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Abstract

A number of programming languages use rich type systems to ver-
ify security properties of code. Some of these languages are meant
for source programming, but programs written in these languages
are compiled without explicit security proofs, limiting their utility
in settings where proofs are necessary, e.g., proof-carrying autho-
rization. Others languages do include explicit proofs, but these are
generally lambda calculi not intended for source programming, that
must be further compiled to an executable form. A language suit-
able for source programming backed by a compiler that enables
end-to-end verification is missing.

In this paper, we present a type-preserving compiler that trans-
lates programs written in FINE, a source-level functional language
with dependent refinements and affine types, to DCIL, a new exten-
sion of the .NET Common Intermediate Language. FINE is type
checked using an external SMT solver to reduce the proof bur-
den on source programmers. We extract explicit LCF-style proof
terms from the solver and carry these proof terms in the compila-
tion to DCIL, thereby removing the solver from the trusted com-
puting base. Explicit proofs enable DCIL to be used in a number
of important scenarios, including the verification of mobile code,
proof-carrying authorization, and evidence-based auditing. We re-
port on our experience using FINE to build reference monitors for
several applications, ranging from a plugin-based email client to a
conference management server.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory

General Terms  Security, Verification, Languages, Theory

Keywords  Security type systems, dependent types, bytecode lan-
guages, functional programming, authorization, information flow,
mobile code security, compilers

1. Introduction

On today’s internet, users concerned about their security and pri-
vacy would be well advised to be wary of the code they download
and run on their computers. However, for the lack of an alternative,
users routinely download complex programs (often as JavaScript
in browsers, but also Flash, Java, and .NET plugins, applications
for mobile phones, etc.) from unknown parties and allow these pro-
grams free access to their sensitive data. With the advent of cloud
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services, using the technologies currently at our disposal, users may
also have no choice but to implicitly trust that service providers
protect their data and computations properly.

As a step towards improving this state of affairs, we want users
to be able to specify rich policies to control their security and pri-
vacy, and to receive formal proofs that the code they download,
or the cloud services they rely upon, always respect these policies.
But, the policies used in practice are complex, and properly enforc-
ing them, let alone producing proofs, is known to be hard.

In response to this challenge, researchers have proposed several
programming languages with rich type systems tailored towards
proving security properties of code. However, a language with the
ingredients to enable programmers to state and enforce complex
real-world security policies—policies that mix aspects of authenti-
cation with stateful authorization and information flow controls—
combined with a compiler that produces proofs that these policies
are properly enforced does not yet exist.

For example, a number of prior languages, including Fa-
ble (Swamy et al. 2008), Aura (Jia et al. 2008), and PCMLS5 (Avijit
et al. 2010) use dependent types to specify and enforce many kinds
of policies, including (stateless) authorization and information flow
controls. While type checking ensures that programs written in
these languages are secure, programmers are required to construct
proof terms to convince the type checker to accept their programs.
The additional burden of programming with proofs causes the au-
thors of at least Fable and Aura to position their systems as interme-
diate languages, rather than for source programming. Furthermore,
all these languages are based on lambda calculi that must be com-
piled further to be executable on commodity systems.

In an effort to make source programming easier, languages like
F7 (Bengtson et al. 2008) and FINE (Swamy et al. 2010) rely on the-
orem provers to automatically discharge proof obligations during
type checking. These languages have been shown to be effective in
verifying implementations of cryptographic protocols (F7) as well
as checking that programs correctly enforce stateful authorization
and information flow policies (FINE). However, to date, compilers
for F7 and FINE do not produce verifiable security proofs, mak-
ing them unsuitable for scenarios where proofs are needed, e.g.,
in mobile code settings where users would like to verify binaries;
when security proofs need to be communicated between agents (as
in proof-carrying authorization (Appel and Felten 1999)); or, when
service providers need to construct audit trails for accountability
(as in evidence-based audit (Vaughan et al. 2008)).

This paper presents a compiler that aims to fill this gap. Our
compiler translates FINE programs to DCIL, an extension of the
.NET Common Intermediate Language (CIL) (ECMA 2006), and
affords source programmers the benefit of a reduced proof burden
by automatically discharging proof obligations using the Z3 SMT
solver (de Moura and Bjorner 2008). By extracting typeable proof
terms from Z3, we also gain the benefits of compiling programs
with explicit proofs. Additionally, by preserving types to the byte-



code level, we remove both the solver and much of our compiler
from the trusted computing base (TCB), relying only on the DCIL
type checker for bytecode verification and on the .NET virtual ma-
chine to faithfully execute the program. As such, we view our work
as a stepping stone to future work that reduces the TCB further by,
say, compiling DCIL to a typed assembly language (Morrisett et al.
1999). Meanwhile, our approach makes it possible to run FINE pro-
grams on stock .NET virtual machines; to interoperate with other
more mainstream .NET languages; and to benefit from the libraries
and tool support that come with the .NET platform.

1.1 Contributions

Theory. This paper makes three theoretical contributions. First, we
formalize DCIL, an object-oriented bytecode language with depen-
dent and affine types and prove it sound. Our extensions are de-
signed to be small and compatible with the existing standard for
CIL. Second, we formalize a translation from FINE to DCIL and
prove that our translation preserves types. A final theoretical contri-
bution is a source-to-source transformation of FINE programs, also
proved to preserve types. We dub this transformation derefinement
and explain its significance shortly.

