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What to expect from
thistutorial?

& Query Optimization in practice
» Framework
> A few key ideas
» Active areas of work

4 No cool theorems

& Provide a perspective that helps
place your work in a systems context
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Why Query Optimization?

& SQL isahigh level language
(“declarative’)
» Physical dataindependence

& Needsto be compiled into a program
over relational query engine

& Query optimization compilesthe
query into a program that takesthe
“least” resour ces
> Acid test of dataindependence
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Outline
& Preliminaries
> Relational query engine
> “Programs’ over relational query
engines (operator trees)

¢ Query Optimization Framework
¢ System R optimizer

¢ Modern Optimizers

& How to interact with Optimizers
¢ Active Areas of work

¢ Conclusion
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Relational DBM S Components

Relational
Engine
Storage Engine
(Manages Tables and Indexes)
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Storage Structures
¢ Tables
¢ Indexes
» Columns
» Single column, Multiple columns
> Type
» B+ indexes, Bitmap indexes, Hash indexes
> Clustering

» Clustered, Non-clustered
> Implied “index-evaluable” predicate
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I mplementation Operatorsfor
Scan and Selection

& Scan([index], table, predicate)
> Sequential Scan
» Indexscan: Which index(es) to use?
» Always push down “index-
evaluable” predicates

¢ Filter (table, predicate)
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| mplementation Operatorsfor
Join

¢ Join([method], outer, inner, join-predicate)

» Asymmetric

> Effect of physical properties of input
streams (e.g., sorted input)

» Physical properties of output stream
(e.g., sorted)

> Pipelined v.s. Blocking
(Nested Loop v.s. Sort-Merge)
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Join Operators

¢ Join(Sort-Merge, R1, R2, Rl.a=R2.a)
» Can exploit sorted order on R1.a
> Output is a sorted order
> Blocking

¢ Join(Nested-Loop, R1, R2, R1.a = R2.b)
> Sorted inputs of no consequence
» Output has the same sort order as R1.a
> Pipelined
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Generic View of Operators

¢ Input: Oneor more data streams
# Output: Onedata stream
¢ Implementation
> open()
> getnext()
> close()
¢ Pipelined/Blocking
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Operator Trees

¢ An algebraic expression tree consisting of
selection and join can berealized
» using an operator tree consisting of scan,
filter and join nodes
» root nodeisthe output of algebraic expression
> leaf nodes are scans on stored relations
» child node isan input data stream to its parent

¢ (Sequential) Operator treesameas
» annotated Query Tree
> execution Plan (or, simply plan)
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Example of an Operator Tree

2A=3A

4B =58
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Execution of an Operator

Tree
+ Demand-driven architectureisthe
simplest
& open() is propagated from the root
& getnext() at theroot ispropagated

& If getnext() at theroot failsto return
anew tuple, then no more answers
for the query
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Propertiesof Trees

& Edgeproperties

> Size of the data stream

» Physical properties (e.g., sorted order)
& Node properties

» Cost of an operator

> Pipelined v.s. blocking
& Cost of tree = sum of costs of nodes

& How to estimate the edge and node
properties?
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Outline
& Préiminaries

& Query Optimization Framework
¢ System R optimizer

¢ Modern Optimizers

& How to interact with Optimizers
¢ Active Areas of work

¢ Conclusion
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Goal of Query Optimization

& Multiple waysto compile a SQL
query over therelational engine
> Algebraic properties
» Implementations for each operator
> Costs of the aternatives may be
widely different
& Find the program with least cost

» Query optimization as a planning
problem?
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A Framework for Query
Optimization
& Equivalence Transformations
> Algebraic properties
> Implementation options
& Estimation Model

> Needs to estimate cost of an operator
tree (incrementally)

& Search Algorithm
> Fast, Memory-efficient
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SPJ Queries

Select A.a,B.b, C.c

FromA, B, C
WhereAx=B.xandB.y =Cy
Order By A.a
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Algebraic Transformations

& Select and Join commute
» Filter(Join(A,B), @ = Join(Filter(A,a), B)

& Joinsare associative and commutative :

» Join(Join(A,B), C) = Join (Join(B,A), C)
» Join(Join(A,C), B) = Join(Join(A,B), C)
» Many equivaent expressions

