
insufficient data sanitization has been discovered in these large-
scale cloud apps before. 2 To avoid XSS, these services must en-
code all user files before displaying them on the web.

3. Symbolic Transducers
The semantics of BEK programs are given by symbolic transducers.
The goal of this section is to recap the BEK language in Section 3.1.
In Section 3.2, we develop a formal treatment required to precisely
express these semantics. Pragmatically-inclined readers may wish
to save Section 3.2 for later reading.

3.1 Intuition
We briefly describe the BEK domain-specific language for writing
string transformations such as shown in Figure 1. An example BEK
program is in Figure 2. As introduced in [15], the core construct in
BEK is iteration over each character in an input string. Programs
can then have case statements that describe different behavior for
different input characters. Typically the program will perform some
local computation, then yield, or output, a new character. A new
string is built up based on the characters of the input string.
Registers: Programs can also have register variables that keep
state during the iteration. Figure 2 shows a sample BEK program
that checks each character and then updates a register variable
r. Depending on input character, the program may then output
the contents of the register, or it may simply pass through the

2 The reader may consult these links for examples:
https://www.cogmotive.com/blog/office-365-tips/vulnerability-
in-office-365-allows-unauthorised-administrator-access,
http://xs-sniper.com/blog/2008/04/14/google-xss/,
http://ha.ckers.org/blog/20070617/another-google-xss-in-google-
documents/.

f u n c t i o n E ( x )=
i t e ( x<=25,x +65 ,

i t e ( x<=51,x +71 ,
i t e ( x<=61,x−4, i t e ( x ==62 , ’+ ’ , ’ / ’ ) ) ) ) ;

program b64e ( i n p u t ){
re turn i t e r ( x in i n p u t ) [ s : = 0 ; r : = 0 ; ]{

case ( x>0xFF ) : r a i s e ERROR;
case ( s = = 2 ) : y i e l d ( E ( ( r | ( x>>6))) , E ( x&0x3F ) ) ;

s : = 0 ; r : = 0 ;
case ( t rue ) : y i e l d ( E ( i t e ( s ==0 ,x>>2, r | ( x>>4))));

r := i t e ( s ==0 , ( x&3)<<4,(x&0xF)<<2); s := s +1;
end case ( s = = 1 ) : y i e l d ( E ( r ) , ’= ’ , ’= ’ ) ;
end case ( s = = 2 ) : y i e l d ( E ( r ) , ’= ’ ) ;
end case ( t rue ) : y i e l d ( ) ; / / may be o m i t t e d

} ;
}

Figure 2. BEK program for Base64 encoding.

q
〈0, 0〉

λy.(y[1] = 1)/[E(y[2]), ‘=’, ‘=’]

λy.(y[1] = 2)/[E(y[2]), ‘=’]

λy.(y[1] 6= 1 ∧ y[1] 6= 2)/[]

λ(x, y).(x ≤ 255 ∧ y[1] = 2)/
[E(y[2]|(x≫6)), E(x&0x3F)]; 〈0, 0〉

λ(x, y).(x ≤ 255 ∧ y[1] 6= 2)/
[E(y[1] = 0 ?x≫2 : y[2]|(x≫4))];
〈y[1] + 1, (y[1] = 0 ? (x&3) ≪ 4 : (x&0xF)≪2)〉

Figure 3. ST of the program b64e in Figure 2.

character unchanged. An end case statement takes care of any
remaining final output suffix after the end of the input has been
reached For more details on BEK we refer to previous work or to
the online BEK evaluator [23]. While the language is limited, it still
is expressive enough to capture a wide range of string-manipulating
functions, including many of the functions commonly used in Web
sanitization and functions used in graphics processing [15, 32].
ST representation: The semantics of the program in Figure 2 is
captured by a symbolic transducer in Figure 3. Symbolic transduc-
ers are a generalization of classic finite transducers, which allow
arbitrary underlying label theories [32].
Exploration and Data-Parallelism: The register variables in BEK
are important for making it easy to translate string-manipulating
functions written in C# or other languages to BEK, because existing
functions typically keep state through an iteration. These variables
are also convenient for writing functions in BEK directly. Unfor-
tunately, these register variables are enemies of data-parallelism,
because they introduce control flow that depends on the registers
and not on the individual character.

3.2 Formalism
We now formally define symbolic transducers or STs and give
examples of how STs capture behavior of programs. We assume
a background structure that has an effectively enumerable back-
ground universe U , and is equipped with a language of function
and relation symbols with fixed interpretations. Definitions below
are given with U as an implicit parameter. We assume closure un-
der Boolean operations and equality. Operations that are specific to
U do not affect the results. We use λ-expressions for dealing with



anonymous functions that we call λ-terms. In general, we use stan-
dard first-order logic and follow the notational conventions that are
consistent with [32]. The universe is multi-typed with τ denoting
the subuniverse of elements of type τ . We make use of the empty tu-
ple type T0 such that T0 = {〈〉}. We use a variant of the definition
of STs where the control state component of STs is explicit. We
write Ψ(σ) for the set of σ-predicates. We write Λ(σ→ γ) for λ-
terms f that denote functions f : σ → γ. We write Λ(σ→γ)∗ for⋃
k≥0 Λ(σ→ γk). In other words, for any λ-term f ∈ Λ(σ→ γ)∗

the length of the output sequence may not depend of the input, but
must be fixed.
Definition 1: A Symbolic Transducer or ST with input type σ
output type γ and register type τ is a tuple A = (Q, q0, r0, R),
where Q is a finite set of states; q0 ∈ Q is the initial state; r0 ∈ τ
is the initial register value; R is a finite set of rules R = ∆ ∪ F
where ∆ ⊆ (Q×Ψ(σ × τ)× Λ(σ × τ → γ)∗ × Λ(σ × τ → τ)
is a set of transitions and F ⊆ (Q×Ψ(τ)×Λ(τ → γ)) is a set of
finalizers. �

A transition (q, ϕ, o, u, p) is also written q
ϕ/o;u−−−−→ p where q is

the start state, ϕ the guard, o the output, u the update, and p the

end state. A finalizer (q, ϕ, o) is also written q
ϕ/o−−→ } with q as

the state, ϕ as the guard, o as the output. Finalizers generalize final
states.
Example 1 Let σ = γ be unsigned bitvectors (or natural numbers)
N and let τ be the type N × N. The operation ‘�’ is shift-left, ‘�’
is shift-right, ‘&’ is bit-wise-AND, ‘|’ is bit-wise-OR. The ST in
Figure 3 has the above types and is the direct mapping of the BEK
program in Figure 2 where s = y[1] and r = y[2]. Q = {q},
r0 = 〈0, 0〉, and the ST has two transitions and three finalizers. It
computes Base64 encoding of byte sequences. Base64 is a standard
encoding that is used to transfer binary data over textual media.

The semantics ofA is given by the following concrete transition

relation. Let q, p ∈ Q, r ∈ τ , a ∈ σ. Then (q, r)
[a]/o(a,r)−−−−−−→A

(p,u(a, r)) denotes that there exists a transition q
ϕ/o;u−−−−→ p such

that ϕ(a, r) holds. Similarly, (q, r)
ε/o(r)−−−−→A } denotes that there

exists a finalizer q
ϕ/o−−→ } such that ϕ(r) holds.

Now, the reachability relation p
ā/b̄−−→→A p′ for ā ∈ σ∗, b̄ ∈ γ∗,

and p, p′ ∈ (Q × τ ) ∪ {}} is defined through the closure under
the following conditions, where ‘·’ is concatenation of sequences,
note that ε · x̄ = x̄ · ε = x̄:

• If p
ā/b̄−−→A p

′ then p
ā/b̄−−→→A p

′.

• If p
ā/b̄−−→→A p1

ā′/b̄′−−−→→A p2 then p
ā·ā′/b̄·b̄′−−−−−→→A p2.

Definition 2: The transduction of A, denoted TA, is the following
function from σ∗ to 2(γ∗):

TA(ā)
def
= {b̄ | (q0

A, r
0
A)

ā/b̄−−→→A }}
A is single-valued when |TA(ā)| ≤ 1 for all ā ∈ (σ)∗ and A is

deterministic when, for all ā, b̄1, b̄2, p, p1, p2, if p
ā/b̄1−−−→A p1 and

p
ā/b̄2−−−→A p2 then b̄1 = b̄2 and p1 = p2. We write TA(ā, b̄) for

b̄ ∈ TA(ā). �
Finalizers can be omitted at the expense of allowing nonde-

terminism. However, nondeterminism is undesired because deter-
minization of STs is in general not possible and analysis of (or even
code generation from) nondeterministic STs is very difficult.