A compiler implementation. We have implemented a compiler
that translates FINE programs to executable CIL assemblies, veri-
fiable using a type checker for DCIL. While this compiler remains
under active development, an initial release is available on the
web. A key component of our compiler is a module that translates
proofs produced by Z3 into typeable proof terms in FINE. Type-
checking proof terms produced by SMT solvers is an area of active
research—we are aware of one project (Bohme 2009), concurrent
with ours, that aims to reconstruct and check proofs for Z3.

Mobile-code security. Our prior work (Swamy et al. 2010) shows
how FINE can be used to build secure reference monitors for server
programs. In this paper, we show how FINE can be used in a
mobile-code setting. Our main example shows how to use FINE to
implement a reference monitor for a model of a plugin-based office
utilities client—we call this model application LOOKOUT. Subject
to a user’s security policy, plugins can read emails in a user’s inbox,
make appointments in a calendar, send email responses, store data
in a cookie store and selectively share this data with other plugins.
We give examples of several kinds of security policies applied
to plugins, including those that track information flows combined
with role- and history-based authorization. Plugins for LOOKOUT
can be shipped as DCIL assemblies and verified against a security
policy before being installed by a user.

Experimental evaluation. We report on experiments using our
compiler on about 12,000 lines of code, of which nearly 2,000
lines are from application programs or their reference monitors,
and the rest a library of verified lemmas that simplify proof term
construction. Despite further opportunities for optimization, the
type checker of DCIL is already quite fast—it takes less than seven
seconds to typecheck a SOMB assembly. However, compiling with
proofs does impose an overhead—.NET assemblies that carry proof
terms extracted from Z3 can, in some cases, be as much as 50 times
larger than those without proofs. This is perhaps indicative of a bias
in the SMT solving community to optimize for speed rather than
for conciseness of proofs. Indeed, Z3 is among the few solvers that
produce proof certificates at all. Our experiments include results
from a simple custom first-order logic prover which, while not
nearly as full-featured as Z3, is optimized to produce small proofs.
When using this solver, we find that the overhead in code size due
to proofs can be reduced to a factor of 2, i.e., a 25x improvement
over Z3. This suggests that while the move towards certifying SMT
solvers is a step in the right direction, there is much room for
improvement in the size of proofs produced by these solvers.

1.2 Overview

Before we begin with the main content, we present a brief and
informal overview of programming in FINE, and the main ideas
behind the type-preserving compilation of FINE to DCIL.

Programming in FINE (§2). FINE is a functional programming lan-
guage with a type system based on dependent refinement types.
FINE also includes affine (use at most once) types to model state.
While FINE can be used for general-purpose programming, we in-
tend, primarily, for FINE to be used in the implementation of the se-
curity critical components of an application, e.g., a reference moni-
tor. Programmers can give types that include security constraints to
the sensitive resources in a program, and code that exposes an in-
terface to these resources to the rest of the application can be type
checked to ensure that it interposes the correct security checks.
For example, when enforcing an access control policy on files,
a programmer may give the fread system call the following type:
p:prin — cred p — {f:file | CanRead p f} — string. This is the type of
a dependent function whose first parameter of type prin stands for
the name of a principal in the system. As is usual with dependent
types, the parameter can be given a formal name (here, p) which
is bound to the right of the arrow. The next argument has the type
cred p—this is a type indexed by a value (p) and stands for a cre-
dential authenticating the principal p. The third parameter is given a
refined type {f:file | CanRead p f}, the type of all files f for which the
proposition CanRead p f is true, i.e., those files that p is authorized
to read. A security policy in FINE is defined using assumptions
that grant privileges to some principals but not others. For exam-
ple, the assumption assume CanRead Alice (File <“7/a.txt’’) grants the
read privilege on a specific file to the principal Alice. A reference
monitor that provides mediated file access to an application is type
checked against the declared type of fread and the policy assump-
tions. When this code attempts to give a file v:file a refined type
{f:file | CanRead p f}, the FINE type checker verifies (using an ex-
ternal solver) that the refinement formula CanRead p v is deducible
from the policy assumptions and from information about v avail-
able from the program context. Thus, the type checker ensures that
every call to fread is mediated by the appropriate security checks.

Derefining FINE programs (§3). The first phase of our com-
pilation chain is a source-to-source transformation called dere-
finement, in which values with refined types are associated with
proof terms witnessing the deducibility of refinement formu-
las. For example, after derefinement, the type of fread becomes
p:prin — cred p — f:file — proof (CanRead p f) — string. Our proof
terms are in the style of LCF (Milner 1979), i.e., these are built
using the constructors of an abstract data type proof t, where the
constructors form a small trusted kernel that axiomatizes the infer-
ence rules of a first-order logic. Our compiler automatically con-
structs these proof terms by inspecting a natural-deduction style
proof trace emitted by Z3.

