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Abstract

In this paper, we introduce a novel approach to mesh editing with
the Poisson equation as the theoretical foundation. The most dis-
tinctive feature of this approach is that it modifies the original mesh
geometry implicitly through gradient field manipulation. Our ap-
proach can produce desirable and pleasing results for both global
and local editing operations, such as deformation, object merg-
ing, and smoothing. With the help from a few novel interactive
tools, these operations can be performed conveniently with a small
amount of user interaction. Our technique has three key compo-
nents, a basic mesh solver based on the Poisson equation, a gradient
field manipulation scheme using local transforms, and a generalized
boundary condition representation based on local frames. Experi-
mental results indicate that our framework can outperform previous
related mesh editing techniques.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Boundary representations

Keywords: Poisson Equation, Local Transform Propagation,
Mesh Deformation, Object Merging, Mesh Filtering

1 Introduction

Mesh editing has long been an active research area in computer
graphics. Most existing techniques, such as deformation, Boolean
operations, detail editing and transfer, manipulate vertex positions
explicitly. The user needs to be extremely careful to avoid artifacts
in the resulting mesh. In this paper, we introduce a new mesh edit-
ing technique based on gradient field manipulation which implicitly
modifies vertex positions. This technique is capable of producing
desirable results with a small amount of user interaction.

The theoretical foundation of our technique is the Poisson equa-
tion which is able to reconstruct a scalar function from a guidance
vector field and a boundary condition. The Poisson equation can
also be viewed as an alternative formulation of a least-squares min-
imization. With these appealing characteristics, editing a function
can be achieved by modifying its gradient field and boundary con-
dition, and a succeeding reconstruction using the Poisson equation.
The motivation of this approach is twofold. First, the gradient is a
differential property that can be modified locally. Subsequent re-
construction from the modified gradient can give rise to a global
effect which would otherwise require a larger amount of user inter-
action. Secondly, artifacts introduced during local editing can be
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Figure 1: An unknown mythical creature. Left: mesh components
for merging and deformation (the arm), Right: final editing result.

removed during reconstruction because least-squares minimization
tends to distribute errors uniformly across the function.

Despite the frequent appearance of the Poisson equation in vari-
ous computational frameworks [Stam 1999; Perez et al. 2003], ap-
plying this equation to mesh editing is nontrivial. The unknown in
the Poisson equation is always a scalar function while a mesh can be
considered as a vector function that has unique differential proper-
ties, such as normals and curvature, with geometric interpretations.
How can we apply the Poisson equation to mesh geometry? The
Poisson equation involves gradient fields and a boundary condition
which are mathematical concepts. It is not obvious how to modify
these two types of information to achieve desirable mesh editing
effects.

Our key contribution is a mesh processing engine based on gradi-
ent field manipulation and boundary condition editing. The engine
is equipped with novel techniques designed to overcome the afore-
mentioned difficulties. First, we regard the mesh geometry (coordi-
nates) as scalar functions defined on a mesh surface and introduce
the Poisson equation as a basic mesh solver. Second, we design a
gradient editing scheme for these scalar functions using local trans-
formations. Third, we propose generalized boundary conditions en-
forced by propagating local frame changes. These techniques will
be elaborated in Section 3.

Our mesh processing engine has been successfully applied to
mesh deformation, merging, as well as anisotropic smoothing.
These operations have been integrated into a mesh editing system
with a few novel interactive tools. Our system exhibits several de-
sirable features. Both large-scale and detailed deformation can be
achieved conveniently by locally manipulating a curve or vertex on
the mesh. Merging meshes with drastically different open bound-
aries have been made easier. The shapes of the merged meshes are
globally adjusted to be more compatible with each other. Details of
these applications will be introduced in Section 4.



2 Background and Related Work

The Poisson Equation. Originally emerging from Isaac New-
ton’s law of gravitation [Tohline 1999], the Poisson equation with
Dirichlet boundary condition is formulated as

∇2f = ∇ · w, f |∂Ω = f∗|∂Ω, (1)

where f is an unknown scalar function, w is a guidance vector field,
f∗ provides the desirable values on the boundary ∂Ω, ∇2 = ∂2

∂x2 +
∂2

∂y2 + ∂2

∂z2 is the Laplacian operator, ∇ ·w = ∂wx
∂x

+
∂wy

∂y
+ ∂wz

∂z

is the divergence of w = (wx, wy, wz).