& Linear join trees(restricted use of AC

properties)
/\<© M
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I mplementation
Transformations

& Scan
» B+ tree index scan
> (Sargable) Predicate: Between and
its degenerate forms
¢ Filter
> Any Boolean expression
¢ Join

> Sort-Merge, Nested-loop, Indexed
Nested-loop
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Estimation M odel

¢ Goal: Estimatethe cost of an operator tree
> Number of tuples, Number of distinct values,
cost of sub-expressions
& System-R used a bottom-up computation.
For every node:
» Computes these parameters of the operator for
the given parameters of theinput data streams
» Derives properties of the output data streams

& Propagatesestimatesup thetree

» For base tables, thisinformation is computed by
“run statistics’
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Deriving Statistics

& Consider a“normal” form of SPJ query:
Q = Filter(Cartesian-Product(R1,....Rn), f)
& Sdectivity isfraction of data that satisfies
predicate
> Sizeof Q=
Selectivity(f) * Size-of (R1)* ..* Size-of (Rn)
& Compute selectivity of afilter expression
(a) Determine selectivity of atomic predicates
using statistics (a> 3, a=b)
(b) Derive the selectivity of a Boolean expression
from (a)
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Selectivity Estimatesfor
Atomic Predicates

& Selections
» Column=v
» F=1(#column)
» Column Between [al,a2]
» F=(a2-al)/(Hkey - Lkey)
& Joins
» Columnl = Column2
» F = U/max(#columnl, #column2)
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Selectivity Estimatesfor
Boolean Expressions

¢ P1AND P2
» F(P1 AND P2) = F(P1)* F(P2)
¢ NOT P1
» F(NOT P1) =1- F(P1)
¢ PIORP2
» F(P1OR P2) = F(P1) + F(P2) -
F(P1)*F(P2)
¢ Interesting issue:
» There are multiple waysto derive
statistics for the same expression
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Cost Estimates

¢ What to measure?
» Throughput
> 1O cost + w * CPU cost
> 1O cost = Page Fetches
& Examplesof Scan cost
> S #of Pages(R)
» Cl: F* (#of Pages(R) + # of Index Pages)
» NCI: F* (#of Tuples(R) + # of Index Pages)
¢ Interesting Issue
» Effect of database buffers?
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Cost Estimates (Join)

# Nested Loop Join
» Cost-of(N1) + Size-of(N1) * Scan-
cost(N2)
» Scan-cost(N2) depends on indexes
used
& Sort-Merge Join
> Sort(N1) + Sort(N2) + Scan(Templ)
+ Scan(Temp2)
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Sear ch Strategy

& Need to order joins (linearly)
& Naivestrategy:
> Generate al n! permutations of joins

& Prohibitively expensivefor alarge
number of joins

» Overlapping subproblems, use of
optimal substructures

> ldeal for dynamic programming
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Dynamic Programming

¢ Goal: Find the optimal plan for Join(R,,..R,,, R,.1)
» ForeachSin{R,..R, R} do
» Find Optimal plan for Join(Join(R,,..R,), S)
» Endfor
» Pick the plan with the least cost
& Principle of Optimality:
» Optima plan for alarger expression is derived from
optimal plan of one of its sub-expressions
& Complexity
» Enumeration cost drops from O(n!) to O(n2"n)
> May need to store O(2"'n) partial plans
> Significantly more efficient than the naive scheme

© Surgjit Chaudhuri PODS-98 6/1/98 29
1234
123 124 234 134
12 13 14 23 24 34
1 2 3 4
© Surgjit Chaudhuri PODS-98 6/1/98 30




Search Control Features

# Avoid Cartesian product
» Defer all Cartesian products as late as possible to
avoid “blow-up”
» Don’t consider (R1 X R2) Join R3
if (R1Join R3) Join R2 isfeasible
& Recognize “interesting orders’ as
violation of principle of optimality:
> Cost-of(SM (R1,R2) ) > Cost-of (NL(RL,R2))
» But, Cost-of (SM(SM(R1,R2)), R3) may be
much less expensive than other options
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Handling Interesting Orders

¢ Identify all columnsthat may exploit sorted order
(by examining join predicates)

