
Checking the Hardware-Software Interface in Spec#
Kevin Bierhoff

Carnegie Mellon University

http://www.cs.cmu.edu/~kbierhof/

Chris Hawblitzel
Microsoft Research

http://research.microsoft.com/~chrishaw/

ABSTRACT

Research operating systems are often written in type-safe, high-

level languages. These languages perform automatic static and

dynamic checks to give basic assurances about run-time behavior.

Yet such operating systems still rely on unsafe, low-level code to

communicate with hardware, with little or no automated checking

of the correctness of the hardware-software interaction. This paper

describes experience using the Spec# language and Boogie

verifier to statically specify and statically verify the safety of a

driver's interaction with a network interface, including the safety

of DMA.

1. INTRODUCTION
Once upon a time, programmers wrote operating systems in

assembly language. As operating systems grew and compilers

improved, OS programmers moved from assembly language to C

and C++, which provide higher-level abstractions and more static

checking than assembly language. The past 15 years have seen OS

code written in Modula-3 [3], Java [10], C# [9], ML [4], and even

Haskell [11].

We can map this progress using Cardelli's classification [5],

shown in Table 1. The trend is towards languages that are safer

and more statically typed than assembly language. In our own

work on the Singularity operating system [9], for example, we

have enthusiastically embraced static typing and safety in nearly

every aspect of the system, from the kernel to the device drivers to

the applications.

One aspect of OS programming has made relatively little progress,

though: the operating system’s communication with the hardware

almost always consists of unverifiable sequences of low-level

operations on IO memory and hardware registers. Consider

Singularity’s driver for the DEC Tulip network interface [7]. This

driver is written entirely in C# code, using only safe, high-level

C# language constructs. Nevertheless, some of the C# code looks

suspiciously unsafe and low-level. For instance, this code disables

Table 1. Types and Safety (from Cardelli [5])

 Typed Untyped

Safe ML, Java LISP

Unsafe C Assembler

packet transmission (ST) and reception (SR), and then sets the

addresses of the receive and transmit DMA queues:

uint mode = csr6.Read32();

mode &= ~(CSR6.SR | CSR6.ST);

csr6.Write32(mode);

rxRing.Reset();

csr3.Write32(rxRing.BaseAddress.ToUInt32());

txRing.Reset();

csr4.Write32(txRing.BaseAddress.ToUInt32());

In this code, csr3, csr4, and csr6 are Tulip control/status

registers. Each register has a particular meaning to the Tulip

hardware. The csr6 register, for example, contains bits that

control the network interface’s current mode of operation. The

csr3 register contains the physical address of the receive queue.

If the driver accidentally used csr3 in place of csr6 and csr6

in place of csr3, then the network card would use the mode bits

as a physical DMA address and an address as mode bits, causing

unpredictable and unsafe behavior. Since csr3 and csr6 have

the same C# type, the C# type checker would not catch this

mistake at compile time. Nor would C#’s run-time system catch

the mistake at run time. Thus, in Cardelli’s classification, the code

shown above fits more closely in the "unsafe, untyped" category

with assembly language than in the "safe, typed" category with

C#, ML, and Java.

Safe, typed interaction with hardware is challenging for several

reasons:

 Arithmetic. In the example code above, the meaning of

csr6.Write32(mode) varies dramatically

depending on which bits are set in mode. More

generally, words sent to the device may have integer bit

fields with constraints on the allowed integer values.

For example, the Tulip device’s DMA queues contain

bit fields for the lengths of the buffers in the queues. To

avoid buffer overflow, these length bit fields must be no

larger than the actual lengths of the buffers. Such

arithmetic constraints aren’t difficult to check at run

time, but are beyond the abilities of most static type

checkers.

 State. Reasoning about the correctness of a device

driver requires reasoning about the state of the device.

For example, a driver must properly establish valid

transmit and receive queues (in csr3 and csr4) before

enabling packet transmission and packet reception (the

ST and SR bits of csr6). This is difficult to verify at

run-time; even if a run-time assertion walked the entire

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

PLOS’07, October 18, 2007, Stevenson, Washington, USA.