Vector Field Decomposition. The Poisson equation is closely re-
lated to Helmholtz-Hodge vector field decomposition [Abraham
et al. 1988] which uniquely exists for a smooth 3D vector field w
defined in a region Ω:

w = ∇φ + ∇× υ + h, (2)

where φ is a scalar potential field with ∇× (∇φ) = 0, υ is a vector
potential field with ∇ · (∇ × υ) = 0, and h is a field that is both
divergence and curl free. The uniqueness of this decomposition
requires proper boundary conditions. The scalar potential field φ
from this decomposition happens to be the solution of the following
least-squares minimization

min
φ

∫ ∫
Ω

‖∇φ − w‖2dA, (3)

whose solution can also be obtained by solving a Poisson equation,
∇2φ = ∇ · w.

Discrete Fields and Divergence. A prerequisite of solving the
Poisson equation over a triangle mesh is to overcome its irregu-
lar connectivity in comparison to a regular image or voxel grid.
One recent approach to circumvent this difficulty is to approximate
smooth fields with discrete fields first and then redefine the diver-
gence for the discrete fields [Polthier and Preuss 2000; Meyer et al.
2002; Tong et al. 2003]. A discrete vector field on a triangle mesh
is defined to be a piecewise constant vector function whose domain
is the set of points on the mesh surface. A constant vector is defined
for each triangle, and this vector is coplanar with the triangle. A dis-
crete potential field on a triangle mesh is defined to be a piecewise
linear function, φ(x) =

∑
i
Bi(x)φi, with Bi being the piecewise-

linear basis function valued 1 at vertex vi and 0 at all other vertices,
and φi being the value of φ at vi. For a discrete vector field w on a
mesh, its divergence at vertex vi can be defined to be

(Divw)(vi) =
∑

Tk∈N(i)

∇Bik · w|Tk| (4)

where N(i) is the set of triangles sharing the vertex vi, |Tk| is the
area of triangle Tk, and ∇Bik is the gradient vector of Bi within
Tk. Note that this divergence is dependent on the geometry and
1-ring structures of the underlying mesh.

Mesh deformation and editing. Mesh processing includes a
large variety of operations. We are going to focus on three areas
most relevant to this paper, mesh deformation, object merging and
mesh detail editing.

Mesh deformation can be classified as lattice-based free-form
deformation (FFD) [Sederberg and Parry 1986; Coquillart 1990;
MacCracken and Joy 1996], curve-based [Barr 1984; Chang and
Rockwood 1994; Lazarus et al. 1994; Singh and Fiume 1998], or
point-based [Hsu et al. 1992; Bendels and Klein 2003]. One rep-
resentative curve-based method is WIRE [Singh and Fiume 1998]

which directly attaches curves to mesh surfaces to achieve defor-
mations. [Milliron et al. 2002] presents a general framework for
geometric warps and deformations. [Llamas et al. 2003; Bendels
and Klein 2003] demonstrate that the use of rotations in addition
to translations can achieve certain deformations much more con-
veniently. [Pauly et al. 2003] supports multiple shape editing op-
erations on point-sampled geometry which is not the focus of this
paper.

Object modeling and deformations can be performed at various
resolutions to achieve both global control and local editing [Kobbelt
et al. 1998; Guskov et al. 1999; Kobbelt et al. 2000]. In particu-
lar, [Kobbelt et al. 1998] introduces a mesh deformation technique
by solving a constrained minimization of the thin-plate energy at
a desirable coarse resolution. The user specifies deformation con-
straints through a handle polygon. Original mesh details are added
back to the resulting smooth mesh to produce a final solution. This
technique only gives the user limited control over the mesh shape
through sparse constraints on the handle polygon. The rest of the
mesh geometry is uniquely determined by the minimization. In
contrast, the method in this paper can achieve better shape con-
trol by specifying guidance vector fields as dense constraints over
the editable mesh region. It does not require a multiresolution mesh
representation which is only used for acceleration.

Mesh deformation is closely related to shape interpolation and
morphing. [Alexa et al. 2000] introduces a shape interpolation
technique for simplicial complexes. It considers the interiors of
the given shapes and minimizes distortion in local volumes. It is
nontrivial to generalize this technique to mesh deformation since
triangle meshes are not simplicial complexes in three-dimensional
spaces. With additional constraints imposed on admissible local
transformations, [Sorkine et al. 2004] proposes such a generaliza-
tion using Laplacian coordinates.