¢ Collapseinto equivalent groups

¢ Oneoptimal partial plan for each interesting

order
¢ Example:
RLc=R4d
Rla=R3a \ R4
R3
Rla=R2b,
R1
Rz Ric=R2d
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Key Ideas from System R

4 Cost model based on
» access methods
» size and cardinality of relations

& Enumeration exploits
» dynamic programming
> one optimal plan for each equivalent
expression
> violation of principle of optimality
handled using interesting order
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Limitations of System R

& Cost Mode

> one aggregate number for every
column (inaccurate)

» independence assumption
& Transformation
> limited to join ordering
& Enumeration
> limited to single block queries
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Selectivity Estimation Models

& Estimate selectivity by executing the query
on a“sampled” database
& Pre-compute Statistical Descriptors
» Histograms : Range Predicates
» Frequent Vaues, Number of distinct
values : Equality Predicates

al a2 b3 a3 a4 b4

Number of Steps =k
Height of each step = n/k
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Histogramsfor Derived
v Fite Columns

> Filter acts as amask
> Interpolate count in apartid bucket using
uniformity assumption
> Filter with host variables hard to handle
¢ Join
> “Normalize” two histograms
> “Join” two histograms
& Shortcomings:
» Cannot capture correlation
» Month = Jan and Item = Jacket
> Needs multi-dimensional histograms
> Not effective for equality queries
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Various Histogram Structures

& Equi-depth:
» All buckets have same number of values
» Adjacent values co-located in buckets
& V-Optimal
» Groups contiguous sets of frequencies
> Minimizes variance of the frequency
approximation
> “Optimal” for a subset of range queries
& A Genera Framework [PIHS96]
> Assign ametric to each value
> How to partition the metric space?
> What information is kept for each bucket?

» What assumptions are made of values within a
bucket
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Building Statistics

& Advantage

» Optimization sensitive to available statistics
+ Disadvantage

» Expensive to collect and maintain

> “Auto-maintain” statistical descriptors
¢ Useof sampling

> Mugt take into account data layout

> Needs “block” sampling

> Not effective for number of distinct value

» How sensitive is optimization to accuracy of

statistics?
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Transfor mations

& SQL isthetarget
& SQL identity may not be a good way to
think about transformations
» Use algebraic framework
& May add, not just commute operators
< Finding transformationsis easy,
finding a good oneishard
» Broadly applicable
> Interaction with other transformations
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Case Studies of
Transformations

<+ Commuting group by and join
& Commutingjoin and outer-join

& Optimize multi-block queries
> Collapse multi-block query to a
single block query
» Optimize across multiple query
blocks
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Commuting Group By and Join

& Traditionally, execution of group-by follows
execution of joins

& “Pushing down” group by past ajoin:
> Group By “collapses’ an equivaence class
» Therefore, may reduce cost of subsequent joins
» Can be pipelined with index scans

+ Application needsto be cost based since
» The cost of group by itself may be increased

» Access methods on base tables may no longer be
useful for thejoin

+ Related to Optimization of Select Distinct queries
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Commuting Group By and Join
¢ Schema:

» Product(pid, unitprice, ..)
> Sales(tid, date, store, pid, units)

& Example:
Join
Group By (pid) / \
sum(units) Products
Group By (pid)
I6in sum(units)
Products
Scan (Sales) Scan (Sales)
Filter(s.store in Filter(s.store in
{CA, WA}) {CA, WA})
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Introducing Group By
¢ Schema

> Sales(tid, date, store, pid,amount)

> Category(pid,cid)
¢ Example: Group By (cid)

sum(amount)

Group By (cid)

Join
sum(amount)
Join Group By (pid) Category
sum(amount)

Category

Scan (Sales) Scan (Sales)
Filter(s.store in Filter(s.store in
{CA, WA}) {CA, WA})

© Surgjit Chaudhuri PODS-98 6/1/98




Applicability of Group
By/Join Transformations

& Schema constraints, arbitrary aggregation
functions
¢ No schema constraints, but properties of
aggregate functions
> Agg(S1 U S2) = f(Agg(SL), Agy(S2))
» May sometime require use of derived columns
¢ Related to collapsing multi-block queriesinto
asingle block query
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Multi-Block Queries