Translating FINE to DCIL (§4). DCIL is an object-oriented byte-
code language, designed to be a small extension to the type system
of a side-effect-free fragment of CIL, where the additional type in-
formation used by DCIL is represented using the standard metadata
facilities of .NET. The essence of DCIL lies in the way depen-
dent function types are represented. Dependent functions in DCIL
are instances of an abstract class DepArrow<a ik, 8:a— % >.
This is a class with two parameters. The first parameter, «, is
a type parameter of kind % (the kind for normal types) and is
represented using standard CIL generics. The second parame-
ter 3 uses a DCIL-specific feature—classes in DCIL can be pa-
rameterized by type-level functions and we use these to capture
the functional dependences characteristic of dependent types. In
this case, the second parameter of DepArrow is a function that
constructs a x-kinded type from an «-typed value. Turning to



our example, the derefined type of fread is translated (in part)
to DepArrow<Prin, \p:Prin.DepArrow<Cred<p>, ...>>. Here, Prin
is a class standing for the translation of the prin type in FINE;
\p:Prin.DepArrow<Cred<p>,..> is a type-level function from
Prin-typed values to the DepArrow type. The Cred<p> type in the
body of the function is a class parameterized by a value, another
feature of DCIL, which we use to represent source-level value-
indexed types like cred p. The translation of proof terms is no dif-
ferent from the translation of other program expressions. But, by
including proof terms in the translation, the DCIL type checker is
able to verify programs without the assistance of an external solver.

The extended version of this paper. We include in an extended
version of this paper (Swamy et al. 2009) complete formalizations
of the static and dynamic semantics of DCIL, the translation from
FINE to DCIL, the derefinement translation, and proofs of the the-
orems in this paper. One important aspect of our full formalization
is the special attention we pay to translating FINE’s module system
to DCIL, using CIL’s access qualifier mechanisms. We prove that an
information hiding property provided by FINE is preserved in the
translation to DCIL—we make no further mention of this result in
this paper. We also include a detailed description of some additional
features of the LOOKOUT example—in particular, a treatment of in-
formation flow tracking in plugin code. The extended paper, a pre-
liminary release of our compiler, and several example programs are
available on the web at http://research.microsoft.com/fine.

2. FINE for mobile-code security

We begin by illustrating how FINE can be used to construct se-
cure reference monitors and mobile code modules. We present
fragments from LOOKOUT, a model, plugin-based office utilities
client. The reference monitor for LOOKOUT mediates access to re-
sources such as emails in a user’s inbox, and is configured by a
user-provided security policy that defines various access privileges.
Our type-preserving compiler provides a number of benefits. First,
by type checking the DCIL modules that represent LOOKOUT’s
reference monitor, an end-user receives assurance that it properly
enforces her policy. Additionally, a user can download third-party
plugins (as DCIL assemblies) that extend the core functionality of
LookouUT. These plugins can be verified against the user’s security
policy before installation. Finally, LOOKOUT provides facilities to
allow plugins to define policies to selectively share their data with
other plugins—the types provide assurance to plugin developers
that a plugin’s private data is properly protected.

This section also aims to provide an introduction to program-
ming in FINE. For a gentler and more thorough presentation of
FINE, we refer the reader to our prior work (Swamy et al. 2010).

2.1 A reference monitor for LOOKOUT

Security objectives. LOOKOUT provides constructs for a user to
specify a stateful role- and history-based authorization policy. A
user can organize her contacts into roles, granting privileges to
some principals but not others. The stateful aspects allow a user
to change role memberships dynamically. Additionally, the refer-
ence monitor also records events like the sending of emails. A user
can define a history-based policy over these events to, for exam-
ple, ensure that plugins never spam a user’s contacts by responding
to emails repeatedly. Our implementation augments the fragment
shown here with a number of additional features, including selec-
tively sharing cookies between plugins using a plugin-provided ac-
cess control policy, and information flow tracking through plugin
and reference monitor code. We discuss these elements in §5.
Figure 1 shows a fragment of the API exposed by the LOOKOUT
reference monitor to plugins. FINE uses a syntax based loosely on
F# (Syme et al. 2007)—we point out differences along the way.
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module LookoutRM
type prin (x the type of principals *)
private type cred :: prin — % (x cred p is a credential authenticating p *)
private type email = {sender:prin; contents:string}
val mk_email: prin — string — email
val sender: ezemail — {p:prin | p=e.sender}
type evname = Msgln:evname | MsgOut:evname | ...
type event :: evhame — x — x = Event : e:evhame — o — evente «
(* A vocabulary for an authorization policy *)
type action = ReadEmail: email — action
| ReplyTo: email — action
| SetCookie: prin — string — action
| ReadCookie: prin — string — action
type perm = Permit: prin — action — perm
type role = User:role | Friend:role | Plugin:role | ...
type att = Role: prin — role — att
| HasRepliedTo: prin — email — att
type st = list att
(* An affinely typed revokable signature of the program state *)
private type Statels :: st — A= Sign : sist — Statels s
(* Propositions to define authorization constraints *)
type In :: att — st — % (x list membership *)
type Derivable :: perm — st — x (x dynamically derived perms *)
(* Useful type abbreviations )
type ok<p:prin, a:action> = {s:st | Derivable (Permit p a) s}
type plus<s:st, a:att> = {x:st | In a x && forall (b:att).Inbs =-In b x}
(* An API for plugins )
val readEmail: p:prin — cred p — e:email —
s:ok<p, ReadEmail e> —
Statels s — (string * Statels s)
val replyTo: p:prin — cred p — e:email — s:ok<p, ReplyTo e> —
Statels s — (s”:plus<s,HasRepliedTo p e> * Statels s’)
val setCookie: p:prin — cred p — name:string — value:string —
s:ok<p, SetCookie p name> — Statels s — Statels s
val getCookie: p:prin — cred p — owner:prin — name:string —
s:ok<p, ReadCookie owner name> — Statels s —
(option string * Statels s)

Figure 1. A fragment of a reference monitor for LOOKOUT

The types given to this API specify authorization constraints; for
example, looking ahead to the readEmail function on line 28, we see
an argument s:ok<p, ReadEmail e> which represents a constraint
that the principal p have the ReadEmail permission on the email e.
In Section 2.2, we show how a user can configure the behavior of
this reference monitor by specifying a policy to grant privileges to
certain principals and not others. Section 2.2 also shows code for
a plugin. In the rest of this section, we proceed through Figure 1
sequentially, describing each element in detail.

