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1.0 Introduction

MS-NLP is a broad-coverage natural language understanding system that has been under development in Microsoft Research since 1991. Perhaps the most notable characteristic of this effort has been its emphasis on arbitrarily broad coverage of natural language phenomena. The system’s goal is to produce a useful linguistic analysis of any piece of text passed to it, regardless of whether that text is formal business prose, casual email, or technical writing from an obscure scientific domain. This emphasis on handling any sort of input has had interesting implications for the design of morphological and syntactic processing. Equally interesting, though, are its implications for semantic processing. The issue of polysemy and the attendant practical task of word sense disambiguation (WSD) take on entirely new dimensions in the context of a system like this, where a word might have innumerable possible meanings. A starting assumption, for example, is that MS-NLP will routinely have to interpret words and technical word senses that are not described in standard reference dictionaries.

This chapter describes our approach to the processing of lexical semantics in MS-NLP (see Heidorn 1999 for a comprehensive description of the system). This approach centers on MindNet, an automatically-constructed resource that blurs the distinction between a computational lexicon and a highly-structured lexical example base. MindNet represents the convergence of two previously distinct strains of research: largely symbolic work on parsing machine-readable dictionaries (MRDs) to extract structured knowledge of lexical semantics, and largely statistical efforts aimed at discriminating word senses by identifying similar usages of lexical items in corpora. We argue in this chapter that MindNet’s unique structure offers solutions to many otherwise troubling problems in computational semantics, including the arbitrary nature of word sense divisions and the problems posed by unknown words and word senses.

Is Word Sense Disambiguation Feasible?

The idea that words in a sentence can be objectively labeled with a discrete sense is both intuitively obvious and demonstrably wrong. Humans turn out to be unreliable word sense taggers, frequently disagreeing with one another and even with themselves on different days. (Computationally-oriented work on the arbtirariness of dictionary sense assignments includes Kilgariff 1993 and Atkins 1987;1991). Faced with the set of choices in a desktop dictionary, where a highly-polysemous word like line can have scores of senses, intersubjective agreement on optimal sense assignments – even for skilled human taggers working on the closed corpus of the dictionary itself -- can be as low as 60% to 70%. Most worrisome is the fact that this sort of performance certainly cannot represent a lower bound on the difficulty of this task, since desktop dictionaries are hardly comprehensive in their list of word meanings. A truly broad-coverage lexicon would have to represent far more senses, and it is likely that a larger set of sense choices will lead to more disagreements among taggers.

The sense divisions in any lexicon are ultimately arbitrary, and fail to adequately describe actual lexical usage. Kilgariff (1993), surveying this issue, concludes that word sense distinctions will never succumb to a neat classification scheme that would allow straightforward assignments of lexicographic senses to corpus occurrences of words. Given the importance of automating WSD for various computational tasks like information retrieval (Voorhees, 1994) and machine translation, this is a troubling finding. If the nature of this task cannot even be adequately formulated, attempts to automate it are bound to fail. 

Consider the pair of sentences I waxed the skis and I waxed the cars. The verb wax in each sentence can be readily disambiguated by MS-NLP on syntactic grounds alone. At the core of the system’s lexicon are the Longman Dictionary of Contemporary English (LDOCE) and the American Heritage 3rd Edition (AHD3) dictionaries, and though together the two dictionaries provide 21 distinct senses of this word, only two – one from each dictionary – are transitive verb senses: 

LDOCE wax v, 1: to put wax on, esp. as a polish

AHD wax v, 1: to coat, treat, or polish with wax

Either or both of these senses could be assigned to wax in the sentences I waxed the skis/I waxed the cars, yet neither is quite right. The first suggests that the motivation for waxing skis might be to polish them. This is not exactly wrong, of course, but it fails to reflect the intuition that any polishing that occurs during the process of waxing skis is incidental to the primary functional goal. This is in sharp contrast to the primarily aesthetic goal of polishing associated with waxing cars. The AHD sense, meanwhile, is ambiguous: is the intent to coat, treat, or polish? Or is it some combination of these? (See Ide & Veronis 1993 for a discussion of problematic MRD-derived hypernymy chains.) 

Does it matter whether a computational system can distinguish between such fine shadings of a word’s meaning? It has certainly been argued that for the practical tasks facing NLP, the fine-grained sense divisions provided by a dictionary are already too fine-grained. (Slator & Wilks 1987; Krovetz & Croft 1992; Dolan 1994), and much of the literature on WSD assumes very coarse-grained sense distinctions. 

The suggestion that NLP systems do not need to make fine sense discriminations, however, seems more an artifact of the state of the art in the field than an inherent fact about the granularity of lexical knowledge required for useful applications. Performance on tasks like information retrieval and machine translation is currently poor enough that even accurate identification of homograph-level distinctions is useful. Distinguishing between musical and fish senses of bass, for instance, can mean the difference between a poor result and one that is at least useful. In this research milieu, making an effort to distinguish between waxing as coating or waxing as polishing may seem misguided.

In our view, though, collecting and exploiting extremely fine-grained detail about word meanings is crucial if broad-coverage NLP is ever to become practical reality. For instance, the distinction between waxing as coating with wax vs. polishing with wax has important implications for translation: languages like Greek and French lexically distinguish these two possibilities.  French, in fact, distinguishes among at least four classes of objects that can be waxed:

skis


farter
cars


passer le cire, passer le polish


furniture, floors

cirer, encaustiquer


shoes


cirer
Merely identifying an instance of wax with one of LDOCE or AHD3’s dictionary sense is not useful in trying to translate this word. Such problems are rife in machine translation (see Ten Hacken, 1990 for other examples), and given enough language pairs, every sense in the English lexicon will prove problematic in the same way as wax. Furthermore, though machine translation is often cited as the extreme example of an application that might require extremely fine-grained sense assignments, it is not the only one. As information retrieval moves beyond the current model of returning a lump of possibly (but probably not) relevant documents, precision and recall gains will surely follow from improved NLP capabilities in making delicate judgements about lexical relationships in documents and queries.

Our conclusion is that a broad-coverage NLP system ultimately intended to support high quality applications simply cannot be built around the traditional view of WSD as involving the assignment of one or more discrete senses to each word in the input string. Like humans, machines cannot be expected to perform reliably on a task that is incorrectly formulated. The discrete word senses found in a dictionary are useful abstractions for lexicographers and readers alike, but they are fundamentally inadequate for our purposes.

In an effort to address some of these issues, we have settled on an approach that is very much consistent with the view of polysemy described in Cruse (1986). In Cruse’s model, related meanings of a word blend fluidly into one another, and different aspects of a word’s meaning may be emphasized or de-emphasized depending on the context in which it occurs. The next section describes MindNet, and shows how our processing of the discrete senses in MRDs yields a representation of lexical semantics with the continuous properties of Cruse’s model. In addition, we explore how this representation can be arbitrarily extended without human intervention – an important ability, since we cannot a priori predict or restrict the degree of polysemy that might need to be encoded for any individual word.

2.0 MindNet

MS-NLP encompasses a set of methodologies for storing, weighting, and navigating through linguistic representations produced during the analysis of a corpus. These methodologies, along with the database that they yield, are collectively referred to as MindNet. The first MindNet database was built in 1992 by George Heidorn. For full details and background on the creation and use of MindNet, readers are referred to Richardson et al. (1998), Richardson (1997), Vanderwende (1996), and Dolan et al. (1993).