Copyright 2007 ACM 978-1-59593-922-7/07/0010…$5.00.

queues to check that each entry in each queue was valid,

another thread could concurrently modify the queues to

destroy this validity. Compile-time verification is more

practical, but requires careful tracking of aliasing, and a

consideration for how the device and driver interact

concurrently.

 Performance. Safety should not impose a large

performance penalty. For example, for performance’s

sake, Singularity’s network drivers are designed to be

zero copy, so that the driver passes the network stack’s

buffers directly to and from the DMA queues without

copying the data. To ensure safety for a zero-copy

implementation, the network stack must not be allowed

to deallocate a buffer while the device is performing

DMA to the buffer.

 Hardware diversity. Each device defines its own

interface to the software. These interfaces are sometimes

quirky and counterintuitive. (A write of "1" to the Tulip

csr5 register means "set to 0", for example.)

Operations that are safe for one device may be unsafe

for another. This makes it impossible to provide a

universal safe hardware interface suitable for all drivers.

Operating systems and programming languages cannot

eliminate the diversity of hardware-software interfaces,

but good software engineering can manage the problem.

This paper advocates an incremental engineering approach to

structuring drivers: isolate the hardware-software interface code in

a per-device safe hardware interaction layer (SHIL) that is

independent of the rest of the driver. Each device SHIL should

consist of a small collection of trivial primitive operations (e.g.

"write the receive queue address to csr3"). Each operation must

specify pre-conditions and post-conditions that describe the

device state and ensure the safety of the operation. Therefore, if

the device SHIL is written correctly, then the rest of the driver

cannot cause the device to behave unsafely. Of course, the device

SHIL could be incorrect, but in practice it’s easier to find

mistakes in a small, self-contained SHIL than in a large driver.

The SHIL approach applies incrementally to existing drivers. A

programmer can start by just declaring an entire existing driver to

be a SHIL, and then gradually move code out of the SHIL. At the

furthest extreme, a SHIL could consist of just two functions, one

to write data at an address and one to read data from an address,

as long as these functions contain pre-conditions and post-

conditions detailed enough to describe every possible safe write

and read operations on device registers and DMA memory.

We have applied the SHIL approach incrementally to an existing

Singularity Ethernet adaptor driver, using the Spec# language to

express pre-conditions, post-conditions, and invariants, and the

Boogie static verifier to check that the pre-conditions, post-

conditions, and invariants hold. In particular, the key operations

are encapsulated in SHIL methods: starting and stopping

transmission and reception, enqueuing and dequeuing DMA

buffers, handling interrupts, and polling the device status. Some

of the SHIL methods are larger than we would like, but they are

still small enough for us to express and statically verify many

interesting properties about the driver, including the following:

 All integer values passed to the SHIL are within

allowed ranges. (Checking this property revealed an

out-of-allowed-range integer value bug in the original

driver.)

 Packets are enqueued only when queues aren't full, and

dequeued only when queues aren't empty.

 SHIL methods are only invoked when the device is in a

state appropriate to the method.

 The driver releases control of any buffers passed to the

SHIL, and does not regain access to the buffer until the

SHIL determines that the device is no longer using the

buffer.

2. SINGULARITY, SPEC#, AND BOOGIE
The Singularity OS runs applications, services, and drivers written

in the Sing# programming language [9]. Sing# is an extension of

Spec# [2], which in turn extends C#. For this paper, the most

relevent extensions to C# are:

 Pre-conditions and post-conditions. Spec# methods

may declare requires and ensures clauses that

specify pre-conditions and post-conditions about the

arguments. For example:

int SquareRoot(int n)

 requires n >= 0;

 ensures Square(result) <= n;

 ensures n < Square(result + 1);

{...method body...}

Spec# pre-conditions and post-conditions may also refer

to mutable fields of objects (including the this

object). We use this to require and ensure properties

about the state of SHIL objects, which in turn reflect the

state of the device.

 Object invariants. Spec# classes may declare invariants

on fields. An object's constructor initializes the fields to

establish the invariant. After construction, methods may

temporarily "expose" an object to break and reestablish

the object's invariants.

 Linear types. Sing# supports linear types, which

restrict aliasing in order to enable static reasoning about

state and ownership. For example, a Sing# program can

safely deallocate a linear object, because the language

guarantees that no aliases to the object exist elsewhere

in the program. Although Singularity disallows shared

data between processes, a Singularity process may

transfer ownership of linear data structures to another

process. For example, the Singularity network stack

exchanges linear data buffers with the network drivers

to avoid copying data between the network stack

process and driver process.

