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ABSTRACT 

Research operating systems are often written in type-safe, high-

level languages. These languages perform automatic static and 

dynamic checks to give basic assurances about run-time behavior. 

Yet such operating systems still rely on unsafe, low-level code to 

communicate with hardware, with little or no automated checking 

of the correctness of the hardware-software interaction. This paper 

describes experience using the Spec# language and Boogie 

verifier to statically specify and statically verify the safety of a 

driver's interaction with a network interface, including the safety 

of DMA. 

1. INTRODUCTION 
Once upon a time, programmers wrote operating systems in 

assembly language. As operating systems grew and compilers 

improved, OS programmers moved from assembly language to C 

and C++, which provide higher-level abstractions and more static 

checking than assembly language. The past 15 years have seen OS 

code written in Modula-3 [3], Java [10], C# [9], ML [4], and even 

Haskell [11]. 

We can map this progress using Cardelli's classification [5], 

shown in Table 1. The trend is towards languages that are safer 

and more statically typed than assembly language. In our own 

work on the Singularity operating system [9], for example, we 

have enthusiastically embraced static typing and safety in nearly 

every aspect of the system, from the kernel to the device drivers to 

the applications. 

One aspect of OS programming has made relatively little progress, 

though: the operating system’s communication with the hardware 

almost always consists of unverifiable sequences of low-level 

operations on IO memory and hardware registers. Consider 

Singularity’s driver for the DEC Tulip network interface [7]. This 

driver is written entirely in C# code, using only safe, high-level 

C# language constructs. Nevertheless, some of the C# code looks 

suspiciously unsafe and low-level. For instance, this code disables 

Table 1. Types and Safety (from Cardelli [5]) 

 Typed Untyped 

Safe ML, Java LISP 

Unsafe C Assembler 

packet transmission (ST) and reception (SR), and then sets the 

addresses of the receive and transmit DMA queues: 
 

uint mode = csr6.Read32(); 

mode &= ~(CSR6.SR | CSR6.ST); 

csr6.Write32(mode); 

rxRing.Reset(); 

csr3.Write32(rxRing.BaseAddress.ToUInt32()); 

txRing.Reset(); 

csr4.Write32(txRing.BaseAddress.ToUInt32()); 

  

In this code, csr3, csr4, and csr6 are Tulip control/status 

registers. Each register has a particular meaning to the Tulip 

hardware. The csr6 register, for example, contains bits that 

control the network interface’s current mode of operation. The 

csr3 register contains the physical address of the receive queue. 

If the driver accidentally used csr3 in place of csr6 and csr6 

in place of csr3, then the network card would use the mode bits 

as a physical DMA address and an address as mode bits, causing 

unpredictable and unsafe behavior. Since csr3 and csr6 have 

the same C# type, the C# type checker would not catch this 

mistake at compile time. Nor would C#’s run-time system catch 

the mistake at run time. Thus, in Cardelli’s classification, the code 

shown above fits more closely in the "unsafe, untyped" category 

with assembly language than in the "safe, typed" category with 

C#, ML, and Java. 

Safe, typed interaction with hardware is challenging for several 

reasons: 

 Arithmetic. In the example code above, the meaning of 

csr6.Write32(mode) varies dramatically 

depending on which bits are set in mode. More 

generally, words sent to the device may have integer bit 

fields with constraints on the allowed integer values. 

For example, the Tulip device’s DMA queues contain 

bit fields for the lengths of the buffers in the queues. To 

avoid buffer overflow, these length bit fields must be no 

larger than the actual lengths of the buffers. Such 

arithmetic constraints aren’t difficult to check at run 

time, but are beyond the abilities of most static type 

checkers. 

 State. Reasoning about the correctness of a device 

driver requires reasoning about the state of the device. 

For example, a driver must properly establish valid 

transmit and receive queues (in csr3 and csr4) before 

enabling packet transmission and packet reception (the 

ST and SR bits of csr6). This is difficult to verify at 

run-time; even if a run-time assertion walked the entire 
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queues to check that each entry in each queue was valid, 

another thread could concurrently modify the queues to 

destroy this validity. Compile-time verification is more 

practical, but requires careful tracking of aliasing, and a 

consideration for how the device and driver interact 

concurrently. 

 Performance. Safety should not impose a large 

performance penalty. For example, for performance’s 

sake, Singularity’s network drivers are designed to be 

zero copy, so that the driver passes the network stack’s 

buffers directly to and from the DMA queues without 

copying the data. To ensure safety for a zero-copy 

implementation, the network stack must not be allowed 

to deallocate a buffer while the device is performing 

DMA to the buffer. 