Line 2 shows the type of principals prin—its representation
is irrelevant to the example. We could, for example, use strings
standing for user names, or public keys. Line 3 shows a type
constructor cred that we use to represent authentication credentials.
The constructor cred is given the kind prin — . (Kind ascriptions
are written using double colons, while type ascriptions use single
colons.) The kind of cred indicates that it constructs a type of kind
*, from a value of type prin; in other words, cred is a dependent
type constructor. As with principals, the concrete representation of
credentials is irrelevant. However, to ensure that credentials cannot
be forged, we tag the cred type with the private qualifier ensuring
that values of type cred p cannot be constructed directly by code
not trusted by the LookoutRM module. (In practice, rather than
including prin and cred in the definition of LookoutRM, we use a
library (trusted by LookoutRM) that implements various principal
representations and authentication schemes.)

Line 4 shows the type email. Our intention is to allow the user
to define policies to protect access to the contents of an email.
By declaring email private, FINE’s module system ensures that
untrusted clients of LookoutRM cannot directly project fields from



the email record. However, unlike for the cred p type, we do not
aim to ensure the authenticity of emails. So, at line 5 LookoutRM
exposes a function mk_email to allow clients to construct an email.
At line 6, we provide an accessor to examine the sender field of
an email without restriction—access control will apply only to
the contents field. The type of sender shows it to be a dependent
function, where the formal parameter named e is in scope to the
right of the arrow. The return type of sender uses a refinement type
to specify that the value p returned is in fact the sender field of the
formal parameter e. In general, refinement types in FINE have the
form {z:7 | ¢}, where x is the formal name of a value of type T,
and zx is bound in ¢, a type that represents a first-order formula
(with equality) (§3).

The design of LOOKOUT is based on a model that allows plugins
to subscribe to various events, e.g., email arrival, message compo-
sition, etc. Lines 7-8 show the type of event names evname and the
type event n t, consisting of an event name n and some payload of
type t generated when the event is triggered. In FINE, each con-
structor of a variant can construct a different type. Thus, unlike F#,
the constructors of a variant are decorated with their complete type.

At lines 10-18 we define various types that form a vocabulary
for a security policy. Permissions (the type perm) are of the form
Permit p a, which means that the principal p has the privilege to
perform action a. Actions (type action) include reading from emails
and replying to emails, as well as getting and setting cookies.
Cookies are identified by a pair of the principal p that owns the
cookie, and the cookie’s key represented as a string.

The type st shown at line 18 forms the basis of the state-
ful authorization policy implemented by LOOKOUT. We re-use a
model for stateful authorization which we have previously pro-
posed (Swamy et al. 2010), which in turn was based on a model
by Dougherty et al. (2006). In this model, authorization policies
are specified as inference rules that derive permissions from a set
of basic authorization attributes, where the attributes can change
over time. For example, the attributes may include assertions about
a principal’s role membership, and the policy may include infer-
ence rules that grant permissions to principals in certain roles. The
type att (lines 16-17) defines the attributes used in our scenario.
The currently active role memberships of a principal are of the
form Role pr. The attribute HasRepliedTo p e is used to record a
message-reply event. In practice, several other relations (e.g., event
subscriptions) are maintained in the state st of attributes.

Line 20 uses affine types in FINE, a key feature that allows
state changes to be modeled. Types in FINE are classified into two
kinds: %, the kind of normal types, and A, the kind of affine types.
Values with affine types may be used at most once. The notation
Statels :: st — A indicates that Statels constructs an affine type from
an st value. A value v:Statelss is a signature from the reference
monitor attesting that s:st holds the current authorization attributes.

Next, at lines 22-23, we show two propositions with which to
state authorization constraints in types. (Unlike Coq (Bertot and
Castéran 2004) or Aura (Jia et al. 2008), FINE’s kind system does
not distinguish types and propositions.) The proposition In (line
22) is the standard list membership proposition, specialized to the
st type. The proposition Derivable p s states that the permission
p is derivable from the authorization attributes in s. Lines 25-26
show convenient abbreviations that use these propositions to define
refined types. The type ok<p,a> is a refinement of st to those values
in which p has the permission to perform the action a. The type
plus<s, a> is a st that extends s with the attribute a.

