Distributed Order Scheduling
and its Application to Multi-Core DRAM Controllers

Thomas Moscibroda
Microsoft Research
Redmond, WA

moscitho@microsoft.com

ABSTRACT

We study a distributed version of the order scheduling gnokthat
arises when scheduling memory requests in shared DRAMragste
of many-core architectures. In this problem, a seh.afustomer
orders needs to be scheduled on multiple facilities. An rocaa
consist of multiple requests, each of which has to be sedvice
one designated facility, and an order is completed only waikits
requests have been serviced. In the distributed settiegy éacility
has its own request buffer and must schedule the requesitsghav
only limited knowledge about the buffer state at other faes.

In this paper, we quantify the trade-off between the amotint o
communication among different facilities and the qualityte re-
sulting global solution. We show that without communicatithe
average completion time of all orders can be by a fa€toy/n)
worse than in the optimal schedule. On the other hand, there e
ists a 2-approximation algorithm if the complete buffertesaare
exchanged im communication rounds. We then prove a general
upper bound that characterizes the region between thessmext
points. Specifically, we devise a distributed schedulirgpathm
that, for anyk, achieves an approximation ratio 6f(k) in n/k
communication rounds. Finally, we empirically test thefper
mance of our different algorithms in a many-core environimen

Onur Mutlu
Microsoft Research
Redmond, WA

onur@microsoft.com

1. INTRODUCTION

In this paper, we study a distributed version of the so-daltels-
tomer) order scheduling problem (also referred to as thewmwoant
open shop scheduling problem) [8]. In this problem, a setusf ¢
tomer orders needs to be scheduled on multiple facilities.o
der can consist of multiple requests (jobs), each of whichtbde
serviced on one particular facility. That is, unlike in geaigaral-
lel machine scheduling problems, the facilities in our peabare
dedicated, i.e., requests can only be serviced by one spéaifi-
ity. The scheduler has to choose in which order the different
quests are scheduled on the facilities. An order is compheteen
all its requests have been serviced and a natural objectivaitbn
in many application scenarios is to minimize the total (cgrage)
completion time of all orders.

The order scheduling problem has numerous practical applic
tions, for instance in industrial manufacturing [3]. Egsally, the
problem is applicable to any setting in which clients issugecs
consisting of different parts, each of which has to be mastufad
on a dedicated production resource. With this manufaajuvack-
ground in mind, it is not surprising that the order schedulimob-
lem has been studied exclusively in a centralized contend (&
fact, the same is true for many other classic schedulingl@na).

ing SPEC CPU2006 benchmarks as well as Windows desktop ap- Traditionally, it has been assumed that there is one cesthalduler

plication traces.

Categories and Subject Descriptors

B.3.1 [Memory Structures]: Semiconductor MemoriesBynamic
memory (DRAM)

C.1.2 Processor Architecture§: Multiple Data Stream Architec-
tures;

F.2.2 [Analysis of Algorithms and Problem Complexity]: Non-
numerical Algorithms and Problems

General Terms
Algorithms, Theory

Keywords

Distributed scheduling, order scheduling, distributegragima-
tion, DRAM memory controllers, multi-core

Permission to make digital or hard copies of all or part o$ twork for

personal or classroom use is granted without fee providatiabpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyoofherwise, to
republish, to post on servers or to redistribute to listguires prior specific
permission and/or a fee.

PODC'08,August 18-21, 2008, Toronto, Ontario, Canada.

Copyright 2008 ACM 978-1-59593-989-0/08/0855.00.

that controls access to all facilities and is therefore ableoordi-
nate scheduling decisions across all facilities in a glgtmgsirable
way.

Motivated by a problem arising when scheduling memory re-
quests in shared DRAM systems of multi-core computer achit
tures, we study the order scheduling problem in a distribset-
ting. In particular, we assume that facilities are distrélaliand that
each facility has its own individual request buffer and sither that
controls access to this facility. If the facilities are piogdly sepa-
rated, then without communication (or any other means dfisga
state information) each facility scheduler has knowledgg about
the state of its own buffer and must base its scheduling id&sis
solely on this local information.

The problem is that such locally generated schedules calobe g
ally suboptimal. To see this, consider a simple scenariohithv
there are two facilitiesF1 and F», and two ordersD; and Os.
OrderO; consists of two requestsR;; to facility F1 and R;2 to
F5. OrderO- also consists of two requestBz1 and Rz, one to
each facility. In a globally optimal solution, each of theotfa-
cilities would first schedule the corresponding request®gfand
subsequently the request 6&. Assuming unit processing times
for each request, order@; and O; would be serviced at time 1
and 2, respectively, and the average completion time woaildh
In contrast, if both facility schedulers decide on theirestiie lo-
cally, one facility may schedul®,,; ahead ofR2:, whereas the



other may schedule the requests in opposite orderi®.before
Ri2. As a result, both orders are finished only at titye.e., the
average completion time & This simple example illustrates the
trade-off between the amount of communication betweeritiaci
schedulers and the quality of the resulting global solutidmtu-
itively, the more state information the facility schedslexchange,
the better they are able to coordinate their decisions,lwtan lead
to shorter average completion times.

In this paper, we quantify this trade-off by providing newpep
and lower bounds. In particular, we show that without comicem
tion, any distributed scheduling algorithm for the ordenextuling
problem may generate schedules that are by a faxtgfn) worse
than the optimal schedule, whereis the number of orders. In
contrast, if schedulers can exchange their entire bufége sfactor
2 approximations become possible. We then prove a general up
per bound on the achievable trade-off curve in between ttvese
extremes points by studying a model in which each schedsler i
allowed to broadcast state information fpt/k| communication
rounds, wherd < k < n is an arbitrary parameter. We propose
a distributed scheduling algorithm that, for any sughachieves
an approximation ratio of (k). We then empirically evaluate the
performance of this algorithm compared to existing heiessn a

problems or, more specifically, on DRAM memory request sahed
ing problems in a distributed context.

Customer Order Scheduling: In a centralized context, the cus-
tomer order scheduling problénmas been studied in several pa-
pers. The problem was proven to be NP-hard even for the case of
three [8] and two [26, 22] facilities, respectively. In [&],number
of heuristics are discussed, all of which have worst-capecagma-
tion ratio ofQ2(m), wherem is the number of facilities. Based on an
indexed linear programming formulation]&/3-approximation al-
gorithm for the weighted version was presented in [27]. Bypas
we discuss in Section 5, the work of [20] implies a 2-appration
algorithm although it does not explicitly state so. Severdepen-
dent parties have then discovered this 2-approximatiooriahgn
for the problem [2, 9, 5]. Whereas all of the above paperssasu
minimizing the average (weighted) completion time of alfiens,
minimizing the number of tardy jobs has been studied in [17].

Memory Request Scheduling:Existing controllers for DRAM
memory systems typically implement a so-called FR-FCF8deh
ing algorithm [21] that does not require any coordinationoam
bank schedulers. While the FR-FCFS scheduling policy dpém
the system throughput in single-core systems, it can bdigreft
and unfair in many-core environments, and is even vulneré&bl

many-core environment using SPEC CPU2006 benchmarks &s wel denial of memory service attacks [12]. Therefore, fairrmsare

as Windows desktop application traces.