¢ Single Block Query
Select columns
From base-tables
Where conditions
Group By columns
Order By columns
¢ Multi-block structure arisesdueto
> views with aggregates
> table expressions
> nested sub-queries

¢ Divideand Conquer

> leverage single block optimization
techniques
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Example of A Nested
Subquery

Select Emp.Name

From Emp

Where Emp.Dept# IN

(Select Dept.Dept#

From Dept

Where Dept.Loc = “Denver”
AND Emp.Emp# = Dept.Mgr)
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Example of A View

Create View DepAvgSal as
(Select E.did, Avg(E.Sal) as avgsal
From Emp E

Group By E.did)

Select E.eid, E.sal

From Emp E, Dept D, DepAvgsa V
Where E.did = D.did

And E.did = V.did

And E.age < 30 and D.budget > 100k
And E.sal >V.avgsal
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Merging Nested Subquery

& Think of “IN” asa semi-join between Emp and
Dept on
» Emp.Dept# = Dept.Dept#
> Emp.Emp# = Dept.Mgr
+ Convert Semi-join to Join

Select Emp.Name

From Emp

Where Emp.age < 30 And Emp.Dept# IN

(Select Dept.Dept#

From Dept

Where Dept.Loc = “Denver” And Emp.Emp# =Dept.Mgr)
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Result of Merging
Query:

Select Emp.Name

From Emp

Where Emp.Dept# IN

(Select Dept.Dept# From Dept

Where Dept.Loc = “Denver” And Emp.Emp# = Dept.Mgr)

Transformed Query:

Select Emp.Name
From Emp, Dept
Where Emp.Dept# = Dept.Dept#

And Emp.Emp# = Dept.Mgr And Dept.Loc = “Denver”
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Nested Subqueries (2)

& Presence of aggregatesin the nested sub-query
requires careful treatment

¢ Key Observations:
» For each outer tuple, create the “count” of
matching inner tuple and compare to D.parking
> |If outer matches no inner tuple, then the outer
produces an output tuple (“count bug”)
Select D.Name
From Dept D
Where D.parking < =
(Select count(E.Emp#)
FromEmp E
Where E.Dept# = D. Dept #)
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Merging Nested Subqueries (2)

# Resultsin aleft outerjoin between the parent and the
child block (preservestuples of the parent)

> B10OJB20OJB3.....
& Outerjoin reducesto ajoin for sum(), average(),

max(), min()
& Transformed Query:
Select D.Name Select D.name
From Dept D From Dept D LOJEmp E
Where D.parking < ON (E.Dept# = D.Dept#)
Select count(E.Emp#) Group By D.Dept#
FromEmp E Having D.parking
Where E.Dept# = D. Dept # < count(E.Emp#)
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Optimization Across Blocks

¢ Collapsinginto asingle block query isnot
alwaysfeasible or beneficial
& Wecan till optimize by sideways
information passing acr oss blocks
¢ ldeasimilar to semi-join
» Outer providesinner with alist of
potentially required bindings
» Helpsrestrict inner’s computation

> “Once only” invocation of inner for each
binding
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Example of Query with View

Create View DepAvgSal as (
Select E.did, Avg(E.Sdl) as avgsal
FromEmp E

Group By E.did)

Select E.eid, E.sal

From Emp E, Dept D, DepAvgsa V
Where E.did = D.did

And E.did = V.did

And E.age < 30 and D.budget > 100k
And E.sa > V.avgsal
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Example of SIP
Select E.eid, E.sal
From Emp E, Dept D, DepAvgsa V
Where E.did = D.did
And E.did = V.did
And E.age < 30 and D.budget > 100k
And E.sal > V.avgsa
+ DepAvgsal needsto be evaluated only for
caseswhereV.did IN
Select E.did
From Emp E, Dept D
Where E.did = D.did
And E.age < 30 and D.budget > 100k
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Result of SIP

Supporting Views
(1) Createview ED as(Select E.eid, E.did, E.sal
FromEmp E, Dept D
Where E.did = D.did
And E.age < 30 and D.budget > 100k)
(2) Create View LAvgSal as (
Select E.did, Avg(E.Sal) as avgsal
FromEmp E, ED
Where E.did = ED.did
Group By E.did)
Transformed Query
Select ED.eid, ED.sal
FromED, Lavgsal
Where E.did = ED.did and ED.sal > Lavgsal.avgsal
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More Commentson
Transformations