 Hardware diversity. Each device defines its own 

interface to the software. These interfaces are sometimes 

quirky and counterintuitive. (A write of "1" to the Tulip 

csr5 register means "set to 0", for example.) 

Operations that are safe for one device may be unsafe 

for another. This makes it impossible to provide a 

universal safe hardware interface suitable for all drivers. 

Operating systems and programming languages cannot 

eliminate the diversity of hardware-software interfaces, 

but good software engineering can manage the problem. 

This paper advocates an incremental engineering approach to 

structuring drivers: isolate the hardware-software interface code in 

a per-device safe hardware interaction layer (SHIL) that is 

independent of the rest of the driver. Each device SHIL should 

consist of a small collection of trivial primitive operations (e.g. 

"write the receive queue address to csr3"). Each operation must 

specify pre-conditions and post-conditions that describe the 

device state and ensure the safety of the operation. Therefore, if 

the device SHIL is written correctly, then the rest of the driver 

cannot cause the device to behave unsafely. Of course, the device 

SHIL could be incorrect, but in practice it’s easier to find 

mistakes in a small, self-contained SHIL than in a large driver. 

The SHIL approach applies incrementally to existing drivers. A 

programmer can start by just declaring an entire existing driver to 

be a SHIL, and then gradually move code out of the SHIL. At the 

furthest extreme, a SHIL could consist of just two functions, one 

to write data at an address and one to read data from an address, 

as long as these functions contain pre-conditions and post-

conditions detailed enough to describe every possible safe write 

and read operations on device registers and DMA memory. 

We have applied the SHIL approach incrementally to an existing 

Singularity Ethernet adaptor driver, using the Spec# language to 

express pre-conditions, post-conditions, and invariants, and the 

Boogie static verifier to check that the pre-conditions, post-

conditions, and invariants hold. In particular, the key operations 

are encapsulated in SHIL methods: starting and stopping 

transmission and reception, enqueuing and dequeuing DMA 

buffers, handling interrupts, and polling the device status.  Some 

of the SHIL methods are larger than we would like, but they are 

still small enough for us to express and statically verify many 

interesting properties about the driver, including the following: 

 All integer values passed to the SHIL are within 

allowed ranges.  (Checking this property revealed an 

out-of-allowed-range integer value bug in the original 

driver.) 

 Packets are enqueued only when queues aren't full, and 

dequeued only when queues aren't empty. 

 SHIL methods are only invoked when the device is in a 

state appropriate to the method. 

 The driver releases control of any buffers passed to the 

SHIL, and does not regain access to the buffer until the 

SHIL determines that the device is no longer using the 

buffer. 

2. SINGULARITY, SPEC#, AND BOOGIE 
The Singularity OS runs applications, services, and drivers written 

in the Sing# programming language [9]. Sing# is an extension of 

Spec# [2], which in turn extends C#. For this paper, the most 

relevent extensions to C# are: 

 Pre-conditions and post-conditions. Spec# methods 

may declare requires and ensures clauses that 

specify pre-conditions and post-conditions about the 

arguments. For example: 

int SquareRoot(int n) 

    requires n >= 0; 

    ensures Square(result) <= n; 

    ensures n < Square(result + 1); 

{...method body...} 

Spec# pre-conditions and post-conditions may also refer 

to mutable fields of objects (including the this 

object). We use this to require and ensure properties 

about the state of SHIL objects, which in turn reflect the 

state of the device. 

 Object invariants. Spec# classes may declare invariants 

on fields. An object's constructor initializes the fields to 

establish the invariant. After construction, methods may 

temporarily "expose" an object to break and reestablish 

the object's invariants. 

 Linear types. Sing# supports linear types, which 

restrict aliasing in order to enable static reasoning about 

state and ownership. For example, a Sing# program can 

safely deallocate a linear object, because the language 

guarantees that no aliases to the object exist elsewhere 

in the program. Although Singularity disallows shared 

data between processes, a Singularity process may 

transfer ownership of linear data structures to another 

process. For example, the Singularity network stack 

exchanges linear data buffers with the network drivers 

to avoid copying data between the network stack 

process and driver process. 