Each version of the MindNet database is produced by a fully automatic process that exploits the same broad-coverage NL parser at the heart of the grammar checker incorporated into Microsoft Word 97®. For each sentence or fragment that it processes, this parser produces syntactic parse trees and deeper logical forms (LFs), each of which is stored in its entirety in the database. These LFs are directed, labeled graphs that abstract away from surface word order and hierarchical syntactic structure to describe semantic dependencies among content words. LFs capture long-distance dependencies, resolve intrasentential anaphora, and normalize many syntactic and morphological alternations.

About 25 semantic relation types are currently identified during parsing and LF construction, including Hypernym, Logical_Subject, Logical_Object, Synonym, Goal, Source, Attribute, Part, Subclass and Purpose. This rich (and slowly expanding) set of relation types may be contrasted with simple co-occurrence statistics used to create network structures from dictionaries by researchers including Veronis and Ide (1990), Kozima and Furugori (1993), and Wilks et al. (1996). Labeled relations, while more difficult to obtain, provide crucially rich input to the similarity function that is used extensively in our work.

After LFs are created, they are fully inverted and propagated throughout the entire MindNet database, being linked to every word that they contain. Because whole LF structures are inverted, rather than just relational triples, MindNet stores a rich linguistic context for each instance of every content word in a corpus. This representation simultaneously encodes paradigmatic relations (e.g. Hypernym, Synonym) as well as syntagmatic relations (e.g., Location, Goal, Logical_Object). 

Researchers who produced spreading activation networks from MRDs, including Veronis & Ide (1990) and Kozima and Furugori (1993), typically only implemented forward links (from headwords to their definition words) in those networks. Words were not related backward to any of the headwords whose definitions mentioned them, and words co-occurring in the same definition were not related directly. 

There have been many other attempts to process dictionary definitions using heuristic pattern matching (e.g. Chodorow et al. 1985), specially constructed definition parsers (e.g., Wilks et al. 1996, Vossen 1995) and even general coverage syntactic parsers (e.g. Briscoe and Carroll 1993). However, none of these has succeeded in producing the breadth of semantic relations across entire dictionaries exhibited by MindNet. Most of this earlier work, in fact, focused exclusively on the extraction of paradigmatic relations, in particular Hypernym relations (e.g., car-Hypernym->vehicle). These relations, as well as any syntagmatic ones that might be identified, have generally taken the form of relational triples, with the larger context from which they were extracted being discarded (see Wilks et al. 1996). For labeled relations, only a few researchers (recently, Barrière and Popowich 1996), have appeared to be interested in entire semantic structures extracted from dictionary definitions, though they have not reported extracting a significant number of them.

As noted above, the core of MindNet has been extracted from two MRDs, LDOCE and AHD3. (This MRD-derived MindNet serves as the source of all the examples in the remainder of this chapter.) Despite our initial focus on MRDs, however, MS-NLP’s parser has not been specifically tuned to process dictionary definitions. Instead, all enhancements to the parser are geared to handle the immense variety of general text, regardless of domain or style. Fresh versions of MindNet are built regularly as part of a normal regression process. Problems introduced by daily changes to the underlying system or parsing grammar are quickly identified and fixed. Recently, MindNet was augmented by processing the full text of Microsoft Encarta®. The Encarta version of MindNet encompasses more than 5 million inverted LF structures produced from 497,000 sentences; building this MindNet took 34 hours on a P2/266 (See Richardson et al. 1998 for details.)

Weighted Paths

Inverted LF structures facilitate the access to direct and indirect relationships between the root word of each structure, which for dictionary entries is the headword, and every other word contained in the structures. These relationships, consisting of one or more semantic relations connected together, constitute paths between two words. For instance, one path linking car and person is:

car <-Logical_Object- drive- Logical_subject -> motorist -Hypernym-> person
An extended path is a path created from subpaths in two different inverted LF structures. For example, car and truck are not related directly by a semantic relation or by a LF path from any single LF structure. However, if the two paths car-Hypernym->vehicle and vehicle<-Hypernym-truck, each from a different LF structure, are joined on shared word vehicle, the resulting path is car-Hypernym->vehicle<Hypernym-truck. Adequately constrained, extended paths have proven invaluable in determining the relationship between words in MindNet that would not otherwise be connected.

Paths are automatically assigned weights which reflect their salience. The weights in MindNet are based on the computation of averaged vertex probability, which gives preference to semantic relations occurring with middle frequency: a path like 

ride –Location-> car will thus be favored over a low-frequency path like 

equip-Logical_Object-> low_rider or a high-frequency one like 

person-Logical_Subject->go. This weighting scheme is described in detail in Richardson (1997). 

MindNet’s Coverage

A frequent criticism of efforts aimed at constructing lexical knowledge bases from MRDs is that while dictionaries contain detailed information about the meanings of individual words, their coverage is spotty, and in particular, they contain little pragmatic information (Yarowsky 1992; Ide & Veronis (1993, 1998), Barriere & Popowich (1996)):

For example, the link between ash and tobacco, cigarette or tray in a network like Quillian’s is very indirect, whereas in the Brown corpus, the word ash co-occurs frequently with one of these words. (Veronis & Ide 1998)

Since pragmatic information is often a valuable cue for WSD, this is a serious concern. Yet the idea that dictionaries somehow isolate lexical from pragmatic knowledge, failing utterly to represent world knowledge, is incorrect. Standard desktop dictionaries contain voluminous amounts of “pragmatic” knowledge (see also Hobbs 1987 and Guthrie et al 1996) – it is impossible, in fact, to separate this in a principled way from purely “lexical” knowledge – but much of this information only becomes accessible when the dictionary has been fully processed and inverted..) The combined LDOCE/AHD MindNet, for instance, reveals tight connections between ash and the other words cited by Ide and Veronis:

ash <-Part – cigarette <-Part – tobacco
ashtray:  a small dish for the ashes of cigarettes

cigarette: a small roll of finely cut tobacco for  smoking, enclosed in a wrapper of thin paper

ash <-Purpose- ashtray  -Hypernym-> receptacle <-Hypernym- tray
ashtray: a receptacle for tobacco ashes and cigarette butts

tray: a shallow, flat receptacle with its contents

Note, however, that these connections do not come directly from definitions of tobacco, cigarette, or ash but rather from joining information from the definitions of  words like ashtray. Network searches that rely solely on forward-chaining methods for identifying links (e.g. Veronis & Ide, 1990) are unable to discover many of the interesting links among words.

The availability of these links surrounding ash in MindNet could be explained away as serendipitous. Our experience with MRDs, though, suggests that such serendipity is the norm rather than the exception: it is in general a poor idea to bet against lexicographers by asserting that some common-sense fact or other could not possibly be found in dictionaries. Often the facts are indeed there, waiting to be teased out by a sufficiently powerful discovery process.

That said, MRDs are finite resources written with specific goals, and it was never imagined that they would prove sufficiently broad in coverage for a system like MS-NLP. It is not difficult, in examining the LDOCE/AHD MindNet, to find significant gaps in coverage, or cases of paths that are much longer and lower-weighted than one would like for a particular connection. If our original goal had been to produce a directed, labeled graph from one or two dictionaries, the simplest strategies might have involved automated string-matching techniques (tuned to the sublanguage encountered in dictionaries), manual work, or some combination of these. Parsing dictionary text is arguably unnecessary or even undesirable for this task (Ahlswede & Evens 1988; cf. Montemagni and Vanderwende 1994).

