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Abstract

The Microsoft .NET Framework is a new computing ar-
chitecture designed to support a variety of distributed ap-
plications and web-based services. .NET software compo-
nents are typically distributed in an object-oriented inter-
mediate language, Microsoft IL, executed by the Microsoft
Common Language Runtime. To allow convenient multi-
language working, IL supports a wide variety of high-level
language constructs, including class-based objects, inheri-
tance, garbage collection, and a security mechanism based
on type safe execution.

This paper precisely describes the type system for a sub-
stantial fragment of IL that includes several novel features:
certain objects may be allocated either on the heap or on the
stack; those on the stack may be boxed onto the heap, and
those on the heap may be unboxed onto the stack; methods
may receive arguments and return results via typed point-
ers, which can reference both the stack and the heap, includ-
ing the interiors of objects on the heap. We present a for-
mal semantics for the fragment. Our typing rules determine
well-typed IL instruction sequences that can be assembled
and executed. Of particular interest are rules to ensure no
pointer into the stack outlives its target. Our main theo-
rem asserts type safety, that well-typed programs in our IL
fragment do not lead to untrapped execution errors.

Our main theorem does not directly apply to the prod-
uct. Still, the formal system of this paper is an abstraction
of informal and executable speci�cations we wrote for the
full product during its development. Our informal spec-
i�cation became the basis of the product team's working
speci�cation of type-checking. The process of writing this
speci�cation, deploying the executable speci�cation as a test
oracle, and applying theorem proving techniques, helped us
identify several security critical bugs during development.
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1 Introduction

This paper describes typing and evaluation rules, and a type
safety theorem, for a substantial fragment of the intermedi-
ate language (IL) executed by Microsoft's Common Lan-
guage Runtime. The rules are valuable because they suc-
cinctly and precisely account for some unusual and subtle
features of the type system.

Background: IL The Common Language Runtime is a new
execution environment with a rich object-oriented class li-
brary through which software components written in diverse
languages may interoperate. Using the Visual Studio .NET
development environment, .NET components can be writ-
ten in the new object-oriented language C# [HW00], as well
as Visual Basic, Visual C++, and the scripting languages
VBScript and JScript. Furthermore, prototype .NET com-
pilers exist for COBOL, Component Pascal, Ei�el, Haskell,
Mercury, Oberon, Ocaml, and Standard ML.

Type-checking of .NET components implemented in IL
has already proved useful for �nding code generation bugs.
Moreover, the .NET security model assumes type-safe be-
haviour; type-checking is therefore useful for handling un-
trusted components. Given these and other applications,
the IL type system is worthy of formal speci�cation.

Background: Executable Speci�cations This paper is one
outcome of a research project to evaluate and develop formal
speci�cation techniques for describing and analyzing type-
checkers in general. Speci�cally, we applied these techniques
to the study of IL. We began by writing a detailed speci�ca-
tion of type-checking method bodies. This was an informal
document in the style of most language references. Eventu-
ally, this document was adopted by the product team as the
basis of their detailed speci�cation of type-checking. In par-
allel, following a methodology advocated by Syme [Sym98],
we wrote formal speci�cations for various IL subsets suitable
for comparative testing and formal proof. The executable
part of these speci�cations is in a functional fragment of ML,
the rest in higher order logic (HOL). We can compile and run
the executable part as an IL type-checker. Since it is purely
functional code, we may also interpret it as HOL and use
it for theorem proving in DECLARE [Sym98]. In principle,
this strategy allows the same source code to serve both as an
oracle for testing actual implementations and as a model for
formal validation. So far, we have built an ML type-checker
for a largely complete subset of the IL type system, but have
formally veri�ed only a rather smaller fragment.



As is well known [Coh89], even formal proof cannot guar-
antee the absence of implementation defects, simply because
one has to abstract from details of the environment when
writing formal models. We found that developing a test suite
that used our formal model as an oracle was an important
way of making our model consistent with the runtime. Our
suite included about 30,000 automatically generated tests.
Our experience was that testing remains the only viable way
of relating a speci�cation to software of the complexity we
were considering. One of our slogans: if you specify, you
must test. Writing a formal speci�cation without generat-
ing tests may be viable once a design has been frozen, but
is simply not e�ective during the design of a new system.
Eventually, we handed over our suite to the test team, who
maintain it, and who have found bugs using it.

This Paper: An IL Fragment The main part of the pa-
per concerns an IL fragment based on reference, value, and
pointer types.

At its core, the fragment is a class-based object-oriented
language with �eld update and simple imperative control
structures. This core is comparable to the imperative object
calculus [AC96, GHL99] and to various fragments of Java
[DE97, IPW99]. An item of a reference type is a pointer to
a heap-allocated object.

Moreover, our fragment includes value and pointer types:

� An item of a value type is a sequence of machine words
representing the �elds of the type. Value types support
the compilation of C-style structs, for instance. Value
types may be stack-allocated and passed by value. A
box instruction turns a value type into a heap-allocated
object by copying, and an unbox instruction performs
the inverse coercion. Hence, when convenient, value
types may be treated as ordinary heap-allocated ob-
jects.

� An item of pointer type is a machine address referring
either to a heap-allocated object or to a variable in the
call stack or to an interior �eld of one of these. The
main purpose of pointer types is to allow methods to
receive arguments or return results by reference.

We selected these types because they are new constructs
not previously described by formal typing rules, and because
their use needs to be carefully limited to avoid type loop-
holes. In particular, we must take care that stack pointers
do not outlive their targets.

For the sake of clarity, our presentation of the semantics
di�ers from the ML code in our executable speci�cations in
two signi�cant ways:

� First, we adopt the standard strategy of presenting the
type system as logical inference rules. Such rules are
succinct, but not directly executable; we found it better
to write executable ML when we initially wrote our
speci�cations in order to help with testing. Still, typing
rules are better than code for presenting a type system
and for manual proof.

� Second, we adopt a new, non-standard strategy of as-
suming that each method body has been parsed into
a tree-structured applicative expression. Each expres-
sion consists of an IL instruction applied to the subex-
pressions that need to be evaluated to compute the
instruction's arguments. This technique allows us to

concentrate on specifying the typing conditions for each
instruction, and to suppress the algorithmic details of
how a type-checker would compute the types of the
arguments to each instruction. These algorithmic de-
tails are important in any implementation, but they are
largely irrelevant to specifying type safety.

Finally, in the spirit of writing speci�cations to support
testing, our applicative expressions use the standard IL as-
sembler syntax. Hence, any method body that is well-typed
according to our typing rules can be assembled and tested
on the running system.

In summary, the principal technical contributions made
by this paper are the following:

� New typing and evaluation rules for value and pointer
types, together with a type safety result, Theorem 1.

� The idea that the essence of a low-level intermediate
language can be presented in an applicative notation.

Future Challenges: As we have discussed, this project is a
successful demonstration of the value of writing executable,
formal speci�cations during product development.

On the other hand, the main theorem of this paper does
not apply to the full product; type safety bugs may well
be discovered. An unful�lled ambition of ours is to prove
soundness of the typing rules for the full language through
mechanized theorem-proving. So a future challenge is to
further develop scalable and maintainable techniques for
mechanized reasoning. A soundness proof for the whole of
IL would be an impressive achievement. To apply theorem
proving during product development, scalability and main-
tainability of proof scripts are important. Scripts should
be scalable in the sense that human e�ort is roughly linear
in the size of the speci�cation (with a reasonable constant
factor), or else proof construction cannot keep up with new
features as they are added. Scripts should be maintainable
in the sense that they are robust in the face of minor changes
to the speci�cation, or else proof construction cannot keep
up with the inevitable revisions of the design.