Boolean operations are often applied to obtain new models from
a set of original ones [Biermann et al. 2001]. Continuity at inter-
section curves can be improved by local blending or smoothing.
[Museth et al. 2002] applied the level set method to such tasks.
The method in [Lévy 2003] can also perform merging by extrap-
olating parameterizations. In this paper, we perform more general
object merging without 2D parameterizations by connecting objects
at their open boundaries which may have very different shapes.

There have also been various techniques for mesh detail edit-
ing. A signal processing approach was presented in [Taubin 1995].
Methods [Taubin 2001; Desbrun et al. 2000; Meyer et al. 2002; Tas-
dizen et al. 2002; Bajaj and Xu 2003; Yagou et al. 2003; Fleishman
et al. 2003; Jones et al. 2003] have been developed to remove noise
while preserving important features by generalizing anisotropic dif-
fusion [Perona and Malik 1990] onto meshes. Local details can be
smoothed or sharpened by using curvature flows and the level set
method [Museth et al. 2002].

3 A Framework for Poisson Mesh Editing

Given the definitions of discrete fields and their divergence intro-
duced in Section 2, the discrete Poisson equation [Tong et al. 2003]
can be expressed as

Div(∇φ) = Divw, (5)

which is actually a sparse linear system,

Af = b, (6)

that can be solved numerically using the conjugate gradient method.
We still call (5) the Poisson equation for convenience. Note that the
unknown in the discrete Poisson equation is still a scalar potential
field. It would be straightforward to exploit (5) for surface proper-
ties defined on a mesh, such as textures.
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Figure 2: (a) A parameterization mesh, (b) a triangle (red) in the
original mesh and its locally transformed version (green). Each
of its coordinates is a scalar function on �V1V2V3 in (a). In ad-
dition, vertex (Xi, Yi, Zi) corresponds to Vi. ∇x (red) and ∇x′

(green) in (a) are the gradient vectors of the x-component of the
original and transformed triangles, respectively. They are coplanar
with �V1V2V3.

How can we use the discrete Poisson equation to solve or modify
the mesh geometry itself? Let us describe the fundamentals of this
problem as well as our solution to boundary condition editing.

3.1 A Basic Poisson Mesh Solver

To apply the discrete Poisson equation to mesh processing, we
need to consider the three coordinates of a target mesh as three
scalar fields defined on a parameterization mesh 1. Since trian-
gle meshes are piecewise linear models, such scalar fields are ac-
tually piecewise linear, and satisfy the definition of discrete poten-
tial fields. The target and parameterization meshes should have the
same topology (vertex connectivity), and their vertices should have
one-to-one correspondence.

The purpose of applying the Poisson equation is to solve an un-
known target mesh with known topology but unknown geometry
(vertex coordinates). To obtain the unknown vertex coordinates, the
Poisson equation requires a discrete guidance vector field for each
of the three coordinates. Once a discrete guidance vector field is
introduced over the parameterization mesh, its divergence, defined
in (4), at a vertex of the parameterization mesh can be computed.
The vector b in (6) is obtained from the the collection of divergence
values at all vertices. The coefficient matrix A in (6) is independent
of the guidance field, and can be obtained using the parameteriza-
tion mesh only. The resulting linear system is solved to obtain one
specific coordinate for all vertices simultaneously. This process is
repeated three times to obtain the 3D coordinates of all vertices.
This whole process looks like ”mesh cloning”, and the guidance
fields encode the desired properties of the target mesh.

In principle, different parameterization meshes give rise to dif-
ferent target meshes. Due to the nature of the least-squares mini-
mization in (3), the general rule is that guidance vectors associated
with larger triangles in the parameterization mesh are better approx-
imated than those associated with smaller triangles. The areas of
the triangles serve as the weighting scheme. During mesh editing,
the original mesh is given and the goal is to obtain an edited mesh.
Therefore, it is most convenient to treat the original mesh as the pa-
rameterization mesh and the edited one as the target mesh without
any 2D parameterizations.

1The concept of a parameterization mesh has previously been used in
[Taubin 1995; Karni and Gotsman 2000], however, not in the context of
the Poisson equation. In addition, their parameterization meshes only have
topology while ours are real 3D meshes.
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Figure 3: (a) A BUNNY mesh with a curve around its neck. (b)
This curve is a generalized boundary condition, BC, for the Pois-
son equation. Its edited version is BC′. Local frame changes on
the curve are propagated to other triangles. (c) Each triangle is
locally transformed by the transformation it receives from the prop-
agation. The triangles become disconnected. (d) The Poisson equa-
tion stitches together the triangles again in the new pose defined by
BC′.