From our standpoint, though, such criticisms reflect an undesirable focus on MRDs to the exclusion of other types of corpora. Dictionaries are a peculiar sort of corpus that are an especially interesting starting point for automatically building a database of information about word meanings, but they are just that – a starting point. String-matching or dictionary-specific parsing strategies may not even scale to another dictionary (much less to other text genres that MS-NLP will be required to mine for semantic information. Because of our emphasis on acquiring data from text sources beyond dictionaries, we rely on an industrial-strength parser – one that has been designed to cope with arbitrarily-long sentences, ill-formed inputs, and rare syntactic constructions.

Similarity

Without a way of determining whether two words are similar in some context, MindNet would be an interesting but not very useful collection of labeled links. MindNet’s data-oriented design means that there is no explicit concept hierarchy, and similarity results are based entirely on comparisons of linguistic contexts within the database. Though there have been a number of attempts to combine paradigmatic and syntagmatic similarity strategies (e.g. Hearst and Grefenstette, 1992, Resnik 1995, Towell & Voorhees 1998), none of these has exploited a repository like MindNet, with its natural integration of both syntagmatic and paradigmatic information. 

The MindNet similarity procedure exploits the top-ranked (by weight) paths between words. For example, some of the top paths in MindNet between pencil and pen are shown below:

pen <-Means –draw - Means ->pencil

pen <- Means –write - Means ->pencil

pen –Hyp-> instrument <- Hyp - pencil

pen – Hyp -> write - Means -> pencil

pen <- Means –write<- Hyp -> pencil

In these examples, a pattern of symmetry clearly emerges in many of the paths. This observation of symmetry led to the hypothesis that similar words are typically connect in MindNet by paths that may exhibit certain patterns of relations (exclusive of the words they connect), including symmetry. 

These patterns – and associated weights reflecting how strong a predictor of similarity they are – are induced from MindNet itself by collecting information about the paths that link word pairs of known similarity/dissimilarity (see Richardson, 1997 for details). Once learned, these patterns are used as a filter on sets of paths to predict the probable similarity of an arbitrary pair of words.

This approach to determining substitutional similarity is extremely powerful. First of all, it allows us to extend the coverage of relations in MindNet by inferring relations that are not directly represented in the network. For example, if the relation watch-Means->telescope were not in MindNet, it could be inferred by first finding the paths connecting watch and telescope, examining those paths to see whether another word appears in a Means relation with telescope, and then checking the similarity between that word and watch. As it turns out, the word observe satisfies these conditions in the path:

watch –Hyp-> observe -Means -> telescope
and, therefore, it may be inferred that one can watch by Means of a telescope. The seamless integration of the inference and similarity procedures, both utilizing the weighted, extended paths derived from inverted LF structures in MindNet, is a unique strength of this approach.


Additionally, because the path patterns that correlate with substitutional similarity are learned directly from MindNet, this procedure can be re-computed as MindNet grows more complex. The result is that progressively finer correlation values can be associated with each pattern. In this way, the similarity function scales naturally with MindNet: while scaling has traditionally proven problematic in NLP, MindNet’s data-driven character means that it only becomes more useful as information is added.

3.0 Polysemy and WSD in MindNet

This section addresses the question of what it means to “understand” a word within the MS-NLP/MindNet framework. Our approach to the problem of lexical meaning, we believe, addresses some of the most troubling and long-standing issues in the areas of polysemy and WSD.

Our overall approach is very much in line with Firth (1957), who argued that “the meaning of a word could be known by the company it keeps,” Haas (1964), and Cruse (1986). A MindNet database is essentially an example base which stores detailed information about the linguistic context in which word tokens were encountered in a corpus; a word’s meaning is defined by the pattern of its contextualized associations with other words.

A sense spectrum […] should be thought of as having, at least potentially, many dimensions, and as continually growing, amoeba-like.( Cruse, 1986. 72)
Cruse might be describing MindNet in this quote. Processing the definitions and example sentences for a polysemous word in the course of building MindNet from MRDs involves, in effect, mapping from a set of discrete senses to a weighted network structure that describes the continuous semantic space they approximate. This space is joined in complex ways, along many semantic dimensions, with the LFs for other senses and entries. New text, whether from MRDs or other corpora, can be added at will, yielding an arbitrarily extensible web of associations.

In our terms, WSD involves trying to map an input occurrence of a word into the pattern of that word’s behavior as it is represented in MindNet. This mapping involves identifying similarities between the linguistic context of a word in the input string and a corresponding linguistic context within MindNet. Thus the “meaning” of a word or sentence is the highly contextualized result of this mapping process: it is part of a larger pattern of activation within MindNet. This pattern is affected by both local and global linguistic context, and by the underlying strength of weights within MindNet. 

A fundamental assumption underlying this view of WSD, and of MindNet’s approach to lexical representation, is that there is no such thing as a discrete word sense. Instead, there are only usage patterns, and the system’s understanding of a word’s meaning is nothing more than the pattern of activation over the semantic network. While this runs counter to much current work in WSD, it directly parallels Cruse’s notion of sense modulation:

 [A] single sense can be modified in an unlimited number of ways by different contexts, each context emphasizing certain semantic traits, and obscuring or suppressing others. Cruse (1986: 52).

Consider the word handle, one of Cruse’s examples. Taking a traditional approach to WSD, the relevant dictionary senses of handle in phrases like handle of door or handle of sword could only be:

LDOCE handle, n 1: a part of an object which is specially made for holding or opening it.

AHD handle, n 1: a part which is designed to be held or operated with the hand

In the MRD-derived MindNet, however, the links between handle and words like sword and door produce very different sets of associations, yielding a rich and detailed picture of the meaning of handle in each phrase. Figure 1 shows the fragment of MindNet that is directly associated with the top-weighted paths linking handle/sword. Figure 2 shows the equivalent fragment for paths linking handle/door.














Figure 1: highly-weighted links between handle and sword













Figure 2: highly-weighted links between handle and door

These graph fragments exhibit complex chains of labeled relationships, in contrast to the purely associational links encountered in neural network models of MRD structure like Veronis & Ide (1990). There are several asymmetries between these two graphs that are interesting to note. First of all, almost all of the relations linking handle/sword are Hypernym or Part. The links between handle/door, on the other hand, are much more varied, reflecting more about the functional role that door handles play. The overall weights for handle/sword are higher than those for handle/door. Finally, the core aspects of the relevant senses of handle– namely, that handles are used for holding and opening – are strongly weighted only in the case of handle/door. In the case of handle/sword, MindNet reflects a strong bias in favor of interpreting this pair as referring to the physical aspects of a sword, rather than the manner of its use.

The delicacy of these associations, which transcend the boundaries of the discrete senses in LDOCE and AHD, suggests how MindNet can allow us to compute infinitely varied meanings from a finite set of dictionary senses. While these examples relied only on pairs of words, much richer contexts can obviously serve as input to MindNet: words linked by specific relations, whole LFs, and ultimately discourse structures. The system’s interpretation of a word or sentence is not fixed, but will vary with the evolution of the MindNet itself over time, as more data is processed, adding links, altering weights on existing links, and changing the behavior of the similarity metric.

Veronis & Ide (1990) suggest that inter-sentential context could be used in a neural network model of the lexicon to influence the behavior of the network on succeeding utterances. While the idea of dynamically altering weights within a resource like MindNet to reflect current context is an important notion, MS-NLP does not currently attempt to model semantic priming. Instead, MindNet weights are fixed and completely dependent on the structure of the network. This limitation will be corrected in the near future.
Undisambiguating MindNet
Earlier incarnations of MindNet were built using a fully automated process of word sense disambiguation. Each content word in each definition or example sentence was assigned a putative optimal sense, so that links connected discrete word senses rather than words. Although the quality of sense disambiguation was adequate, we have gradually become convinced that explicit sense-disambiguation of nodes in MindNet is both unnecessary and undesirable. 