In the meantime, another challenge is to develop system-
atic techniques for test case generation.

A third challenge is to integrate executable speci�ca-
tions, such as our ML type-checker, into the product it-
self. The .NET Framework, like other component models,
itself contributes to this goal, in that its support for multi-
language working would easily allow a critical component to
be written in ML, say, even if the rest of the product is not.

The remainder of the paper proceeds as follows. Sec-
tion 2 presents the typing and evaluation rules for our IL
fragment, and states our main theorem. Section 3 explains a
potentially useful liberalisation of the type system. Section 4
summarizes the omissions from our IL fragment. Section 5
discusses related work. Section 6 concludes.

Proofs omitted from this conference paper appear in a
technical report [GS00].

2 A Formal Analysis of BIL, a Baby IL

This section makes the main technical contributions of the
paper. We present a substantial fragment of IL that includes
enough detail to allow a formal analysis of reference, value,
and pointer types, but omits many features not related to
these. We name this fragment Baby IL, or BIL for short.
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Section 2.1 describes the type structure of BIL. In Sec-
tion 2.2, we specify the instructions that may appear in
method bodies of BIL, and explain their informal seman-
tics. In Section 2.3, we specify a formal memory model for
BIL, and a formal semantics for the evaluation of method
bodies. In Section 2.4, we specify a formal type system for
type-checking method bodies. Section 2.5 introduces confor-
mance relations that express when intermediate states aris-
ing during evaluation are type-correct. Finally, Section 2.6
concludes this analysis by stating our Type Safety Theorem.

2.1 Type Structure and Class Hierarchy

All BIL methods run in an execution environment that con-
tains a �xed set of classes. Each class speci�es types for a
set of �eld variables, and signatures for a set of methods.
Each object belongs to a class. The memory occupied by
each object consists of values for each �eld speci�ed by its
class. Methods are shared between all objects of a class (and
possibly other classes). Objects of all classes may be stored
boxed in a heap, addressed by heap references. Objects of
certain classes|known as value classes|may additionally
be stored unboxed in the stack or as �elds embedded in
other objects.

Formally, we assume three sets, Class , Field , and Meth ,
the sets of class, �eld, and method names, respectively, and
a set ValueClass � Class of value class names. We as-
sume a distinguished class name System:Object such that
System:Object =2 ValueClass .

Classes, Fields, Methods:

c 2 Class class name
vc 2 ValueClass � Class value class name
System:Object 2 Class �ValueClass root of hierarchy
f 2 Field �eld name
` 2 Meth method name

Types describe objects, the �elds of objects, the argu-
ments and results of methods, and the intermediate results
arising during evaluation of method bodies.

Types:

A;B 2 Type ::= type
void no bits
int32 32 bit signed integer
class c boxed object
value class vc unboxed object
A& pointer to A

The type void describes the absence of data, no bits;
void is only used for the results of methods or parts of
method bodies that return no actual result.

The type int32 describes a 32 bit integer; BIL uses inte-
gers to represent predicates for conditionals and while-loops
but includes no primitive arithmetic operations. (IL features
a rich selection of numeric types and arithmetic operations.)

A reference type class c describes a pointer to a boxed
object (heap-allocated, subject to garbage collection).

A value type value class vc describes an unboxed
object|a sequence of words representing the �elds of the
value class vc, akin to a C struct. The associated refer-
ence type, classvc describes a pointer to a boxed object|a
heap-allocated representation of the �elds.

Finally, a pointer type A& describes a pointer to data of
type A, which may be stored either in the heap or the stack.

To avoid dangling pointers|pointers that outlive their
targets|our type system restricts pointers as follows. An
important use for pointers in IL is to allow arguments and
results to be passed by reference. The following are suÆ-
cient conditions to type-check this motivating usage while
preventing dangling pointers. The following are not neces-
sary conditions; we explain a useful and safe liberalisation
in Section 3.

BIL Pointer Con�nement Policy:

(1) No �eld may hold a pointer.
(2) No method may return a pointer.
(3) No pointer may be stored indirectly via another pointer.

(IL itself follows a slightly stricter policy that bans point-
ers to pointers altogether.) Each of the conditions prevents
a way of creating a dangling pointer. If a �eld could hold a
pointer, a method could store a pointer into its stack frame
in an object boxed on the heap. If a method could return
a pointer, a method could simply return a pointer into its
stack frame. If a pointer could be stored indirectly, a method
could store a pointer into its stack frame through a pointer
to an object boxed on the heap or to an earlier stack frame.
In each case, the pointer would outlive its target as soon as
the method had returned.

The following predicate identi�es types containing no
pointers.

Whether a Type Contains No Pointer:

pointerFree(A), :(A = B& for some B)

Next, a method signature B `(A1; : : : ; An) refers to a
method named ` that expects a vector of arguments with
types A1, . . . , An, and whose result has type B. No two
methods in a given class may share the same signature,
though they may share the same method name.

Method signature:

sig 2 Sig ::= B `(A1; : : : ; An) method signature

We assume the execution environment organises classes
into an inheritance hierarchy. We write c inherits c0 to mean
that c inherits from c0. We induce a subtype relation, A <: B,
from the inheritance hierarchy. Our type system supports
subsumption: if A <: B an item of type A may be used in a
context expecting an item of type B. The only non-trivial
subtyping is between reference types. The subtype relation
is the least to satisfy the following rules.

Subtype Relation: A <: B

(Sub Re
)

A <: A

(Sub Class)
c inherits c0

class c <: class c0

We assume that the relation c inherits c0 is transitive,
and therefore so is the relation A <: B.

The IL assembler recognises a fairly standard notation
for single inheritance that allows a class to inherit methods
and �elds from a single superclass. One might de�ne the
inheritance relation by formalizing such a syntax and type-
checking rules. Instead, since our focus is type-checking the
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BIL instruction set, it is easier and more concise to simply
axiomatize the intended properties of the hierarchy. (Al-
though the IL syntax disallows multiple inheritance, it hap-
pens that our axioms allow a class to inherit from two super-
classes that are incomparable according to the inheritance
relation.)

Formally, we assume there is an execution environment
consisting of three components|a function �elds(c), a func-
tion methods(c), and an inheritance relation c inherits c0|
that satisfy the following axioms:

Execution Environment: (�elds;methods ; inherits)

�elds 2 Class ! (Field
�n
! Type) �elds of a class

methods 2 Class ! (Sig
�n
! Body) methods of a class

inherits � Class � Class class hierarchy

c inherits c (Hi Re
)
c inherits c0 ^
c0 inherits c00 ) c inherits c00

(Hi Trans)

c inherits c0 ^ c0 inherits c) c = c0 (Hi Antisymm)
c inherits System:Object (Hi Root)
c inherits d ^ f 2 dom(�elds(d)))
f 2 dom(�elds(c)) ^
�elds(c)(f) = �elds(d)(f)

(Hi �elds)

c inherits d)
dom(methods(d)) � dom(methods(c))

(Hi methods)

c inherits vc) c = vc (Hi Val)

pointerFree(�elds(c)(f)) (Good �elds)
B `(A1; : : : ; An) 2 dom(methods(c))
) pointerFree(B)

(Good methods)

For any class c, �elds(c) 2 Field
�n
! Type , the set of �nite

maps from �eld names to types. If �elds(c) = fi 7! Ai
i21::n,

the class c has exactly the set of �elds named f1, . . . , fn with
types A1, . . . , An, respectively.