The Sing# compiler (built on top of the Spec# compiler) performs

both standard C# type checking and linearity checking. A separate

tool called Boogie checks Spec#'s pre-conditions, post-conditions,

and invariants. Type checking and linearity checking are simple,

decidable problems for the Sing# compiler. Boogie, on the other

hand, must generate verification conditions and pass these to a

separate automated theorem prover. This is more difficult,

because Spec# pre-conditions, post-conditions and invariants are

arbitrary first-order logical formulas that may contain arithmetic

expressions and universal and existential quantifiers. In theory, no

automatic theorem prover can always decide whether these

formulas are valid. In our experience, the automatic theorem

prover was able to verify all verification conditions for our driver

in about 15 minutes. This is much slower than type checking, but

much faster than interactive (not completely automatic) theorem

proving. For properties whose static verification is too onerous,

it's often possible to insert an explicit run-time check into the

program (much like a run-time cast in ordinary C# and Java).

Although nearly all of our verification was static, we did add a

handful of small run-time checks to ease the static checking and

overcome limitations in the theorem prover.

3. A TULIP SHIL
We chose Singularity's DEC Tulip driver as a case study for the

SHIL approach, because the Tulip device is well documented [7],

widely known, widely cloned, and has non-trivial requirements

for safe usage. In particular, the DMA protocol requires careful

coordination between the driver and the device. The Tulip device

uses two rings, both stored in the host's physical memory. Each

ring may be implemented as either an array or a linked list,

although our SHIL currently only supports the array

implementation. The first ring holds a queue of packets to be

transmitted to the network, and the second ring holds a queue of

packets received from the network. Figure 1 depicts the receive

ring (the transmit ring is nearly identical). The device's csr3

register points to the base of the receive ring, which is an array of

entries, where each entry contains four 32-bit words. The last two

words of the entry contain physical addresses of up to two data

buffers. The second word contains the size of each buffer (or 0 for

an unused buffer), plus some flags (including an "end-of-ring"

flag that marks the last element of the array). The first word

contains an ownership bit, plus status flags set by the device.

The ownership bit is the key to the safe usage of the device. When

this bit is 1, the device owns the entry and the driver should not

modify the entry or the buffers pointed to by the entry. When the

bit is 0, the driver owns the entry and the device should not touch

the entry or its buffers. Initially, the driver establishes a receive

ring of entries all owned by the driver, with no buffers. The

network stack grants buffers to the driver. The driver places these

buffers into entries and then (and only then) marks the entries as

device-owned. The device uses DMA to receive packet data into

the buffers of a device-owned entry, and then switches the entry's

ownership back to the driver, which then transfers the buffers

back to the network stack. As the device receives packets, it

proceeds through the ring sequentially (wrapping around to the

first entry of the array after reaching the last entry). If the device

ever encounters a driver-owned entry, it assumes that the ring is

full and may drop incoming packets until the driver transfers the

entry's ownership back to the device.

The SHIL must track the state of each ring, the state of each entry

in each ring, and the overall state of the device. The SHIL's

TulipDevice class tracks the overall state of the device. This

class has four private boolean fields, txConfig, rxConfig,

txStarted, and rxStarted, along with public properties to

read the boolean fields (TxConfigured, RxConfigured,

TxStarted, RxStarted). Each Config field is true only if

the corresponding ring is set up and ready for the device to access.

The following SHIL instance method inside TulipDevice

starts reception and transmission:

internal void StartRxTxMiiSym()

 requires RxConfigured && TxConfigured;

 modifies this.rxStarted, this.txStarted;

 ensures RxConfigured && TxConfigured

 && RxStarted && TxStarted;

{

 csr6.Write32(CSR6.MBO | CSR6.HBD | CSR6.PS

 | (3u << CSR6.TR_ROLL)

 | CSR6.ST | CSR6.SR);

 rxStarted = txStarted = true;

}

Note that the requires clause forces the driver to configure the

rings before starting transmission and reception; without this

requirement, the driver could tell the device to access uninitialized

rings.