3.2 Gradient Field Editing Using Local Transforms

In this section, we discuss mesh editing by manipulating its orig-
inal gradient fields. The Poisson equation relies on both guidance
vector fields and boundary conditions. Our key observation is that
if we edit the boundary conditions while keeping the original gradi-
ent fields of a mesh as the guidance fields, most part of the resulting
mesh will not reflect the changes in the boundary conditions, caus-
ing undesirable artifacts as shown in the middle image of Fig. 7.
Therefore, we need to alter the original gradient fields.

Gradient editing is achieved by applying local transformations
to the triangles and obtaining new gradient vectors of the altered
triangles. Note a triangle has three gradient vectors for three co-
ordinates. A local transformation is defined on a per triangle basis.
The three vertex positions of a triangle are altered by the same trans-
formation (Fig. 2). Since gradient vectors are translation invariant,
the local transformation is typically carried out in a canonical local
frame at the center of the triangle. Examples of transformations in-
clude rotation and scaling. The new gradient vectors define three
new vector fields over the parameterization mesh. Since the local
transform applied to each triangle may be different, the original
mesh is torn apart and the triangles are not connected any more
(Fig. 3(c)). Therefore, the new vector fields are not likely to be
gradient fields of any scalar functions. To reconstruct a mesh from
these vector fields, we need to consider them as the guidance fields
in the Poisson equation. Given a parameterization mesh and three
guidance vector fields, the steps in the previous section can be fol-
lowed to reconstruct the new target mesh. Intuitively, solving the
Poisson equation is analogous to stitching together the previously
disconnected triangles again.

Manipulating mesh gradient fields is a key component of our



mesh editing system. This editing mode will be exploited in the
following section as well as Section 4.3. Note that it would be
tedious to interactively define a local transform for every triangle
of a mesh. Automatic schemes to obtain such local transforms will
be discussed wherever gradient manipulation is needed.

3.3 Boundary Condition Editing

We would like to achieve local or global mesh editing by con-
veniently manipulating a small number of local features such as
curves or vertices. In this section, we discuss how to satisfy such
editing requests. Details about user interaction will be discussed in
Section 4. In terms of the Poisson equation, both a curve or a ver-
tex anywhere on a mesh is a boundary condition in the sense that
a unique solution to the Poisson equation exists because this equa-
tion is translation invariant. There is still something more to meshes
than to scalar functions. Geometrically, a set of neighboring ver-
tices on a mesh provides information such as normal orientation,
curvature and scale in addition to the vertex positions themselves.
Therefore, there is a need to generalize the concept of a boundary
condition for a mesh.

We formally define a generalized boundary condition of a mesh
as a combination of five components BC = (I, P, F, S, R) where
I is the index set of a set of connected vertices on the mesh, P
is the set of 3D vertex positions, F is a set of local frames which
define the local orientations of the vertices, S is the set of scaling
factors associated with the vertices, and R is a strength field. A ver-
tex is constrained if it belongs to at least one boundary condition;
otherwise, it is a free vertex. As usual, a local frame at a vertex is
defined by three orthogonal unit vectors one of which should be the
unit normal. If a vertex belongs to a curve, its local frame should
be defined by the normal, the tangent and the binormal of the curve.
The scaling factor at a vertex only reflects the scale change before
and after an editing operation, and can be initialized to one at the
beginning. The strength field defines the influence of the boundary
condition at every free vertex. The influence (strength) is a function
of the minimal distance between the free vertex and the constrained
vertices in the boundary condition. All free vertices receiving a
nonzero strength define the influence region of the boundary condi-
tion.

Once a boundary condition BC = (I, P, F, S, R) needs editing,
we create a modified version BC′ = (I, P ′, F ′, S′, R) (Fig. 3(b)).
A constrained vertex position vc ∈ P may have a different position,
local frame and scale in BC′. The difference between the new
and old local frames at vi can be uniquely determined by a single
rotation which is represented as a unit quaternion in practice. The
difference in scale is represented as a ratio. Thus, each constrained
vertex in BC has its associated quaternion and ratio to represent
the local frame and scale changes.