(The notation fi 7! Ai
i21::n exempli�es our notation

for �nite maps in general. We let dom(fi 7! Ai
i21::n) =

ff1; : : : ; fng. We assume that the fi are distinct. Let (fi 7!
Ai

i21::n)(f) = Ai if f = fi for some i 2 1::n, and otherwise
be unde�ned.)

For any class c, methods(c) 2 Sig
�n
! Body , the set of �-

nite maps frommethod signatures to method bodies. We de-
�ne the set Body of method bodies|instruction sequences|
in the next section. If methods(c) = sig i 7! bi

i21::n, the
class c has exactly methods with signatures sig1, . . . , sign,
implemented by the bodies b1, . . . , bn, respectively.

A binary relation on classes, inherits , formalizes the in-
heritance hierarchy. Axioms (Hi Re
) and (Hi Trans) guar-
antee it is re
exive and transitive. (Hi Antisymm) asserts
it is anti-symmetric, that is, there are no cycles in the hi-
erarchy. According to (Hi Root), every class inherits from
System:Object, the root of the hierarchy.

Suppose that c is a subclass of d, that is, c inherits d.
By subsumption, an object of the subclass c may be used in
a context expecting an object of the superclass d. Accord-
ingly, (Hi �elds) asserts that every �eld speci�ed by d is also
present in the subclass c. The axiom (Hi methods) asserts
that every method signature implemented by d is also im-
plemented by the subclass c, though not necessarily by the
same method body.

In order to implement a method invocation on an object,
we need to know the class of the object. In general, we

cannot statically determine the class of an object from its
type, since by subsumption it may in fact be a subclass of
the class named in its type. Therefore, each boxed object
is tagged in our formal memory model with the name of its
class. On the other hand, for the sake of space eÆciency,
unboxed objects include no type information. Therefore, we
must rely on statically determining the class of an unboxed
object from its type. For this to be possible, axiom (Hi Val)
prevents any other class from inheriting from a value class.
So the actual class of any unboxed object is the same as the
class named in its type.

Axioms (Good �elds) and (Good methods) implement
points (1) and (2) of the Pointer Con�nement Policy.

We end this section by exemplifying how value and
pointer types provide possibly more eÆcient alternatives to
reference types for returning multiple results. Suppose there
is a class Point 2 ValueClass such that �elds(Point) = x 7!
int32; y 7! int32, that is, a class with two integer �elds.
Here are three alternative signatures for returning a Point

from a method named mouse:

� As a boxed object: class Point mouse ().

� As an unboxed object: value class Point mouse ().

� In a pre-allocated unboxed object passed by reference:
void mouse (value class Point&).

2.2 Syntax of Method Bodies

BIL is a deterministic, single-threaded, imperative, class-
based object-oriented language. For the sake of simplicity,
we omit constructs for error or exception handling. This sec-
tion speci�es the instruction set as tree-structured applica-
tive expressions, most of which represent an application of
an instruction to a sequence of argument expressions. Since
each applicative expression is in a post�x notation, it can
also be read as a sequence of atomic instructions. We have
chosen our syntax carefully so that, subject to very minor
editing, this sequence of atomic instructions can be parsed
by the IL assembler (as well as our own IL type-checker).

We express the syntax of our conditional and iteration
constructs using assembler labels, ranged over by L.

A method reference B c::`(A1; : : : ; An) refers to the
method with signature B `(A1; : : : ; An) in class c.

Inspired by FJ [IPW99], we assume for simplicity that
each class has exactly one constructor, whose arguments
are the initial values assumed by the �elds of the new ob-
ject. The constructor reference for a class c takes the form
void c:::ctor(A1; : : : ; An). Constructors are only called to
create a new object; :ctor =2 Meth .

Method and Constructor References:

L assembler label
M ::= B c::`(A1; : : : ; An) method reference
K ::= void c:::ctor(A1; : : : ; An) constructor reference

Applicative Expressions for Method Bodies:

i4 32 bit signed integer
a; b 2 Body ::= method body

ldc:i4 i4 load integer
a brtrue L1 b0 br L2 L1:b1 L2: conditional
L1: a brfalse L2 b br L1 L2: while-loop
a b sequencing
a ldind load indirect

4



a b stind store indirect
ldarga j load argument address
a starg j store into argument
a1 � � � an newobjK create new object
a0 a1 � � � an callvirtM call on boxed object
a0 a1 � � � an call instanceM call on unboxed object
a ldflda A c::f load �eld address
a b stfld A c::f store into �eld
a box vc copy value to heap
a unbox vc fetch pointer to value

Conditionals and while-loops are not primitive instruc-
tions in IL, but it is worthwhile to make them primitive in
BIL to allow a simple format for evaluation and typing rules.
We have carefully chosen a syntax for these constructs by
assembling suitable IL branch instructions and labels. We
assume that the assembler labels in these expressions do not
appear in any of their subexpressions. The result is a syntax
that is a little cryptic but that does produce IL instruction
sequences with the appropriate semantics. These abbrevia-
tions are more readable:

Abbreviations for Conditionals and While-Loops:

a b0 b1 cond
�

= a brtrue L1 b0 br L2 L1:b1 L2:

a b while
�

= L1: a brfalse L2 b br L1 L2:

The technique of representing assembly language in an
applicative syntax works for this paper because it can ex-
press all the operations on reference, value, and pointer
types. We express structured control 
ow like condition-
als or while-loops in this style by treating an assembly of IL
branch instructions as a primitive BIL instruction. Still, the
technique may not scale well to express control 
ow such as
arbitrary branching within a method or exception handling.

IL includes primitive instructions ldfld and ldarg to
load the contents of an object �eld or an argument. Instead
of taking these as primitives in BIL, we can derive them as
follows:

Derived Instructions:

a ldfld A c::f
�

= a ldflda A c::f ldind

a ldarg j
�

= a ldarga j ldind

2.3 Evaluating Method Bodies

The memory model consists of a heap of objects and a stack
of method invocation frames, each of which is a vector of
arguments. Our semantics abstracts away from the details
of evaluation stacks or registers.

We assume a collection of heap references, p, q, pointing
to boxed objects in the heap.

A pointer takes one of three forms. A pointer p refers to
the boxed object at p. A pointer (i; j) refers to argument
j of stack frame i. A pointer ptr :f refers to �eld f of the
object referred to by ptr .

A result is either void 0, an integer i4 , a pointer ptr , or
an unboxed object fi 7! ui

i21::n, a �nite map consisting of
a sequence of results u1, . . . , un corresponding to the �elds
f1, . . . , fn, respectively.

References, Pointers, Results:

p; q heap reference

ptr ::= pointer
p pointer to boxed object p
(i; j) pointer to argument j of frame i
ptr :f pointer to �eld f of object at ptr

u; v ::= result
0 void
i4 integer
ptr pointer
fi 7! ui

i21::n value: unboxed object

Next, we formalize our memory model. A heap is a �-
nite map from references to boxed objects, each taking the
form c[fi 7! ui

i21::n], where c is the class of the object, and
fi 7! ui

i21::n is its unboxed form. A frame, fr , is a vector of
arguments writen as :args(u0; : : : ; un): u0 is the self param-
eter; u1,. . . ,un are the computed arguments. A stack, s, is
a list of frames fr1 � � � frn. Finally, a store is a heap paired
with a stack.