The receive buffer descriptor ring is abstracted as an object of

type TulipRxRing that provides two methods Update and

GiveToDevice that allow the verified part of the device driver

to read and write individual ring entries, respectively. Each

receive ring entry is represented as an object of type

TulipRxDescriptor that will be described in more detail

below. It exposes the two flags mentioned before as boolean

properties OwnedByDevice and EndOfRing. Two additional

boolean properties keep track of buffers 1 and 2 being set

(together with their lengths). With these properties,

GiveToDevice is specified as follows.

internal void

GiveToDevice(TulipRxDescriptor! descriptor)

 requires 0 <= descriptor.Index

 && descriptor.Index < Capacity;

 requires descriptor.EndOfRing ==

 (descriptor.Index == Capacity - 1);

 requires

 descriptor.OwnedByDevice == false;

 requires descriptor.Buffer1Set

 && descriptor.Buffer2Set;

 ensures

 descriptor.OwnedByDevice == true;

 ...

Tulip

device

csr3

Host memory

Figure 1. Receive Ring

entry

entry

entry

entry

entry

flags

entry

flags

buffer1 address

buffer2 address

size1 size2

own

The method argument represents the entry to be written into the

ring. (The ! marks the argument as non-null.) The first pre-

condition requires the entry’s index to be within bounds of the

ring array. The second condition requires the EndOfRing flag

to be set if and only if the entry to be written is the last one in the

array. The entry must furthermore not be currently owned by the

device, and the buffer pointers must be set. The ownership

requirement is crucial for avoiding race conditions with ring

accesses by the device while the buffer requirement is a step

towards memory safety: buffer addresses and lengths must be

initialized before they can be written into the ring, avoiding DMA

accesses to random memory locations.

Notice that GiveToDevice’s post-condition formalizes what

the method name suggests: After writing the entry, its ownership

flag is set, effectively putting the entry under control of the

device. The driver now has to wait until the device relinquishes

control of the entry before it can write to it again (per the

OwnedByDevice == false pre-condition).

The driver can use the Update method to test whether the device

relinquished control of an entry. Update implements querying

of a ring entry and is specified as follows.

internal bool Update(

 TulipRxDescriptor! descriptor)

 requires 0 <= descriptor.Index

 && descriptor.Index < Capacity;

 ensures

 descriptor.OwnedByDevice == result;

 ...

Again, the argument is a non-null TulipRxDescriptor object

with a valid array index. It reads the specified (possibly changed

by the device) entry from the ring and updates (hence the name)

the argument accordingly. The boolean method result indicates

whether the device (still) owns the entry, which is formalized by

the method post-condition.

TulipRxDescriptor is also part of the SHIL and formalizes

the operations that the driver can perform on individual ring

entries. The driver can in particular query the various status bits

and set the EndOfRing flag mentioned above. It can also set the

buffer pointers and lengths.

The methods to give buffers to receive descriptors are specific to

the data structures used by Singularity’s network stack and are

designed to guarantee that neither the driver (nor any other

process) can access buffers while they are accessed by the device.

internal void Buffer1Claim(Packet! packet)

 requires packet.Full;

 requires Buffer1Set == false;

 ensures packet.Empty;

 ensures Buffer1Set == true;

 ...

Buffer1Claim in TulipRxDescriptor can be used to pass

a buffer (of type Packet) to a descriptor. Notice that this sets

the descriptor’s Buffer1Set property. The “claiming” of the

buffer by the descriptor is indicated by the change from Full (in

the pre-condition) to Empty (in the post-condition). Only Full

buffers can be accessed (this is enforced by Packet’s method

specifications). The inverse method Buffer1Retrieve lets

the driver later—when the device does not own the entry—

retrieve the filled buffer from the descriptor and pass it up the

network stack. But the simple Full—Empty switch effectively

prevents any buffer accesses by the driver while the buffer is

being processed.

4. A STATICALLY CHECKED DRIVER
The untrusted part of the Tulip driver interacts with a

TulipDevice object to configure the device, change its state

(to, e.g., start and stop transmitting packets), and query its status

through methods like StartRxTxMiiSym (section 3). We use

Boogie to verify statically that the driver meets the pre-conditions

of these methods. This (1) enforces validity of arguments used to

communicate with the device (such as value ranges) and (2)

ensures that requirements regarding the state of the device (such

as the requirement that transmit and receive ring addresses be

configured before transmitting and receiving buffers) are met.