The idea that terms extracted from MRDs must be disambiguated to be useful seems only sensible, and indeed has a history that dates back to the earliest work aimed at extracting structured information from dictionaries (Amsler & White, 1979). Later work in this area has aimed at finding ways to automate the disambiguation task (see, for example, Bruce et al 1992; Rigau et al. 1997). Underlying all this work is the concern that unless each content word in the dictionary is disambiguated, polysemy will rob the network of all inferential power by allowing nonsensical chains like the following:

cat –Hyp-> tabby –Hyp-> silk

pony –Hyp->horse –Hyp-> heroin

floor –Hyp->surface –Hyp-> emerge

By associating each word with an explicit sense, the interconnectivity of the network is sharply reduced. This has the benefit of eliminating many of these incorrect possible chains, but it also has unacceptable negative consequences. First of all, as in free text, there is often no single appropriate sense choice for a word in a definition or example sentence. A forced decision will lead to links that are overly restrictive or not restrictive enough. Furthermore, limiting the choice to one possibility means that much of the potentially relevant information contributed by similar senses will be excluded from the structure of the network. Hard-coding sense disambiguation within an MRD-derived network destroys much of the fine-grained semantic structure that is inherent in the data.

Inevitably, furthermore, there will be errors in disambiguation that will ultimately require hand-intervention. While it is at least possible to conceive of hand-vetting sense assignments within a dictionary-sized corpus, this quickly becomes impractical as the resource is scaled up. As the network grows arbitrarily in size, we can continue to improve the algorithms that create and manipulate its structure, but we cannot hope to hand-inspect each link. 

For both pragmatic and philosophical reasons, then, we have adopted a radically simple alternative: we do not sense-disambiguate the LFs which are stored in MindNet. Nor is there any attempt during the construction of MindNet to explicitly map senses from one dictionary to corresponding senses in the other, a task that is as problematic (Atkins & Levin 1991) and as ill-conceived as attempting to explicitly sense-disambiguate a lexical network. Instead, definition and example sentence LFs within MindNet are allowed to overlap freely on shared words. Redundancy within or across a set of senses, whether contained in or one dictionary or across both, contributes information to the weighting scheme about the relative importance of different aspects of a word’s meaning. 

The strong hypothesis underlying these design decisions is that the context defined by an input text, along with weights within the network, provides sufficient disambiguating context to filter out incorrect paths. An example of this phenomenon is our discussion of handle in the previous section. The word handle has 22 senses in MindNet, most of them unrelated (e.g. ‘the total amount of money bet on an event or over a set period of time’) to either doors or swords. Yet the context provided by a two-word query – the crudest imaginable linguistic context – allowed us to focus on just the salient portion of the enormous graph.

Perhaps the best analogy for MindNet’s structure and for the way we exploit that structure is the WWW. A search on the Web for a single polysemous keyword like line yields a huge set of hits reflecting every imaginable sense of this word. Begin adding context in the form of other keywords, however – insisting, say, that telephone and wire occur NEAR line in documents – and the set of hits suddenly becomes cohesive. Salton & Buckley (1991) discuss this effect, showing how retrieval techniques that compute similarity vectors to find instances of words used in similar contexts effectively discriminate between word senses.  The representation of text stored in MindNet is of course far richer than the keyword + document position information stored by statistical models of information retrieval, a fact which allows us to define a very powerful and restrictive definition of contextual similarity. Nevertheless, our reliance on the basic mechanism of mutual disambiguation is the same: given sufficient context, infinitely rich and delicate WSD falls out from an undisambiguated corpus. 

MindNet itself preserves lexical ambiguity: context alone serves to filter out irrelevant links. A consequence of not explicitly sense-disambiguating links within MindNet is that, absent a linguistic context, the network is relatively uninformative. Incorrect inferential chains abound, and these will thwart attempts to navigate the network structure without the filter imposed by a linguistic context.

MindNet, then, is very different in character from WordNet (Miller et al., 1990) or the sense-disambiguated “conceptual” hypernymy chains that have typically been derived from MRDs (e.g. Rigau et al. 1998). To one degree or another, these resources reflect a bias from the field of Artificial Intelligence that suggests that words themselves are not useful constructs for semantic processing: an instance of dog only becomes useful when it is mapped into the abstract, higher-level concept DOG. MindNet, in contrast, is a fundamentally linguistic object: its contents are linguistic representations computed for actual sentences or sentence fragments during the analysis of a corpus. These representations directly reflect decisions about lexical choice and syntactic devices made by the original author, and thus provide invaluable information about natural usage. Each individual choice may be relatively uninformative, but in the aggregate they become powerfully interesting and useful.

Viewed in these terms, MindNet might seem to have less in common with traditional MRD work than it does with work on statistical co-occurrence, including clustering techniques like that in  Schuetze (1992, 1998) dimensionality-reduction techniques like Latent Semantic Analysis (Landauer & Dumais, 1997), and work on statistical machine translation like Brown et al. (1991), Dagan et al. (1991), and Gale et al. (1992). What distinguishes MindNet from these efforts, though, is the rich linguistic nature of the lexical observations that it captures, as well as the more complex similarity and path-chaining functionality that this allows. In our terms context is not simply a window of n words, or even n words annotated with part of speech information, but rather an interlocking set of LFs which capture long-distance dependencies, resolve intrasentential anaphora, and describe in detail the linguistic relationships linking content words.

It is this linguistic character that we believe makes MindNet uniquely valuable, allowing us to exploit statistical techniques over a corpus that naturally combines paradigmatic and syntagmatic information. The result of such processing is not an integer representing semantic distance or set of intangibly related words, but rather a weighted set of MindNet structures that describe precise syntactic and semantic relationships among words. These relations are important in our processing, since they permit paths to be filtered in interesting ways, they inform tasks like constituent attachment within MS-NLP, and because they allow us to tightly constrain the regions of MindNet that might be relevant to a given linguistic input.

Are discrete senses useful?

The discussion so far has sketched a picture of MindNet in which the discrete senses provided by lexicographers help define the detailed structure of the network, but play no explicit role in the process of WSD. Are senses necessary at all? Can MindNet simply grow, “amoeba-like”, without ever needing to explicitly encode links between specific senses or between clusters of semantically related senses (as suggested in Dolan 1994)? In principle, the answer is “yes”. In fact, there is no reason why the sort of MindNet we have described so far could not have been built entirely from free text, which would of course provide no sense breakdown. Why, then, has our initial focus been on MRDs?

Dictionary senses are hand-constructed summaries of what the lexicographer regarded as a coherent cluster of usages. LDOCE is particularly helpful in this regard, since it often gives not just a high-level summary of this cluster (i.e., the definition) but also an extensive set of corpus examples. The corpus in this case is of course artificial, a fact which introduces certain problems, but its great advantage is that it concisely describes prototypical semantic relationships among a large set of core vocabulary items and senses. Information about lexical relationships is particularly rich for highly polysemous words, yielding extremely detailed subnetworks surrounding these difficult cases.

While such data could in principle be gleaned from free text, a huge corpus would be needed to collect this same amount of information about polysemy and prototypicality. It is not difficult to find everyday words that simply do not appear in a natural context even in a corpus as large as the Web. Consider an uncommon but hardly obscure word like waggle. Example sentences included with this word’s LDOCE verb definition exactly reflect our own intuitions about the prototypical subject and object of waggling: The dog waggled its tail, The dog’s tail waggled. Yet searches on both www.AltaVista.com and www.hotbot.com discovered no documents at all on the Web in which waggle, dog and tail occurred in close proximity. This sparse data problem suggests that dictionaries will continue to play an important role in ensuring that MindNet’s coverage is as broad as possible.