The Sing# compiler (built on top of the Spec# compiler) performs 

both standard C# type checking and linearity checking. A separate 

tool called Boogie checks Spec#'s pre-conditions, post-conditions, 

and invariants. Type checking and linearity checking are simple, 

decidable problems for the Sing# compiler. Boogie, on the other 

hand, must generate verification conditions and pass these to a 

separate automated theorem prover. This is more difficult, 

because Spec# pre-conditions, post-conditions and invariants are 

arbitrary first-order logical formulas that may contain arithmetic 



expressions and universal and existential quantifiers. In theory, no 

automatic theorem prover can always decide whether these 

formulas are valid. In our experience, the automatic theorem 

prover was able to verify all verification conditions for our driver 

in about 15 minutes. This is much slower than type checking, but 

much faster than interactive (not completely automatic) theorem 

proving. For properties whose static verification is too onerous, 

it's often possible to insert an explicit run-time check into the 

program (much like a run-time cast in ordinary C# and Java). 

Although nearly all of our verification was static, we did add a 

handful of small run-time checks to ease the static checking and 

overcome limitations in the theorem prover. 

3. A TULIP SHIL 
We chose Singularity's DEC Tulip driver as a case study for the 

SHIL approach, because the Tulip device is well documented [7], 

widely known, widely cloned, and has non-trivial requirements 

for safe usage. In particular, the DMA protocol requires careful 

coordination between the driver and the device. The Tulip device 

uses two rings, both stored in the host's physical memory. Each 

ring may be implemented as either an array or a linked list, 

although our SHIL currently only supports the array 

implementation. The first ring holds a queue of packets to be 

transmitted to the network, and the second ring holds a queue of 

packets received from the network. Figure 1 depicts the receive 

ring (the transmit ring is nearly identical). The device's csr3 

register points to the base of the receive ring, which is an array of 

entries, where each entry contains four 32-bit words. The last two 

words of the entry contain physical addresses of up to two data 

buffers. The second word contains the size of each buffer (or 0 for 

an unused buffer), plus some flags (including an "end-of-ring" 

flag that marks the last element of the array). The first word 

contains an ownership bit, plus status flags set by the device. 

 

The ownership bit is the key to the safe usage of the device. When 

this bit is 1, the device owns the entry and the driver should not 

modify the entry or the buffers pointed to by the entry. When the 

bit is 0, the driver owns the entry and the device should not touch 

the entry or its buffers. Initially, the driver establishes a receive 

ring of entries all owned by the driver, with no buffers. The 

network stack grants buffers to the driver. The driver places these 

buffers into entries and then (and only then) marks the entries as 

device-owned. The device uses DMA to receive packet data into 

the buffers of a device-owned entry, and then switches the entry's 

ownership back to the driver, which then transfers the buffers 

back to the network stack. As the device receives packets, it 

proceeds through the ring sequentially (wrapping around to the 

first entry of the array after reaching the last entry). If the device 

ever encounters a driver-owned entry, it assumes that the ring is 

full and may drop incoming packets until the driver transfers the 

entry's ownership back to the device. 

The SHIL must track the state of each ring, the state of each entry 

in each ring, and the overall state of the device. The SHIL's 

TulipDevice class tracks the overall state of the device. This 

class has four private boolean fields, txConfig, rxConfig, 

txStarted, and rxStarted, along with public properties to 

read the boolean fields (TxConfigured, RxConfigured, 

TxStarted, RxStarted). Each Config field is true only if 

the corresponding ring is set up and ready for the device to access.  

The following SHIL instance method inside TulipDevice 

starts reception and transmission: 
 

internal void StartRxTxMiiSym() 

  requires RxConfigured && TxConfigured; 

  modifies this.rxStarted, this.txStarted; 

  ensures RxConfigured && TxConfigured 

       && RxStarted && TxStarted; 

{ 

  csr6.Write32(CSR6.MBO | CSR6.HBD | CSR6.PS 

             | (3u << CSR6.TR_ROLL) 

             | CSR6.ST | CSR6.SR); 

  rxStarted = txStarted = true; 

} 

Note that the requires clause forces the driver to configure the 

rings before starting transmission and reception; without this 

requirement, the driver could tell the device to access uninitialized 

rings. 

The receive buffer descriptor ring is abstracted as an object of 

type TulipRxRing that provides two methods Update and 

GiveToDevice that allow the verified part of the device driver 

to read and write individual ring entries, respectively.  Each 

receive ring entry is represented as an object of type 

TulipRxDescriptor that will be described in more detail 

below.  It exposes the two flags mentioned before as boolean 

properties OwnedByDevice and EndOfRing.  Two additional 

boolean properties keep track of buffers 1 and 2 being set 

(together with their lengths).  With these properties, 

GiveToDevice is specified as follows. 
 

internal void 

GiveToDevice(TulipRxDescriptor! descriptor) 

    requires 0 <= descriptor.Index  

          && descriptor.Index < Capacity; 

    requires descriptor.EndOfRing ==  

      (descriptor.Index == Capacity - 1); 

    requires  

        descriptor.OwnedByDevice == false; 

    requires descriptor.Buffer1Set  

          && descriptor.Buffer2Set; 

    ensures  

        descriptor.OwnedByDevice == true; 