The driver manages the transmit and receive buffer descriptor

rings as circular FIFO queues (that are processed by the device in

order), and uses the SHIL ring and descriptor objects (see section

3) to populate and query the rings. Again, Boogie verifies that

descriptor state (ownership) and argument validity pre-conditions

are met by the driver implementation. Invariants are used to keep

track of the state of individual descriptors.

It took about 5 person-weeks (by someone who had a little

previous experience with Boogie but no experience with

Singularity) to refactor the driver into SHIL and untrusted parts,

add trusted annotations to the SHIL, and add enough untrusted

annotations to the untrusted part of the driver to allow

verification. Some of this effort went into reading the device

documentation (200 pages, though not all of it was relevant to

driver safety) and translating this into SHIL annotations. Some of

the effort went into issues with Boogie, which is itself a research

project; occasionally we ran into bugs or unimplemented features

in Boogie. Much of the effort was just a matter of translating our

intuitive ideas about why the driver was safe into explicit pre-

conditions, post-conditions, and invariants; this was generally an

iterative process of adding some annotations, receiving error

messages from Boogie because the annotations weren't strong

enough to imply what Boogie was trying to prove, and then

adding more annotations until Boogie reported no errors. For

example, if a method f calls method g, which calls the SHIL, then

we may add a pre-condition to g to help satisfy the SHIL's pre-

condition, which may then require us to add a pre-condition to f

to help satisfy g's pre-condition.

Altogether, the resulting SHIL contained about 160 annotations

(requires, ensures, invariant, and modifies) to specify packets,

packet fragments, packet FIFOs, and packet addresses (these are

applicable to all network devices, not just the Tulip device), and

about 300 annotations to specify the Tulip device. The untrusted

part of the driver used about 270 annotations. These annotations

were substantial, but still smaller than the original driver code,

which was about 1800 (non-comment) lines. The final driver

code, after refactoring and adding annotations, was about 3200

(non-comment) lines: 1100 lines of code + 300 annotations in the

SHIL, and 1500 lines of code + 270 annotations in untrusted part.

In a few places, we were unable or unwilling to add enough

annotations for verification to succeed entirely statically, and we

decided to add run-time checks instead. In about 10 places, the

theorem prover's arithmetic checker couldn't verify properties

about bitwise arithmetic and about the modulus operator. In about

10 other places, it was either not worth the effort to add many

annotations, or the property depended on the network stack (e.g.

the number of fragments allowed in a transmitted packet); the

network stack was beyond the scope of our verification.

A large part of the complexity of the untrusted part of the Tulip

driver stems from the complex interaction between the driver, the

Singularity kernel, and the network stack. The kernel-driver

interaction follows a protocol of its own: the kernel first creates

the driver, then initializes, starts, and stops it, in this order. The

driver performs different steps in each of these methods: it creates

the ring objects in the constructor but does not initialize them

until it is initialized itself. It immediately configures the device

with the newly initialized ring addresses, but it only starts the

device when the kernel tells the device to do so, and so forth.

More than half a dozen complex invariants keep track of all these

state changes. Boogie verifies that the driver preserves these

invariants throughout the driver’s lifetime. The invariants, in

turn, allow Boogie to verify the driver-SHIL interaction.

The network stack uses inter-process communication channels to

interact with the device. These interactions can only occur after

the driver is started (see above). Additionally, the driver defines

contracts on the data structures passed between network stack and

driver. These contracts were already expressed by the original

driver developers as (dynamically checked) Sing# requires

and ensures clauses. We were able to verify the correctness of

the ensures clauses (post-conditions), while verification of the

network stack to statically prove the driver’s requires clauses

(pre-condition) is future work. For now, we rely on the run-time

checks automatically generated by the Sing# compiler.

5. RELATED WORK
The DevIL language [12] provides a concise, declarative syntax

for specifying the bit-level layout of device registers and the legal

bit-level operations on these registers. DevIL can perform some

simple static checks on the declared layout, such as checking that

bit fields do not overlap. The NDL language [6] and the HAIL

language [13] build on DevIL's ideas, including state

specifications as well as layout specifications. However, DevIL,

NDL, and HAIL do not have powerful verification condition

generators and theorem provers like Boogie, so they are not able

to statically verify deeper properties about arithmetic and state.