It is easy to show that determinism implies single-valuedness.
Deterministic STs form a practically important subclass of STs and
in the examples and case studies we only consider deterministic
STs. For the data-parallel translation explained in Section 5 the STs

are required to be deterministic, that is naturally the case for the
kinds of string transformations we have in mind with this approach.
Example 2 Let A be the ST in Figure 3. Let y = 〈0, 0〉 and
x = ‘A’ = 10000012. So x ≤ 255 and y[1] 6= 2. We have
E(x�2) = E(100002) = E(16) = 16 + 65 = ‘Q’ and
((x&3) � 4) = (1 � 4) = 100002 = 16, so there is a concrete
transition

(q, 〈0, 0〉) [‘A’]/[‘Q’]−−−−−−→ (q, 〈1, 16〉)
If we do one more step from configuration (q, 〈1, 16〉) with input
‘B’ we get the concrete transition

(q, 〈1, 16〉) [‘B’]/[‘U’]−−−−−−→ (q, 〈2, 8〉)
Suppose that the input sequence ends here. Then we use the last
finalizer that gives us the concrete transition:

(q, 〈2, 8〉) ε/[‘I’,‘=’]−−−−−−→ }
By using the derived reachability relation we have

(q, 〈0, 0〉) [‘A’,‘B’]/[‘Q’,‘U’,‘I’,‘=’]−−−−−−−−−−−−−−−→→ }
Thus, TA("AB") = {"QUI="}.

4. Compilation of STs to SFTs
We assume that an ST is given. The ST may for example be the
result of a translation from a BEK program. Sample BEK program
and corresponding ST are illustrated in Figure 2 and Figure 3. Our
goal is to compile the ST into an SFT (if possible), where an SFT is
an ST without registers, or formally, whose register type τ is T0. In
the SFT we may group some characters into combined characters
or tokens so that, if the input type of the ST is σ then the input type
of the SFT is σ≤k for some k ≥ 1 (sequences over σ of length
l, 1 ≤ l ≤ k). In our compilation we maintain the following
equivalence between the given ST and the resulting SFT . We use
flatten([ui]

n
i=1), where ui has type σ≤k, to denote the sequence

u1 · u2 · · ·un in σ+.
Definition 3: ST and SFT are equivalent modulo grouping if ∀ā, b̄,
TST(ā, b̄)⇔ ∃ū : ā = flatten(ū),TSFT(ū, b̄). �

In other words, the outputs of ST and SFT must be equal for
some grouping of the input characters in SFT . The compiler uses
two phases, grouping and exploration. The phases are interleaved
into a single algorithm, but intuitively, they serve two distinct
purposes:

Grouping: The idea is as follows. Two consecutive transitions

p
ϕ/o;u−−−−→ q′

ϕ′/o′;u′−−−−−→ q can be lifted into a single transition
that reads more inputs in one atomic step

p

λ(x, y).ϕ1(x[1], y)∧ϕ′(x[2], u(x[1], y))/
λ(x, y).o(x[1], y) · o′(x[2], u(x[1], y));
λ(x, y).u′(x[2], u(x[1], y))
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ q

where x[i] reads the i’th element from x (suppose first element
has index 1). Thereby, the state q′ becomes eliminated (if this
is the only occurrence of q′). The lifted transition may also be-
come unsatisfiable, in which case it is eliminated. The input
character of the new transition is a pair of the original charac-
ters.

Exploration: Exploration starts from the initial configuration
(q0, r0) where q0 is the initial state and r0 is the initial reg-
ister value of the ST. If an update to a register is a fixed value
r that is independent of the input values in a given target state
q of the ST, then the configuration (q, r) is treated as a state



1 # a lgo . py
2 from z3 import ∗
3 Z = S o l v e r ( )
4

5 c l a s s ST : # e n c a p s u l a t e s a s y m b o l i c t r a n s d u c e r
6 def i n i t ( s e l f , q0 , r0 , T , F , x , y , ax ) :
7 s e l f . q0 = q0 # i n i t i a l s t a t e
8 s e l f . r 0 = r0 # i n i t i a l r e g i s t e r
9 s e l f . T = T # t r a n s i t i o n s

10 s e l f . F = F # f i n a l i z e r s
11 s e l f . x = x # l a b e l v a r i a b l e
12 s e l f . y = y # r e g i s t e r v a r i a b l e
13 s e l f . ax = ax # background axioms
14

15 def D e l t a ( s e l f , q ) : # t r a n s i t i o n s from q
16 f o r t in s e l f . T :
17 i f t [ 0 ] == q : y i e l d t
18

19 def Fin ( s e l f , q ) : # f i n a l i z e r s from q
20 f o r f in s e l f . F :
21 i f f [ 0 ] == q : y i e l d f
22

23 def I s S a t ( f ) :
24 Z . push ( ) ; Z . add ( f ) ; r e s =Z . check ( ) ; Z . pop ( ) ;
25 re turn r e s != u n s a t
26

27 def Choose ( f , t ) :
28 Z . push ( ) ; Z . add ( f ) ; Z . check ( ) ;
29 v = Z . model ( ) . e v a l u a t e ( t , True ) ;
30 Z . pop ( ) ; re turn v
31

32 def GetUniqueValue ( s t , phi , t , k ) :
33 x = lambda i : Cons t ( ’ x%d ’%( i +1 ) , s t . x . s o r t ( ) )
34 z = lambda i : Cons t ( ’ z%d ’%( i +1 ) , s t . x . s o r t ( ) )
35 t h e t a = [ ( x ( i ) , z ( i ) ) f o r i in range ( k ) ]
36 t 1 = s u b s t i t u t e ( t , ∗ t h e t a )
37 ph i1 = s u b s t i t u t e ( phi , ∗ t h e t a )
38 i f I s S a t ( And ( phi , phi1 , t != t 1 ) ) : re turn None
39 e l s e : re turn Choose ( phi , t )
40

41 def Group ( s t , q , r , k , phi , o u t ) :
42 f o r ( qS , G, O, U, qE ) in s t . D e l t a ( q ) :
43 xk = Cons t ( ’ x%d ’%k , s t . x . s o r t ( ) )
44 t h e t a = [ ( s t . x , xk ) , ( s t . y , r ) ]
45 c1 = And ( phi , s u b s t i t u t e (G, ∗ t h e t a ) )
46 i f I s S a t ( c1 ) :
47 o1 = [ s u b s t i t u t e ( o , ∗ t h e t a ) f o r o in O]
48 r1 = s u b s t i t u t e (U, ∗ t h e t a )
49 v1 = GetUniqueValue ( s t , c1 , r1 , k )
50 i f v1 != None :
51 y i e l d ( c1 , o u t +o1 , k , qE , v1 )
52 e l s e :
53 f o r t r in Group ( s t , qE , r1 , k +1 , c1 , o u t +o1 ) :
54 y i e l d t r
55 f o r ( qF , G, O) in s t . F in ( q ) :
56 cF = And ( phi , s u b s t i t u t e (G , ( s t . y , r ) ) )
57 i f I s S a t ( cF ) :
58 oF = [ s u b s t i t u t e ( o , ( s t . y , r ) ) f o r o in O]
59 y i e l d ( cF , o u t +oF , k−1, None , None )
60

61 def E x p l o r e ( s t ) : # E x p l o r a t i o n a l g o r i t h m
62 Z . add ( s t . ax ) #add t h e axioms t o t h e s o l v e r
63 W, s f t = {0} , [ ]
64 n e x t S t a t e I d = 1
65 s t a t e M a p = {0 : ( s t . q0 , s t . r 0 )}
66 s t a t e I d M a p = {( s t . q0 , s t r ( s t . r 0 ) ) : 0}
67 whi le l e n (W) > 0 :
68 qS = W. pop ( )
69 ( q , r ) = s t a t e M a p [ qS ] ; t t = BoolVal ( True )
70 f o r ( g , o , k , q1 , r1 ) in Group ( s t , q , r , 1 , t t , [ ] ) :
71 qE = None
72 i f q1 != None :
73 i f ( q1 , s t r ( r1 ) ) in s t a t e I d M a p :
74 qE = s t a t e I d M a p [ ( q1 , s t r ( r1 ) ) ]
75 e l s e :
76 qE = n e x t S t a t e I d ; n e x t S t a t e I d += 1
77 s t a t e M a p [ qE ] = ( q1 , r1 )
78 s t a t e I d M a p [ ( q1 , s t r ( r1 ) ) ] = qE
79 W. add ( qE )
80 s f t . append ( ( qS , g , o , k , qE ) )
81 re turn s f t

Figure 4. ST exploration algorithm in Z3 Python.

of the explored SFT and the configuration (if new) is pushed
to the search stack for continued exploration. If an update does
not have a fixed value then grouping is invoked in an attempt to
localize the use of the register update.