Memory Model:

o ::= c[fi 7! ui
i21::n] boxed object

h ::= pi 7! oi
i21::n heap

fr ::= :args(u0; : : : ; un) frame: vector of arguments
s ::= fr1 � � � frn stack (grows left to right)
� ::= (h; s) store

The example heap h = p 7! c[f1 7! 0; f2 7! (g 7! 1)]
consists of a single boxed object c[f1 7! 0; f2 7! (g 7! 1)]
at heap reference p. The boxed object is of class c and
consists of �elds named f1 and f2. The �rst �eld contains
the integer 0. The second �eld contains the unboxed object
g 7! 1, which itself consists of a �eld named g containing
the integer 1.

The example stack s = :args(p; p:f2:g):args(p; (1; 1))
consists of two frames. The bottom of the stack is the
frame :args(p; p:f2:g), consisting of two arguments, a ref-
erence to the boxed object at p, and a pointer to �eld g of
�eld f2 of the same object. The top of the stack is the frame
:args(p; (1; 1)), consisting of two arguments, a reference to
the boxed object at p, and the pointer (1; 1), which refers to
argument 1 of frame 1, that is, the pointer p:f2:g.

We rely on two auxiliary partial functions for dereferenc-
ing and updating pointers in a store:

Auxiliary Functions for Lookup and Update:

lookup(�; ptr) lookup ptr in store �
update(�; ptr ; v0) update store � at ptr with result v0

We explain the intended meaning of store lookup and
update by example. Let store � = (h; s) where h and s
are the heap and stack examples introduced above. Then
lookup(�; (1; 0)) is the reference p stored in argument 0 of
frame 1, and lookup(�; p:f2:g) is the integer 1 stored in �eld
g of the unboxed object stored in �eld f2 of the boxed object
at p. The outcome of update(�; (2; 0); 1) is to update � by
replacing the reference p in argument 0 of frame 2 with 1.
Similarly, the outcome of update(�; p:f1:g; 0) is to update �
by replacing the integer 1 in �eld g of �eld f1 of the boxed
object at p with the integer 0.

A little functional programming suÆces to de�ne these
two functions; we give the full de�nitions in the Appendix.

Our operational semantics of method bodies is a formal
judgment � ` b ; v � �0 meaning that in an initial store
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�, the body b evaluates to the result v, leaving �nal store
�0. (A \judgment" is simply a predicate de�ned by a set of
inference rules.)

Evaluation Judgment:

� ` b; v � �0 given �, body b returns v, leaving �0

Our semantics takes the form of an interpreter. The rest
of this section presents the formal rules for deriving evalua-
tion judgments, interspersed with informal explanations.

Evaluation Rules for Control Flow:

(Eval ldc)

� ` ldc:i4 i4 ; i4 � �

(Eval Seq)
� ` a; u � �0 �0 ` b; v � �00

� ` a b; v � �00

(Eval Cond) (where j = 0 if i4 = 0, otherwise j = 1)
� ` a; i4 � �0 �0 ` bj ; v � �00

� ` a b0 b1 cond ; v � �00

(Eval While 0)
� ` a; 0 � �0

� ` a b while ; 0 � �0

(Eval While 1) (where i4 6= 0)
� ` a; i4 � �0 �0 ` b; v � �00 �00 ` a b while ; u � �000

� ` a b while ; u � �000

The expression ldc:i4 i4 evaluates to the integer i4 .
The expression a b evaluates a, returning void (that is,

nothing). The result of the whole expression is then the
result of evaluating b.

The expression a b0 b1 cond evaluates a to an integer
i4 . The result of the whole conditional is then the result of
evaluating b0 if i4 = 0, and evaluating b1 otherwise.

The expression a b while evaluates a to an integer i4 . If
i4 = 0 evaluation terminates, returning void. Otherwise,
the body b is evaluated, returning void, and then evaluation
of a b while repeats.

Evaluation Rules for Pointer Types:

(Eval ldind)
� ` a; ptr � �0

� ` a ldind; lookup(�0; ptr ) � �0

(Eval stind)
� ` a; ptr � �0 �0 ` b; v � �00

� ` a b stind; 0 � update(�00; ptr ; v)

The expression aldind evaluates a to a pointer, and then
returns the outcome of dereferencing the pointer.

The expression a b stind evaluates a to a pointer, stores
the result of evaluating b in the (heap or stack) location
addressed by the pointer, and returns void.

Evaluation Rules for Arguments:

(Eval ldarga)
� = (h; fr1 � � � fr i)

� ` ldarga j ; (i; j) � �

(Eval starg)
� ` a; u � �0 �0 = (h0; fr1 � � � fr i)

� ` a starg j ; 0 � update(�0; (i; j); u)

The expression ldarga j returns a pointer to argument j
in the current stack frame.

The expression a starg i evaluates a, stores the result in
argument i in the current stack frame, then returns void.

Evaluation Rules for Reference Types Only:

(Eval newobj) (where K = void c:::ctor(A0
1; : : : ; A

0
m))

c =2 ValueClass
�elds(c) = fi 7! Ai

i21::n �i ` ai ; vi � �i+1 8i 2 1::n
�n+1 = (h; s) p =2 dom(h) h0 = h; p 7! c[fi 7! vi

i21::n]

�1 ` a1 � � � an newobjK ; p � (h0; s)

(Eval callvirt) (where M = B c::`(A1; : : : ; An))
�0 ` a0 ; p0 � (h1; s1) h1(p0) = c0[fi 7! ui

i21::m]
(hi; si) ` ai ; vi � (hi+1; si+1) 8i 2 1::n
methods(c0)(B `(A1; : : : ; An)) = b
(hn+1; sn+1:args(p0; v1; : : : ; vn)) ` b; v0 � (h0; s0 fr 0)

�0 ` a0 a1 � � � an callvirtM ; v0 � (h0; s0)

The expression a1 � � � an newobjK, where K is the con-
structor for a class c =2 ValueClass, allocates a boxed object
whose �elds contain the results of evaluating a1, . . . , an,
and returns the new reference.

The expression a0 a1 � � � an callvirtM , where M refers
to B `(A1; : : : ; An) in class c, evaluates a0 to a reference
to a boxed object of class c0 (expected to inherit from c),
locates the method body for B `(A1; : : : ; An) in class c0,
and returns the result of evaluating this method body in
a new stack frame whose argument vector consists of the
reference to the boxed object (the self pointer) together with
the results of a1, . . . , an. The result of this evaluation is the
store (h0; s0 fr 0), where fr 0 is the �nal state of the new stack
frame. Once evaluation of the method is complete, the stack
is popped, to leave (h0; s0) as the �nal store.

Evaluation Rules for Reference and Value Types:

(Eval ldflda)
� ` a; ptr � �0

� ` a ldflda A c::f ; ptr :f � �0

(Eval stfld)
� ` a; ptr � �0 �0 ` b; v � �00

� ` a b stfld A c::f ; 0 � update(�00; ptr :f; v)

The expression a ldflda A c::f evaluates a to a pointer
to a boxed or unboxed object, then returns a pointer to �eld
f of this object.

The expression a b stfld A c::f evaluates a to a pointer
to a boxed or unboxed object, updates its �eld f with the
result of evaluating b, and returns void.