Cruse assumes that some senses have mental primacy and are more “established” than others, and some MRD senses may ultimately prove to have a discrete reality that will be useful for particular NL applications. This continuous nature of MindNet as we have sketched it does not preclude the prospect of using the original dictionary sense breakdowns. If the result of WSD is a pattern of activation over the network, then whatever discrete senses are closest to “centroids” within this pattern could certainly be treated as the result. It is unclear to us, however, what application might benefit from such a use of MindNet.

4.0 Scaling

The combinatorics associated with traditional WSD can be staggering: Slator & Wilks (1987) note that the sentence There is a huge envelope of air around the surface of the earth has 284,592 possible combinations of LDOCE senses. LDOCE is a relatively small dictionary; as more senses are added, the numbers grow exponentially. The result is brittleness: the safest way to ensure reliable WSD is to sharply constrain the average degree of polysemy allowed in the lexicon, and this approach is common in the field. As we have already described, however, our goal is to allow MindNet to freely acquire information about new words and meanings from corpora. Does the MindNet approach to WSD also inevitably lead to brittleness?

Our expectation is that the opposite will prove true: in principle, MindNet should only grow more robust as more text is analyzed and folded into the network. The acquisition of syntactic and semantic information for a new sense or word involves parsing and LF creation using an unmodified version of MS-NLP’s broad coverage parser. The resulting undisambiguated LF is inverted and stored in MindNet; after the corpus has been processed, weights and similarity patterns are recomputed. New links spring up where previously only circuitous paths existed; weights are altered by the new data to better reflect actually usage, and the behavior of the similarity metric improves with a larger training set. All of this processing is fully automated, and the only limit on the eventual size of MindNet are hardware concerns like storage capacity and memory. Our current focus is less on MindNet’s footprint than on its coverage and behavior.

An important part of scaling MindNet will involve training it on particular genres of text, in order to acquire domain-specific or even user-specific lexical information. This section explores in more detail how we intend to use corpora to broaden MindNet’s coverage. Problems include missing senses and words (especially technical terms and popular culture ephemera, including proper names). 

Recent years have seen a great deal of activity in the area of acquiring structured information about word meanings from text, and in tuning a lexicon to the idiosyncracies of a particular text genre. Most of this work, though, has assumed a great deal of hand-coded knowledge, whether this has taken the form of a pre-specified set of core senses or semantic categories (Hearst & Schuetze, 1993; Pustejovsky et al. 1993; Rais-Ghasem & Corriveau 1998), hand-built type hierarchies and high-level conceptual knowledge (Velardi et al. 1991) or semantic tags manually associated with words and lexical relationships (Basili et al 1993; 1996)

As noted in earlier sections, we believe that any method which depends on manual tagging of data or one which assumes a pre-specified set of conceptual categories will ultimately be unable to scale. Most similar to our own approach is Grishman & Sterling (1992, 1994), which avoids the need for manual assistance, relying on a broad-coverage parser to collect syntagmatic information (e.g. relational triples like subject-verb-object) from a training corpus. Unlike MindNet, this approach does not integrate syntagmatic and paradigmatic information; nor does it provide the rich linguistic context for each word instance that a fully inverted logical form does.

Tuning MindNet to a particular corpus, or even to a particular idiolect as represented by the documents a user has authored on their personal computer, is an area of great interest to us. The following detailed cases are intended to illustrate how corpus information about how words and senses are actually used can be used to augment and alter information already MindNet. The result is a fully-automated strategy for acquiring detailed information about an arbitrary range of words and word meanings.

4.1 Learning usage information

In many cases, the MRD-derived MindNet contains information that is correct, but which does not accurately reflect how a word or set of words is actually used by a speaker community. Consider the following top-ranked path linking the verb star to movie:

movie –Hyp->film -Location-> star
The connections that MindNet reveals are perfectly valid: a movie is a film and (a similar sense of) film is the location of someone starring.  This inferential chain, however, seems much too complex for such a common collocation in English; this simple path requires information from two distinct dictionary senses, and its weight is in consequence relatively low. Interestingly, the links between star and film are much tighter and more strongly weighted. As these paths are found entirely within individual sense structures, the inferential step linking movie to film is not needed:

film -Logical_Object–> star
film -Location-> star 

MindNet’s preference for star/film over star/movie in part reflects a British accent: many of the links in MindNet come from LDOCE, a British dictionary. This bias also seems to reflect a certain high-mindedness on the part of AHD’s lexicographers: actors in the AHD consistently star in films, not movies. This is in sharp contrast to common American English usage, as crudely measured by text on the U.S.-dominated WWW
, where movies are much more typical star vehicles than are films. A search on http://www.altavista.com for the exact phrase starred in the movie yielded 1,028 document matches, while starred in the film yielded only 415. Similarly, the phrase movie star yielded 33,023 matches, while film star yielded only 9,765.

In this case, then, the dictionary-derived MindNet does not accurately reflect how movie, film, and star are actually used by speakers of American English. As a result, this version of MindNet will not behave as we would like when presented with a sentence in which someone stars in a movie. As prose from this dialect is processed and incorporated into the network, however, this lopsided distribution begins to reverse itself. The relative weights for movie/star vs. film/star in the Encarta-enhanced version of MindNet much more closely reflect our American intuitions, on the strength of paths like star-Location->movie derived from sentences like the following.  (Note, incidentally, that while star and movie are not string-adjacent in any of these examples, the LF for each correctly represents the semantic dependencies.)

Rogers has starred in several television specials and television movies…

He also starred in a number of movies ..

Hepburn starred in many movies… 

Even after processing Encarta’s 500K sentences, MindNet continues to reflect a slight preference for film star. Given more American English data, though, MindNet will gradually come to reflect the American intuition about how these words are related. For instance, the following sentences are all taken from the “movies” subcategory of http://www.DejaNews.com, an archive of UseNet discussion groups on the Web.

She was also starring in the movie "The Church" when she was in her early teens.

Janet Leigh got top billing as the star of the movie
Hmmm, how about that dude who starred in the movie "The Crying Game"?

4.2  Discriminating across discrete sense boundaries

Efforts to extract genus hierarchies from dictionaries have tripped against a peculiarity of dictionary definitions: often, a definition will include multiple genus terms coordinated by “or”. For any given instance of the word being defined, some of these hypernyms may be incorrect (Ide & Veronis 1993).

Consider once again the verb wax, and a pair of sentences like I waxed my skis and I waxed my car. As noted in Section 1.0, neither of the transitive AHD/LDOCE senses of wax adequately captures the meaning of this word. To simply assign one or both of these senses is to beg the question of understanding, and is functionally inadequate. Given a machine translation situation in which the coating with wax and polishing aspects of English waxing translate into separate lexical items, how is the system to make the appropriate distinction?

Our discussion of handle/sword/door introduced the notion that the appropriate representation of a word’s meaning is a pattern of activation within MindNet. Such a pattern selectively emphasizes and deemphasizes aspects of a word’s meaning, varying with context and freely violating lexicographic sense boundaries. In the case of the the verb-object pairs wax skis and wax cars, however, the LDOCE/AHD version of MindNet simply does not contain enough information about waxing things to make an interesting or useful distinction between the two contexts. Nor does the addition of the Encarta data help; car and ski care are simply not the stuff of desktop reference works. To gather more information on this very colloquial topic, we will have to turn to a resource like DejaNews. Though we have not yet added text from the Web into MindNet, it is not difficult to imagine processing text like the following sentences from a skiing discussion group:

wax as a verb

I have my skis waxed weekly for performance reasons 

I can have it waxed and have the edges tuned just like a pair of skis. 