The overall effect is that registers which are used to encode
local dependencies between consecutive characters are redundant
and thus can be eliminated. We refer to the full algorithm also as
exploration when it is clear from the context that the combined al-
gorithm is meant. The complete self-contained algorithm is given
by the (executable) Python script in Figure 4. Although the algo-
rithm is given in a concrete executable form in Python (using the
Z3 module) it is virtually identical to an abstract mathematical for-
mulation and we have therefore decided to present only the con-
crete version, although it requires a bit of extra effort to get used
to the notational differences compared to the formalism above. We
illustrate the exploration algorithm in Example 3, where, for ex-
planatory purposes, grouping and exploration are presented as two
separate phases. The function GetUniqueValue, called on line 49,
shows how Z3 is used to decide if the register is going to have a
concrete value, i.e., if the term r1 representing the value is constant
with respect to the constraint c1. If not then grouping is invoked
recursively.
Example 3 Take the ST in Figure 3. Project τ into τ1 = N as the
first element y[1] of y and τ2 = N as the second element y[2] of y.
This projection happens automatically in the combined exploration
algorithm. Exploration will now partially evaluate all the rules, by
using depth first search, and integrate y[1] into the states qy[1] in

q0

q1

q2

λ(x, r).(x ≤ 255)/
[E(x≫2)]; (x&3)≪4

λ(x, r).(x ≤ 255)/
[E(r|(x≫4))];
(x&0xF)≪2

λr.⊤/[E(r), ‘=’]

λr.⊤/[E(r), ‘=’, ‘=’]

λ(x, r).(x ≤ 255)/
[E(r|(x≫6)), E(x&0x3F)]; 0

0 λr.⊤/[]

Figure 5. ST after exploration of ST in Figure 3.

such a way that a rule q
λ(x,y).`(x,y)−−−−−−−−→ q is replaced by one or

more rules of the form qa
λ(x,z).`ab(x,z)−−−−−−−−−→ qb where a, b ∈ τ1

and the register z has type τ2. The main technical insight is that it
is possible to compute such b and `ab for the given a through finite
case analysis over x even though σ, γ and τ2 may be infinite.

If we apply exploration to the ST in Figure 3 we get the equiv-
alent ST in Figure 5. We can now apply grouping to this ST. To
illustrate grouping, consider the path q0

f−→ q1
g−→ q2

h−→ q0

of transitions. First apply grouping to q0
f−→ q1

g−→ q2 to obtain
q0

f◦g−−→ q2 and then we apply grouping to q0
f◦g−−→ q2

h−→ q0 to
obtain p0

f◦g◦h−−−−→ p0. At this point the composed label f ◦ g ◦h be-



p0

λx.(|x| = 3 ∧ x[1] ≤ 255 ∧ x[2] ≤ 255 ∧ x[3] ≤ 255)/
[E(x[1]72), E(x[1]10 · x[2]74), E(x[2]30 · x[3]76), E(x[3]50))]

p1

λx.(|x| = 1 ∧ x[1] ≤ 255)/
[E(x[1]72), E(x[1]10 ≪ 4), ‘=’, ‘=’]

λx.(|x| = 2 ∧ x[1] ≤ 255 ∧ x[2] ≤ 255)/
[E(x[1]72), E(x[1]10 · x[2]74), E(x[2]30 ≪ 2), ‘=’]

p2

Figure 6. SFT after grouping of ST in Figure 5; ymn denotes ex-
traction of bits from m to n from y; y · z denotes bit-append.

comes independent of the register r because r is only used to glue
f with g and g with h.

A similar step is applied to transitions followed by finalizers to
get composed transitions that lead from p0 to sink states p1 and p2

(states without outgoing transitions and with trivial finalizers that
yield empty outputs). Finally, all resulting rules are independent
of the register and so the register can be eliminated and we have
constructed an SFT illustrated in Figure 6. An important point is
that the construction of the SFT would not be possible by only
using grouping or only using naive exploration. The new combined
exploration algorithm is needed.

The first point we address next is: The reason we are interested
in SFTs. The second point is: When does the exploration algorithm
terminate? The third point is: Does the algorithm meet our needs
for parallelization? As it turns out, the third question needs more
work – because, except for some special cases when the lookahead
is fixed, the assumption that the input is tokenized up front is not
fully realistic in a parallel setting because then there is no way to
calculate where the next token starts without having processed the
previous tokens.

4.1 Succinctness
Figure 7 compares the sizes of the state machines needed to achieve
the different encoding and decoding tasks.

Size
Encoder SFT SFT+ k-SFT

UTF8encode 16 6 9
UTF8decode 6371 10 27
BASE64encode 105 6 14
BASE64decode 1161 6 23
HTMLencode 3 3 7
HTMLdecode 113 10 31

Figure 7. Exploration sizes in total nr of transitions. SFT is naive
exploration. SFT+ is grouped exploration. k-SFT is creation of k-
SFT after SFT+.

The table indicates the advantages of using the exploration al-
gorithm. Without this dramatic reduction in the size of the SFT,
we would not be able to compile the SFT to exploit data parallel
finite state machines presented below, where the approach requires
that the number of states in the transducer is small, which our com-
pilation scheme provides, while the label theory may potentially
allow infinite character domains. In particular, it is shown in [32,
Figure 8(a)], that in HTML decoding, the number of states in the
SFT grows exponentially in the length of k for supporting decoding
of patterns &#[0 − 9]{k}; that makes naive exploration to SFTs
impractical in this case. This exponential blowup is avoided with

the new exploration algorithm. The final column in the table shows
the size of the k-SFT obtained after the final phase of the algorithm
discussed below.
Definition 4: A k-SFT has a finite state spaceQ and has transitions

p
ϕ/f−−→ q where p, q ∈ Q,ϕ is a σ-predicate, and f ∈ Λ(σm→γn)

is a λ-term for some fixed m ≥ 0 and n ≥ 0. We assume that
the k-SFT is deterministic meaning that if there are two transitions

p
ϕ1/f1−−−−→ q1 and p

ϕ2/f2−−−−→ q2 such that ϕ1 ∧ ϕ2 is satisfiable, then
f1 = f2 and q1 = q2. A k-SFT has also finalizers of the form
q
f−→ } with f as above and where (to maintain determinism) there

is at most one finalizer for each state q. The casem = 0 means that
there is no input dependence, so f is a fixed output sequence. �

The semantics of a transition p
ϕ/f−−→ q is that ϕ is applied

in state p to the current character in the input sequence c̄, say ci.
There is an implicit well-definedness criterion that, if the state is
p and ϕ(ci) is true then i ≥ m, where m is the arity of f . If
ϕ(ci) holds then f is applied to (ci−m+1, ci−m+2, . . . , ci−1, ci)
to produce the next subsequence of the output. For finalizers the
semantics is that f is applied to (cl−m+1, cl−m+2, . . . , cl−1, cl) to
produce the suffix of the output, where cl is the last character.

4.2 Termination and Limitations
The exploration algorithm does not terminate if there are un-
bounded dependencies between successive characters in the input.
In other words, if the register is needed to remember some input el-
ement for arbitrarily many following input elements. For example,
if the register is used to sum all “digits” seen in the input, then the
exploration algorithm does not terminate.

An m-grouping of a nonempty sequence ā over σ is a se-
quence ū over σ≤m whose flattened form equals ā. For example,
the sequence [[1, 2], [3, 4, 5], [6]] is a 3-grouping of the sequence
[1, 2, 3, 4, 5, 6].
Definition 5: ST A has the bounded lookahead property if there is
a finite subset P ⊆ Q × τ , p0 = (q0, r0) ∈ P , and there exists
m > 0 such that for all input sequences ā over σ accepted by A

there exists an m-grouping [ui]
n
i=1 of ā such that pi−1

ui/−−→→ pi for
some pi ∈ P for i < n and pn = }. �
Theorem 1: Exploration algorithm terminates iff the ST has the
bounded lookahead property. The output SFT is equivalent modulo
grouping to the input ST.

We write SFT+ for the intermediate result that the exploration
algorithm produces. Namely, SFT+ stands for the SFT whose input
characters have been grouped, i.e., whose character type is σ≤m,
for some m > 0, where σ is the character type of the input SFT.

There is a class of STs for which the exploration algorithm
does not terminate although an equivalent k-SFT exists. Roughly
speaking, this situation arises when bounded lookback cannot be
turned into bounded lookahead. Thus, even if the ST could, in
principle, be compiled into an equivalent k-SFT, there exists no
intermediate SFT+ over grouped characters.

The following example illustrates such a case.
Example 4 Consider standard HtmlEncode over full Unicode.
An input to the encoder is a UTF-16 encoded string. An input is
malformed if it contains a bad surrogate b:

• b is a high surrogate (in range ψH
def
= λx.55296 ≤ x ≤ 56319)

that is not immediately followed by a low surrogate (in range
ψL

def
= λx.56320 ≤ x ≤ 57343), or

• b is a low surrogate that is not immediately preceded by a high
surrogate.