Evaluation Rules for Value Types Only:

(Eval newobj) (where K = void vc:::ctor(A0
1; : : : ; A

0
m))

�elds(vc) = fi 7! Ai
i21::n �i ` ai ; vi � �i+1 8i 2 1::n

�1 ` a1 � � � an newobjK ; (fi 7! vi
i21::n) � �n+1

(Eval call) (where M = B vc::`(A1; : : : ; An))
�0 ` a0 ; ptr � (h1; s1)
(hi; si) ` ai ; vi � (hi+1; si+1) 8i 2 1::n
methods(vc)(B `(A1; : : : ; An)) = b
(hn+1; sn+1:args(ptr ; v1; : : : ; vn)) ` b; v0 � (h0; s0 fr 0)

�0 ` a0 a1 � � � an call instanceM ; v0 � (h0; s0)
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(Eval box) (where p =2 dom(h0))
� ` a; ptr � (h0; s0) lookup((h0; s0); ptr ) = fi 7! vi

i21::n

� ` a box vc; p � ((h0; p 7! vc[fi 7! vi
i21::n]); s)

(Eval unbox)
� ` a; p � �0

� ` a unbox vc; p � �0

The expression a1 � � � an newobjK, where K is the con-
structor for a value class vc, returns an unboxed object
whose �elds contain the results of evaluating a1, . . . , an.

The expression a0 a1 � � � an call instanceM where M
refers to the signature B `(A1; : : : ; An) in value class vc,
evaluates a0 to a pointer to an unboxed object (expected to
be of class vc), locates the method body for B `(A1; : : : ; An)
in class vc, and returns the result of evaluating this method
body in a new stack frame whose argument vector consists of
the pointer to the unboxed object (the self pointer) together
with the results of a1, . . . , an.

The expression a box c evaluates a to a pointer to an
unboxed object, allocates it in boxed form in the heap, and
returns the fresh heap reference.

The expression a unbox c evaluates a to a heap reference
to a boxed object, and returns this reference as its result.

2.4 Typing Method Bodies

This section describes a type system for method bodies such
that evaluation of well-typed method bodies cannot lead to
an execution error. What is perhaps most interesting here
is the implementation of the Pointer Con�nement Policy of
Section 2.1.

Let a type frame, Fr , take the form :args(A0; : : : ; An), a
description of the types of the results in the current (top)
stack frame. Our typing judgment, Fr ` b : B, means if the
current stack frame matches Fr , the body b evaluates to a
result of type B.

Type Frames and Typing Judgment:

Fr ::= :args(A0; : : : ; An) frame: types of arguments
Fr ` b : B given Fr , body b returns type B

We make the additional assumption about our execution
environment that every method body (b below) conforms to
its signature:

Additional Assumptions:

c =2 ValueClass ^
methods(c)(B `(A1; : : : ; An)) = b )
:args(class c; A1; : : : ; An) ` b : B

(Ref methods)

vc 2 ValueClass ^
methods(vc)(B `(A1; : : : ; An)) = b )
:args(value class vc&; A1; : : : ; An) ` b : B

(Val methods)

Next, we give typing rules to de�ne Fr ` b : B.

Typing Rule for Subsumption:

(Body Subsum)
Fr ` b : B B <: B0

Fr ` b : B0

This standard rule allows an expression of a subtype B
to be used in a context expecting a supertype B0.

Typing Rules for Control Flow:

(Body ldc)

Fr ` ldc:i4 i4 : int32

(Body Seq)
Fr ` a : void Fr ` b : B

Fr ` a b : B

(Body Cond)
Fr ` a : int32 Fr ` b0 : B Fr ` b1 : B

Fr ` a b0 b1 cond : B

(Body While)
Fr ` a : int32 Fr ` b : void

Fr ` a b while : void

The rule (Body Seq) uses the type void to guarantee
that the �rst part of a sequential composition returns no
results.

The rules (Body Cond) and (Body While) use the type
int32 to guarantee the predicate expression a returns an
integer.

Typing Rules for Pointer Types:

(Body ldind)
Fr ` a : A&

Fr ` a ldind : A

(Body stind) (where pointerFree(A))
Fr ` a1 : A& Fr ` a2 : A

Fr ` a1 a2 stind : void

The rule (Body stind) implements rule (3) of the Pointer
Con�nement Policy; without the condition pointerFree(A),
stind could copy a pointer to the current stack frame further
back the stack.

Typing Rules for Arguments:

(Body ldarga)
j 2 0::n

:args(A0; : : : ; An) ` ldarga j : Aj&

(Body starg)
:args(A0; : : : ; An) ` a : Aj j 2 0::n

:args(A0; : : : ; An) ` a starg j : void

These rules check that the argument index j exists. Since
starg only writes within the current frame, we can safely
allow Aj to be a pointer.

Typing Rules for Reference Types:

(Ref newobj) (where K = void c:::ctor(A1; : : : ; An)
and �elds(c) = fi 7! Ai

i21::n)
Fr ` ai : Ai 8i 2 1::n c =2 ValueClass

Fr ` a1 � � � an newobjK : class c

(Ref callvirt) (where B `(A1; : : : ; An) 2 dom(methods(c)))
Fr ` a0 : class c Fr ` ai : Ai 8i 2 1::n

Fr ` a0 a1 � � � an callvirt B c::`(A1; : : : ; An) : B

(Ref ldflda) (where �elds(c) = fi 7! Ai
i21::n)

Fr ` a : class c j 2 1::n

Fr ` a ldflda Aj c::fj : Aj&

(Ref stfld) (where �elds(c) = fi 7! Ai
i21::n

and pointerFree(Aj))
Fr ` a : class c Fr ` b : Aj j 2 1::n

Fr ` a b stfld Aj c::fj : void
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These are fairly standard rules for operations on boxed
objects. Recall that the axiom (Good �elds) guarantees ev-
ery �eld is pointer-free. So the pointerFree(�) condition on
the rule (Ref stfld) is redundant. Still, it is not redundant
in a variation of our type system considered in Section 3,
that allows value classes to include pointers.

Typing Rules for Value Types:

(Val newobj) (where K = void vc:::ctor(A1; : : : ; An)
and �elds(vc) = fi 7! Ai

i21::n)
Fr ` ai : Ai 8i 2 1::n

Fr ` a1 � � � an newobjK : value class vc

(Val call) (where B `(A1; : : : ; An) 2 dom(methods(vc)))
Fr ` a0 : value class vc& Fr ` ai : Ai 8i 2 1::n

Fr ` a0 a1 � � � an call instance B vc::`(A1; : : : ; An) : B

(Val ldflda) (where �elds(vc) = fi 7! Ai
i21::n)

Fr ` a : value class vc& j 2 1::n

Fr ` a ldflda Aj vc::fj : Aj&

(Val stfld) (where �elds(vc) = fi 7! Ai
i21::n

and pointerFree(Aj))
Fr ` a : value class vc& Fr ` b : Aj j 2 1::n

Fr ` a b stfld Aj vc::fj : void

(Val box) (where pointerFree(value class vc))
Fr ` a : value class vc&

Fr ` a box vc : class vc

(Val unbox)
Fr ` a : class vc

Fr ` a unbox vc : value class vc&

These are similar to the typing rules for operations on
boxed objects, except we refer to the object via a pointer
type instead of a reference type. Like (Ref stfld), the rules
(Val stfld) and (Val box) bear pointerFree(�) conditions
that are redundant in the current system, but not in the
system of Section 3.

2.5 Typing the Memory Model

In this section, we present predicates, known as conformance
judgments, that confer types on our memory model. In the
next, we show that these predicates are invariants of com-
putation, that is, are preserved by method evaluation.

We begin by introducing types for the components of our
memory model. A heap type pi 7! ci

i21::n determines the
actual class of each boxed object. A stack type Fr 1 � � �Frn
determines frame types for each frame in the stack. A store
type � = (H;S) determines a heap type H and stack type
S.