We propagate the local frame and scale changes from the con-
strained vertices to all the free vertices in the influence region to
create a smooth transition. When there is only one single bound-
ary condition, BC0 = (I0, P0, F0, S0, R0), and its edited version,
BC′

0, we first compute the geodesic distance from each free vertex,
denoted by vf , in the original mesh to all the constrained vertices
in BC0

2. Suppose vmin is the constrained vertex in BC0 that is
closest to vf . That is, vmin = arg minvc∈P0 dist(vf ,vc). The
simplest scheme, called the Nearest scheme, directly assigns the
quaternion and scale ratio at vmin to vf . In practice, smoother re-
sults can be obtained by assigning to vf the weighted average of
the quaternions and scale ratios at all constrained vertices in BC0.
We designed three weighting schemes: Uniform, Linear, and Gaus-
sian. In the Uniform scheme, the transforms from all constrained

2This is actually a distance transform that can be computed by the level
set method [Sethian 1999].
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Figure 4: (a) Original model (2040 vertices and 4000 faces), (b)
twisting by rotating the top rectangular boundary around the ver-
tical axis of the PRISM (running time = 578 ms), (c) bending by
rotating the top boundary around a horizontal axis in addition to a
translation (running time = 609 ms).

(c)(b)(a)

Figure 5: (a) Original model (1281 vertices and 2480 faces), (b)-(c)
simultaneous normal rotation around their respective tangents using
cosine functions with two different phase angles as their strength
fields. The running time for (b) is 230ms and (c) 240ms.

vertices in BC0 are weighed equally. In the Linear scheme, the
transform from a constrained vertex, vc, in BC0 is weighed by
the inverse of dist(vf ,vc). In the Gaussian scheme, the transform
from a constrained vertex, vc, in BC0 is weighed by the Gaus-

sian function exp
(
− (dist(vf ,vc)−dist(vf ,vmin))2

2σ2
d

)
, where σd is a

user-specified parameter to indicate the width of the Gaussian. In
our experiments, the Linear and Gaussian weighting schemes typi-
cally produce better results.

When there are multiple boundary conditions, BCi, i =
1, ..., m, a free vertex vf receives a quaternion qi from each of the
boundary conditions. We define a weight wi for each quaternion qi

using the strength of BCi at vf . The strength of a boundary con-
dition in its influence region can be constant, linearly decreasing or
a cosine wave function. The final quaternion assigned to vf is a

weighted average,

∑
i

wiqi∑
i

wi

3. The final scale ratio can be defined

similarly using the geometric mean.
We proceed to define a local transform for each triangle in the

mesh. An average quaternion based on the three quaternions at the
three vertices represents the rotation component. The scale ratio
represents the scaling factor. Both rotation and scaling can be in-
tegrated into a single linear transform applied to the triangle as in
Section 3.2 to obtain new guidance vectors. The new mesh geom-
etry obtained using the solver in Section 3.1 best approximates the
orientations and scales imposed by the modified generalized bound-
ary conditions (Fig. 3(d)).

3Note that we frequently use (weighted) averages of quaternions.
Since quaternions are not commutative, such a weighted average is im-
plemented by a sequence of spherical-linear interpolations in a fixed
order. For example, w1q1+w2q2+w3q3

w1+w2+w3
is actually interpreted as

w1+w2
w1+w2+w3

(
w1

w1+w2
q1 + w2

w1+w2
q2

)
+ w3

w1+w2+w3
q3.



Figure 6: Interactive mesh deformation. The top row, from left to
right, shows the original model and the result from rotating normals
of a curve around their respective tangents. The bottom row shows
the results by applying a translation or rotation to the whole curve.
The curve is around the neck, and the weighting scheme for all the
constrained vertices on the curve is Gaussian.

WIRENaïve PoissonOur algorithm

Figure 7: Deformation comparison. From left to right are results
from our algorithm, naive Poisson editing and WIRE, respectively.

4 Applications

4.1 Mesh Deformation

Since boundary conditions are a powerful means to influence the
shape of an object, we implemented a method to perform mesh de-
formation through interactive boundary condition editing. For the
convenience of user control, we only adopt open or closed curves or
single vertices as boundary conditions. We further distinguish fixed
boundary conditions from editable boundary conditions during an
interactive session. Fixed boundary conditions include vertices on
the mesh that the user wishes to hold still during the whole session
while editable boundary conditions include vertices that the user
wishes to modify through direct manipulation. The rest are free
vertices whose positions and local frames are indirectly controlled
by both types of boundary conditions as discussed in Section 3.3.
Note that vertices in fixed boundary conditions have the identity
matrix as their local transform.