Some encoders use the following correcting rule as a robustness
feature rather than rejecting malformed strings (e.g., HtmlEncode
in System.Net.WebUtility in .NET Framework 4.5). The Uni-
code replacement character �? (\uFFFD) is used to replace bad sur-
rogates so that the string is not malformed. Such a correcting phase
can be described by the ST in Figure 8(a), say Rep. For efficiency,

q0

q1
λ(x, y).ψH(x)/[];x λy.⊤/[�?]

λ(x, y).ψL(x)/[�?]; 0

λ(x, y).ψH(x)/[�?];x

λ(x, y).¬ψH(x) ∧ ¬ψL(x)/[�?, x]; 0
λ(x, y).ψL(x)/[y, x]; 0

λ(x, y).¬ψL(x) ∧ ¬ψH(x)/[x]; 0

0

(a) Using an ST

q0

q1
ψH/[] [�?]

ψL/[�?]

ψH/[�?]

¬ψH ∧ ¬ψL/λx.[�?, x]
ψL/λ(x−1, x).[x−1, x]

¬ψL ∧ ¬ψH/λx.[x]

(b) Using a 2-SFT

Figure 8. Replacing bad surrogates with �?.

existing hand-optimized encoders integrate Rep into the logic for
the encoder, but here we think of it as a separate preprocessing step
over the input. In some versions of HtmlEncode the replacement
character �? itself is also encoded, in others it is not.

The difficulty with Rep is that there is no fixed length lookahead
window to decide, if the last character in the window is the last
consequtive high surrogate. However, the 2-SFT in Figure8(b) is
equivalent to Rep and is parallelizable with the approach described
below. The variable x−1 refers to the previous character in the input
while x refers to the current character, so the lookback window size
for determining the output is 2.

To be completely accurate, the exploration algorithm does ter-
minate for the Rep ST in Figure 8(a) because there are a finite num-
ber of high surrogates (1024). But this is not the point. The point is
that the exploration creates a state space that is unreasonably large.
Moreover, if ψH(x) and ψL(x) were defined as (xmod 2 = 0) and
(xmod 2 = 1) then the algorithm would not terminate because Rep
would not have the bounded lookahead property: suppose there ex-
ists m and P as in Definition 5 and consider the input [c]mi=1 for
some c such that ψH(c) holds. Then (q1, c) ∈ P , but there are
infinitely many such c, contradicting that P is finite.

It is an open problem how to decide such cases. The partic-
ular case of Rep in Figure 8(a) seems easy to detect, but con-
sider the small variant of Rep where the q1-loop is replaced by

q1
ψH (x)/[]−−−−−−→ q1, i.e., the intermediate high surrogates are ignored.

Then there exists no fixed lookback k + 1 for the symbol x−k in
the corresponding transition from q1 to q0 in the (k + 1)-SFT in
Figure 8(b).

The way we deal with this problem is by using composition. The
encoder STs we consider, are defined under the assumption that the
input string is valid, i.e., it has no bad surrogates. The exploration
algorithm is used to produce a SFT+ that is then transformed into

an equivalent k-SFT, say M . Finally, M is composed with Rep
(the 2-SFT in Figure 8(b)) to produce M ′ = λx.M(Rep(x)).
Although k-SFTs are, in general, not closed under compositon, in
this particular case they are. So the actual input to parallelization
is M ′. Not only is this easier to program, but it is also less error
prone because the corner cases of what to do with bad surrogates
are completely avoided. Moreover, there is no loss in efficiency
because the two transformations are automatically composed into
one, essentially eliminating the intermediate corrected string, as a
form of deforestation [34].

Example 4 illustrates a case when it is not possible to con-
struct SFT+ from ST because there is no grouping bound, although
an equivalent k-SFT exists. Another difficulty is that it is not al-
ways possible to turn an SFT+ into a k-SFT (that is required
for parallelization unless all groups have a fixed length). As dis-
cussed below, such a transformation requires monadic decomposi-
tion of predicates [33] in order to decompose n-ary relations used
as guards in the SFT+ into Boolean combinations of monadic rela-
tions that will guard the transitions in the k-SFT . In general this is
not possible, e.g., if the predicate is x = y. Moreover, the problem
of deciding if such a decomposition exists is, in general, undecid-
able even when assuming (as we do) that the theory over labels is
decidable. The latter undecidability follows from a result in [20,
Proposition 2.b].

4.3 Parallelizability
The exploration algorithm presented above transforms an ST into
an SFT at the expense of grouping several input characters into
one token. Thus, formally the input language of the SFT is a nested
sequence where the inner sequences or character groups are tokens.
If all tokens have the same length k, as in Base64 decoding where
k = 4, then it is possible to process the original input in parallel by
reading the input tokens from offsets km for m > 0. In general, as
for example with HTML encoding or UTF8 encoding, the tokens
have variable length and this simple solution does not work. Also,
storing inputs in registers breaks parallelizability and takes us back
to square one.

Instead, we transform the SFT+ into a k-SFT with lookback
building on the idea of k-SLTs introduced in [7]. The algorithm
that we use does not introduce registers and maintains the prop-
erty that transition guards only reference the current character, but
output functions may refer back to k prior input characters. The re-
sulting k-SFT is a special kind of a k-SLT. The main benefit is that
the transition graph of the domain of a k-SFT is an SFA over the
original characters. This enables the parallelization approach pre-
sented in Section 5 and the output computation still works because
the lookback is bounded and can be applied in parallel.

We illustrate the algorithm below using an example. The input
to the algorithm is an SFT over tokens or subsequences of charac-
ters. This SFT is first decomposed so that all transitions are split
into predicates over singleton characters. To achieve this, the algo-
rithm uses monadic decomposition of predicates from [33]. Then
the split transitions are merged back together into a deterministic
k-SFT. Finally, the k-SFT is compiled into C# code that is used by
the subsequent parallelization step.
Example 5 We consider here a cut down version of a UTF8
decoder to illustrate k-SFT construction. Suppose that the SFT+

produced by exploration has a single state q0 and three transitions:

q0
ψ/λx.[x]−−−−−→ q0, q0

ϕ/f−−→ q0, and q0
γ/g−−→ q0, where

• ψ reads one byte and checks that it is in the ASCII range and
the character is output as is,

• ϕ reads two bytes and checks that they form a valid 2-byte
encoding, f computes the code point from the two bytes,



• γ reads three bytes and checks that they form a valid 3-byte
encoding, g computes the code point from the three bytes.

The first transition is kept as is. The second and the third transi-
tions are split into transitions that read one character at a time and
the output calculation is delayed to the last transition. In order to do
so, the predicates are first decomposed by using monadic decom-
position. The decomposed forms of the predicates are as follows
(using hexadecimal notation for numbers and interval notations)

dec(ϕ(x̄))=x1 ∈ C2-DF ∧ x2 ∈ 80-BF
dec(γ(x̄))=(x1 = E0 ∧ x2 ∈ A0-BF ∧ x3 ∈ 80-BF)∨

(x1 = ED ∧ x2 ∈ 80-9F ∧ x3 ∈ 80-BF)∨
(x1 ∈ EE|EF|E1-EC ∧ x2 ∈ 80-BF ∧ x3 ∈ 80-BF)

The k-SFT construction algorithm introduces intermediate states
for each transition after reading each symbol, considering one dis-
junct at a time in the DNF. It then merges the transitions into a
single deterministic k-SFT. In this case the result is a 3-SFT shown
in Figure 9. There would be additional states for the case of 4 byte

q0 q1C2-DF/[]

80-BF/λ(x−1, x).f([x−1, x])

q2

q3

q4

q5

E0/[]

ED/[]

E1-EC|EE|EF/[]

80-BF/λ(x−2, x−1, x).g([x−2, x−1, x])

80-BF/[]

80-9F/[]

A0-BF/[]

0-7F/λx.[x]

Figure 9. 3-SFT constructed from a UFT8 decoder that decodes
up to three byte encodings.

encodings resulting in a 4-SFT, and more states and larger lookback
if even longer encodings (up to 6 bytes) were allowed.

5. Data-Parallel Translation
In the prior sections we demonstrated how to remove registers
from ST and turn them into k-SFTs. In this section we describe
how to run k-SFTs on data-parallel hardware. In particular, we
demonstrate an end to end compilation of k-SFTs to a data parallel
version capable of exploiting multiple cores via threads.