Waxing, tuning of the bases & the edges can really be very technical & quite an art form. 

Don't be foolish. Wax with Super Hot Sauce for safer skiing. 

what is the best way to go about waxing and tuning my board for the season? 

wax as a noun
[W]ax will improve the gliding or sliding of the board or ski…

The last thing your thinking about is: "oh no did I put a fresh coat of wax on my skis."

Once done dripping the wax on the base just spread the wax out so that you cover the entire base. 

Even in this small corpus, coordination provides multiple clues that waxing skis and tuning skis are somehow similar. This information will be directly exploited by MindNet’s similarity algorithm. There are also explicit indications of the purpose of waxing skis: for performance reasons, for safer skiing, to improve the gliding or sliding of the board or ski. Many other interesting interconnections emerge from these sentences, including information from noun senses of wax. For instance, evidence that spreading and coating are important aspects of waxing skis is implicit in these fragments:

Place wax on the iron to get it warm, then spread it on the ski repeating till you have an even coat. 

There's nothing wrong with those wax machines per se; they put an even coat on the skis 

Most importantly, none of the sentences in the skiing domain on DejaNews contain any suggestion that wax can be used to polish or treat skis. Now, of course, cars can be waxed and tuned, so it might appear that the above corpus information is not terribly helpful in helping us distinguish car waxing from ski waxing. In fact, though, text centered on waxing cars provides a very different context; typical examples include:.

I'm telling you though, when I have the car washed, waxed, and buffed, it looks very good. 

Waxing and polishing techniques

it's likely that leaving the car outside to dry would be harder than washing and waxing it

Try waxing the car with car polish. 

i cleaned / polished / waxed it today and it looks great 

The linguistic contexts in which wax occurs with the direct object ski are very different from the corresponding contexts for the object car. Section 5.0 will briefly sketch how this difference is exploited by MS-NLP to discriminate between different senses of the word wax in novel input sentences.

4.3 Filling vocabulary gaps

MS-NLP’s parser copes gracefully with unfound words and with unexpected syntactic behavior from known words. This capability is a crucial element in our strategy of simultaneously acquiring syntactic and semantic information about any word that might be encountered in text. For instance, while fedex is not in either LDOCE or AHD, MS-NLP uses morphological and syntactic evidence to identify it as a verb in a sentence like I fedexed the package. Stored in MindNet, the resulting LF provides the beginnings of a semantic representation: fedexing is something you do to packages.
 Even this one observance of the word provides evidence that it belongs to a cohort that includes (in weighted order): processing, handling, mauling, containerizing, packing, posting, wrapping, transporting, and expressing. Links to verbs like mail and deliver are also strong. A second encounter in a sentence like I fedexed the package to New York would strengthen the association between fedexing and expressing: both are things that you do to packages and both can take locative adjuncts. 

Text from many different domains and genres will be needed to fill the gaps in the MRD-derived MindNet’s coverage. Part of this process, we imagine, will ultimately involve customizing a basic MindNet by training on the text data on an individual user’s hard-drive, learning the lexical usage patterns in his or her particular idiolect. In the meantime, Encarta has proven an extremely rich source of new words, with each unfound lexical item becoming a new MindNet headword. Encarta is particularly rich in information about historical figures, place names, and scientific vocabulary. It is less rich in information about “low” popular culture like band and product names, television celebrities, and so forth. We are beginning to look to other data sources to fill these gaps, including data from the Web. Consider the following set of sentences from UseNet discussions about allergies, all of which contain the tradename Benadryl®: 

I've tried Benadryl, and it causes drowsiness…

[I]n my experience, Benadryl works better than Claritin D

The doctor prescribed Benadryl, Vestiril, Zantac, and Prednisone.

Benadryl is one of the most sedating antihistamines.

This may sound weird, but in my experience Benadryl works far better than Claritin D in treating my allergic reactions

Congrats to all those "Wonderful" parents who drug their children with Benadryl for the purpose of putting them to sleep.

Observations like these provide a great deal of information about the meaning of Benadryl.
 As the LFs for these sentences are added to the existing MindNet, they both influence and are influenced by the existing content, providing links to related words, altering weights on existing subpaths, and creating entirely new subpaths.

The strategy for acquiring information about unknown words sketched here amounts to nothing more than gradually building up picture of a word’s typical usage, incrementally incrementing this information with usage information about known words. A word’s meaning is nothing more than “the company it keeps”, but this “company” involves more than statistical co-occurrence information. Instead, context in our terms is a richly annotated linguistic analysis that normalizes long-distance dependencies, resolves intrasentential anaphora, and provides labeled relationships linking content words. Given this strong notion of lexical context, even a small number of encounters with a word can potentially provide a very detailed notion of what it must mean. (Basili et al. 1996 make a similar point.)

5.0 Sense Discrimination vs. Sense Labeling

The computational model of lexical semantics outlined in this chapter assumes that word meanings are inherently flexible, and that attempts to define sharp boundaries between senses are not practical for a broad-coverage NLP system. While this assumption allows us to avoid the problematic task of assigning discrete word senses to word occurrences in text, it raises questions of its own. If  “understanding” is nothing more than identifying a “pattern of activation in the network”, how can these fuzzy patterns be exploited for NL applications? Discrete senses, however unsuitable for sophisticated NLP tasks, do have the convenient properties of being readily manipulated by program code and of being easily interpretable by humans.

Schuetze (1998) notes that many problems in information access require discriminating among different word senses, but do not require explicitly labeling these senses. More controversially, work from the early 1990s on statistical machine translation (Brown et al. 1991; Gale et al. 1992) raises the prospect that discriminating between usages of a given word – but not labeling them or identifying which of a number of predefined clusters they belong to – may represent a sufficient level of lexical semantic analysis even for complex NL tasks like lexical translation. This machine translation work exploits aligned corpora in order to model lexical correspondences between language pairs, using the mutual information supplied by a pairing of words and contexts across two languages to allow accurate translation. Just as in the case of information retrieval, the constraints provided by this mutual information allows the effect of lexical disambiguation without either an explicit WSD component or a lexicon of discrete senses. Instead, disambiguation falls out from the process of matching an input against information in a tagged example base. Sense information is implicitly encoded in the matched tags, whether these are pointers to a segment of retrieved text or links to corresponding lexical translations. 

In line with this work, we assume that identifying the relevant pattern of a word’s use is all that an NLP system need ever do; neither mapping this use into a predefined cluster nor labeling it with a sense identifier is necessary (cf. Karov & Edelman, 1998). Within MS-NLP, system actions or processes are linked to words in example sentences or fragments. This can be as simple as associating each word in a sentence with a pointer to the location of that sentence in a document, or as complex as hand-linking an example word to a translation equivalent in a target language sentence. We then parse these example sentences or fragments, fold them into MindNet, and use the full power of MindNet’s similarity function to discover matches between the analysis of an input string and a context – one or more subgraphs – within MindNet. In our terms, sense disambiguation is not an explicit process, but rather a side effect of matching the analysis of an input string against part of MindNet. 