Finally, we show a few functions exposed by LookoutRM to
its clients. All the functions require the caller p to authenticate
itself by passing in a credential cred p. To read an email e using
the readEmail function, the caller p must show that it holds the
ReadEmail e privilege in the current authorization state s. The return

module UserPolicy
open LookoutRM
assume U1: forall (p:prin) (e:email) (s:st).
In (Role p Plugin) s && In (Role e.sender Friend) s =
Derivable (Permit p (ReadEmail e)) s
assume U2: forall (p:prin) (e:email) (s:st).
In (Role p Plugin) s && not (In (HasRepliedTo pe) s) =
Derivable (Permit p (ReplyToe)) s
assume U3: forall (p:prin) (n:name) (s:st).In (Role p Plugin) s =
Derivable (Permit p (SetCookie p n)) s &&
Derivable (Permit p (ReadCookie p n)) s
(% A plugin module *)
module ApptMakerPlugin
open LookoutRM
val detectAppt: prin — string — option ({key:string; value:string})
val me:prin
type pst<p:prin> = (s:{x:st | In (Role p Plugin) x} * Statels s)
val hdIMsg: cred me — event Msgln email — pst<me> — pst<me>
let hdIMsg c (Event e email) (s, tok) =
let c1 = contains s (Role (sender email) Friend) in
let c2 = contains s (HasRepliedTo me email) in
if c1 && not c2 then
let (contents, tok) = read_email me c email s tok in
match detectAppt (sender email) contents with
| None — (s, tok) (* no appointment extracted; do nothing *)
| Some {key=k; value=v} —
let tok = setCookie me c k v s tok in
replyTo me c email (‘“Confirm appt: ““" v) s tok
else (s,tok) (x can’t read email, or already sent notification x)

Figure 2. A user’s policy and fragment of plugin code

value of readEmail is a pair containing the contents of the email
as a string, and a signature asserting that authorization state is
unchanged. The type of replyTo is similar, except its return value
is given a dependent pair type, (x:t xt’), where x names the value
in the first component of the pair and is bound in the type t’. The
dependent pair in replyTo shows an updated state of the program
s’ which extends s with an event HasRepliedTo p e, and a signature
attesting that s’ is the new authorization state. We use the affinity of
Statels s to model state updates. Since the caller of replyTo has used
a v:Statels s value by passing it as an argument to replyTo, the types
ensure that the caller can no longer use v to claim that the old state
s is valid. The setCookie function allows a plugin with appropriate
privilege to write a cookie. The getCookie function allows a plugin
p to retrieve a cookie owned by another plugin owner only if p holds
the appropriate privilege—if a cookie by that name does not exist,
getCookie returns None, the empty constructor of the option type.

2.2 A LOOKOUT user’s policy and a plugin

Figure 2 shows a module UserPolicy that configures the behavior
of the LookoutRM reference monitor with several formulas that
represent user-provided policy assumptions. The policy shown here
is particularly simple—we discuss the policy used with our real
implementation in §5. Assumption U1 allows a plugin to only read
emails from friends. U2 allows a plugin to reply to an email e only
if a reply has not already been sent. U3 allows plugins to set and
get only the cookies it owns.

The rest of Figure 2 shows fragments from a plugin program.
At a high-level, this plugin responds to incoming messages (Msgln
events), scans the contents of these messages for text that appears
to be an appointment, and maintains a calendar of appointments
for the user in the cookie store. The plugin also sends a response
notifying the message sender that an appointment has been created.
The custom logic of the plugin is represented by the function
detectAppt, whose implementation is not shown.

The plugin defines a distinguished principal me (representing
the plugin itself) at line 16. In hdIMsg at lines 20-21, we use the



function contains: s:st— a:att— {b:bool | b=true < Inas} (a stan-
dard tail-recursive list membership test implemented in FINE, but
not shown here) to check if it has the privilege to read the email
and reply. If the check succeeds, hdIMsg reads the contents of the
email. If it detects an appointment, it sets a cookie in the store for
the appointment and sends a reply confirming the appointment.

2.3 Discussion

In subsequent sections, we present a translation that compiles FINE
programs in a proof-carrying style to DCIL. Before we proceed to
the formalism, we discuss several benefits (and limitations) in the
design of LOOKOUT and of our compiler.

Loosely coupled policy and code. 1.00KOUT’s design enables
a good separation of security policy from code. Users declare a
policy using high-level logical rules; these rules are then connected
to the code using types. For example, the ReadEmail privilege
granted by U1 in Figure 2 also appears in the type of readEmail at
line 28 of Figure 1. But, the conditions under which such privileges
are granted are declared only in the policy, not in the code—
different users may define different conditions under which the
ReadEmail privilege is granted. In practice, rather than requiring a
user to write down the UserPolicy module directly, we expect that it
can be generated from some high-level specification or interface in
which to declare security preferences. One limitation, however, is
that although the policy appeals to dynamically changing attributes,
policy assumptions are required at compile time to type check the
program. In the future, we plan to explore designs in which the
reference monitor is configured by a purely dynamic policy.

Compiling to DCIL enables .NET interoperability. Rather than
expecting plugin authors to program entirely in FINE, our compiler
generates code that can easily call, and be called from, other .NET
languages. For example, in the ApptMakerPlugin of Figure 2, the
detectAppt function which handles the plugin’s custom logic, could
be implemented in any .NET programming language. Our compiler
produces code that tries, where possible, to mimic F#’s object
representations, which makes it convenient to interoperate with F#,
but we have also used C# and ASP.NET.

However, interoperating with other .NET languages does re-
quire some care. For one, allowing C# programs to directly call a
FINE function that expects an argument with a value-indexed type
(e.g., cred p) is unsound, since the standard .NET bytecode verifier
does not check that the argument actually has a type with the re-
quired index. Similar issues arise with exposing affine types to the
rest of .NET. To defend against this, we take care to ensure that the
values exposed to other .NET languages do not have FINE-specific
types. However, our compiler does not yet check this automatically.