The vertices on the same editable curve can be modified either
individually or simultaneously. Individual editing is able to change
small scale details on a mesh while simultaneous editing is a very
powerful operation that can introduce large scale deformations via
minimal user interaction. Our system supports two important types

Figure 8: Left: the original Cyberware Igea model; Right: the
edited model. Detail editing is applied to the eyes, eyebrows and
lips to change the facial expression. Local smoothing is applied to
the cheeks and the groove on the lower left part of the face.

of simultaneous editing operations:
• Simultaneous translation, rotation and/or scaling applies the

same transformation to all the vertices on the same curve. Transla-
tion only changes vertex positions while rotation and scaling need
to change local frames and scaling factors as well. Fig. 4 shows a
PRISM deformed by simultaneous editing applied to the rectangular
boundary on the top.

• Simultaneous rotation of all the vertex normals around their
respective tangent directions by the same degree. Since the tangent
directions at the vertices differ, the resulting quaternions also dif-
fer. Fig. 5(b)&(c) show a circular disk deformed by simultaneous
normal rotation around a curve with different strength fields.

Although simultaneous translation does not change local frames,
individually translating vertices on a curve does induce orientation
changes. To uniquely determine the quaternions in the latter case,
we use the algorithm in [Singh and Fiume 1998] to obtain an inter-
mediate deformed mesh which satisfies the individual vertex dis-
placements only. The local frames from this intermediate mesh
are compared to the original local frames to obtain the quaternions
which are propagated before obtaining the final deformed mesh us-
ing (6).

Fig. 6 shows the deformation results on the BUNNY model by
applying the above two types of simultaneous editing to a curve
around the neck when the bottom part of the model is fixed. Even
with large-scale deformations, the BUNNY’s head and body exhibit
nice elastic appearances while preserving small-scale features. Fig.
7 gives a comparison among three editing methods. The middle
one is from naive Poisson editing which does not propagate lo-
cal frame and scale changes. It has severe distortions because the
Poisson equation by default can only enforce modified vertex po-
sitions in the boundary condition, but suppresses orientation and
scale changes at the free vertices. As a result, such changes are con-
fined to narrow regions surrounding the constrained vertices. The
rightmost result in Fig. 7 is from WIRE [Singh and Fiume 1998].
We designed this experiment according to the author’s suggestions
[Singh 2004]. The original shape of the BUNNY’s head is not well-
preserved especially under rotations. This is because WIRE only
considers changes in curve tangents which cannot uniquely deter-
mine 3D rotations alone. Ambiguities in curve rotations lead to
discontinuous behaviors on the rest of the mesh. On the other hand,
our algorithm can uniquely determine rotations using local frames
with three axes, one of which is the surface normal on the curve.

Fig. 8 demonstrates detail editing by individually manipulating
vertices on curves as well as local smoothing which will be dis-
cussed in Section 4.3.
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Figure 9: (a) the boundary on the WING (2000 faces) is projected
along a user-defined direction to define the boundary on the HORSE
model ( 100K faces), (b) the result from our projection scheme (run-
ning time = 400 ms), (c) Boolean operation, (d) WIRE.

4.1.1 Acceleration for Interactive Deformation

The Poisson equation is a sparse linear system that can be efficiently
solved by the conjugate gradient method. However, according to
the timings shown in Fig. 4 and 5, when the number of vertices in
the mesh becomes large, it is impossible to achieve interactive rates
by solving the equation at the original resolution. Since interactive
performance is critical for user-guided deformation, we introduce a
few acceleration schemes particularly for this task.

If we look at the linear system in (6), matrix A is only dependent
on the parameterization mesh and the original target mesh before
editing while b is also dependent on the current guidance vector
field. Therefore, A is fixed as long as we do not switch the parame-
terization mesh while b changes constantly during interactive mesh
editing. Thus, we can precompute A−1 using LU decomposition,
and only dynamically execute the back substitution step to obtain
A−1b at every frame. Our experiments indicate that this scheme
alone can achieve a three to six fold speedup. Note that LU decom-
position is less stable than conjugate gradient, and does not preserve
the sparse structure of matrix A. The latter implies that storing the
result of LU decomposition requires more memory and reduces the
largest mesh size a machine can handle. This acceleration scheme
is only used during interactive sessions, and the user can request
the system to produce a final version of the deformed mesh using
conjugate gradient.