Heap, Stack, and Store Types:

H ::= pi 7! ci
i21::n heap type

S ::= Fr1 � � �Frn stack type
� ::= (H;S) store type

Our �rst conformance judgment, � j= u : A, means that
in a store matching the store type �, the result u is well-
formed and has type A. We de�ne what it means for a store

to match a store type through other conformance judgments,
de�ned later.

Conformance Judgment for Results (Including Pointers):

� j= u : A in �, result u has type A

Conformance Rules for References and Pointers:

(Res Ref)
H(p) = c c inherits c0

(H;S) j= p : class c0

(Ptr Ref)
H(p) = vc

(H;S) j= p : value class vc&

(Ptr Arg)
i 2 1::m Fr i = :args(A0; : : : ; An) j 2 0::n

(H;Fr1 � � �Frm) j= (i; j) : Aj&

(Ptr Field) (where A = class c or A = value class c&)
� j= ptr : A �elds(c) = fi 7! Ai

i21::n j 2 1::n

� j= ptr :fj : Aj&

The rule (Res Ref) assigns a reference type class c0 to a
heap reference p, so long as c0 is a superclass of the actual
class of the object referred to by p.

The rule (Ptr Ref) assigns a pointer type to a heap ref-
erence p that refers to a value that is boxed on the heap.

These two rules can assign both a reference type and a
pointer type to a heap reference to a value class. If H(p) =
vc, then we have (H;S) j= p : class c by (Res Ref), but also
(H;S) j= p : value class c& by (Ptr Ref). We need (Res
Ref) to type references constructed by the box instruction.
We need (Ptr Ref) to type pointers constructed by the unbox
instruction.

The rule (Ptr Arg) assigns a pointer type to a stack
pointer (i; j) that refers to argument j of frame i.

The rule (Ptr Field) assigns a pointer type to a pointer
referring to the �eld fj of the object referred to by ptr .
The base pointer ptr may either be of type class c or
value class c&. The �rst case is needed for a pointer to
a �eld of a heap object that is not in a value class. The
second case is needed for a pointer to a �eld of a heap or
stack object in a value class.

Conformance Rules for Other Results:

(Res Void)

� j= 0 : void

(Res Int)

� j= i4 : int32

(Res Value)
�elds(vc) = fi 7! Ai

i21::n � j= vi : Ai 8i 2 1::n

� j= fi 7! vi
i21::n : value class vc

The rules (Res Void) and (Res Int) assign the void and
int32 types to void and integer values, respectively.

The rule (Res Value) assigns a value type valueclassvc
to a value. By axiom (Hi Val), the inheritance hierarchy is

at for value types. So (Res Value), unlike (Res Ref), does
not allow vc to be a proper superclass of the actual class of
the value.

Other Conformance Judgments:

H j= o : c in H, object o has class c
H j= h heap h conforms to H
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� j= fr : Fr frame fr conforms to Fr
� j= � store � conforms to �

Conformance Rule for Objects:

(Con Object) (where �elds(c) = fi 7! Ai
i21::n)

(H;?) j= vi : Ai 8i 2 1::n

H j= c[fi 7! vi
i21::n] : c

This rule de�nes when a heap object c[fi 7! vi
i21::n] is

well-typed. The preconditions (H;?) ` vi : Ai require that
the �elds vi be typed with an empty stack type. It follows
that no �eld vi contains a stack pointer, since the rule (Ptr
Arg) for typing stack pointers assumes a non-empty stack
type.

Conformance Rule for Heaps:

(Con Heap) (where H = pi 7! ci
i21::n)

H j= oi : ci 8i 2 1::n

H j= pi 7! oi
i21::n

This rule de�nes when a heap pi 7! oi
i21::n conforms to

the heap type pi 7! ci
i21::n. The heap type contains the

actual class ci of each object oi.

Conformance Rule for Frames:

(Con Frame)
� j= ui : Ai 8i 2 0::n

� j= :args(u0; : : : ; un) : :args(A0; : : : ; An)

This rule de�nes when a frame conforms to a frame type.

Conformance Rule for Stores:

(Con Store)
H j= h (H;Fr 1 � � �Fr i) j= fr i : Fr i 8i 2 1::n

(H;Fr 1 � � �Frn) j= (h; fr1 � � � frn)

This rule de�nes when a store (H;Fr1 � � �Frn) conforms
to a store type (h; fr1 � � � frn). It asks that the heap h con-
form to the heap type H, and that each stack frame fr i
conform to the corresponding frame type Fr i, but after re-
moving from the store type any higher|shorter lived|stack
frames. Hence, there may be pointers from a higher to a
lower stack frame, but not the other way round.

2.6 Evaluation Respects Typing

We use standard proof techniques to show the consistency
of the BIL evaluation semantics with its type system. The
following is the main type safety result of the paper. If
a program satis�es the restrictions on type structure im-
posed in Section 2.1 and the typing rules for method bod-
ies in Section 2.4 then its evaluation according to the rules
in Section 2.3 can lead only to conformant intermediate
states as de�ned in Section 2.5. Let H � H 0 mean that
dom(H) � dom(H 0) and H(p) = H 0(p) for all p 2 dom(H).

Theorem 1 If (H;S Fr) j= � and Fr ` b : B and � ` b ;
v � �y then there exists a heap type Hy such that H � Hy

and (Hy; S Fr) j= v : B and (Hy; S Fr) j= �y.

Proof By induction on the derivation of � ` b ; v � �y.
We omit the details. See the Appendix for the main lemmas
about the type system needed in the proof. 2

As usual, such a theorem is vacuous if there is no �y such
that � ` b; v � �y holds, which happens either because the
computation would diverge, or because it gets stuck (if there
is no applicable evaluation rule). Stuck states correspond to
execution errors, such as calling a non-existent method, or
attempting to de-reference an integer or a dangling pointer.
As discussed by Abadi and Cardelli [AC96], we conjecture it
would be straightforward to adapt the proof of Theorem 1
to show that no stuck state is reachable.

3 Variation: Allowing Pointers in Fields of Value Classes

To avoid dangling pointers, the IL type system prevents the
�elds of all objects, whether boxed on the heap or unboxed
on the stack, from holding pointers. In fact, as pointed out
by Fergus Henderson, a more liberal type system that allows
unboxed objects to contain pointers is useful for compiling
nested functions.

When compiling a language with nested functions (for
example, Pascal or Ada), each invocation of a nested func-
tion needs access to the activation records (that is, the ar-
guments and local variables) of the lexically enclosing func-
tions. A standard technique is to pass the function a display
[ASU86], an array of pointers to these activation records.
One strategy is to implement an activation record (contain-
ing those arguments and local variables referred to by nested
functions) as a value class on the stack, and to implement
the display by pointers to the value classes representing the
activation records. Since arguments may be passed by ref-
erence, this scheme works only if we allow value classes to
hold pointers. Otherwise, we need to pay the cost of boxing
these activation records on the heap.

If we allow �elds of value classes to hold pointers, the
following more liberal policy still avoids dangling pointers.

A More Liberal Pointer Con�nement Policy:

(1) No �eld of a boxed object may hold a pointer.
(2) No method may return a result containing a pointer.
(3) No result containing a pointer may be stored indirectly

via another pointer.

Though this policy helps compile nested functions,
we lose the possibly useful fact that every value class
may be boxed, and hence treated as a subtype of
class System:Object.