Here we frame the evaluation of finite state transducers as asso-
ciative operations over vectors and matrices. Because these opera-
tions are associative, they can take advantage of data-parallel hard-
ware. The number of states in the SFT must be small for efficiency.
Our key insight that allows us to combine STs with the data-parallel
approach is that we first transform the ST into a k-SFT, using the
pipeline of algorithms discussed above. In effect, ST to k-SFT com-
pilation pushes the complexity of the ST into the edges, which in
turn allows us to efficiently target data-parallel hardware.

In the sections that follow, we demonstrate an automatic ap-
proach that compiles a BEK program into a SFT and then down
into the data parallel formulation that runs on multicore hardware.

5.1 Data-Parallel Operators
To aid our discussion, we introduce two higher-order data-parallel
primitives. First, zip takes a binary function and maps that function
over two sequences of equal sized length. For example, to pairwise

add the numbers in two sequences we could use

zip(+, [0, 1, 2], [3, 4, 5]) = [3, 5, 7]

Second, scan applies a binary associative function, ⊕, over every
prefix of a sequence, i.e., given a sequence [x1, x2, . . . , xn, xn+1],
and an identity element ı such that ı⊕ x = x, scan produces

[ı, x1, (x1 ⊕ x2), (x1 ⊕ x2 ⊕ x3), . . . , (x1 ⊕ · · · ⊕ xn)]

For explanatory purposes we use a related function scanf that
takes a function ⊕ : Q × σ → Q, a value q ∈ Q, a sequence
[s1, . . . , sn, sn+1] ∈ σ∗ and produces the sequence

[q, q ⊕ s1, ((q ⊕ s1)⊕ s2), . . . , (((q ⊕ s1)⊕ s2) · · · ⊕ sn)]

in Q∗ of length n + 1. Finally, we use the function split to split
a given sequence s according to a sequencem of lookback offsets
as follows into a sequence of tuples (or subsequences):

split([si]
n
i=1, [mi]

n
i=1) = [(si+1−mi , si+2−mi , . . . , si)]

n
i=1

We next show how to define SFTs in terms of these primitives.

5.2 Describing SFTs With Higher-Order Functions
Recall that a k-SFT M is a tuple (Q, q0, R) where q0 is the initial
state, and R = ∆ ∪ F is a finite set of rules, consisting of transi-
tions ∆ and finalizers F . Here we require M to be deterministic.
Moreover, for ease of presentation and without loss of generality,
we assume that all finalizers of M are trivial in the sense that they
produce the empty output and are thus treated as final states in the
classical sense. For example the 2-SFT in Figure 8(b) is determin-
istic. We assume that we work with an extended alphabet where
there is an end-of-input (EOI) symbol and all valid input sequences
end with EOI, so that finalizers are not needed. For each transition
p
ϕ/f−−→ q we refer to the arity of f as the lookback of the transition,

that is denoted by `(p, a) where a ∈ [[ϕ]]. We represent normal
characters by their code points as (non-negative) integers. EOI has
code −1. We refer to f by φ(p, a), i.e., φ(p, a) takes `(p, a) argu-
ments.

Thus, the rules define a transition function from a given input
and state to an output and a new state. Let δ(q, a) be the state func-
tion, implicitly defined by the rule set R, which takes as arguments
a state q and an input a and produces a new state.

To transduce an input sequence s, M starts in state q1 = q0

and sequentially reads the symbols of s. When M reads the i’th
symbol si from s in state qi (first symbol being s1), it enters state
qi+1 = δ(qi, si) and calls the output function φ(qi, u), where
u = [si+1−`(qi,si), si+2−`(qi,si), . . . , si], which maps to a finite
(possibly empty) sequence of symbols in the output alphabet. We
call the algorithm to transduce a string by M , Transduce, it takes
as input M and a sequence s and produces the output sequence.

Transduce(M, s) =
let q = scanf(δ, q0, s) in
let m = zip(`, q, s) in
flatten(zip(φ, q, split(s,m)))

where flatten is defined in Section 4.
Example 6 Consider the 2-SFT Rep in Figure 8(b). We first
extend Rep so that it has the final state q2 and we assume that
all valid inputs end with EOI. We write h for ψH . We write $
for λx.(x = EOI) and we write ~ for λx.¬$(x) ∧ ¬h(x). We
also add a fourth state q3 that corresponds to an error state (in
practice this state may often be omitted, but we include it here for
clarity). Let ?

def
= [�?], f def

= λx.[if ψL(x) then �? else x] and let
g

def
= λ(x−1, x).[(if ψL(x) then x−1 else �?), x]. The extended 2-

SFT is depicted in Figure 10. Let a = D83D16 and b = DE0A16.
So h(a) holds and ψL(b) (thus also ~(b)) holds. Take the input



q0

h̄/f

q1

h/[]

q2 q3

h̄/g

$/[]

h/?

⊤/[]

⊤/[]

$/?

Figure 10. 2-SFT Rep extended with EOI. The state q2 is the final

state, meaning that it has the trivial finalizer q2
[]−→ }.

sequence s = [b, a, a, b, a, EOI]. We get that

s =[b , a , a , b , a , EOI]
scanf(δ, q0, s) = q =[q0 , q0 , q1 , q1 , q0 , q1 ]

zip(`, q, s) =m =[1 , 0 , 0 , 2 , 0 , 0 ]
split(s,m) = u =[(b) , () , () , (a, b) , () , () ]
zip(φ, q,u) = v =[[�?] , [] , [�?] , [a, b] , [] , [�?] ]

and so flatten(v) is the valid Unicode string [�?,�?, a, b,�?] that
would be displayed similar to “�?�?,�?” where (a, b) is the surrogate
pair UTF16 encoding of the code point 1F60A16 that is a smiley in
the emoticon alphabet.3

5.3 Data-Parallel k-SFT
The prior section formalized k-SFT in terms of higher-order data
parallel primitives. If the function on which these primitives operate
are not associative, they must execute sequentially. If the BEK
code contains registers, then in general it is not possible to directly
write the resulting k-SFT with associative generalization of δ.
Fortunately, as we saw in the previous section, our compilation
algorithm can remove registers in many cases.

We compile δ into an associative operation on matrices. Because
matrix multiplication is an associative operation that encodes graph
traversals, this representation is amenable to data parallelism. The
main idea is to lift scanf above to its associative counterpart scan
by representing both states and symbols as matrices (so that we
can talk about associativity to begin with). We build on known
techniques from [14, 19, 25].
Graph Traversals with Matrix Multiplication: A convenient way
to view k-SFT is as a graph where nodes in the graph are states and
there exists an edge from state i to state j on symbol s if δ(i, s) =
j. A graph is simple to represent as an adjacency matrix: the set of
allowed transitions for each symbol s in our input alphabet can be
described byMs, a n×n adjacency matrix, where n is the number
of states, such that (Ms)ij = 1 if state i transitions to state j on
symbol s, and (Ms)ij = 0, otherwise. In other words, an adjacency
matrix is a symbolic representation of how a symbol from the input
alphabet transitions every state in a k-SFT.

In order to deal with a potentially infinite alphabet σ, we first
divide the input alphabet σ into a finite set of equivalence classes
σ∼ such that the state transitions are invariant under ∼. Thus, we
end up with one matrix MC per equivalence class C ∈ σ∼. We
write ã for the equivalence class containing the symbol a. But
how do we actually compute the equivalence relation ∼? Let all
the guards of the k-SFT be Ψ = {ϕ1, . . . , ϕm}. The equivalence
relation ∼ can be effectively obtained by constructing all the sat-
isfiable Boolean combinations over Ψ, for this we use the minterm
algorithm from [9].

3 See http://unicode.org/charts/PDF/U1F600.pdf.

Example 7 Consider the 2-SFT Rep in Figure 10. Rep uses four
guards. The minterms are {h, ~, $} because they are all pairwise
disjoint and their union equals >. The SFA corresponding to Rep
looks exactly the same as Rep but with output functions omitted.
Since there are three equivalence classes, say A = [[h]], B = [[~]],
and C = [[$]], we have three adjacency matrices (MA, MB and
MC ) that describe how every state in the SFA transitions when
reading symbols a ∈ A, b ∈ B and c ∈ C, respectively.

MA=

0 1 0 0
0 1 0 0
0 0 0 1
0 0 0 1

 MB=

1 0 0 0
1 0 0 0
0 0 0 1
0 0 0 1

 MC=

0 0 1 0
0 0 1 0
0 0 0 1
0 0 0 1


Given a and b as in Example 6, we have a ∈ A and b ∈ B.

Given this formulation, we use matrix multiplication ‘·’ as a
mechanism for graph traversal. Assume the identity matrix I en-
codes the initial state of the SFA. Then adjacency matrix that en-
codes the state of the SFA after reading the first symbol a in an
input sequence s is I ·Mã. Further, the adjacency matrix that en-
codes the state of the SFA after reading the second symbol, b of s
is I ·Mã ·Mb̃, etc.