The second acceleration scheme exploits multiresolution
meshes. We build a multiresolution mesh pyramid for large meshes
using the algorithm presented in [Guskov et al. 1999] and only
perform Poisson mesh editing at the coarsest resolution. At ev-
ery frame, the pyramid is collapsed to add high frequency details
back onto the modified coarsest level to obtain a modified high res-
olution mesh for display. The pyramid collapse operation can be
performed very efficiently. Therefore, this scheme is much more
efficient than directly solving the Poisson equation at the high-
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Figure 10: Object merging using mapping. Only the front facing
half of the DRAGON model (18K faces) is mapped with its open
boundary onto a plane which is then mapped onto the CYLINDER
(60K faces). The running time is 5 seconds.

est resolution. Because the level of precision tolerance increases
with the scale of deformation, we use multiresolution acceleration
for large-scale deformations like those shown in Fig. 6 where the
finest BUNNY model for display has 70K faces and its correspond-
ing coarsest model only has 2000 faces.

At the coarsest level of the BUNNY model, our LU-based accel-
eration took 29 milliseconds on an Intel Xeon 1.5GHz processor
for each editing operation while the non-accelerated version took
105 milliseconds. With both acceleration schemes, our system only
took around 100 milliseconds at the finest level where the non-
accelerated version took multiple seconds. The size of the BUNNY
model approaches the limit we can handle interactively (10fps) on
the machine we use.

In our system, small-scale editing is directly performed on the
finest level, but confined to a small surface region. With most of the
mesh vertices fixed, editing in a small region can still be performed
in real-time as well. The result shown in Fig. 8 was obtained in the
finest level.

4.2 Mesh Merging and Assembly

Merging meshes to assemble a complete object is another impor-
tant application of our framework. The partial meshes are merged
at their open (mesh) boundaries which truly serve as Poisson bound-
ary conditions this time! Merging two meshes involves the follow-
ing steps: i) obtain a mesh boundary on each mesh and the vertex
correspondence between them; ii) compute or custom design the
local frames along the two boundaries; iii) obtain an intermediate
boundary, including both vertex positions and local frames, by ei-
ther interpolating the original two using the vertex correspondence
or simply choosing one of the original two; iv) change the mesh
connectivity along the boundaries of both meshes according to the
intermediate boundary. iv) compare the local frames at the inter-
mediate boundary with the local frames at the original two bound-
aries to obtain two sets of quaternions; v) propagate the two sets of
quaternions towards the interior of both meshes, respectively; vi)
set up the linear system in (6) for all the vertices from both meshes
and solve it to obtain a merged mesh.
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Figure 11: Object merging by interactively specifying sparse key
vertex correspondences between two boundaries. GARGOYLE has
4000 faces, TEAPOT has 2000 faces, and the running time is 890
ms.

Figure 12: Two mesh components are merged at their jagged
boundaries.

The vertex correspondence between boundaries is not automat-
ically available in our method. We designed the following three
interactive tools from which the user can choose. The first tool is
quite restrictive but only needs little user interaction while the last
one is most powerful but requires a larger amount of interaction.

i) The boundary on the first mesh is projected onto the second
mesh to obtain the second boundary. The user only needs to inter-
actively define a projection direction (Fig. 9(a)). Vertex correspon-
dence is obtained by extending every vertex on the first boundary
into a ray whose nearest vertex on the second mesh is then located.
Fig. 9(b) shows a model merged using this tool.

ii) A planar parameterization of the boundary curve on the first
mesh is first obtained. Then this 2D boundary is mapped onto the
second mesh using a mapping scheme, such as the cylindrical map-
ping or more general parameterizations. A model merged using this
tool is shown in Fig. 10.

iii) The user interactively defines sparse key vertex correspon-
dences between the two boundaries and a dense correspondence is
obtained through interpolation. Fig. 11 and 12 show two examples
generated using this scheme.

Using our method to perform mesh merging has the following
major advantages:

• It allows the two mesh boundaries to have very different
shapes, sizes and roughness. For example, in Fig. 9(a), because
the boundary of the WING is projected along an oblique direction
onto the HORSE surface which has undulations, the two boundaries
have different shapes and sizes. The two boundaries in Fig. 12 also
have different shapes and are jagged.

• The propagation of local frame changes can globally adjust
the two meshes so their shapes become more compatible with each
other. This is demonstrated in Fig. 9(b), 11 and 12. Note that the
example in Fig. 11 would be difficult for parameterization-based

(d)(c)

(a) (b)

Figure 13: Denoising results. (a) Original model (150K vertices),
(b) smoothed model of (a) after only one iteration with σf = 4.0
and σg = 0.2π. (c) Noisy model (Gaussian noise), (d) smoothed
model of (c) after three iterations with σf = 3.0 and σg = 0.2π.

merging [Lévy 2003] since one of the components has genus greater
than zero.