Unlike Tsutsumi (1991), who also describes an example-based approach to WSD, our work does not rely on having a corpus of sense-tagged sentences; nor does this process result in input words being labeled with discrete sense identifiers. Instead, the result of matching is a set of highly-weighted nodes and links which are associated with tags that identify translation equivalents, pointers to text fragments that spawned that bit of MindNet, or a specific system action. This matching process, referred to as “MindMelding”, is currently is implemented in a prototype form. MindMelding exploits the rich mutual linguistic constraints that exist between an input LF and substructures within MindNet. While MindNet is densely interconnected, the labels on these links, along with the similarity metric and path weights, sharply constrain the complexity of the graph-matching procedure. (In addition, a rich set of traditional lexical features, both syntactic and semantic, is available to help constrain matches between an input structure and pieces of MindNet.)

Using the MindMelding matching procedure, the LF for an input like I waxed the car will be found to be most similar to MindNet subgraphs produced from corpus data like try waxing the car with car polish, rather than subgraphs for examples like I have my skis waxed weekly. Appropriate translations of the word wax, whether lexical or phrasal, will be linked at this example level to usages in the target language MindNet.

In effect, an input utterance (or string of utterances) can be thought of as a filter which selects a relevant subgraph within MindNet. It is this subgraph, along with any associated tags, which represents the system’s “understanding” of that input. Disambiguation is relevant only insofar as it affects the system’s output, leading to a different lexical translation, a different piece of retrieved text, or a different system behavior. Success or failure is defined in terms of application behavior: do the tags associated with the matched portion of MindNet lead to an appropriate system response?

Depending on the application, the task of associating tags with words that are to become nodes in MindNet can be fully automatable or one that requires a significant manual effort. At one extreme is information retrieval, where no manual effort is necessary: processing a corpus yields a MindNet whose structures are tagged with pointers back to document sentences that produced them. At the other extreme is an application like machine translation, where significant human effort will be required to link lexical tokens (or sets of lexical tokens) in a corpus to corresponding tokens in a corpus of text in another language. These tags become part of MindNet once this text is processed and built into a network. Much of this effort can of course be automated through the use of aligned corpora and bilingual dictionaries, but skilled manual work will still be necessary. However, we expect this work to be both more straightforward and rewarding than the task of trying to hand-label senses within a corpus. 

6.0 Conclusions

This chapter has argued that the discrete senses of traditional approaches to polysemy and WSD are inadequate for a broad-coverage, application-agnostic NLP system like MS-NLP. Instead, highly contextualized representations of a word’s semantics are necessary to capture the delicate shadings of meaning needed for high-quality translation, information retrieval, and other NL tasks. 

Within MS-NLP, MindNet provides the representational capabilities need to capture sense modulation to allow the free acquisition of new words, new meanings, and information about how words are actually used by speakers. “Understanding” the meaning of a word is equated with producing a response (which varies from application to application) that has been tied to linguistically similar occurrences of that word. Discrete sense identifiers never figure into MS-NLP’s semantic processing, and we similarly reject the idea that clusters of senses or word occurrences are useful in the absence of a particular linguistic context.

While this behaviorist model of sense discrimination is similar in spirit to statistical work in information filtering and machine translation, it diverges from such work in the linguistic character of the data used for similarity-based matching. MindNet is a highly processed example base that combines in a natural way paradigmatic, syntagmatic, and statistical information, encoding a sophisticated analysis of the linguistic context in which each corpus token appeared. The linguistic character of this artifact provides the basis for a very powerful similarity metric, and is also capable of supporting the higher-level inferencing that we believe will ultimately be necessary in creating broad-coverage NLP applications. MindNet’s structured representations, as well as the techniques used to exploit these structures, blur traditional boundaries between NLP lexicons, knowledge bases, and statistical models of text corpora.

7.0 Acknowledgements

MindNet is the product of a large collaborative effort within the NLP group in Microsoft Research. We would particularly like to express our gratitude to Mike Barnett and Simon Corston-Oliver. We would also like to thank: Lisa Braden-Harder, Deborah Coughlin, Monica Corston-Oliver, George Heidorn, Katharine Hunt, Karen Jensen, Monique Ozoux-Dean, Martine Pettenaro, Joseph Pentheroudakis, and Hisami Suzuki.

8.0 References

Ahlswede, T. and M. Evens. 1988. Parsing vs. text processing in the analysis of dictionary definitions. Proceedings of the 26th Annual Meeting of the Association for Computational Linguistics, pp. 217-224.

Amsler, R. A. and White, J. Development of a computational methodology for deriving natural lanugage semantic structures via analysis of machine-readable dictionaries. National Science Foundation, Tech. Rep. MCS77-01315.

Atkins, B. 1987. Semantic ID tags: corpus evidence for dictionary senses. In the Uses of Large Text databases, Proceedings of the Third Annual Conference of the UW Centre for the New OED, Waterloo, Canada.

Atkins, B. 1991. Building a lexicon: the contribution of lexicography, International Journal of Lexicography, 4:3 

Atkins, B. & B. Levin. 1991. Admitting impediments. In U. Zernick, ed., Lexical acquisition: using on-line resources to build a lexicon. Lawrence Erlbaum Associates, Hillsdale, NJ.

Barrière, C., and F. Popowich. 1996. Concept clustering and knowledge integration from a children’s dictionary. In Proceedings of COLING96, 65-70.

Basili, R., M. T. Pazienza, P. Velardi 1993. Acquisition of selectional patterns in sublanguages. In Machine Translation 8: 175-201.

Basili, R. M. T. Pazienza, P. Velardi. 1996. An empirical symbolic approach to natural language processing. Artificial Intelligence. 85: 59-99.

Briscoe, T., and J. Carroll. Generalized probabilistic LR parsing of natural language (corpora) with unification-based grammars. Computational Linguistics 19(1):25-59.

Brown, P. F., S. A Della Pietra, V. J. Della Pietra, and R. L. Mercer. 1991. Word-sense disambiguation using statistical methods. In Proceedings of the 29rd Annual Meeting of the ACL, 264-270.

Bruce, R. and Guthrie L. 1992. Genus disambiguation: A study in weighted preference, In Proceedings of COLING’92. Nantes, France.

Chodorow, M., R. Byrd, and G. Heidorn. 1985. Extracting semantic hierarchies from a large on-line dictionary. In Proceedings of the 23rd Annual Meeting of the ACL, 299-304.

Cruse, D. A. 1986. Lexical Semantics. Cambridge University Press, Cambridge.

Dagan, I. A. Itai, and U. Schwall 1991. Two languages are more informative than one. In Proceedings of the 29rd Annual Meeting of the ACL, 130-137.

Dolan, W. L. Vanderwende, and S. Richardson. 1993. Automatically deriving structure knowledge bases from on-line dictionaries. In Proceedings of the Pacific Association for Computational Linguistics Vancouver, Canada.

Dolan, W. 1994. Word sense ambiguation. In Proceedings of COLING94, pp. 712-716.

Firth, J. R. (1957) Modes of meaning. In J.R. Firth, Papers in Linguistics 1934-1951. London: Oxford University Press.

Gale, W. K. Church, and D. Yarowsky. 1992. A method for disambiguating word senses in a large corpus. Computers and the Humanities, 26: 415-439.

Grishman, R. and J. Sterling. 1992. Acquisition of selectional patterns. In Proceedings of COLING92, 658-664.

Grishman, R. and J. Sterling. 1994. Generalizing automatically generated selectional patterns. In Proceedings of COLING94, 742-747.

Guthrie, L. & J. Pustejovsky, Y. Wilks and B. M. Slator. 1996. The role of lexicons in natural language processing. Communications of the ACM 39(1): 63-72.

Haas, W. 1964. Semantic value. In Proceedings of the IXth International Congress of Linguists (Cambridge, Mass., 1962) The Hague: Mouton. pp. 1066-72.