& Summary of Multi-Block Transformations
» SIP (semi-join) techniques result in use of views

» Merging views related to commuting Group By
and Join

» Nested Sub-query => Single Block
transformations result in JOJ expressions

& SQL semanticsistricky
& Applicability conditions are complex
& Transformations must be cost based
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Enumeration Architectures

& Stresson extensibility (for optimizer
developers)
& Key features

> Explicit representation of transformations as
rules

> Explicit representation of “ properties” of plans
» sort-order, estimated costs
> Ruleengine

& Examples: Starburst, Volcano
& Framework != Optimizer
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Starburst v.s. Volcano

& Starburst
» Heuristic application of algebraic
transformations
» “Core” cost-based single-block join
enumeration
¢ Volcano
» No distinction among transformations
» Cost-based
» More difficult search control problem
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Starburst Overview

¢ QGM for representation of queries

¢ Rewrite Rule Engine

> Condition -> action ruleswhere LHS and RHS
are arbitrary C functions on QGM representation

» Ruleclasses for search control

» Conflict resolution schemes

» Customizable search control for rule classes
& Plan Optimizer

» Handlesimplementation aternatives

» LOLEPOP (operator)

> STAR (implementation alternatives)

» GLUE (achieving required properties)
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Volcano Overview

& Query asan algebraictree

& Transformation Rules
» Logical rules, Implementation rules
& Optimization Goal
> Logical Expression, Physical Properties, Estimated Cost
¢ Top-down algorithm
» Sub-expressions optimized on demand
> An equivalence class table is maintained
» Enumerate possible moves
» Implement operator (LOL EPOP)
» Enforce property (GLUE)
» Apply Transformation Rules

> Select “move” based on promise
» Branch and bound
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Distributed Systems

& Optimization in Distributed Systems

» Communication cost v.s. local processing time
+ Evolution of Distributed Systems

> Scalability concerns=> Parallel systems

» Distributed information => Replicated sites
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Parallel Database Systems

¢ Objectiveisto minimizeresponsetime
¢ Formsof parallelism
> Independent, Pipelined, Partitioned

¢ Scheduling of operator s becomes an
important aspect of optimization

¢ Can scheduling be separated from therest
of the query optimization?
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Parallel Database Systems

¢ Two step approach:
» Generate a sequential plan
» Apply ascheduling agorithm to “parallelize” the plan
¢ Thefirst phase should take into account cost of
communication (e.g., repartitioning cost)
> Influences partitioning attribute
& Scheduling algorithm assigns processor sto
operators
» Symmetric schedule: assigns each operator

equally to each processor
» suboptimal when communication costs are considered
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I nteracting with Optimizer

+ Information on the plan chosen by the
optimizer
» Showplan (MS), Visual Explain (IBM)
> Load plan information in tables
& Optimizer hintsto control the nature of plans

& Optimization Level
» How exhaustive is the search for the “optimal” plan?
(greedy v.s. DPjoin enumeration)
& Statistics
» Update Satistics
> Manua update to statistics (distinct values,
frequent values, highest values)
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Optimizer Hints

& Givepartial control of execution back to
the application developer
¢ Can specify
» Join ordering, Join methods, Choice of Indexes
& Liability
» Hard to maintain as software is upgraded or
database statistics changes
& Example
Select emp-id
From Emp (index = 0)
Where hire-date > * 10/1/94’
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Active Areas
& OLAP

& Optimization for ADT
¢ Content Based Retrieval
& Old-fashioned problems
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OLAP

& Spreadsheet paradigm drivesthe
querying model

& Complex ad-hoc queries over large
databases

¢ Stresson use of
> Indexes
Multi-pass SQL
Materidized Views
Top-k Queries
“Helper Constructs’
Data Partitioning, Parallelism

Y ¥V ¥ V¥V ¥

© Surgjit Chaudhuri PODS-98 6/1/98 72




Using Indexes

& Selection

» Use single or multi-column indexes
& Join

» Join indexes, Use two clustered indexes
& Projection

» Useasavertica projection
+ Group By

> On-the-fly aggregation
+ Index AND-ing

> data scan for fewer pages

» avoid data scan atogether
+ Howto usetheright set of indexes?
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M ulti-Pass SQL