2. MOTIVATION: REQUEST SCHEDULING
IN SHARED DRAM MEMORY

Our impetus for studying order scheduling problems in a dis-
tributed context stems from our work on memory request sdhed
ing in multi-core architectures. In such systems, multjrecess-
ing units (threads) on different cores share the same DRANhmMe
ory system. Modern DRAM chips are organized into differeaniks
(=facilities), so that memory requests destined for differbanks
can be serviced in parallel. Each thread (=order) may sanak
ously issue several requests, each of which must be sericed
particular bank. Because, roughly speaking, a threadlisdtantil
all its outstanding memory requests are serviced by the DRAM
the goal is to minimize the average completion times of afals
that currently have outstanding memory requests. Howdaer,
cause each DRAM bank is controlled by an individual schadule
(the so-called bank-scheduler), the resulting order sdivegdprob-
lem is of distributed nature.

While memory request scheduling in DRAM systems has served
as our primary motivation to study this problem, there areayna
other settings in distributed databases or networks in lwvbicer
scheduling problems arise in a distributed context. As vaduate
our methods using the framework of memory request schegjulin
Section 7 provides additional relevant background abouABIR
controllers in modern processing systems. A more detaiteat-t
ment of DRAM controllers can be found in [21, 14].

3. RELATED WORK

One of the key aspects characterizing our problem is thégsan
there is a means for exchanging information about the sfateeo
different buffers, each bank-scheduler (=facility) mast schedul-
ing decisions based on local buffer information only. Tolblest of
our knowledge, there are no studies on distributed ordexcsdng

Un reality, the systems are very complex. A thread can makeesalbeit
little, progress even if one of its requests, rather thansaerviced. How-
ever, previous work showed that for our purposes it is seffity accurate
to assume that a thread is stalled until all its outstandiegnory requests
are serviced [6, 7, 13].

DRAM memory algorithms for multi-core systems have been pro
posed [14, 16, 15]. The batch-scheduling scheme discuss®eic-
tion 7 that forms the basis of our model has been proposedbin [1
Itis currently the fairest and most efficient request schiegualgo-
rithm for shared DRAM memory systems in many-core systems.

Finally, it is worth noting that there exist numerous othdis*
tributed scheduling” problems that are unrelated to ourkwdn
wireless networking, for instance, a distributed schedufiroblem
consists of finding time-slots for non-interfering transaidns us-
ing a distributed algorithm.

4. MODEL

Distributed Order Scheduling Problem: Let7 = {T1,...,T»}
andB = {Bj,..., B} denote the set of orders (threads) and fa-
cilities (banks) in the system. Each ordErhas a sefR;; of out-
standing requests scheduled 5. The total processing time of
all requestsR;; is denoted byp;;. Let R; = U;R;; denote the
buffer state of facilityB;, i.e., the set of all requests that need to
be serviced byB;. Each facility B; is associated with an inde-
pendent facility scheduler that controls access to thigiflacEv-
ery facility B; decides on the order in which its requests are
scheduled. Formally, a facility scheduler can thereforecbe-
sidered a function that, based @ and all information obtained
about the state of other buffei8,,k # j, outputs an ordering
wj = (T}, T4,...,T3) over all orders. Here, T denotes the or-
der whose requests are scheduled atatheposition, after all re-
quests from order®y, ..., T2 _, have been fully processed 183;.
The totality of all local schedules; then implies a global sched-
ulew. For a given schedule, we defineC;; to be the completion
time of T; on facility B;, i.e., the earliest time when all requests
R;; have been serviced. Thmmpletion time of a thread; is
C; = maxgp;es Cij. The objective function is to minimize the
average completion timg... .- Ci/|T|.

2The problem is sometimes also referred to asdbecurrent open shop
problem [22] as it is a relaxation of the classic open job spagblem in
which—unlike in the original job shop problem—jobs can beqgassed in
parallel by dedicated, request-specific facilities.

%It is known that there is an optimal schedule which geamutation sched-
ule, i.e., a schedule in which all orders are processed in the same order on
all facilities, i.e.,w; = w for all B; [26].



Notice that in the context of the batch scheduling framevetisk
cussed in Section 7, we can assume that all outstandingstscare
known at the outset of the algorithm, i.e., all requests leapel re-
lease time. Also, we can ignore requests that arrive lateesuch
requests will be part of a subsequent batch.

If access to the different facilities is controlled by indival fa-
cility schedulers (as in the case of DRAM memory schedulititg
problem inherently becomes distributed. Hence, unles®tiiee
state informatiorR; is exchanged between all facilities, it is gener-
ally difficult to ensure that 1) all facility schedulers outghe same
orderingw; and 2) that the resulting schedule is globally efficient.
Intuitively, there exists a trade-off between the amourorhimuni-
cation between individual facility schedulers and the fyalf the
resulting schedule. Without communication, each facdlitheduler
must base its scheduling decision only on its own local imfation
(i.e., the state of its own buffer), which can lead to glapallib-
optimal schedules. In order to formally capture this traffene
propose the following distributed model.

Distributed Order Scheduling Model: Time is divided into
synchronous communication rounds. Initially, each factiched-
uler knows only about the state of its own local buffer. Inteac
round, every facility scheduler can broadcast a messagdedthar
facility schedulers. We assume that each message is of the fo
(T3, psj), whereT; marks an order (=thread) apgl; is the process-
ing time of the order’s requests to that facility. For sinojili, we
only study algorithms that proceed along the following tplwses:

1) For some parametéy, facility schedulers exchange state infor-
mation messages f¢n/k | rounds, and then 2) decide on the order
in which the jobs/requests are scheduled. That is, no fuctm-
munication takes place once the scheduling decisionsken.tdhe
parametetk characterizes how much state information the facility
schedulers can exchange before locally deciding on the@diding
order. Ifk is large, little communication is allowed, andiif= 1,
the problem becomes equivalent to the standard non-digtdior-
der scheduling problem since the schedulers can exchaegeth
tire state information im = |T'| rounds.

5. BASE CASES: NO COMMUNICATION
VS. COMPLETE INFORMATION

Completely Local Scheduling Decisionstn this section, we es-
tablish results on the two base cases that are 1) no comntionica
between the schedulers and 2) complete information exehalmg
the former, every facility scheduler needs to decide on eaithior-
dering based entirely on the state of its local buffgr In order to
exclude any form of pre-determined scheduling based faaints
on thread-IDs, we call a local facility scheduliir if it decides
on the orderingv; based only on the set of processing times of
requests in its buffer, i.e{p;;|R:;; € R;} — wj. The following
lower bound shows that in absence of communication and eword
tion between facility schedulers, the resulting globalestthe may
be highly suboptimal.

THEOREM 5.1. Any (possibly randomized) fair distributed or-
der scheduling algorithm in which schedulers do not comeaiei
has a worst-case approximation ratioQf \/|T|).

PrROOF Consider the following example consistingrobrders
Ti,...,T, andm < nfacilitiesB1, ..., Bmn. Let3 = n—m. For
each facility, there exists an order whose only request $sirtked
for this facility. That is, for all such orderg;, i € {1,...,m}, let
pii = 1 andp;, = 0 for all k # . We call these ordersingleton

ordersand their unique request singleton requests. For all orders w.l.o.g. thatCy; < ---

T, i€ {m+1,...,n}, letpy = 1forall facilites1 < k < m.