    ... 
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csr3 

Host memory 
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The method argument represents the entry to be written into the 

ring.  (The ! marks the argument as non-null.)  The first pre-

condition requires the entry’s index to be within bounds of the 

ring array.  The second condition requires the EndOfRing flag 

to be set if and only if the entry to be written is the last one in the 

array.  The entry must furthermore not be currently owned by the 

device, and the buffer pointers must be set.  The ownership 

requirement is crucial for avoiding race conditions with ring 

accesses by the device while the buffer requirement is a step 

towards memory safety: buffer addresses and lengths must be 

initialized before they can be written into the ring, avoiding DMA 

accesses to random memory locations. 

Notice that GiveToDevice’s post-condition formalizes what 

the method name suggests: After writing the entry, its ownership 

flag is set, effectively putting the entry under control of the 

device.  The driver now has to wait until the device relinquishes 

control of the entry before it can write to it again (per the 

OwnedByDevice == false pre-condition).   

The driver can use the Update method to test whether the device 

relinquished control of an entry.  Update implements querying 

of a ring entry and is specified as follows. 
 

internal bool Update( 

    TulipRxDescriptor! descriptor) 

    requires 0 <= descriptor.Index  

          && descriptor.Index < Capacity; 

    ensures  

        descriptor.OwnedByDevice == result; 

    ... 

Again, the argument is a non-null TulipRxDescriptor object 

with a valid array index.  It reads the specified (possibly changed 

by the device) entry from the ring and updates (hence the name) 

the argument accordingly.  The boolean method result indicates 

whether the device (still) owns the entry, which is formalized by 

the method post-condition. 

TulipRxDescriptor is also part of the SHIL and formalizes 

the operations that the driver can perform on individual ring 

entries.  The driver can in particular query the various status bits 

and set the EndOfRing flag mentioned above.  It can also set the 

buffer pointers and lengths.  

The methods to give buffers to receive descriptors are specific to 

the data structures used by Singularity’s network stack and are 

designed to guarantee that neither the driver (nor any other 

process) can access buffers while they are accessed by the device.   
 

internal void Buffer1Claim(Packet! packet) 

    requires packet.Full; 

    requires Buffer1Set == false; 

    ensures packet.Empty; 

    ensures Buffer1Set == true; 

    ... 

Buffer1Claim in TulipRxDescriptor can be used to pass 

a buffer (of type Packet) to a descriptor.  Notice that this sets 

the descriptor’s Buffer1Set property.  The “claiming” of the 

buffer by the descriptor is indicated by the change from Full (in 

the pre-condition) to Empty (in the post-condition).  Only Full 

buffers can be accessed (this is enforced by Packet’s method 

specifications).  The inverse method Buffer1Retrieve lets 

the driver later—when the device does not own the entry—

retrieve the filled buffer from the descriptor and pass it up the 

network stack.  But the simple Full—Empty switch effectively 

prevents any buffer accesses by the driver while the buffer is 

being processed. 

4. A STATICALLY CHECKED DRIVER 
The untrusted part of the Tulip driver interacts with a 

TulipDevice object to configure the device, change its state 

(to, e.g., start and stop transmitting packets), and query its status 

through methods like StartRxTxMiiSym (section 3).  We use 

Boogie to verify statically that the driver meets the pre-conditions 

of these methods.  This (1) enforces validity of arguments used to 

communicate with the device (such as value ranges) and (2) 

ensures that requirements regarding the state of the device (such 

as the requirement that transmit and receive ring addresses be 

configured before transmitting and receiving buffers) are met. 

The driver manages the transmit and receive buffer descriptor 

rings as circular FIFO queues (that are processed by the device in 

order), and uses the SHIL ring and descriptor objects (see section 

3) to populate and query the rings.  Again, Boogie verifies that 

descriptor state (ownership) and argument validity pre-conditions 

are met by the driver implementation.  Invariants are used to keep 

track of the state of individual descriptors. 