Calling other .NET languages from FINE also requires some
care. The LOOKOUT application, as shown, only aims to enforce an
authorization policy. When enhancing LOOKOUT with, say, infor-
mation flow controls, one must be careful if calls to external func-
tions are permitted. For example, an implementation of detectAppt
in F# can easily leak the contents of an email, both via implicit
or explicit flows. Since proper enforcement of a noninterference-
like property (Sabelfeld and Myers 2003) requires tracking flows
throughout an application, if a policy includes information flow
constraints, then most (if not all) of the application must be written
in FINE and type checked for security.

Efficient client-side verification. By compiling plugins to DCIL,
clients can verify the security of plugins before installation. As our
experimental results (§5) show, although carrying explicit proofs
in DCIL increases code size significantly, type-checking DCIL as-
semblies is fast—we view fast checking times as a key enabler for
mobile code verification. As discussed in the Introduction, proof
terms can also be useful at runtime in support of applications like

values v
expressions e

x| DTO | Ax:te | Aazk.e
v]vive |vT|letz =eiin ez
let (z,y) = e1in ez

match v with D 72 — ey else e2

types T, O alxm — 1| (v *T2) | Yokt
T|mim|ro| v {z7]|o}

kinds K *|A|k—>K|T—K

signature S = Tuk| D] S, 8|

type env. T = auk|xzT o= | T, |-

Figure 3. Core syntax of FINE

proof-carrying authorization. However, in the case of LOOKOUT,
proof terms have little utility beyond verification. In support of such
scenarios, we plan to implement an erasure pass for DCIL that can
erase computationally irrelevant proof terms after verification.

3. Derefining FINE

In this section, we present a core syntax for FINE and describe (us-
ing several examples) the key aspects of derefinement, an initial
source-to-source translation implemented by our compiler. Dere-
finement provides a way to associate explicit proofs of refinement
formulas with the values that inhabit refined types. The main sub-
tlety in derefinement is formulating it in a manner consistent with
FINE’s subtyping relation on refinement types. We also discuss the-
orems that establish that derefinement is sound and complete.

3.1 Core syntax of FINE

We begin by presenting a core syntax for FINE, shown in Figure 3.
We adopt an A-normal presentation (Flanagan et al. 1993) of FINE.
This helps to simplify the translation, and is convenient for giving
names to expressions that index types. FINE values v are variables,
full applications of n-ary data constructors D, and value and type
abstractions. The expression forms include application, type appli-
cation, two forms of let-bindings (the second is used to unpack de-
pendent pairs), and a pattern matching construct. The types 7 in-
clude type variables, dependent functions, dependent pairs, quanti-
fied types, type constructors and their applications to types or val-
ues, types with affine qualifiers !, and refinement types. Types are
classified according to their kind s, where % is the kind of unre-
stricted types, and A is the kind of affine types. An important as-
pect of FINE’s kinding system is that dependent type constructors,
types with kind 7 — &k, are only well-formed when the type 7
has kind *—indexing types with affine values is prohibited. We
have argued (Swamy et al. 2010) that that this restriction is key to
discharging proofs obligations using off-the-shelf classical provers,
rather than requiring linear logic provers—we find that this restric-
tion also simplifies the construction of proof terms. Programs are
translated in the presence of a signature S that assigns kinds and
types to all type and data constructors; and a typing environment I,
which, in addition to variable bindings, contains equality assump-
tions v = v’ that record the results of pattern matching tests.

3.2 Representing refinement formulas and proofs

Formulas that appear in refinements and in assumptions are rep-
resented using the type language—we generally use the meta-
variable ¢ for types that stand for formulas or proofs of formulas.
The logical connectives in formulas are represented using type con-
structors, €.g., And::x — * — %, Oriik — * — %, Not::x — %, and
quantified formulas are represented using the binding constructs
provided by dependent types. A universally quantified formula
V(z:7).Px, is represented as a dependent function z:7 — Pu,
where P::7 — «; existential quantification 3(x:7).Px is repre-
sented using a dependent pair (x:7 * Px).
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We use an LCF-style (Milner 1979) proof system. Values of
an abstract datatype (ADT) proof::x — x represent proofs of
formulas. The constructors of this ADT represent inference rules
that axiomatize a classical first-order logic with equality. User-
provided assumptions are treated as additional data constructors of
the proof type—we give an example in Section 3.4. We show a few
rules from the proof kernel below.

T: proof True

Destruct_false: proof False — proof «

And_elim_1: proof (And o 3) — proof «

Iff_elim_1: proof (Iff & 8 ) — proof (Imp a 3)
Modus_ponens: proof a — proof (Imp o 3) — proof 3
Bind_pf: proof a — (v — proof 3) — proof 3

The design of FINE’s proof kernel is influenced by the features and
limitations of the type system of our target language. In designing
DCIL, we aimed to produce a minimal extension of CIL, without re-
quiring any changes to existing CIL features. One of the limitations
of CIL is that parametric polymorphism is only permitted on types
of kind x with no support for quantification over types with higher
kinds, e.g., * — *. This prevents us from using a higher-order logic
to represent proof terms in FINE.