The optimal global schedule first schedules on each fadiity
the singleton request from ord@¥;, followed by all the other re-
quests from order& i1, ..., Tn: WL = (1), Togt,s .., Th).
The total completion time of this scheduledT = 3, CPF7T <
m+ - %. Since a fair facility scheduler cannot distinguish
which among the3 + 1 non-zero requests in its buffer is the sin-
gleton request, the best it can do is to schedule the reqimests
random order. In expectation, the completion time of a sitayl
order is therefore?[C;] > 5. Hence,E[ALG] = ¥, C*¢ >
B % +m- %. Substitutingn = n— £, it follows that the approxi-
mation ratioa of any fair, local algorithm is at least = ZALAL >

B(B+V)+mB _ np+B is is minimi — 3. which
SmTB(BT3) = InipT This is minimized for3 = +/2n, which

yieldsa > 2v/2n € Q(y/n). O

It is interesting to note that most DRAM memory scheduling al
gorithms [21, 16] used in today’'s DRAM controllers belonghe
category of fair and completely local algorithms captuned he-
orem 5.1. That is, the total completion time of these schegul
policies can be by a factde(y/n) worse than the optimal. As the
number of cores on a chip (and withni} is bound to increase in the
future, this lower bound indicates the need for better doatibn
among bank schedulers in future DRAM memory systems.

Complete Information: In contrast, if the memory schedulers
are capable of exchanging full state information among etoér,
significantly better solutions become possible. In pal@iGlalgo-
rithms with an approximation ratio of 2 are known [2, 9, 5,.20]

The following linear program (denoted by OSLP) is a relaati
of the order scheduling problem.

1
Ci
mmynjg;
St.Cz‘—Ci]‘> 0 7VBJ‘€B
> piuCiy > %[(Zpij)2+ Zp?,.] , VX CT,VB;eB

T;€X T,eX

The first constraint describes that an order's completioe s the
maximum over all facilities. The second set of constraiméesra-
laxed versions of thenachine capacity constrainfigst described
by Wolsey [28] and Queyranne [19]. In particular, it is prove
in [19] that on a single facilityB;, these linear inequalities com-
pletely describe the convex hull of feasible completionetinvec-
tors(C1y, . . ., Cnj). Furthermore, in spite of the exponential num-
ber of constraints, the constraint’s separation probleh leence
the LP itself can be computed in polynomial time. Intuitivehese
constraints prevent too many requests from being completed
early. In [23, 20], these machine capacity constraints Hmen
extended to parallel machine problems, similar to the fdatan
above.

The problem is that because these constraints are relagaifo
the problem, there is generally no schedule that satisfeesample-
tion timesC;; andC; as computed by the LP. Consider for instance
a facility B; with two requests with processing time; = p2; = 1.
While the LP can output’y; = C; = 1.5, which satisfies the ma-
chine capacity constraints, there is clearly no real sdegdwvhich
both completion times are5. We can use the following result by
Schulz [23] in order to obtain an order-by-order bound orhdae
cility:

LEMMA 5.2 ([23]). LetC4,,...,Cy; be avector of comple-
tion times satisfying the machine capacity constraintsl assume
( < Chj. Then, foreach = 1,...,n, it
holds thatz;zl Pkj < 2C;.



This lemma can be used to derive the following theorem on-algo
rithms in which each local scheduler has complete staterde
tion. The proof consists only of putting together the abesults
and follows [20, 9].

THEOREM 5.3. There exists a fair distributed order scheduling
algorithm with communication complexity| that achieves an ap-
proximation ratio of2.

PROOF. Let C; andC;; denote the completion times as com-
puted by the LP. Because of the first constraints, it holds@ha>
C;; and hence, the vectdt,, ..., C, satisfies all LP constraints.
Now, schedule all orders ifi in non-decreasing order of; and let
C; andC;; denote the resulting actual completion times. It follows
from Lemma 5.2 that for each ord&k and on each facility3;, it
holds thatCi; = 3, _, pr; < 2C; and hencel; < 2C;. The
theorem now follows from averaging over gl and the fact that
YT C; is a lower bound on the optimum solution(]

6. DISTRIBUTED SCHEDULING

In this section, we explore the trade-off between the amofint
formation exchange between the facilities and the achievaimal-
ity of the resulting global schedule. We propose and anadyze
simple distributed algorithm that, for any parametesuch that
t:= |%] € {0,...,n — 1}, has a running time of 4+ 1 and
achieves an approximation 6f(k).

6.1 Algorithm

The key idea of the algorithm is to prioritize the distritmutiof
information about those requests at a given facility thatltave the
highest impact on the global scheduling decision. In cehtrafor-
mation about requests that can have only little global imhpae
distributed in an aggregated fashion. In the absence of -qumo&
global information, it is the “long” requests in a given filtgi B;
(requests with large processing timg relative to other requests)
that potentially have the highest impact on the global sgleed’he
reason is that an order is finished only wtehits requests are ser-
viced. Hence, if an order consists of one or more long requiast
a facility, suboptimally scheduling the “short” requeststhis or-
der on the remaining facilities has no impact as long as theyat
postponed too long.

The above intuition suggests that each facility in the iiated
algorithm should broadcast information about its requedtshigh-
est processing times. If no additional information is exaje,
however, some critical piece of information is lost. In parkar,
facilities will have no knowledge about thead, i.e., the total pro-
cessing time)_ p,;, at the different facilities. Having knowledge
about the other facilities’ load is important. In the absen€such
information, local facilities are unable to judge the riglaimpor-
tance of other facilities when deciding on their schedulamger.
For an example, assume that there exists one facility onhadie
ery order has a very large request (relative to its requeststirer
facilities). In such a case, the optimal ordering of ordésusd sim-
ply follow the shortest-job-first principle, i.e., the scling order
(Th, ..., T») should correspond to a non-decreasing order of pro-
cessing times on this facility. If, on the other hand, diigrorders
have their large requests on different facilities, thisgarstrategy
fails.

For the above reasons, our algorithm broadcasts exachiafor
tion about the longest, most critical requests, and supghésrthis
information with anaggregate informatiombout all remaining re-
quests, such that every facility is aware of its relativalldgor con-
venience, definé = | 2 | as the number of communication rounds
minus 1. For a given facility3;, we define théong setL; to be the

Input: k

: definet = [ 7 ];

: for each By, defineL; = {T; € T | p;; is among thel largest
processing times faB; }; S; =T \ Lj;

: for eachT; € L; broadcast(T;, pi;)

 broadcast(AV G, P;), whereP; = 15 37 c 5 pij;

. Locally invoke OSLP using for every facilitys,, € B the exacip;;. for
all T; € Ly, andp;y, := Py, forall T; € S,.

. Let C;"9 be the resulting completion times from the above LP. Sched-
ule the orders in non-decreasing ordertff’?.

(o2} g b w N =

Algorithm 1: DOS: Distributed Order Scheduling Approximation
Algorithm (Code at FacilityB;)

set consisting of the ordersT; with the largest processing times
ps; for this facility. Theshort setS; is the set of: — ¢ orders whose
requests’ processing times are not among tbegest for this facil-
ity. Notice that an order may be in the large set on some fas|i
and in the short set on others.

Algorithm 1 proceeds as follows. In the firstommunication
rounds, every facility exchanges the processing timesf all long
ordersT; € Lj. In the finalt 4+ 1th round, each facility broadcasts
the average processing timg; of the remaining requests. Conse-
quently, at the end of theset 1 rounds of broadcasts, every local
facility scheduler knows the exact processing times of timg Ire-
quests in each facility, as well as an average value of alanaimgy
requests. Using this information, each local facility stiler then
locally invokes a version of the order scheduling lineargoam
OSLP in Section 5, using the exact valygs for all long requests.
For all other requests, the exact processing time is unkramch
instead, the average valug; from that facility is used as input to
OSLP. The resulting completion timég'? of this linear program
are then sorted locally at each facility and the orders dnecided
in non-decreasing order 6f;"7.