To formalize this policy, we amend BIL as follows.

� Change the de�nition of pointerFree(A) to hold if and
only if (1) A is not itself a pointer type, and (2) if A
is a value class then the type B of each �eld satis�es
pointerFree(B). (The only change is the insertion of
clause (2).)

� Change axiom (Good �elds) to read: c =2 ValueClass )
pointerFree(�elds(c)(f)). (The only change is the in-
sertion of the c =2 ValueClass precondition.)

To see the e�ect of these changes, recall there are four
typing rules that mention the pointerFree(�) predicate:
(Ref stfld), (Body stind), (Val stfld), and (Val box).

Previously, any value could be stored via (Body stind),
and the pointer-free conditions on the other three rules were
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redundant. Now, these rules prevent the export of values
containing pointers to the heap or further back the stack.
Now, (Ref stfld) prevents a pointer being stored into a
boxed value class with a pointer �eld. In fact, no such boxed
value classes can even be allocated, given the pointerFree(�)
condition on (Val box).

Our proof of Theorem 1, outlined in the Appendix, is
in fact for this more liberal system. Type safety for the
original system is a corollary of type safety for this more
liberal system, since any method body typed by the original
system remains typable.

Implementation of the new scheme remains future work.

4 IL Features Omitted From BIL

To give a 
avour of the full intermediate language, we brie
y
enumerate the main features omitted from BIL. The IL As-
sembly Programmer's Reference Manual [Mic00] contains a
complete informal description of IL.

We omit all discussion of IL metadata, such as how
classes, static data and method headers are described. We
omit any discussion of the on-disk format, the speci�cation
of linkage information, and assemblies, the unit of software
deployment.

Our object model omits null objects, global �elds and
methods, static �elds and methods, non-virtual methods,
single dimensional and multidimensional covariant arrays,
and object interfaces. Our instruction set omits local vari-
ables, arithmetic instructions, arbitrary branching, jumping,
and tail calls. Tail calls require care, because the type sys-
tem must prevent pointers to the current stack frame being
passed as arguments. The current IL policy is to prevent
the passing of any pointers via a tail call.

We omit delegates (that is, built-in support for anony-
mous method invocation), typed references (that is, a
pointer packaged with its type, required for Visual Basic),
attributes, native code calling conventions, interoperabil-
ity with COM, remoting (object distribution) and multi-
threading. We also omit exception handling, a fairly elab-
orate model that permits a uni�ed view of exceptions in
C++, C#, and other high-level languages.

5 Related Work

The principle of formalizing type-checking via logical in-
ference rules is a long-standing topic in the study of
progamming languages [Car97]. Formal typing rules have
been developed for several high-level languages, includ-
ing SML [MTHM97], Haskell [PW92], and for subsets
of Java [DE97, IPW99]. Formal typing rules have also
been developed for several low-level languages, including
TAL [MWCG99] and for subsets of the JVM [SA98, Qia99,
Yel99, FM00]. The properties established by proof-carrying
code [Nec97] can be viewed as typing derivations for na-
tive code. The idea of formalizing a type system via an
executable type-checker has recently been advocated for
Haskell [Jon99]. Our use of an executable speci�cation
as an oracle is an instance of the standard software en-
gineering principle of multi-version prototyping. Proofs
of soundness of several programming language type sys-
tems have been partially mechanised in theorem provers
[Van96, Nor98, Sym99, vN99].

Several compilers, such as GHC [PHH+93],
TIL [TMC+96], FLINT [Sha97], and MARMOT [FKR+00],

use a typed intermediate language internally.
One [MWCG99] in particular translates all the way
from System F, a polymorphic �-calculus, down to a typed
assembly language, TAL. The idea of writing a type-checker
for a textual assembly format (like our type-checker for IL)
appears in connection with TAL: the TALx86 type-checker
accepts input in a typed form of the IA32 assembly
language that can also be processed by the standard MASM
assembler.

Reference types for heap-allocated data structures akin
to the reference types of the type system of Section 2 appear
in all of these intermediate languages. What is new about
our type system is its inclusion of value and pointer types.

� Value types describe the unboxed stack-allocated form
of a class. The box and unbox instructions coerce
between stack and heap forms of a class. Types for
boxed and unboxed non-strict data structures [PL91]
and automatic type-based coercions between boxed and
unboxed forms [Ler92] have been studied previously.
Other approaches include region analysis [TT97] and
escape analysis [PG92]. Still, the idea and formal-
ization of types to di�erentiate between unboxed and
boxed forms of class-based objects appears to be new.

� Pointer types describe pointers to either stack or heap
allocated items. A risk with a stack pointer is that it
may dangle, if its lifetime exceeds the lifetime of its
target. The stack-based form of TAL [MCGW98] in-
cludes a type constructor for describing pointers into
the stack; the parameter to the type constructor is a
stack type that ensures the target is still live when the
pointer is dereferenced. Instead, the Pointer Con�ne-
ment Policy of Section 2 avoids dangling pointers via
various syntactic restrictions. IL's pointer types are
easier to integrate with high-level languages like Visual
Basic with rather simple type systems than a more so-
phisticated solution using stack types, as found in TAL.

6 Conclusions

One of the innovations in Microsoft's Common Language
Runtime is support for typed stack pointers, for passing ar-
guments and results by reference, for example. We presented
formal typing rules and a type safety result for a substantial
fragment of the Common Language Runtime intermediate
language. Our treatment of value types and pointer types
appears to be new. These rules were devised through our
writing informal and executable speci�cations of the full in-
termediate language. This e�ort clari�ed the design and
helped �nd bugs, but further research is needed on machine
support for formal reasoning and on test case generation.
We exploited our formal model to validate a liberalisation
of the IL policy that allows object �elds to contain stack
pointers.
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A Facts Needed in the Proof of Theorem 1

This appendix encompasses the main lemmas needed in
the proof of the main type safety theorem of the paper.
Our proofs are for the de�nitions of (Good �elds) and
pointerFree(�) described in Section 3. The proofs can triv-
ially be adapted for the original de�nitions in Section 2.
Appendix A.1 covers basic lemmas about the subtype and
conformance relations. Appendix A.2 presents an alterna-
tive characterisation of the pointer conformance judgement
� j= ptr : A&. Finally, Appendix A.3 presents the de�ni-
tions and typing properties of the store lookup and update
functions.

A.1 Basic Lemmas

We begin with two lemmas about the subtype relation. Sub-
typing is trivial for all types except reference types. Only
reference types can be supertypes of other reference types.

Lemma 1 Assume B 6= class c for all c. If A <: B or
B <: A then A = B.

Lemma 2 If class c <: A then there exists c0 such that A =
class c0 and c inherits c0.

Although a subsumption rule is not part of the de�nition
of the result conformance relation � j= v : A, it is derivable.

Lemma 3 If � j= v : A and A <: A0 then � j= v : A0.

The next three lemmas concern how varying the size of
the stack a�ects conformance.

Lemma 4 states that a pointer-free result well-formed
in a store type (H;S) is also well-formed in the store type
(H;?). This justi�es moving pointer-free results from the
current frame to the heap.

Lemma 5 states that any result well-formed in a store
type (H;S) is also well-formed in the store type (H;S Fr).
This justi�es passing results from the current frame into the
frame of a called method.

Lemma 6 states that a pointer-free result well-formed in
a store type (H;S Fr) is also well-formed in the store type
(H;S). This justi�es returning pointer-free results from a
called frame to the previous frame.