It took about 5 person-weeks (by someone who had a little 

previous experience with Boogie but no experience with 

Singularity) to refactor the driver into SHIL and untrusted parts, 

add trusted annotations to the SHIL, and add enough untrusted 

annotations to the untrusted part of the driver to allow 

verification. Some of this effort went into reading the device 

documentation (200 pages, though not all of it was relevant to 

driver safety) and translating this into SHIL annotations. Some of 

the effort went into issues with Boogie, which is itself a research 

project; occasionally we ran into bugs or unimplemented features 

in Boogie. Much of the effort was just a matter of translating our 

intuitive ideas about why the driver was safe into explicit pre-

conditions, post-conditions, and invariants; this was generally an 

iterative process of adding some annotations, receiving error 

messages from Boogie because the annotations weren't strong 

enough to imply what Boogie was trying to prove, and then 

adding more annotations until Boogie reported no errors. For 

example, if a method f calls method g, which calls the SHIL, then 

we may add a pre-condition to g to help satisfy the SHIL's pre-

condition, which may then require us to add a pre-condition to f 

to help satisfy g's pre-condition. 

Altogether, the resulting SHIL contained about 160 annotations 

(requires, ensures, invariant, and modifies) to specify packets, 

packet fragments, packet FIFOs, and packet addresses (these are 

applicable to all network devices, not just the Tulip device), and 

about 300 annotations to specify the Tulip device. The untrusted 

part of the driver used about 270 annotations. These annotations 

were substantial, but still smaller than the original driver code, 

which was about 1800 (non-comment) lines. The final driver 

code, after refactoring and adding annotations, was about 3200 

(non-comment) lines: 1100 lines of code + 300 annotations in the 

SHIL, and 1500 lines of code + 270 annotations in untrusted part. 

In a few places, we were unable or unwilling to add enough 

annotations for verification to succeed entirely statically, and we 

decided to add run-time checks instead. In about 10 places, the 

theorem prover's arithmetic checker couldn't verify properties 

about bitwise arithmetic and about the modulus operator. In about 

10 other places, it was either not worth the effort to add many 



annotations, or the property depended on the network stack (e.g. 

the number of fragments allowed in a transmitted packet); the 

network stack was beyond the scope of our verification. 

A large part of the complexity of the untrusted part of the Tulip 

driver stems from the complex interaction between the driver, the 

Singularity kernel, and the network stack.  The kernel-driver 

interaction follows a protocol of its own: the kernel first creates 

the driver, then initializes, starts, and stops it, in this order.  The 

driver performs different steps in each of these methods: it creates 

the ring objects in the constructor but does not initialize them 

until it is initialized itself.  It immediately configures the device 

with the newly initialized ring addresses, but it only starts the 

device when the kernel tells the device to do so, and so forth.  

More than half a dozen complex invariants keep track of all these 

state changes.  Boogie verifies that the driver preserves these 

invariants throughout the driver’s lifetime.  The invariants, in 

turn, allow Boogie to verify the driver-SHIL interaction. 

The network stack uses inter-process communication channels to 

interact with the device.  These interactions can only occur after 

the driver is started (see above).  Additionally, the driver defines 

contracts on the data structures passed between network stack and 

driver.  These contracts were already expressed by the original 

driver developers as (dynamically checked) Sing# requires 

and ensures clauses.  We were able to verify the correctness of 

the ensures clauses (post-conditions), while verification of the 

network stack to statically prove the driver’s requires clauses 

(pre-condition) is future work.  For now, we rely on the run-time 

checks automatically generated by the Sing# compiler. 

5. RELATED WORK 
The DevIL language [12] provides a concise, declarative syntax 

for specifying the bit-level layout of device registers and the legal 

bit-level operations on these registers. DevIL can perform some 

simple static checks on the declared layout, such as checking that 

bit fields do not overlap. The NDL language [6] and the HAIL 

language [13] build on DevIL's ideas, including state 

specifications as well as layout specifications. However, DevIL, 

NDL, and HAIL do not have powerful verification condition 

generators and theorem provers like Boogie, so they are not able 

to statically verify deeper properties about arithmetic and state. 

We believe that the DevIL/NDL/HAIL approaches are 

complementary to our approach. For example, if we could 

generate code like Section 3's StartRxTxMiiSym method 

automatically from a concise, declarative specification, then the 

SHIL would be smaller and more trustworthy. 

Wittie [14] wrote a network device driver in a type-safe language 

called Clay that supported linear types and static verification of 

arithmetic constraints. This work did not cover DMA, though, and 

required porting drivers to a new and unfamiliar language. Our 

SHIL approach using Spec# and Boogie presents an easier path 

for incrementally verifying properties of existing drivers. 

The Metal [8] and SDV [1] tools have found an amazing number 

of bugs in OS code with very little programmer effort. These tools 

exploit the fact that programmers tend to make simple mistakes, 

such as forgetting to release a lock, over and over again. As far as 

we know, though, these tools have not been applied to hardware-

software interfaces. Our approach requires programmer effort to 

specify hardware-software interfaces, but rewards the programmer 

with more thorough checking of programmer-specified properties. 
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