6.2 Analysis

The challenge when analyzing the performance of Algorithm 1
is to bound the suboptimality caused by the imprecisionériniput
of OSLP across different facilities. For instance, it may loe suf-
ficient to show that on any single facility;, the sum of completion
times, is not significantly increased due to the averagimgatess-
ing times of short requests. Because an order’s compldtio i
the maximum over all facilities, such a proof does not préveat
the completion time of almost all orders increases, theoatnging
a prohibitive increase of the sum of completion times.

As for notation, letL P,,; be the original OSLP linear program
with the real processing times, and eP,., denote the averaged
linear program used in Line 5 of Algorithm L¢™* andC* de-
note the optimal completion times of ordErin LP,,; andL P,
respectively. FinaIIyC,Lf”g is the actual completion time @f; com-
puted by the algorithm.

The analysis proceeds as follows, we first bound the gap leetwe
the optimal solution td. P,.4 (as constructed by the algorithm) and
the optimal solution to the original problemP,,; by O(k) (Lem-
mas 6.3 and 6.4). In the second step, we then show that thal actu
completion times resulting from scheduling the originajuests
(with processing timegp;;) based on the ordering computed using
the averaged linear program is also within a facdgk) of the op-
timal solution. Finally, we show that our analysis is asyatipally
tight by constructing a corresponding lower bound exammietr
algorithm.

We start with a simple helper lemma. In this lemma and itsfproo
we use the notational shortcue X; to denote(c;, p;) € X;.



LEMMA 6.1. LetQ = {(c1,p1),.- -, (cr, pr)} be a set of pairs
such thatp;,c; > 1 for everyl < i < r. Further, letX =
{X1,...,Xs} be a set of disjunct subsets @fsuch that for every

. 2
X; € X,itholds thatzjexipjcj' > % [( ZJEX?', pj) +Zj€Xi pf] .

It holds that
Sowie =5 [(Xn) + X4
JEX jEX JEX

ProOF It follows from the assumption in the lemma that the
termy_ ., pjc; can be bounded by

> pie = > ZPM‘Z% Z(ij)QJer?
JEX X, eX jeX; X, eX jeX; JEX
s sl
| | X, eX jeX; JEX

where the final inequality is due (&_, z:)°/ Y, 27 < |z|. The
lemma now follows by replacind . c » >_;c x, Ps With 3= 5 pj.
and by pulling the terrq}(—‘ in front of the parenthesis.[

We define®), to be thet = |n/k] orders with highest comple-
tion timeC?". The setQ. is the set containing the— ¢ remaining
orders with lower optimal completion times. We further defim
valueD as the average optimal completion time of all orderQin
ie.,D : tth dorea, C¢™. We can derive the following lower

bound onD in terms of the aggregate valugy; at the different
facilities.

LEMMA 6.2. Itholds thatD > % (1 — 1) - maxp;es P;.

PROOF. Let B; € B be the facility with maximalP;. We show
by contradiction that the claim holds fd;. Assume for contra-
diction thatD < % (1 — ) P;. Consider the sep; of n (1 — )
orders with lowest optimal completion tim&’™*. By the defini-
tion of D, it holds for each ordef; € Q, thatC?™ < D. In
the algorithm, the sef; of orders, whose real processing time on
B; is unknown and replaced with; = P; in LP,.,, consists of

(1 — —) orders. Because these are the orders slithrtestpro-
cessing times in this facility, and because the cardinafity; is the
same ag),, we can observe that . ., pi; > Znesj Dij-

Based on the above inequalities, we now go on to show that if
D < 2 (1- 1) P;, the OSLP constraint for s€, C 7 on facil-
ity B; is violated. Specifically, the left hand side of this conistra
is at most

Z Dij Com

T;,€Q

n

(1)

> Pi Y i

T;€Qq

IN

D'sz‘j<

T;€Qq

% Z Pij Z pij < %( Z Pz‘j)Q-

T;€S; T, €Qq T;€Qq

In the above derivation, the equality follows from the fdwattby
definition?j = ﬁ Yo1,es, pis holds and hencéy, o5 pij =
|S;| - P = n<1 — —)P All other inequalities follow from the
discussion above.

The contradiction is now concluded by observing that the in-

equality}- . o, Pi; < 3(X1co, p”) implies that the OSLP
constraint for sng is V|olated From this, the lemma follows ]

In the first step of the proof, we show that the optimal value of
LP,.4 is by at most a facto© (k) larger than the optimal value of

L P,r;. For this purpose, we define for each orderc 7 avirtual
completion tima&sC; := 2max{C{"",2D}.

LEMMA 6.3. Itholdsthat) .. ., CF < 2(2k+1) 307 1 cori,
PROOF The sum of virtual completion times can be written as

e 2( Y oorie Y w)

TieT T;|C¢Ti>2D T;|C¢Ti<2D
2(

> ot
T,eT
BecausdT;|C{"™ < 2D| < |T| and|Qx| =
Yorer CF <22k +1) 3, C7 O

Having bounded by how much the virtual completion times can

exceed the optimal completion times, we now need to showthieat
virtual completion times constitute a feasible solutior.i,. .

2. |T;|Cy™ < 2D
|Qnl

IA

> C’) .

T;€Qp

|T|/k, it follows that

LEMMA 6.4. The set of virtual completion timé%" constitutes
a feasible solution td. P,.g.

PROOF We prove the lemma by showing that if we &, :=
C;} in each facility B;, the constraints of.P,., are satisfied for
every subseX’ C 7. Let X C 7 be an arbitrary such subset and
consider the left-hand side of the corresponding OSLP cainst
in LPgvg, ZT ex Pi;C;, when using the virtual completion time.
We rewrite this expression 8S ;. c x pi;jC7 = > g, exny, PisCi +
ZTiexmsj pi;C; and study the two terms separately For conve-

nience, letS;¥ = XNS; andL; = XNL;. First, because the pro-
cessing timegp;; of orders inL; remain unchangeg;; = p;;, and
because®; > 2C?" we know that the virtual completion times of
orders ian must satisfy the property

D oGl o= 2 > pc
TiELjX TELJX
1 .\ 2 .2
> 2 5[( Z Pz’j) + Z pz‘j] @
T;€LX T;€LX

since otherwise, the optimal completion tin@g " would be infea-
sible for the sefX N L;.

The more intricate case is the sum over all orders{im S;
because;; is no longer equivalent tp;;, but insteadp;; = P;.
We can lower bound the sum as

> G P; Y C; > P;-4D-[S]]

(©)

TiESJX TieSJX
52 | aX 52 aX
> 2. PS5 1S > 2P |87
(42) (242)
1 X X -2
> 2'§<|Sj|+|5j |2>Pj
1 X, 52 X 5 2
= 2'§{|5j|'Pj+<|Sj|'Pj>}
1 R R 2
o '5{ b+ (D pij) } 2
T;eSX T;eS%

Inequality (i) is due toC; > 4D. Inequality (ii) follows from
Lemma 6.2. Inequality (iii) holds becauélgx is a subset of5},
and finally, Equality (iv) is true becauge; = P, for all orders in

S3°, and thereforéS;* | - P; = > Csx Pij-
i€5j



Inequalities 1 and 2 thus imply that for both subs¥ts) L; and
X NS; of X, the OSLP constraint is satisfied with an extra “slack”
factor of2. We can now use Lemma 6.1 to show that the constraint
is also satisfied for the entire subsét Specifically, it follows from
Lemma 6.1 (when identifying subseXsN L; andX N.S; as subsets
X, and X, respectively) that
Z pw]

Zopoci 2 2 ql(Zp) v X
H(Em) - x )

T;,eX T;€X

%

Hence, all constraints i Py, are satisfied when using the virtual
completion time<;. [

Combining the two previous lemmas, we can conclude the first
phase of the proof.