Hearst, M. and G. Grefenstette. 1992. Refining automatically-discovered lexical relations: Combining weak techniques for stronger results. In Statistically-Based Natural Language Programming Techniques, Papers from the 1992 AAAI Workshop (Menlo Park, CA), 64-72.

Hearst, M. and Schuetze, H. 1993. Customizing a lexicon to better suit a computational task, Proceedings of the ACL SIGLEX Workshop on Lexical Acquisition, Columbus, OH.

Heidorn, G. 1999. Intelligent writing assistance.  To appear in R. Dale, H. Moisl and H. Somers (eds), A Handbook of Natural Language Processing Techniques.  Marcel Dekker, New York. (in press, as far as I know)
Hobbs, J. 1987. World knowledge and word meaning. In Proceedings of the Third Workshop on Theoretical Issues in Natural Language Processing, TINLAP-3 Las Cruces, NM. pp. 2025.

Ide, N. & Veronis, J. 1993. Extracting knowledge bases from machine-readable dictionaries: have we wasted our time? In KB & KS (Tokyo) 257-266.

Ide, N. and J. Veronis. 1998. Introduction to the special issue on word sense disambiguation: the state of the art. Computational Linguistics 24(1):1-40.

Karov, Y. and S. Edelman. 1998. Similarity-based word sense disambiguation. Computational Linguistics 24(1): 41-60.

Kilgarriff, A. 1993. Dictionary word sense distinctions: an enquiry into their nature. Computers and the Humanities 26: 365-38

Kozima H. and T. Furugori. 1993. Similarity between words computed by spreading activation on an English dictionary. In Proceedings of the 6th Conference of the European Chapter of the ACL, 232-239.

Krovetz,R. and B. Croft. 1992. Lexical ambiguity and information retrieval, ACM Transactions on Information Systems, 10:2, pp. 115-141.

Landauer, T. & S. Dumais 1997. A solution to Plato’s Problem: the Latent Semantic Analysis theory of acquisition, induction, and representation of knowledge. Psychological Review, 104(2): 211-240.

Miller, G., R. Beckwith, C. Fellbaum, D. Gross, and K. Miller. 1990. Introduction to WordNet: an on-line lexical database, International Journal of Lexicography 3: 235-244.

Montemagni, S. and L. Vanderwende. Structural patterns vs. string patterns for extracting semantic information from dictionaries. In Proceedings of COLING92, pp. 546-552.

Pustejovsky, J., S. Bergler, and P. Anick. 1993. Lexical semantic techniques for corpus analysis. Computational Linguistics 19(2):331-358.

Rais-Ghasem, M.  and J.-P. Corriveau 1998. Exemplar-based sense modulation. In Proceedings of The Computational Treatment of Nominals, COLING-ACL 98, Montreal, Canada pp. 85-93.

Resnik, P. 1995. Disambiguating noun groupings with respect to WordNet senses. In Proceedings of the Third Workshop on Very Large Corpora, 54-68.

Richardson, S. 1997. Determining similarity and inferring relations in a lexical knowledge base. Ph.D. dissertation, City University of New York.

Richardson, S., Dolan, W. B. Dolan, L. Vanderwende. 1998. MindNet: acquiring and structuring semantic information from text. In Proceedings of COLING-ACL ’98. Montreal, Canada. pp. 1098-1102.

Rigau, G., Atserias J. and Agirre E. 1997.  Combining unsupervised lexical knowledge methods for word sense disambiguation, In Proceedings of the 34th Annual Meeting of the ACL (ACL ’97) Madrid, Spain.

Rigau, G., Rodriguez,H. and Agirre E. 1998.  Building accurate semantic taxonomies from monolingual MRDs. In Proceedings of COLING-ACL'98. Montreal, Canada. 1998. 

Salton & Buckley 1991, Global Text Matching for information retrieval, Science, 253: 1012-1015

Schuetze, H. 1998. Automatic Word Sense Discrimination. Computational Linguistics 24(1): 97-124

Schuetze, H. 1992. Word sense disambiguation with sublexical representation. In Workshop Notes, Statistically-Based NLP Techniques, pp. 109-113. AAAI. 

Slator, B. M. and Y. A. Wilks. 1987. Toward semantic structures from dictionary entries. Proceedings of the Second Annual Rocky Mountain Conference on Artificial Intelligence. Boulder, Colorado, pp. 85-96.

Ten Hacken, P. 1990. Reading distinction in machine translation. In Proceedings of the 12th International Conference on Computational Linguistics, COLING’90. v.2: 162-166, Helsinki, Finland.

Towell G. and E. Voorhees 1998. Disambiguating highly ambiguous words. Computational Linguistics 24(1): 125-146.

Tsutsumi, T. 1991. Word sense disambiguation by examples. In Proceedings of the International Conference on Current Issues in Computational Linguistics (Malaysia), 440-446. Reprinted in Jensen, K, G. E. Heidorn and S. D. Richardson, 1993. Natural Language Processing: the PLNLP Approach. Kluwer Academic Publishers, pp. 263-272.

Vanderwende, L. 1996. The analysis of noun sequences using semantic information extracted from on-line dictionaries. Ph.D. Dissertation, Georgetown University, Washinton, DC.

Velardi, P., M.T. Pazienza, M. Fasolo. 1991. How to encode semantic knowledge: a method for learning representation", Computational Linguistics , 2(17): 153-170.

Veronis, J. and N. Ide. 1990. Word sense disambiguation with very large neural networks extracted from machine readable dictionaries. In Proceedings of COLING90, 289-295.

Voorhees, E. 1994. Query expansion using lexical-semantic relations, In Proceedings of SIGIR.

Vossen, P. 1995. Grammatical and conceptual individuation in the lexicon. Phd. diss. University of Amsterdam.

Wilks, Y., B. Slator, and L. Guthrie. 1996. Electric words: Dictionaries, computers, and meanings. Cambridge, MA: The MIT Press.

Yarowsky, D. 1992. Word-sense disambiguation using statistical models of Roget’s categories trained on large corpora. In Proceedings of Coling-92, pages 454-460, Nantes, France.

haft





Hypernym





Part





billhook





Part





weapon





Part





Part





Hypernym





Part





handle





Hypernym





hilt





tool





Location





blade





Hypernym





knife





Part





Part





Part





Part





Part





sword





rapier





Hypernym





Logical_Object





Hypernym





fit





shut





close





hold





knob





Purpose





Purpose





Logical_Object





Purpose





Hypernym





Hypernym





handle





Location





door





doorknob





Modifier





Modifier





Purpose





wooden





Logical_Object





Purpose





Purpose





window





Location





open





short





Modifier





Modifier








� Our hope is that MindNet might ultimately serve as the basis of a broad-coverage common-sense reasoning system. Reasoning about anything beyond simple similarity requires richer structures than mere co-occurrence relationships.


� Studies of Internet use indicate that, at least for now, its content is dramatically skewed toward American English.


� Although MindNet does not currently encode directly syntactic information, its architecture certainly supports this. It may, for instance, turn out to be useful to explicitly store the fact that fedex in a given sentence was analyzed as a transitive verb.


� Some of the information may well be wrong, and if our goal were to build a medical diagnostic system, we would not want to rely on data from unfiltered Web documents. The validity of information fed into MindNet is not a significant concern for us at this point, though. Each logical form added to MindNet is tagged with an indication of its provenance, and the integrity of each LF is maintained in the database implementation. If desired, information from trusted sources like dictionaries can be treated differently from information gleaned from web sites, email, and so on.





1
1