This restriction manifests itself primarily in our treatment of
equality. In addition to the core inference rules, we generate proof
axioms for a first-order treatment of equality for each type defined
in the program. For example, for the att type defined in Figure 1,
we automatically generate a type Eq_att corresponding to equality
for att values, and substitution axioms relating Eq.att to other
propositions in the program. Some of these auto-generated types
and axioms are shown below.

type Eq_bool:: bool — bool — %

Refl_bool: b:bool — proof (Eq_-bool b b)

type Eq_att:: att — att — %

Refl_att: a:att — proof (Eq-att a a)

Mono_In_1: a:att— b:att— proof (Eq-att a b)—
s:st— proof (In a s)— proof (In b s)

Finally, although not shown here, FINE has support for arbitrary
recursion, so we do not claim that our proof system is logically
consistent. However, the soundness of FINE and DCIL’s module
systems guarantee that proof terms are constructed using only the
data constructors from our proof system and the user-supplied
axioms, and that if a proof term has a normal form, then that normal
form has the desired type. We view recovering logical consistency
in the presence of recursion as an orthogonal issue, addressed either
by tracking non-termination as an effect; by separating types from
propositions and excluding recursion in the propositional fragment
(as in Aura); or, by adopting a more permissive approach such as
Operational Type Theory (Stump et al. 2008).

3.3 The derefinement translation

The derefinement translation associates explicit proofs of formulas
¢[v/z] with values v given refined types {z:7 | ¢}. The standard
approach to this problem is to translate refinement types {x:7 | ¢}
to dependent pairs (z:7 * proof ¢»)—for example, Coq (Bertot and
Castéran 2004) adopts exactly this strategy to represent refinement
types (sometimes called subset types, in Coq terminology).

However, the standard approach faces a difficulty in our context,
because the FINE type system (unlike Coq’s) comes equipped with
a subtyping relation, according to which {z:7|¢} <: 7. Since
the representation of a (x:7 * proof ¢) value clearly differs from
the representation of a 7 value, a naive translation is incompatible
with FINE’s subtyping relation. Altering FINE’s subtyping relation
is not an option since it is key to the usability of FINE as a source
programming language. Treating {x:7 | ¢} as a subtype of T allows
programmers to simply use refinement formulas to state invariants
of their objects, but to otherwise use these values normally, without
needing to insert tedious operations to pack and unpack dependent
pairs of values and their proofs. The novelty of derefinement, then,
lies in the way it selectively introduces dependent pairs in a manner
that allows us to accommodate FINE’s subtyping relation.

Figure 4 shows a few key rules from our derefinement judgment.

This judgment is written S;T" - 7 N , and reads that in a
context with a signature S and environment I" (wherein all types
have already been derefined), a source type 7 is derefined to 7’ of
kind . The superscript b is one of two constants: “bare” or “box”.
In the latter case, this indicates that the type 7 was translated to a
dependent pair of the form (z:7’ * proof ¢)—values of this type are
“boxed” with a proof of the formula ¢.

The rule (D1) shows a refinement type translated to a pair.
The rule is simplified by assuming that refinement types are not
nested. It is always possible to normalize types to this form, e.g.,
{z:{x:7| P1}| 2} can be normalized to {z:7 | 1 A ¢p2}. In (D2),
we show the translation of a function type, where the argument type
71 is translated to the (unboxed) type 71. The interesting case is the
translation of functions that receive arguments with refined types,
shown in rule (D3). Here, the argument is first translated to a boxed
type, but, in the conclusion, we use a curried representation of a
dependent pair. The effect of this formulation is that refinement
types that appear in negative position are translated in a curried
style, while those that appear in positive position are translated to
dependent pairs. This serves two purposes. First, in the body of a
function with this type, the argument z can be used at the type 7’
without needing any coercions. More importantly, the name = of
type 7’ is bound in the return type 72, where it may, for example,
index another type. Failing to curry the dependent pair would re-
quiring the coercing occurrences of x in T2 to project out the first
component of the dependent pair. Since FINE and DCIL only sup-
port value indexed types, inserting such coercions at the type level
is not feasible.

The derefinement of expressions has a similar form: S;T'; X +

e e 7, where the context X records the set of affine assump-
tions usable by e. We omit this judgment due to space constraints.
Instead we illustrate its behavior on a (simplified) fragment of the
example program from §2. The top of Figure 5 shows the derefine-
ment of types in a context—note the distinction between the trans-
lation of refinements in positive and negative contexts in the type of
contains and readFoo respectively. We use me, s, tok and p as free
variables bound in the context throughout the rest of this section.
The source program on the left gives the boolean b a refined type.
We type the then-branch of the conditional with the assumption that
b = true. At the right we show the derefined program. Values that
are given boxed types, like b’, are unboxed immediately to bind



me:prin, s:st, tok:Statels s, p:perm
contains : s:ist — a:att — {b:bool | b=true < In a s}
readFoo : s:{x:st | Derivable p x} — Statels s — Statels s

me:prin, s:st, tok:Statels s, p:perm
contains : s:st — a:att — (b:bool * proof(Iff (Eq_Bool b true) (In a s))))
readFoo : s:st— proof (Derivable p s) — Statels s — Statels s

1. let f = contains s in let b = f (Role me Plugin) in

2.if b then let g = readFoo s in

3. g tok else tok 3.

1. let f = contains sin let b’ = f (Role me Plugin) in
1.1. et (b, pfl) = b’ in (xvalues packed with proofs are unpacked immediately *)
2.if b then let h = readFoo s in

2.1. let g =h| (v:proof (Derivable p s)) |in (*v uses pfl, and assumption b=true *)

g tok else tok

Figure 5. A source program (left) and its derefined version—an auto-generated proof term v is shown with its type ascribed.

both the underlying value and the proof in the context. The call to
the function h:proof(Derivable p s) — Statels s — Statels s requires a
proof term as an argument. The auto-generated proof term is shown
as the value v, shown enclosed in a box in the figure.