LEMMA 6.5. It hO|dSZTiET Cov9 < 2(2k+1) ZTieT oo,

PROOFE Lemma 6.4 implies that the virtual completion times
C; form a feasible solution td. Pu.4 and therefore) . .., C7 >
7,7 Ci 7. Finally, we can combine this with the bound derived

inLemma6.3) >, ., Cf <2(2k+1)-> 1 1 cemt. O

So far, we have shown that the optimal objective values@f,
and LP,.; differ by at most a factor oD (k). However, we also
need to show that when we actually schedule the originalestgu
based on the ordering obtained after computirg,..,, the result-
ing completion time€**'? are good.

For this purpose, we now define a new virtual completion time
asC; := 2max{C""? 2D}. The difference betwee; and the
previously considered’; is that unlikeC;, the valuesC; directly
depend orC;""?, which will facilitate our reasoning about the algo-
rithm’s ordering.

LEMMA 6.6. It holdsZTieT C; < 2(6k + 2) - ZTieT cori,

PrROOF Similar to the proof in Lemma 6.3, the sum of virtual

completion times is
> o)

>ao- o
T;|C{"9 <2D

T,eT
-\ T|Ceve .
2( 2 |T;|C < 2D)| 3 c;’”)
|Qn| Tico,

2( @k+1) > o2y C)
T;,eT T,eT

2(6k +2) > C7

T,eT

oot

T;|C{V9 >2D

> e

T, €T

IN

IN

Where the last inequality follows from applying Lemma 6 &r the
first term) as well as the transformation used in Lemma 6.3tf®
second term). [

LEMMA 6.7. The virtual completion time&’; form a feasible
solution toL P,;.

PROOF. We show that when setting;; j o= Ci, the constraints
of LP,,; are satisfied for every subs#t )= 7T and in every f facil-

ity B;. Again, we rewrite a§:T cx i C. ZT eLx pL]C +
dYoresX pijCi, and consider each of the two terms individually.
K]
By definition, it holds thab . ., x pi;Ci > 2> "1 x pi; CF7.
K ] K ]

As C{"9 forms a feasible solution to the averaged linear program,
and because fak ¥ it holds thatp;; = pi;, we have

Z piiCi > 2%[( Z

TiELjX TieLjX

Now, consider the case (SfJX in which generallyp;; # p:;. We

know from the definition oC; that C; > 4D. Using this bound
as well as Lemma 6.2, we can derive the following lower boumd o

ZTieSJX pi;Ci.

Z pi; C > 4D - Z Dij
T;esX T;eS5%
> 2-P; 1S D pi
(Lemma6.2) T,esX
J
2
> (X m)
TieSJX
1 2
> 5{2?2‘;‘*‘(2%‘)}
T;e8% T;eS%

As in the proof of Lemma 6.4, we can now combine these two
lower bounds fol X and S} using Lemma 6.1. From this, it fol-

lows that ,
() 3 )

E pi; Cs
T,eX T,eX T,eX

>

O

Using the previous lemmas, we can how prove the actual cemple
tion timesC;”g resulting from Algorithm 1 are efficient compared

to the virtual completion time§';.

LEmMMA 6.8. It holds thaty~,. ., Cf'9 <23, ., C

PrROOF Assume w.l.0.g. that tHE; are named in non-decreasing
order of the completion times computed in Lingg;"? < C3%9 <

< CR¥9. Because every scheduler schedulestthes 7 ac-

cording to this order, it holds in every faciliti; that the comple-
tion time of T; computed by the algorithm @‘”9 =3 11 Pk

By Lemma 6.7, the set of; is feasible forLPm. This implies
that in each facilityB;, the constraints of OSLP are satisfied,

Sl 2 [(Smw) + k]
k=1 k=1 k=1

By the definition of the virtual completion times;, we know that
if Cov9 < Cpv thenC, < C, also holds. It follows that; <
Cy < ... < Oy, or alternativelyC;, < C; for everyl < k <
i. Therefore,Y": | pr;Cr < CiYi_ px; and hence, we can
rewrite Inequality (3) as

éinkj %[(Zpkj>2+zpij]‘
k=1 k=1 k=1

When dividing both sides of the inequality W}i:1 Prj, this im-
plies thaty ", _, pr; < 2- Ci. The lemma now follows because for
everyT; € T and all facilitiesB;, C{/? = 7} _, px;. O

We now have all ingredients to prove the main theorem. It show
that the sum of completion times achieved by the algorithmhm

at most by a factor 0©(k) larger than the optimal solution with
global knowledge.

This shows that the set 61 satisfies the constraints éfP,,.;.

®)

>



THEOREM 6.9. LetOPT and ALG(k) be the optimal solution
with perfect global knowledge, and the solution achievedlgyp-
rithm 1, respectively. It holds that LG (k) < 4(6k + 2) - OPT.

PrROOF Becausel P,.; denotes the optimal fractional solution
to the original problem, we know that its squti@Ti T C?m con-
stitutes a lower bound o@ PT'. By Lemmas 6.6 and 6.8, we know
thaty .. - ce < 2> rer Ci < 46k +2) - Yrer e,
which proves the theorem.[]

Tightness of Analysis:We now show that our analysis is asymp-
totically tight by presenting an example in which the schedwo-
duced by Algorithm 1 is by a factor ¢2(k) worse than the optimal
schedule. Intuitively, the proof consists of an example imal
there aret orders having processing time 1 on every facility, while
the remaining orders only have very short requests. Bectgse
facility schedulers exchange information about only up ¢oders,
there remairt large orders that the facility schedulers do not have
specific information about. Hence, instead of schedulihgtedrt
requests first, Algorithm 1 might scheduléarge orders before all
short ones, thereby unnecessarily delaying them.

THEOREM 6.10. There are instances of the distributed order
scheduling problem in which, for alt, the schedule produced by
Algorithm 1 is by a factor of2(k) worse than the optimum.

PROOF Lett = |n/k]. In our example, the processing times
of all ordersTh, ..., T; arep;; = 1 on all facilities. The process-
ing times of orderdiy1,..., T2 arep;; = 1 — e on all facilities,
and all remaining processing tim&s;yi,...,7, arep;; = ¢ on
all facilities B;. In an optimal schedule, all orders are scheduled
purely on a “shortest-job-first” basis, i.e., ord@ts 1, ..., T, are
scheduled first on all machines, followed By, 1, . .., T>; and fi-
nally 71, ..., T:. The sum of completion times in this schedule is
no more than

OPT < %(n —2)(n — 2t + 1) + 2t((n — 2t)e +t + 1),

which, fore — 0, approache® PT' < 2t(t + 1).

In Algorithm 1, all facilities broadcast the exact procegsiimes
of thet = |n/k] requestd, ..., T; with largest processing times,
but only average values for the remaining requests. Fasitihed-
ulers do not know the exact values ®f,1,...,T, and, hence,
cannot distinguish between the long ord&is1, ..., 7% and the
remaining short orders. For this reason, it is possiblettieaorder-
ing computed in Line 6 first schedules ord&is 1, . . ., T>: before
all short ordersls¢+1,...,T,. The sum of completion times re-
sulting from this ordering is at least

ALG(E) > %t(t—e)—&-(n—Qt) (t(l—e)—l—%(n—%)e) +t<t+%).

Forte =0, ihis approaches\LG (k) > nt. Hence, 2ZG8 —
st 2 3ty € k). O

7. BACKGROUND ON DRAM MEMORY
AND DRAM CONTROLLERS

In this section, we describe how the distributed order sgliragl
problem models an important problem in shared DRAM memory
scheduling in many-core systems.