Lemmas 4 and 6 do not apply to pointer results because
if the result is a pointer into the top stack frame it is not
well-formed in a smaller stack.

Lemma 4 If (H;S) j= v : A and pointerFree(A) then
(H;?) j= v : A.

Lemma 5 If (H;S) j= v : A then (H;S Fr) j= v : A.

Lemma 6 If (H;S Fr) j= v : A and pointerFree(A) then
(H;S) j= v : A.

Next, we have two lemmas concerned with method call
and return.

Lemma 7 says that a frame is well-formed in the store
(H;SFr) if it is well-formed in the store (H;S). This justi�es
passing an argument frame to a called method.

Lemma 8 says that a store (h; s) conforms to the store
type (H;S) if the store (h; s fr) conforms to a store type
(H;S Fr). This justi�es returning from a method.

The proof of Lemma 8 depends on showing that no
pointer in the �nal store (h; s) refers to the frame fr .

Lemma 7 If (H;S) j= fr : Fr then (H;S Fr) j= fr : Fr.

Lemma 8 If (H;S Fr ) j= (h; s fr) then (H;S) j= (h; s).

Recall that we state Theorem 1 in terms of a relation
H � H 0 de�ned to mean that dom(H) � dom(H 0) and
H(p) = H 0(p) for all p 2 dom(H). We may call this the
heap extension relation. Heap extension is a partial order.

Lemma 9 The relation H � H 0 is re
exive and transitive
(that is, for all H, H 0, and H 00, H � H, and, if H � H 0

and H 0 � H 00 then H � H 00).

The next three lemmas state that heap extension pre-
serves the conformance relations for results, objects, and
frames.

Lemma 10 If (H;S) j= v : A and H � H 0 then (H 0; S) j=
v : A.

Lemma 11 If H j= o : c and H � H 0 then H 0 j= o : c.

Lemma 12 If (H;S) j= fr : Fr and H � H 0 then (H 0; S) j=
fr : Fr.

The �nal lemma of this section justi�es boxing of results.
If the heap h and the object o both conform to the heap
type H, and p is a fresh reference, then the extended heap
obtained by allocating o at p is well-formed.

Lemma 13 If H j= h and p =2 dom(h) and H j= o : c then
H;p 7! c j= h; p 7! o.
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A.2 Another Formulation of Pointer Conformance

In the next section we present the recursive de�nitions of the
lookup and update functions on pointers. To show properties
of these functions, it is convenient to present in this section a
reformulation of the pointer conformance relation � j= ptr :
A&. Essentially, we show that every well-formed pointer
takes the form of either (1) a pointer to an argument in a
frame, followed by a possibly empty path of �eld selections,
or (2) a reference to a boxed object of a value class, followed
by a possibly empty path of �eld selections, or (3) a reference
to a boxed object (not necessarily of a value class) followed
by a non-empty path of �eld selections.

This reformulation begins with a notion of a path, a pos-
sibly empty sequence of �eld names.

Path Within an Object:

~f ::= f1 � � � fn sequence of �elds (written � if n = 0)

Next, we de�ne a relation A
~f

=) B to mean that either

the sequence ~f is empty and A = B, or that A is a value

class, and selecting the �elds in the series ~f in order yields

the typeB. This is de�ned in terms of A
f
�! B, an auxiliary

single step relation.

Actions of Fields on Types: A
f
�! B and A

~f
=) B

A
f
�! B if and only if A = value class vc and
�elds(vc) = fi 7! Ai

i21::n and f = fj and B = Aj .

A
�

=) B if and only if A = B.

A
f1���fn=) B if and only if A

f1�!� � �
fn
�! B (where n > 0).

Given these notations, we reformulate pointer confor-
mance as follows.

Lemma 14 The judgment � j= ptr : A& holds if and only if
either:

(1) there exist (i; j), ~f , and B such that ptr = (i; j): ~f and

� j= (i; j) : B& and B
~f

=) A, or

(2) there exist p, ~f , and vc such that ptr = p: ~f and � j=

p : value class vc& and value class vc
~f

=) A, or

(3) there exist p, fj , ~f , and c such that ptr = p:fj : ~f and

� j= p : class c and Aj

~f
=) A, where �elds(c) = fi 7!

Ai
i21::n and j 2 1::n.

We use this lemma to prove the typing properties of store
lookup and update functions stated in the next section.

A.3 Facts about Lookup and Update

We omitted the de�nitions of functions for store lookup
lookup(�; ptr) and store update update(�; ptr ; v0) from the
main body of the paper.

The store lookup function is de�ned in terms of an aux-
iliary function, result lookup lookup(v; f1 � � � fn), that given
the result v, returns the outcome of applying each of the
�eld selections f1, . . . , fn in turn. Here is the de�nition of
this auxiliary function, followed by a typing lemma.

Result Lookup: lookup(v; f1 � � � fn)

lookup(v; �)
�

= v

lookup(fi 7! ui
i21::n; fj ~f)

�

= lookup(uj ; ~f) where j 2 1::n

Lemma 15 If � j= v : A and A
~f

=) B then � j=

lookup(v; ~f) : B.

Next, we present the de�nition of store lookup, followed
by a typing lemma.

Store Lookup via Pointer: lookup(�; ptr)

lookup((h; s); p: ~f)
�

= lookup(fi 7! ui
i21::n; ~f)

where h(p) = c[fi 7! ui
i21::n]

lookup((h; s); (i; j): ~f )
�

= lookup(vj ; ~f)
where s = fr1 � � � fr i � � � frm with i 2 1::m,
and fr i = :args(v0; : : : ; vn) with j 2 0::n

Lemma 16 If � j= � and � j= ptr : A& then � j=
lookup(�; ptr) : A.

The store update function is de�ned in terms of an aux-
iliary function, result update update(v; f1 � � � fn; v

0), that
given the result v, returns the outcome of updating the �eld
indicated by the �eld selections f1, . . . , fn with the result
v0. Here is the de�nition, together with a typing lemma.

Result Update: update(v; f1 � � � fn; v
0)

update(v; �; v0)
�

= v0

update(fi 7! ui
i21::n; fj ~f ; v

0)
�

=

(fj 7! update(uj ; ~f; v
0); fi 7! ui

i2(1::n)�fjg) for j 2 1::n

Lemma 17 If � j= u : A and A
~f

=) B and � j= v : B then

� j= update(u; ~f; v) : A.

Given the previous auxiliary function, here is the de�ni-
tion of store update.

Store Update via Pointer: update(�; ptr ; v0)

update((h; s); p: ~f ; v0)
�

=

(((h� p); p 7! c[update(fi 7! ui
i21::n; ~f ; v0)]); s)

where h(p) = c[fi 7! ui
i21::n]

update((h; s); (i; j): ~f ; v0)
�

=

(h; fr1 � � � :args(v0; : : : ; update(vj ;
~f; v0); : : : ; vn) � � � frm)

where s = fr1 � � � fr i � � � frm with i 2 1::m,
and fr i = :args(v0; : : : ; vn) with j 2 0::n

Finally, we state two typing lemmas for store update.
They are essential facts in the proof of type safety for BIL:
the proof of Theorem 1 uses Lemma 18 and Lemma 19 to
show that evaluations of stind and starg, respectively, are
type safe.

Lemma 18 If � j= � and � j= ptr : A& and � j= v : A and
pointerFree(A) then � j= update(�; ptr ; v).

Lemma 19 If � j= � and � j= (i; j) : A& and � j= v : A
and � = (h; fr1 � � � fr i) then � j= update(�; (i; j); v).
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