From k-SFTs to matrices: To transform a k-SFT to operations
on vectors and matrices, we define the following two functions,
inflate and project; inflate generates the matrixMã for each
symbol a ∈ σ; project extracts from matrix Mw the state of the
(underlying) SFA, where Mw is obtained after reading the input
sequence w, starting from state q0 = 0:

project(Mw) = V0 ·Mw · VF

where V0 is an n-component row vector

V0 = (1, 0, . . . , 0)

and VF is an n-component column vector

V TF = (0, 1, . . . , n− 1).

So V0 · Mw extracts the first row, say X , of Mw, where X has
exactly one element j that is 1 while all the other elements are 0
because the SFA is deterministic, where j is the state reached from
q0 after reading w. Thus X · VF equals that state j.

Given this formulation, we implement an associative version δ̂
of the transition function δ that uses “inflated” symbols instead
of actual symbols. Thus, instead of using the actual alphabet, the
transduction uses the inflated alphabet {Mã | a ∈ σ} and the
input sequence is mapped to the inflated alphabet through the initial
inflation of the input sequence map(inflate, s):

δ̂(M,Mã)
def
= M ·Mã

where M is a matrix that encodes the state of the SFA, and Mã

is the inflated symbol a. Thus, the function δ̂ is associative by
associativity of matrix multiplication and enables us to implement
a data parallel version of Transduce as:

Transduce(k-SFT, s)
def
=

let S = map(inflate, s) in
let q = map(project, scan(δ̂, S)) in
let m = zip(`, q, S) in
flatten(zip(φ, q, split(s,m)))

An important point to note is that φ must be applied to the original
(non-inflated) sequence s because the output functions of the rules
of the SFT depend on the actual input, while both ` and δ are lifted
to work directly on the equivalence classes.



5.4 An Efficient Matrix Representation
While matrix multiplication is associative, it unfortunately has a
high overhead. Even an optimized implementation requires a sig-
nificant amount of computation and memory—matrix multiplica-
tion runs inO(m3) wherem is the number of states in a finite state
automaton and requires m2 memory.

To reduce this overhead such that it is linear in the number of
states (both time and space), we exploit the fact that all of our
adjacency matrices are square binary matrices with exactly one
1 in each row (and zeros elsewhere). We follow recent work and
succinctly represent this type of adjacency matrix as an array where
the value of the array at index i (staring from 0) is equal to the index
of the column that contains a 1 for row i [25]. This is possible
because each row contains exactly one 1.

In other words, the matrix is encoded as a one-dimensional
array indexed by states. For example, the matrices MA and MB

from the prior section, represented as arrays are [1, 1, 3, 3] and
[0, 0, 3, 3], respectively. With this flattened representation, matrix
multiplication of MA with MB reorders (with replacement) the
elements of MB according to MA: MA ·MB = [0, 0, 3, 3]

To implement this efficient form of matrix multiplication is
simple; we re-order the elements of one array by the elements of
another:

void M u l t i p l y ( char Ma[K] , char Mb[K] , char Mab [K] ) {
f o r ( i n t i = 0 ; i < K; i ++) Mab [ i ] = Mb[Ma[ i ] ] ; }

Because multiplying two matrices of this form produces another
matrix of this form, we always represent matrices as linear arrays
indexed by state which requires only m memory locations and a
running time of O(m).

5.5 Translating k-SFT to δ, ` and φ
To summarize, we produce the following pipeline. First, a program-
mer writes string manipulating functions in BEK. Next, we compile
from BEK into an ST and then compile the ST into a k-SFT. Fi-
nally, we compile from the k-SFT to C# functions which encode
φ, δ and `.

These functions can then be applied as part of our data-parallel
computation. As an integrated part of the pipeline, we also need a
constraint solver, e.g., an SMT solver [3, 11], to construct the finite
equivalence relation ∼ and to construct a classifier that decides
membership of actual inputs in the ∼-equivalence classes.
Example 8 Consider again the 2-SFT in Figure 10. Recall the ma-
tricesMA,MB andMC from Example 7. Let s be as in Example 6.
So S = map(inflate, s) = [MB ,MA,MA,MB ,MA,MC ] and

map(project, scan(δ̂, S))
= map(project, [I,MB ,MB ·MA,MB ·MA ·MA, . . .])
= [q0, q0, q1, q1, q0, q1]

The rest of the output computation is the same as illustrated in
Example 6.

The actual code generation to C# is discussed below. The code
template for the generated C# is shown in Figure 13. The field
delta corresponds to δ̂, the field lookback corresponds to ` (lifted
to symbols), and the field output corresponds to φ. The seman-
tics of Transduce is the implementation of Encoder.Apply. The
implementation of GetSymbol uses predicates that have been gen-
erated by Z3 and then mapped to C# expressions to decide which
symbol a concrete character maps to. The symbols are unique iden-
tifiers for the equivalence classes of ∼ as discussed above.

6. Evaluation
This section demonstrates the efficacy of our algorithms by inves-
tigating their correctness and performance. Section 6.1 explains

the setup of the evaluation experiment. Section 6.2 empirically
demonstrates that our generated programs produce consistent out-
puts compared to those available in existing system libraries. Sec-
tion 6.3 provides a baseline performance comparison of our gener-
ated programs with existing library functions in the sequential case,
demonstrating that our generated programs are comparable in per-
formance. Finally, Section 6.4 demonstrates multi-factor speedups
on a variety of real-world string transformation programs.

We use three encoder and decoder pairs in the following
experiments, HtmlEncode and HtmlDecode, Utf8Encode and
Utf8Decode, and finally, Base64Encode and Base64Decode.
Each pair performs the logical inverse of the other (i.e., the out-
put of an encoder is the input to the corresponding decoder). We
also use sanitizers from the AntiXss library [22] in our sequential
baseline comparison. All system encoders that we use are listed in
Figure 11. There are several variations of some of them and they

Routine Library

HtmlEncode AntiXss.AntiXssEncoder
HtmlDecode AntiXss.AntiXssEncoder
CssEncode AntiXss.AntiXssEncoder
JavaScriptStringEncode AntiXss.AntiXssEncoder

HtmlEncode System.Net.WebUtility
HtmlDecode System.Net.WebUtility

HtmlEncode System.Web.HttpUtility
HtmlDecode System.Web.HttpUtility
JavaScriptStringEncode System.Web.HttpUtility

ToBase64String System.Convert
FromBase64String System.Convert

UTF8.GetBytes (encoder) System.Text.Encoding
UTF8.GetString (decoder) System.Text.Encoding

Figure 11. Pre-existing encoders used for comparison. All en-
coders are from .NET Framework 4.5.

differ behaviorally. For example HtmlEncode in AntiXss is differ-
ent than both the one in HttpUtility and the one in WebUtility.
In particular, the latter two do not encode control characters or the
replacement character �? while the former does. However, the latter
two encode all non-ASCII characters such as ä while the former
does not encode all of them. In total, the latter two encode 101
characters out of all of the 256 extended ASCII characters, while
the former encodes only 72. Since we have no bias in selecting one
before the other, we compare against all of them in our experiments.

6.1 Setup
The concrete input to each individual experiment is the intermedi-
ate representation of the BEK program under consideration. It is an
ST, as an instance of the ST python class in Figure 4. For example,
the BEK intermediate representation of Base64Encode is shown in
Figure 12. It corresponds to the ST shown in Figure 3. It has a sin-
gle state q = 0, a register that is a pair of numbers, two transitions
{r1, r2} and three finalizers {f1, f2, f3}. The initial register value
is the pair (0, 0). Notice that the function E is defined as a Z3 ax-
iom. Such axioms are either inlined or used to define corresponding
methods during code generation.