& Backends always cannot digest
complex SQL
& Middleware (“ROLAP”) tool
optimizes SQL generation
» Creates and maintains materialized
views
» Tuned to backends

» Defines appropriate temporary
relations
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M aterialized Views

¢ View Definitions
» Must consider aggregation as part of view
definitions
& Optimization Problem

» Choose an equivalent expression over
materiaized views and tables

» Appropriate access methods
¢ Reminders
» Need for acost-based choice
> Multiple materialized views may apply

» Using base table may be better than using
cached results!

» “2-step” algorithms can be significantly worse
© Surgjit Chaudhuri PODS-98 6/1/98

75




Materialized Views over Star
Schema

Product
Order ProdNo
OrderNo ProdName
OrderDatd ProdDescr
Fact table Category
Customer OrderNo 4 CategoryDesci
CustomerNo SalespersoniD MnitPrice
CustomerName CustomerNo OD%HE
CustomerAddress| ProdNo
City DateKey DateK ey
CityName <— pate
Salesperson Quanti ty Month
SalespersoniD TotalPrice ear
SalespesonName / C't_y
City < CityName
Quota State
Country
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Dominance among Views

& Use amore specific view that and can
answer the query

& Dominanceisapartial order

¢ Need cost-based optimization
» Consider aquery on (category, state)
» Theview on (product, state)
> dominates (product, city)
> does not dominate (category, city)
> (product, state) and (category,city) are candidate
materialized views to answer the query
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Top K Queries

& Find k best restaurantsin Seattleby ...
where. ...

¢ If kissmall compared to result sizethen
optimal query plan may be different
» Use nested loop instead of sort-merge

» Use non-clustered index scan instead of
sort

» Alternative row blocking techniques

& Commercial databases provide
constructs
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Helper Constructs

& Ensuring “Optimality” of plans not feasible
& Provide constructsin language that help
optimizer
» Does not extend expressivity
> But, may result in significant performance

enhancement
& Example: Each subtotal requires a separate
aggregate query
MODEL
Y Sum
E by
A Y ear|
R
Sum By Model
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CUBE and ROLLUP
+ Rollup (order of columns matters)
» Group By product,store,city Rollup
» Group by product, store, city; Group by product,
store; Group by product
& Cube (order of columns does not matter)
» Group By product,store,city Cube
> One aggregation on each subset of
{product, store, city}:
» Group by product, store, city; Group by store, city;
Group by city, product
» Cube = A set of Roll-up operations
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Optimization for ADT

& Independent user-defined functions
» Select * From Stocks Where stocks.fluctuation > .6
» Associate a per-tuple CPU and 10 cost with udf
> New issues in enumeration
» Udfs are harder than selections, but easier than relations
& Rélationship among udfs

» E.g., Spatid datablade supports related spatial
indexes
» Use rulesto specify semantic relationships
» Cost-based semantic Query Optimization
> New issuesin costing and enumeration
» Don'tgenerate al equivalent expressions

» How to use costs uniformly across ADT-s
> “Mix and match” or “ADT-specific” optimization?

© Surgjit Chaudhuri PODS-98 6/1/98

81




Content Based Retrieval

& Fuzzy matches
» Associate a degree of match with selection

& Top k fuzzy matches
> Only interested in “top 10" matches with a
suspect’s sketch
» Match may involve multiple features

» How to exploit the specification of for reducing
the cost of data access?

» Related to near neighbor search
¢ Relationship to IR work
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Old-fashioned Problems

& Compile Timev.s. Run time optimization
» Choose plan and Exchange
# Resource governer

> Adapting optimization to memory
constraints

& Senditivity of the cost model

» How detailed a cost model needs to be?
¢ Client-Server issues
& Object models
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Concluding Remarks

& Many factors determine performance
> Query Processing engine
> Query Optimizer
» Physical database design
» Settings of the “knobs’
¢ Many open problems
» Architectural framework isimportant
» Oversimplification may render results useless
> Need to pay attention to SQL semantics
sur ajitc@micr osoft.com
http://resear ch.micr osoft.com/~surajitc
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