A comparison is given in Fig. 9 among three approaches. Fig.
9(b) shows our merging result. Fig. 9(c) is from Boolean intersec-
tion. To extract a closed intersection curve between the two partial
meshes, we had to lower the WING. As a result, the undulations
on the HORSE model hide a large portion of it. The result from
WIRE [Singh and Fiume 1998] is shown in Fig. 9(d) where the
WING exhibits the same type of distortions and discontinuities as in
deformation.

An example with both deformation and merging is shown in Fig.
1. Multiple components are merged and the ARM is deformed be-
fore being merged.

Although Poisson mesh deformation and merging are powerful
and flexible, they do not guarantee G1 continuity between con-
strained and free vertices. Fortunately, continuity at these places
can be significantly improved by Poisson normal smoothing, which
will be introduced in the next section.

4.3 Mesh Smoothing and Denoising

The Poisson equation can be applied to perform mesh filtering oper-
ations in addition to interactive editing. As an example, we demon-
strate a mesh smoothing and denoising algorithm in this section.
Our algorithm does feature-preserving mesh smoothing via nor-
mals, which have previously been investigated [Taubin 2001; Tas-
dizen et al. 2002; Yagou et al. 2003]. In practice, we conduct bilat-
eral filtering on the normals instead of the vertex positions [Jones
et al. 2003; Fleishman et al. 2003] to preserve sharp features. Us-
ing normals to preserve features on a mesh is more intuitive since
normals typically change abruptly at edges and creases. Actually
[Jones et al. 2003] does perform normal smoothing as a prepro-
cessing step. The bilateral filters in our method also have two pa-
rameters σf and σg . σf controls the spatial weight which is also
used in [Jones et al. 2003; Fleishman et al. 2003] while σg defines
the amount of normal variation allowed. Once smoothed normals
have been obtained, our algorithm shifts vertex positions using the
Poisson equation to reflect the altered normals while [Jones et al.
2003] performs a revised bilateral filtering on the vertices. Since



Figure 14: Smoothing merging boundary. Left: before smoothing,
Right: after smoothing.

the normal of a triangle is a nonlinear function of its vertex posi-
tions, reconstructing a mesh from predefined normals is a classic
nonlinear optimization problem [Yagou et al. 2003] which is both
expensive and prone to local suboptimal solutions.

Our engine facilitates a linear method to obtain vertex positions
from normals. Consider one triangle with its original normal ni.
Suppose we have defined its new normal which is ni

′. To incorpo-
rate this change, we define a local rotation matrix from the minimal
rotation angle and its associated axis that can transform the original
normal to the new one. This local rotation matrix serves as the local
transform that should be applied to the original triangle to obtain a
new triangle and its new gradient vectors. We perform this step
over all triangles with altered normals to define new guidance fields
as in Section 3.2. With these new guidance fields, the new vertex
positions of the mesh can be obtained as in Section 3.1.

This smoothing algorithm can be applied to a mesh either once
or with multiple iterations. The solution obtained can be either
used directly or as the initialization for further nonlinear optimiza-
tion. The use of this algorithm includes mesh denoising and mesh
smoothing. In the latter case, we replace the bilateral filter with a
regular Gaussian filter for normals because we do not wish to pre-
serve small features and artifacts. Fig. 13 shows two examples of
feature-preserving mesh denoising. Fig. 14 shows the effect of lo-
cal smoothing at the merging boundary while Fig. 8 demonstrates
smoothing in user-specified local regions.

5 Conclusions

In this paper, we have developed a basic framework along with
interactive tools for mesh editing. The core of the technique is a
Poisson mesh solver which has a solid theoretical foundation. The
computations and implementations involved are very straightfor-
ward. The interactive tools are intuitive, and do not require special
knowledge about the underlying theory. The product is a versa-
tile mesh editing system that can be used for high-end applications
which require superior results.

In future, we would like to overcome the limitations of the frame-
work presented in this paper. The Poisson equation can only guar-
antee C0 continuity between constrained and free vertices although
the C0 effect is not obvious due to local transform propagation. It
is also possible to improve the performance of our user-guided de-
formation by exploiting multi-grid methods.
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