The python function st2cs in Figure 12 is the entry point that
generates the final C# code. First, it invokes Explore (as defined in
Figure 4) to construct the equivalent (modulo grouping) SFT+. It
then decomposes the transitions of the SFT+ by introducing look-
back and constructs a deterministic k-SFT. In the case of encoders
whose input is assumed to be a valid UTF16 string, the resulting
k-SFT is composed with the 2-SFT Rep, as shown in Figure 8(b),
to lift the input strings to arbitrary sequences of characters (as op-
posed to valid UTF16 strings only, recall the discussion at the end



# genBase64Encode . py
from s t 2 c s import ∗

def Base64Encode ( ) :
bvs = B i t V e c S o r t ( 1 6 ) ; q = 0
C = lambda c : Bi tVecVal ( ord ( c ) , bvs )
R e g i s t e r = D a t a t y p e ( ’ R e g i s t e r ’ )
R e g i s t e r . d e c l a r e ( ’ P a i r ’ , ( ’ F s t ’ , bvs ) , ( ’ Snd ’ , bvs ) )
R e g i s t e r = R e g i s t e r . c r e a t e ( )
P= R e g i s t e r . P a i r ; F= R e g i s t e r . F s t ; S= R e g i s t e r . Snd
Edef = lambda x : I f ( x <= 25 , x + 65 ,

I f ( x <= 51 , x + 71 ,
I f ( x <= 61 , x − 4 ,

I f ( x == 62 , C( ’+ ’ ) , C( ’ / ’ ) ) ) ) )
E = F u n c t i o n ( ’ Encode ’ , bvs , bvs )
v = Cons t ( ’ v ’ , bvs )
axiom = F o r A l l ( v , ( E ( v )== Edef ( v ) ) , p a t t e r n s =[E ( v ) ] )
x = Var ( 1 , bvs ) # i n p u t c h a r a c t e r v a r i a b l e
y = Var ( 0 , R e g i s t e r ) # r e g i s t e r v a r i a b l e
# t r a n s i t i o n s
r1 = ( q , And ( x <= 255 , F ( y ) ! = 2 ) ,

[ I f ( F ( y )==0 ,E ( x >> 2 ) , E ( S ( y ) | ( x>>4)))] ,
P ( F ( y )+ 1 , I f ( F ( y ) = = 0 , ( x&3)<<4,(x&0xF)<<2)) ,q )

r2 = ( q , And ( x <= 255 , F ( y ) = = 2 ) ,
[ E ( S ( y ) | ( x>>6)),E ( x&0x3F ) ] , P ( 0 , 0 ) , q )

# f i n a l i z e r s
f1 = ( q , And ( F ( y ) != 1 , F ( y ) != 2 ) , [ ] )
f2 = ( q , F ( y ) = = 1 , [ E ( S ( y ) ) , C( ’= ’ ) ,C( ’= ’ ) ] )
f3 = ( q , F ( y ) = = 2 , [ E ( S ( y ) ) , C( ’= ’ ) ] )
s t = ST ( q , P ( 0 , 0 ) , [ r1 , r2 ] , [ f1 , f2 , f3 ] , x , y , [ axiom ] )
re turn s t

s t 2 c s ( ” Base64Encode ” , Base64Encode ( ) )

Figure 12. Base64Encode intermediate representation.

of Section 4.2). The generated C# is taylored for the subsequent
parallelization step.

6.2 Consistency
To demonstrate that our synthesized encoders are correct, we
checked the consistency of the BEK-generated output against inde-
pendent implementations with the same functionality. We generate
a set of 100 1-MB strings and evaluate both the independent output
and the BEK generated code on each input.

The strings are chosen randomly. We used independently-
produced implementations listed in Figure 11 for comparison. In
each case we implemented a corresponding equivalent BEK pro-
gram and automatically generated the code as explained above. For
each individual input we compared that the output of the BEK gen-
erated program is equal to the output returned by the corresponding
system encoder. We found no discrepancies. The system encoders,
listed in Figure 11, came from .NET 4.5 core libraries and the
AntiXss encoder library.

6.3 Sequential BEK

The generic code template for the generated sequential C# code
for a given BEK encoder is shown in Figure 13. It exercises the
same interface of the k-SFT that is used by the parallel imple-
mentation. The method Encoder.Apply implements the sequential
routine. Concrete characters x are mapped to a finite set of sym-
bols through GetSymbol. Each symbol identifies the equivalence
class in which the input behaves similarly (recall the discussion
from Section 5.3). The maximal lookback is k. The initial state
is 0. Given a state q and a symbol s, delta[q][s] is the next state.
Output is computed from a given state q and symbol s by invoking
output[q][s](x1, . . . , xm) where (x1, . . . , xm) is the subsequence
of m previous characters, m = lookback[q][s], note that m ≤ k.
We have not optimized for the case when the input grouping size

namespace E x p e r i m e n t s
{

p u b l i c s t a t i c c l a s s Encoder
{

p u b l i c c o n s t i n t f i n a l S y m b o l = . . . ;
p u b l i c c o n s t i n t f i n a l S t a t e = . . . ;
p u b l i c c o n s t i n t k = . . . ;
p u b l i c s t a t i c i n t [ ] [ ] d e l t a = . . . ;
p u b l i c s t a t i c i n t [ ] [ ] l o o k b a c k = . . . ;
p u b l i c s t a t i c Func<i n t [ ] , i n t > [ ] [ ] [ ] o u t p u t = . . . ;
p u b l i c s t a t i c i n t GetSymbol ( i n t x ) { . . . } ;

p u b l i c s t a t i c s t r i n g Apply ( s t r i n g s )
{

i n t L = s . Length ;
S t r i n g B u i l d e r sb = new S t r i n g B u i l d e r ( ) ;
var xs = new i n t [ k ] ;
i n t s t a t e = 0 ;
f o r ( i n t i = 0 ; i < L ; i ++)
{

var x = s [ i ] ;
var symbol = GetSymbol ( x ) ;
i n t n = o u t p u t [ s t a t e ] [ symbol ] . Length ;
i f ( n > 0)
{

var m = l o o k b a c k [ s t a t e ] [ symbol ] ;
f o r ( i n t j = 0 ; j < m; j ++)

xs [ j ] = s [ i − m + 1 + j ] ;
f o r ( i n t j = 0 ; j < n ; j ++)

sb . Append ( ( char ) o u t p u t [ s t a t e ] [ symbol ] [ j ] ( xs ) ) ;
}
s t a t e = d e l t a [ s t a t e ] [ symbol ] ;
}
var m end = l o o k b a c k [ s t a t e ] [ f i n a l S y m b o l ] ;
f o r ( i n t j = 0 ; j < m end − 1 ; j ++)

xs [ j ] = s [ L − m end + 1 + j ] ;
var n end = o u t p u t [ s t a t e ] [ f i n a l S y m b o l ] . Length ;
f o r ( i n t j = 0 ; j < n end ; j ++)

sb . Append ( ( char ) o u t p u t [ s t a t e ] [ f i n a l S y m b o l ] [ j ] ( xs ) ) ;
re turn sb . T o S t r i n g ( ) ;
}
}
}

Figure 13. Code template for generated C#.

is fixed (as with Base64Decode) but iterate one character at a time
over the input.

For each of the string to string encoders in Figure 11 (the top 9
rows) we compared the running time with the corresponding BEK
generated encoder Encoder.Apply over 100 randomly generated
1-megabyte strings (over extended ASCII). To get statistically sig-
nificant results, we ran each experiment 10 times and report the
mean m and the standard error e of the running time as m(±e).
For HtmlEncode we use a different version of BEK encoder in the
case of AntiXss to match the semantics, while we use another BEK
encoder for the other two libraries. For HtmlDecode we used the
same BEK encoder in all three instances. As input to the decoder
we used the output from the corresponding encoder, i.e., from the
random inputs we generate inputs to the decoders using the corre-
sponding encoders: inputs for HtmlDecode in AntiXss are gen-
erated with HtmlEncode in AntiXss, inputs for HtmlDecode in
WebUtility are generated with HtmlEncode in WebUtility, etc.
The Html decoder in BEK supports up to 3 digit decimal encodings,
which is why we restricted this experiment to extended ASCII. We
see no reason why supporting longer encodings would affect the se-
quential running time in any significant manner. The experiments
were carried out on a Lenovo X1 Carbon laptop with Intel i7 2GHz
processor having 8GB of RAM and running 64-bit Windows 8.1.

The results are shown in Figure 14. The sequential performance
of our generated encoders are on par with existing hand-optimized
codes. Our code is sometimes faster and sometimes slower than



Routine Library t(sec) tBek(sec) tBek/t

HtmlEncode AntiXss 2.7(±.02) 4.6(±.1) 1.7
HtmlDecode AntiXss 8.0(±.1) 3.5(±.03) 0.4
CssEncode AntiXss 3.4(±.03) 9.5(±.05) 2.8
JSSEncode AntiXss 3.6(±.1) 3.7(±.03) 1.0

HtmlEncode WebUtility 6.9(±.1) 4.6(±.07) 0.7
HtmlDecode WebUtility 11(±.2) 4.4(±.06) 0.4

HtmlEncode HttpUtility 6.8(±.07) 4.5(±.04) 0.7
HtmlDecode HttpUtility 11(±.1) 4.4(±.04) 0.4
JSSEncode HttpUtility 3.6(±.07) 3.8(±.05) 1.0

Geomean : 0.92

Figure 14. Sequential comparison over 100x1MB strings.

these standard libraries. Consider HtmlDecode: BEK is signifi-
cantly faster than the AntiXss baseline as this decoder has many
corner cases which makes it difficult to hand-optimize (and thus
points to the benefits of an automated compiler). However, consider
CssEncode where BEK is almost 3x slower AntiXss. This is be-
cause all encodings have the form \0000XY and use the loop over
function calls in output in Figure 13 to append ‘\’ and four ‘0’s
to sb, one at a time. We could amortize this huge overhead through
simple optimizations (i.e., inlining function calls instead of indi-
rectly calling them through a table), however, because this paper
is about extracting data parallelism from BEK codes with registers,
we left this simple optimization for future work.