Organization of DRAM memory and DRAM controller: As
shown in Figure 1, the DRAM system in modern computer sys-
tems is organized into multipleanks such that accesses to differ-
ent banks can be serviced in parallel. Each core (i.e., psoce
or thread) connected to the DRAM can generate memory regjuest

To/From Thread 0 Thread N-1
Processors  Requests Requests
(2}
3
@
I E Crossbar J
©
Q| Tl Tl __—_—_..
sl 1 1 ‘
5 ‘
T i |
&L BANK 0 BANK B-1 !
- REQUEST REQUEST !
— BUFFER BUFFER !
! I
I
! I
i

Bank 0 Bank B-1

Scheduler

Scheduler

DRAM Data Bus

[ DRAM Bus Scheduler }

l Selected Address and DRAM Commani

DRAM Address/Command Bus¢

To/From DRAM Banks To DRAM Banks

BANK 0 BANK B-1

Figure 1: DRAM controller organization in modern multi-cor e
processors

Each memory request is destined for a specific bank bases ad-it
dress. To buffer outstanding requests, thereliarek request buffer
associated with each bank. ank scheduleoperates on its local
bank request buffer to determine which of the outstandingests
should be serviced next by that bank (if the bank is not ajread
busy servicing a request). Due to packaging cost limitatiamly
one request can be sent to the DRAM at a given clock cycle, i.e.
there is one single bus connected to each DRAM bank. Thexefor
a separatddRAM bus schedulechooses which bank scheduler’s
request will be serviced next. The DRAM bus scheduler uguall
takes the oldest request among the ones selected by théedimaliv
bank schedulers.Note that a DRAM bank access takes hundreds
of clock cycles; as such multiple requests can be servicedral-
lel in DRAM banks. As a result, the local decisions made byheac
DRAM bank scheduler determingghich requestsre serviced in
parallel in the banks, which is precisely the problem cagiuny
our distributed order scheduling problem.

Minimizing the average completion time in our frameworktis t
right objective, because at any given time, a thread can tmave-
ple requests to different banks outstanding. Due to the@afiout-
of-order instruction processing in modern processors,reathis
stalled untilall of its outstanding memory requests are serviced [6,
7, 13]. Hence, as modeled by the distributed order schegipliob-
lem, the execution time (i.e., completion time) of the tioreall be
determined by the bank that services the requests mostys|Bwt
this reason, the decisions taken locally by each bank stdredts
fect the completion time of a thread. And, the completioretiofia
thread is a critical measure to determine the schedulingjeffiy in
a DRAM controller. If the average completion time of all tads is
low, the threads stall less and can make faster progressatety
leading to better performance.

4Note that this is true in the absence of aow hits i.e. requests that hit
in the row buffers associated with DRAM banks [12, 14]. AtD&RAM
scheduling is significantly more complicated than what wecdbe. We
only describe those scheduling decisions that result in dirder perfor-
mance effects to build our theoretical framework.



Batch-Scheduling:In order to avoid starvation and to guarantee
efficient and fair distribution of the DRAM bandwidth to abbres
sharing the DRAM systenhatch-scheduling of memory requests
has recently been introduced [15]. In this scheme, schagiplio-
ceeds in batches. The idea of batching is to consecutivelypgr
outstanding requests in the bank request buffers into largis
called batches. Each bank marks the oldésequests from each
thread in its request buffer as belonging to the currentbaihen
scheduling, marked requests are prioritized over all otbguests
by the bank schedulers. Once no marked requests remairal(i.e.

L1 L1
INST. || DATA
CACHE | CACHH

marked requests are serviced by the DRAM banks), a new batch i

formed by repeating the marking process.

A thread’s completion time within a batch is defined as theetim
between the initial formation of the batch and the time whaes t
last request of the thread in the batch is serviced. As argbede,

a thread’s completion time within a batch determines itfquer

mance and in order to maximize overall system performance, a;

batch-scheduling based DRAM controller should schedaests
such that the average completion time of threads within ehbiat
minimized [15].

In view of the above, it is clear that the problem of schedylin
DRAM memory requests in multi-core systems maps directti¢o
order scheduling problemutlined in the introduction. The banks
correspond to the different facilities, and the threadsespond to
orders. Within a batch, all requests issued by a certairathte a
certain bank can be regarded as one request.

8. EMPIRICAL EVALUATION

We evaluate the distributed order scheduling algorithrhiwithe
context of multi-core DRAM controllers, as described in 8&ats 2
and 7. We use microarchitectural simulation to empiricakwlu-
ate order scheduling and analyze its effects using real loadk.
Our evaluation is based on the cycle-accurate simulatianrefil-
istic multi-core system that implements the x86 instruttset ar-
chitecture. The simulator takes as input instructionilésaces of
x86 applications generated using the Pin [10] and iDNA [a¢ing
tools. These instruction traces are then simulated via tbeeg-
sor models. Memory instructions, loads (reads) and stevete§),
access the processor’s caches to load data. Each processar h
private L1 cache and a private L2 cache. A memory request that
misses in both caches is entered into the corresponding teank
quest buffer in the DRAM controller. Each L2 cache is conedct
to the DRAM controller. Figure 2 shows the high-level arebttire
modeled by our simulator. We model especially the memoriesys
in detall, faithfully capturing bandwidth limitations, ntention, and
enforcing bank/port/channel/bus conflicts. Table 1 shdwestajor
DRAM and processor parameters.

8.1 Evaluated Applications

Table 2 describes the applications we have used in our di@iua
Table 3 then details the application mixes we have used t@nun
the different cores of the many-core system. Each appbicatias
compiled using gcc 4.1.2 with -O3 optimizations and run f605
thousand instructions chosen from a representative éreqitase
using a methodology similar to [18].

Applications: We use several of the SPEC CPU2006 bench-
marks [25], which are commonly used for processor perfonaan
evaluation, and two large Windows desktop applicationstidlia
and an XML parsing application) for evaluation. We evalUate
different combinations of multiprogrammed workloads ringnon
4- and 8-core systems. The applications and applicatiorbown
tions listed in Tables 2 and 3 are selected to evaluate thegee
case behavior of different scheduling algorithms.

Traces

for Application 0

Traces
for Application 1

Traces
for Application 2

Traces
for Application 3

L1 L1
INST. || DATA
CACHE | CACHH

L
INST.
CACHEH

L1 L
INST. || DATA
CACHE | CACHH

i

i

L1
DATA
CACHH

i

L2 CACHE

L2 CACHE

L2 CACHE

L2 CACHE

|

|

I

|

Crosshar

Bank 0
Request
Buffer

Bank 1
Request
Buffer

Bank 2
Request
Buffer

Buffer

Bank 3
Request

Bank 4
Request
Buffer

Bank 5
Request
Buffer

Bank 6
Request
Buffer

Bank 7
Request
Buffer

Bank 0
Sched.

Bank 1
Sched.

Bank 2
Sched.

Bank

Sched.

3 Bank 4

Sched.

Bank 5
Sched.

Bank 6
Sched.

Bank 7
Sched.

DRAM Bus Scheduler

DRAM

| Multi-core
| Chip

Controller |

BANK O | |[BANK 1 | |[BANK 2 | [BANK 3| |[BANK4| |BANKS | |[BANK 6| |BANK 7

Figure 2: Simulated multi-core architecture

Metrics: We use theaverage batch completion time (ABCA)
threads to compare the scheduling efficiency of the coetisll A
batch’s average completion time is equal to the sum of comple
tion times of the threads within the batch divided by the namb
of threads with marked requests. ABCT is computed by avegagi
average completion times over all batches at the end of thelai
tion runs. We also measure the system throughput providectly
controller, using the weighted-speedup metric, which memnly
used in multiprogrammed performance evaluation of miaioar
tecture designs [24].