We believe that the DevIL/NDL/HAIL approaches are

complementary to our approach. For example, if we could

generate code like Section 3's StartRxTxMiiSym method

automatically from a concise, declarative specification, then the

SHIL would be smaller and more trustworthy.

Wittie [14] wrote a network device driver in a type-safe language

called Clay that supported linear types and static verification of

arithmetic constraints. This work did not cover DMA, though, and

required porting drivers to a new and unfamiliar language. Our

SHIL approach using Spec# and Boogie presents an easier path

for incrementally verifying properties of existing drivers.

The Metal [8] and SDV [1] tools have found an amazing number

of bugs in OS code with very little programmer effort. These tools

exploit the fact that programmers tend to make simple mistakes,

such as forgetting to release a lock, over and over again. As far as

we know, though, these tools have not been applied to hardware-

software interfaces. Our approach requires programmer effort to

specify hardware-software interfaces, but rewards the programmer

with more thorough checking of programmer-specified properties.

6. ACKNOWLEDGMENTS
We thank Rustan Leino, Mike Barnett, Ronald Middelkoop, and

Manuel Fähndrich for their assistance with Sing#, Spec#, and

Boogie, and Orion Hodson for helping us understand the

Singularity Tulip driver.

7. REFERENCES
[1] Thomas Ball, Ella Bounimova, Byron Cook, Vladimir Levin,

Jakob Lichtenberg, Con McGarvey, Bohus Ondrusek, Sriram

K. Rajamani and Abdullah Ustuner. Thorough Static

Analysis of Device Drivers. EuroSys, 2006.

[2] Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte.

The Spec# programming system: An overview. CASSIS,

2004

[3] Brian Bershad, Stefan Savage, Przemyslaw Pardyak, Emin

Gun Sirer, David Becker, Marc Fiuczynski, Craig Chambers,

Susan Eggers. Extensibility, Safety and Performance in the

SPIN Operating System. Symposium on Operating System

Principles (SOSP), 1995.

[4] Edoardo Biagioni. A structured TCP in standard ML.

SIGCOMM, 1994.

[5] Luca Cardelli. Type systems. The Computer Science and

Engineering Handbook. CRC Press, 2004. Chapter 97.

[6] Christopher L. Conway and Stephen A. Edwards. NDL: A

Domain-Specific Language for Device Drivers. Languages,

Compilers, and Tools for Embedded Systems (LCTES),

2004.

[7] Digital Equipment Corporation. DIGITAL Semiconductor

21140A PCI Fast Ethernet LAN Controller Hardware

Reference Manual.

http://www.intel.com/design/network/manuals/21140ahm.pdf

[8] Dawson Engler, David Yu Chen, Seth Hallem, Andy Chou,

and Benjamin Chelf. Bugs as Deviant Behavior: A General

Approach to Inferring Errors in Systems Code. Symposium

on Operating Systems Principles (SOSP), 2001.

[9] Manuel Fähndrich, Mark Aiken, Chris Hawblitzel, Orion

Hodson, Galen C. Hunt, James R. Larus, and Steven Levi.

Language Support for Fast and Reliable Message-based

Communication in Singularity OS. EuroSys, 2006.

[10] Michael Golm, Meik Felser Christian Wawersich, and Jürgen

Kleinöder. The JX Operating System. USENIX Annual

Technical Conference, 2002.

[11] Thomas Hallgren, Mark P. Jones, Rebekah Leslie, Andrew

Tolmach. A Principled Approach to Operating System

Construction in Haskell. International Conference on

Functional Programming (ICFP), 2005.

[12] F. Mérillon, L. Réveillère, C. Consel, R. Marlet, and G.

Muller. Devil: An IDL for Hardware programming.

Operating Systems Design and Implementation (OSDI),

2000.

[13] Jun Sun, Wanghong Yuan, Mahesh Kallahalla, Nayeem

Islam. HAIL: a language for easy and correct device access.

EMSOFT, 2005.

[14] Lea Wittie. Type-Safe Operating System Abstractions. Ph.D.

Thesis, 2004. Dartmouth Technical Report TR2004-526.