The encoder producing inputs for HtmlDecode in the AntiXss
experiment encodes less data than in the other two HtmlDecode
experiments, as was explained above, which explains the BEK time
difference of almost 1 second in those experiments.

To summarize, the geometric mean of all speedup experiments
is 0.92 and at the 95% confidence interval, ranges from 0.57
to 1.46. So our approach is neither statistically faster nor slower
than these hand-optimized baselines.

6.4 Data Parallel BEK

In this section we demonstrate multi-factor performance improve-
ments over sequential baselines by utilizing multiple threads on
multi-core hardware. It is worth noting our approach is not limited
to multiple cores as it is data parallel and thus it can target many
forms of data parallel hardware (e.g., GPUs or Hadoop clusters).
Platform: We conducted all experiments on an unloaded In-
tel 2 GHz (E5-2650) workstation with 64 GB of RAM and 32
logical processors (2 sockets with 16 physical cores).
Inputs: For both the HTML and Utf8 encoder/decoder pair, we
encode (and then decode) a 1GB subset of Wikipedia’s HTML
while for the Base64 encoder/decoder pair, we encode (and then
decode) a 100 MB SQL server executable. We measured the time it
takes to execute a BEK program after reading the input from disk.
Many of our performance numbers are faster than a commodity
disk and thus we did not want our experiments to be IO bound.
To compute throughput numbers, we measure both bytes read and
bytes written as both numbers are required to understand a BEK
program’s performance. To get statistically significant results, we
ran each experiment 10 times and reported the mean and 95%
confidence interval of the mean.
Throughput: Our data-parallel BEK programs exploit parallel
hardware and are fast. As shown in Figure 15, with 32 logical
threads, our encoders and decoders are able to process data at
speeds of anywhere from 250 to 600 MB/sec. In contrast, the serial
baselines are anywhere from 30 to 100 MB/sec. Secondly, even
with small input data (i.e., Base64 encoder only encodes 100 MB)
we still see significant throughput. This implies that the cost to
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Figure 15. Throughput of various BEK encoders shown in MB/sec
on the y axis, as function of threads.

create and manage threads does not dominate the computation.
Lastly, our single-threaded implementation is slower than the base-
line. This result is pedagogical: our implementation requires each
thread do two passes over the input and with a single-thread our im-
plementation does twice as much work as the sequential baseline.
A real user of our system would never run with a single thread.

Speedup: Our data-parallel BEK programs provide nearly linear
speedups for up to 8 physical cores and moderate speedups after
that, up through 16 cores. Figure 16 details the speedup of x proces-
sors over a single processor. With 16 threads, our implementation
is just shy of 8x speedup across the various encoders and decoders.
Our approach saturates at 16 physical threads because the latency
of reading data from shared caches and RAM becomes a bottle-
neck. Because our approach is data parallel, we could amortize this
latency by using more physical machines such that each machine
more effectively utilizes both caches and RAM. To summarize,
these order-of-magnitude throughput improvements and speedups
across a wide range of BEK programs are significant and enable
data parallel processing of large amounts of data.
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Figure 16. Speedup of various BEK encoders, relative to a sequen-
tial baseline, as a function of threads.

7. Related Work
Symbolic finite transducers (SFTs) and BEK were originally intro-
duced in [15] with a focus on security analysis of sanitizers. The
formal foundations and the theoretical analysis of the underlying
SFT algorithms, in particular, an algorithm for deciding equiva-
lence of single-valued SFTs, modulo a decidable background the-
ory is studied in [32], where Symbolic Transducers (STs) are also
introduced as an extension of SFTs with registers, but exploration
of STs and code generation are not studied in [15, 32]. In contrast,
the focus of this paper and its motivation is efficient transformation
from STs to SFTs and k-SFTs with the particular application of
code generation that supports efficient parallel execution. Another
recent extension of SFTs, extended SFTs [8], is SFTs with looka-
head where the primary motivation is to allow lookahead with-
out introducing registers; unlike SFTs, ESFTs are not closed un-
der composition. The grouping idea was originally exploited in [8]
where it is used as a heuristic for lifting ESFTs to SFTs, but it is not
integrated with exploration. A model similar to k-SFTs is k-SLTs,
k-SLTs are introduced in [7], and use lookback instead of looka-
head and, unlike ESFTs, step one symbol at a time. Our model of

k-SFTs can be seen as a special class of parallelizable k-SLTs. A
key property that we use here is monadicity of the predicates [33],
which is needed for a k-SLTs to be translatable into a k-SFTs. The
general case of deciding if a predicate is monadic is undecidable,
which follows from [20, Proposition 2.b].

In recent years there has been considerable interest in automata
over infinite languages [17, 30]. Finite words over an infinite al-
phabet are often called data words in the literature. Other related
automata models are pebble automata [26] and data automata [6].
Several characterizations of logics with respect to different models
of data word automata are studied in [5]. This line of work focuses
on fundamental questions about definability, decidability, complex-
ity, and expressiveness on classes of automata on one hand and
fragments of logic on the other hand. A different line of work on
automata with infinite alphabets introduces lattice automata [12]
that are finite state automata whose transitions are labeled by ele-
ments of an atomic lattice with motivation coming from verification
of symbolic communicating machines. Streaming transducers [1]
is another recent symbolic extension of finite transducers. We do
not know of prior work that has investigated the use of symbolic
extensions of transducers for code generation.

In our implementation we use the off-the-shelf SMT solver
Z3 [10] for incrementally solving label constraints that arise dur-
ing the exploration algorithm. Similar applications of SMT tech-
niques have been introduced in the context of symbolic execution
of programs by using path conditions to represent under and over
approximations of reachable states [13]. The distinguishing feature
of our exploration algorithm is that it computes a transformation
that is behaviorally equivalent to the original ST with respect to the
transduction semantics, which is important for correct code gener-
ation.

Finite state transducers have been used for dynamic and static
analysis to validate sanitization functions in web applications
in [2]. Other types of security analyses use string analysis [24, 35].
Yu et.al. show how multiple automata can be composed to model
looping code [36]. Our work is complementary to previous efforts
in using SMT solvers to solve problems related to list transforma-
tions. HAMPI [18] and Kaluza [28] extend the STP solver to han-
dle equations over strings and equations with multiple variables.
We are not aware of previous work investigating the use of finite
state transducers for efficient code generation. One explanation for
this is that classical finite state transducers are not directly suited
for this purpose because SFTs can be exponentially more succinct
with respect to the alphabet size.

Parallel algorithms for finite state machines, akin to the one pre-
sented in this work, have been known for a long time [14, 19]. Like
this paper, Ladner and Fischer build a parallel implementation by
phrasing finite state machine computation as matrix multiplication.
Their approach targets applications with small finite state machines
and thus they ignore the resulting cubic (in the number of states)
overhead [19]. Hillis and Steele describe an improved algorithm
based on parallel prefix sum which reduces this overhead to linear
in the number of states [14]. To the best of our knowledge, none
of these approaches allow infinite alphabets, neither were imple-
mented on real hardware nor are they used with a larger framework
for transducing. This paper builds on these theoretical insights, fits
into a larger compilation framework which lets programmers use
an expressive language to write encoders and decoders, and then
evaluates those programs on large scale, parallel machines.

Finally, stream processing is a programming model which orga-
nizes programs by independent filters that communicate over data
channels. Programmers need not think about parallelism as it is im-
plicit in the programming model; a streaming program is the suc-
cessive composition of independent filters and the runtime maps
these independent computations to hardware parallelism [31, 37].



Unlike the programming model in this paper, streaming based pro-
gramming models are not analyzable nor do they break data de-
pendencies to expose data parallelism like we do in this work. In
particular, streaming languages can only run as fast as hardware can
expose a stream. Thus, it is not clear how they can hide I/O from
reading large files from multiple disks.

8. Conclusions
This paper demonstrates how to compile an expressive domain-
specific language, BEK to produce consistent and fast encoders and
sanitizers. We use symbolic transducers as an intermediate formal-
ism, and then introduce a novel algorithm which performs a sym-
bolic partial exploration of these transducers to obtain simplified,
stateless versions of the original BEK program.

We then show how to compile the resulting stateless transducers
to data-parallel hardware. Our compilation results indicate signifi-
cant runtime improvements: our data-parallel compilation speedups
are up to 8x faster compared to a sequential implementation, when
run on a 16-node commodity desktop.
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