8.2 Evaluated DRAM Scheduling Policies

We empirically evaluate several different schedulerd,ibka vary-
ing amount of communication between different bank (=fagil
schedulers. All schedulers run within a batching scheme $ee-
tion 7) to avoid starvation and ensure fairness [15]. Théuaved
scheduling algorithms differ from each other in two aspettsiow
they determine therder of threads to be serviced within a batch
of requests, 2) how much information is communicated ambeg t
bank schedulers to compute the order of threads.

SJF scheduler: The SJFscheduler is the baseline scheduler if
there isno communicatioetween different bank schedulers. Each
bank scheduler independently employs shertest job firsprinci-
ple to decide the order in which it schedules its requests result,
the servicing order of threads in one bank can be completférd
ent from the servicing order of threads in another bank.

Max-Total controller: The MAX-TOTscheduler [15] requires
complete thread informatioamong all bank schedulers. In par-
ticular, each bank scheduler conveys to every other bargdsibér
the number of requests (in the current batch) from each dhirea
its own bank request buffer. Using this information, theestiiers
compute the ordering of threads shown in Algorithm 2.

Since each bank scheduler has access to the same information
they all compute the same thread ordering, i.e., the segyioi-
der of threads in all banks is the same. The MAX-TOT heuristic
is based on the observation that the maximum number of oaksta
ing requests to any bank correlates with the “shortnesseojath,”
i.e., with the minimal memory latency required to serve atjuests
from athread. A thread with smaller max-bank-load (MLB) feag



Cores and core pipeline

4 or 8 core systems; 4 GHz processi®28-entry instruction window, 12-stage pipeline

Fetch/Exec/Commit width| 3 instructions per cycle in each core; o

nly 1 can be a memoeyation

L1 Caches

32 K-byte per-core, 4-way set associative, 64-byte blozk,s2-cycle latency

L2 Caches

512 K-byte per core, 8-way set associative, 64-byte blaok, €i2-cycle latency,

DRAM controller

128-entry request buffer per bank, reads prioritized ovétes, XOR-based address-to-bank mapping

DRAM chip parameters

8 banks; Micron DDR2-800 timing parameters (see [11]); 20€le bank access latency

Table 1: Baseline CMP and me

mory system configuration

[ Benchmark [[ Suite [ Brief description
Ibm SPEC CPU2006 Floating-Point Fluid dynamics; simulates incompressible fluids in 3D
mcf SPEC CPU2006 Integer Single-depot vehicle scheduling using combinatorialroftation
GemsFDTD || SPEC CPU2006 Floating-Point Solves the Maxwell equations in 3D
omnetpp SPEC CPU2006 Integer Discrete event simulator modeling a large Ethernet camptwsark
matlab Windows Desktop Mathematical programming language and environment
leslie3d SPEC CPU2006 Floating-Point Computational fluid dynamics
libquantum SPEC CPU2006 Integer Simulates a quantum computer, running Shor’s polynonmieé-factorization algorithm
xml-parser Windows Desktop Parses and displays XML files
soplex SPEC CPU2006 Floating-Point Solves a linear program using a simplex algorithm and spamsar algebra
cactusADM || SPEC CPU2006 Floating-Point Solves the Einstein evolution equations
astar SPEC CPU2006 Integer Pathfinding algorithms for 2D maps
hmmer SPEC CPU2006 Integer Protein sequence analysis using profile hidden Markov nsodel
h264ref SPEC CPU2006 Integer A reference implementation of H.264 video compressiondstech
gromacs SPEC CPU2006 Floating-Point Molecular dynamics; simulates Newtonian equations of amoti
bzip2 SPEC CPU2006 Integer In-memory compression/decompression of input files
Table 2: Evaluated applications
[ Combination [| Applications |

MIX1 Ibm, mcf, GemsFDTD, omnetpp

MIX2 matlab, leslie3d, libquantum, mcf

MIX3 xml-parser, matlab, soplex, Ibm

[ MIX8-1 [[ mcf, xml-parser, cactusADM, astar, hmmer, h264ref, grambeip2 |

Table 3: Evaluated application combinations

the
ha

1: Max rule: For each thread, let max-bank-load (MBL) be
maximum number of requests for any bank. A thread wi
lower MBL is ordered before a thread with a higher MBL.

. Tie-breaker Total rule: If two threads have the same MB
a thread with lower total number of requests (in all bankg
ordered before a thread with higher total number of requeg

L,
) is
ts

Algorithm 2: Max-Total Controller: Thread Ordering

marked requests going to the same bank and hence can bedinishe
fast. By prioritizing requests from such threads and alhgabanks
to make coordinated thread ordering decisidM#X-TOTaims to
minimize the average completion time within a batch. It can b
shown (using an example similar to the one used in the proof of
Theorem 5.1) that MAX-TOT has a worst-case performance ds ba
asQ(y/n). As our evaluations show, however, its performance is
quite good in the practical cases.

Distributed Order Scheduling (DOS) Controller: This con-
troller is the one described in Algorithm 1 of Section 6. Theoaint
of information communicated between the schedulers vafées
pending on the parametér= |n/k|. If t = n, all schedulers
have complete global information, whereag it= 0, each bank
scheduler knows only the average processing time per tlmead
ery bank request buffer.

8.3 Experimental Results

Figure 3 shows the average batch completion times of therdiff
ent scheduling algorithms on the simulated 4-core systerthfee
workloads. Several observations are in order:

e Having no communication between bank schedulers &8~
scheduling) results in consistently higher average batch-c
pletion times compared to having even the minimal amount of
communication (i.e., even compared®Swith ¢ = 0). While
the worst-case analysis in Theorem 5.1 implies a similarlres
for the worst-case, the empirical evaluation suggestshibtit
MAX-TOTandDOSsubstantially outperform a purely local al-

gorithm in scenarios using real application traces as well.
e As the amount of communication between bank schedulers in-
creases, the scheduling efficiency @OS increases. This is
demonstrated by the decreasing average batch completies ti
observed with increasingvalue. Interestingly, the performance
increase is very gradual, suggesting that every new piece of
information can effectively be used to improve the computed
schedule.
The DOS algorithm with complete information exchange be-
tween bank schedulers £ 4) provides better scheduling effi-
ciency than MAX-TOT. The reductions in average batch com-
pletion time provided by DOS are respectively 4%, 5.1%, and
3.6% compared to MAX-TOT. This indicates that Algorithm 1
outperforms SJF and MAX-TOT not only in the worst case, but
also in the average case.

We also note that the scheduling efficiency of DOS with t=3tawd
is the same because communicating the average procesamofti
a single request maintains complete information.

Comparison to LP lower bound: It is interesting to compare
our results with the lower bound provided by the optimal Sotu
to OSLP. We found that the average batch completion timegas d
termined by OSLP for each mix is respectively 383, 547, ar@él 53
cycles for the three workloads. This suggests that the DQ&-al
rithm (with ¢ = 4) is at most, respectively, 12.5%, 5.5%, and 11.3%
worse than the optimal solution in the three workloads. ¢éothat
the solution to OSLP only implies a (potentially loose) lowweund
on the optimal schedule, and we assume that DOS is in fact much
closer to the real optimum than these values.

Effect on System Throughput: Our evaluation results show that
the reduction in average batch completion time has indedchan
pact on the overall system throughput. Specifically, DOSHwi
t = 4) provides respectively 1.1%, 0.8%, and 0.9% improvement in
system throughput over MAX-TOT. Similarly, it improves sy
throughput by 2.1%, 1.1%, and 1.4% compared to SJF. Also, as
the information communicated between bank schedulergases



Average Batch Completion Time

MIX-1 MIX-2 MIX-3
Figure 3: Average batch completion times (in processor cldc
cycles) of different scheduling algorithms in three diffeent 4-
core workloads

~
a
=}

— sjf
=== max-tot
mm dos(t=0)
=== dos(t=1)
== dos(t=2)
== dos(t=3)
== dos(t=4)
=—=dos(t=5)
== dos(t=6)
m— d0s(t=7)
=—=dos(t=8)

~
N
q

Average Batch Completion Time
~
3
8

3
a
=}

MIX8-1

Figure 4: Average batch completion times of different schedl-
ing algorithms in the 8-core workload

(from t=0 to t=4), system throughput also slightly increase

8-Core Systems:Figure 4 shows the average batch completion
times of the different scheduling algorithms on the simeda8-
core system. Note that average batch completion times ghehi
in the 8-core system than in the 4-core system because there i
significantly higher pressure exerted on the DRAM system by 8
concurrently running applications. The conclusions frdma 8-
core system results are similar to the conclusions we haserdr
from the 4-core system results. As a summary, we conclude tha
1) the scheduling efficiency increases with more informmato-
changed among different bank schedulers, 2) having no cainmu
cation among bank schedulers (SJF) results in the lowestlsth
ing efficiency (i.e. highest average batch completion tiraeg 3)
distributed order scheduling with complete communicatamng
bank schedulers provides the highest scheduling efficielmcgd-
dition, in this average cas®0S witht = 8 achieves an average
batch completion time that is at most 6.7% higher than tharaht
solution as bounded from below by the solution to OSLP.

9. CONCLUSION

There has recently been a trend in the distributed compuotng
munity towards studying problems associated with multimany-
core computing. So far, the problems most closely studigim
context deal with new programming paradigms such as transac
tional memory or parallel algorithms. In this paper, we hsivelied
an important distributed computing problem that ariseshani-
croarchitectureof multi-core systems. We feel that—following the
same direction—there exist a vast number of importantitiged
computing problems in multi-core system architecture.

REFERENCES

[1] S. Bhansali et al. Framework for instruction-level fragand analysis
of programs. IrProc. of the 2nd Conference on Virtual Execution
Environments (VEER006.

[2] Z.L.Chen and N. G. Hall. Supply Chain Scheduling: Assgmb
SystemsWorking Paper, Department of Systems Engineering,
University of Pennsylvanj&000.

[3] I. Duenyas. Estimating the Throughput of CycliManagement
Science39:616—625, 1993.

[4] J. M. Frailong, W. Jalby, and J. Lenfant. "XOR-SchemedieXible
data organization in parallel memories”.Pmoc. of International
Conference on Parallel Processing (ICRRP85.

(5]

(6]
(7]

(8]

El

[10]

[11]

[12]

(23]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

N. Garg, A. Kumar, and V. Pandit. Order Scheduling Models
Hardness and Algorithms. Iroc. of the Foundations of Software
Technology and Theoretical Computer Science (FST,TZDB).

T. Karkhanis and J. E. Smith. A day in the life of a data @afiss.
In Workshop on Memory Performance IsSug302.

T. Karkhanis and J. E. Smith. A First-Order SuperscalacBssor
Model. InProc. of the 31th ACM/IEEE International Symposium on
Computer Architecture (ISCA2004.

J. Leung, H. Li, and M. Pinedo. Order Scheduling in an Eswiment
with Dedicated Resources in Paralléburnal of Scheduling
8:355-386, 2005.

J. Leung, H. Li, and M. Pinedo. Scheduling Orders for Nflét
Product Types to Minimize Total Weighted Completion Time.
Discrete Applied Mathematic455:945-970, 2007.

C.-K. Luk et al. Pin: Building customized program argfytools
with dynamic instrumentation. IRroc. of the ACM Conference on
Programming Language Design and Implementation (P|.20D5.
Micron. 1Gb DDR2 SDRAM Component: MT47H128M8HQ-25
May 2007.

T. Moscibroda and O. Mutlu. Memory Performance Hogsniakof
Memory Service in Multi-Core Systems. Rroc. of the 16th USENIX
Security Symposiun2007.

O. Mutlu, H. Kim, and Y. N. Patt. Efficient runahead ex#on:
Power-efficient memory latency toleran¢dBEE Micro: Top Picks
from Computer Architecture Conferenc@6(1):10—20, 2006.

O. Mutlu and T. Moscibroda. Stall-Time Fair Memory Asse
Scheduling for Chip Multiprocessors. Rroc. of the 40th ACM/IEEE
Symposium on Microarchitecture (MICRQ)07.

O. Mutlu and T. Moscibroda. Enhancing the Performarnug a
Fairness of Shared DRAM Systems with Parallelism-AwareBat
Scheduling. IrProc. of the 35th ACM/IEEE International Symposium
on Computer Architecture (ISCA2008.

K. J. Nesbit, N. Aggarwal, J. Laudon, and J. E. Smithr Raieuing
Memory Systems. IProc. of the 39rd ACM/IEEE Symposium on
Microarchitecture (MICRO)2006.

C.T.Ng, T. C. E. Cheng, and J. J. Yuan. Concurrent Opa@pSh
Scheduling to Minimize the Weighted Number of Tardy Jalosirnal
of Scheduling6(4):405-412, 2003.

H. Patil et al. Pinpointing Representative Portions.afge Intel
Itanium Programs with Dynamic Instrumentation.Rroc. of the
37rd ACM/IEEE Symposium on Microarchitecture (MICR@)04.
M. Queyranne. Structure of a Simple Scheduling Polybed
Mathematical Programminds8:263—-285, 1993.

M. Queyranne and M. Sviridenko. New and Improved Alguris for
Minsum Shop Scheduling. IRroc. of the 11th ACM-SIAM
Symposium on Discrete Algorithms (SODpggges 871-878, 2000.
S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and JORens.
Memory access scheduling. Rroc. of the 27th ACM/IEEE
International Symposium on Computer Architecture (ISQAPO.

T. A. Roemer. A Note on the Complexity of the Concurremte®
Shop ProblemJournal of Schedulingd(4):389-396, 2006.

A. S. Schulz. Scheduling to Minimize Total Weighted Qaletion
Time: Performance Guarantees of LP-based Heuristics awgi_o
Bounds. InProc. of the5*" Conference on Integer Programming and
Combinatorial Optimization (IPCQ)pages 301-315, 1995.

A. Snavely and D. M. Tullsen. Symbiotic jobschedulirag &
simultaneous multithreading processorPioc. of the 9th Conference
on Architectural Support for Programming Languages and 1@fieg
Systems (ASPLOS000.

Standard Performance Evaluation Corporat®REC CPU2006
http://ww. spec. or g/ cpu2006/ .

C. S. Sung and S. H. Yoon. Minimizing Total Weighted Cdetipn
Time at a Pre-Assembly Stage Composed of Two Feeding Maghine
International Journal of Production Economjcs4:247-255, 1998.
G. Wang and T. C. E. Cheng. Customer Order Scheduling to
Minimize Total Weighted Completion Time. Broc. of thez st
Multidisciplinary Conference on Scheduling Theory and
Applications pages 409-416, 2003.

L. A. Wolsey. Mixed Integer Programming Formulatiors f
Production Planning and Scheduling Problemdntited talk at 12th
ACM-SIAM Symposium on Mathematical Programmit@g5s.