To discharge proofs, our compiler constructs a first-order theory
for Z3 by collecting user-provided axioms, variable bindings and
match assumptions from the type environment I', e.g., bindings
for normal variable like b, proof terms like pfl, and, in the then-
branch of the conditional, the assumption b = true. We then assert
the negation of the goal, (e.g, not (Derivable ps)) in this theory.
When successful, Z3 determines that the theory is unsatisfiable and
produces a proof. We translate this proof into a FINE value of type
proof(Derivable p s) using the constructors of our proof kernel.

3.4 Generating proof terms

Consider typing the program of Figure 5 in the presence of the
user-provided assumption:
assume U: forall(s’:st). In (Role me Plugin) s’ = Derivable ps’. Note
that p:perm is bound in the context. This assumption is translated
to the data constructor U shown below. At the call to readFoo, we
are required to construct a term with type proof(Derivable p s). We
show such a term below (omitting type instantiations for clarity):
U: proof (s’:st — proof (Imp (In (Role me Plugin) s’) (Derivable p s’)))
Bind_pf U
M:(s’:st — proof (Imp (In (Role me Plugin) s’) (Derivable p s)))).
Modus_ponens (Modus_ponens ((Refl_bool b):proof(Eq_bool b true))
(Iff_elim_1 pfl))
(fs)

The proof proceeds by applying the monadic bind operator on
the assumption U; then applying the quantified assumption in U
to s, the state variable in question; and eliminating the impli-
cation proof (Imp (In (Role me Plugin) s) (Derivable p s)) using the
Modus_ponens rule. To obtain a proof of In (Role me Plugin) s, we
make use of the proof term pfl that is introduced in the context
at line 1.1 on the right side of Figure 5. Recall that pfl has type
proof (Iff (Eq_bool b true) (In (Role me Plugin) s)). We convert this to
an implication proof (Imp (Eq_bool b true) (In (Role me Plugin) s)) by
applying Iff_elim_1 to pfl. Finally, we eliminate this implication us-
ing an application of Modus_ponens, where we construct a proof of
(Eq-bool b true) using the term (Refl_bool b):proof(Eq-bool b true).
Notice, however, that the type of Refl_bool b is proof(Eq_bool b b).
To check the type ascription, we rely on a match assumption in the
context, b = true, introduced in the then-branch of the if-statement
on line 2. Given this assumption, our type checker equates the
type proof(Eq_bool b b) with proof(Eq_bool b true), as required by
the context, and completing the proof. Note that the match assump-
tions that induce type equivalences require special treatment in the
translation to DCIL—we discuss this in §4.4.

Our implementation uses Z3 to synthesize proof terms similar to
(but often considerably larger than) the one shown above. Our ap-
proach to translating Z3 proofs is syntax-directed—most Z3 proof
steps are processed locally and just once. The exceptions to this rule
are proof steps that deal with equisatisfiable formulas, using princi-
ples such as skolemization. As with equality, a general treatment of

these formulas requires a use of higher-order logic. Nevertheless,
for the few cases in our benchmarks that require equisatisfiability,
we are able to provide a suitable first-order treatment to extract ty-
peable proof terms. In the future, we plan to explore adding limited
forms of higher-order quantification to DCIL, while still being faith-
ful to the restrictions imposed by CIL generics. We anticipate such
a feature simplifying the construction of proof terms significantly.

We conclude this section by presenting Theorem 1 which estab-
lish the soundness and completeness of derefinement. In the state-
ment below, S;T" - e : 7and S;I" - 7 :: k are the typing and
kinding judgments for FINE (with refinement types) as defined in
our prior work (Swamy et al. 2010). Informally, our theorem states
that for well-formed environments, any source term e well-typed
at 7, is translated (in a translated environment) to a term e’ well-
typed at type 7', where 7’ is the translation of 7. A similar result
holds for the derefinement of types. The proof of the theorem pro-
ceeds by mutual induction over the structure of the type- and term-
derefinement judgments.

Theorem 1 (Derefinement preserves types). For any well-formed
context S;T'; X, there exists a context S';T”; X that is the derefine-
ment of S;I"; X ; such that, for any source expression e well-typed
at type T, there exists an expression €’ and type T’ that is the dere-
finement of e and T, where €' can be given the type T'. Similarly,
for any type 1 well-kinded at kind k, there exists a type 11 that is
the derefinement of T1, where 71 can be given the kind k. That is,
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4. Translating FINE to DCIL

This section presents DCIL, an extension of a functional fragment
of CIL. We use CIL generics to translate many basic FINE con-
structs (Kennedy and Syme 2004). DCIL extends CIL with affine
types, type-level functions, and classes parameterized by values.
We discuss how to represent all our extensions in standards-
compliant .NET assemblies. Code consumers can choose to use
a type checker for DCIL for security checking, but otherwise can
run DCIL programs on stock .NET virtual machines.

4.1 Syntax

Figure 6 shows the syntax of DCIL. We re-use metavariables from
FINE for syntactic categories in DCIL—the context will make the
distinction clear. We write p for a finite-length sequence of p items,
and p,, for an n-length sequence. Modules in FINE are translated to
a combination of assemblies, modules, and inner classes in DCIL,
where we use visibility qualifiers to model information-hiding in
DCIL—this is discussed in our technical report.



module mod. {td, dd in e}
abs. class  td n=  T(a=k,z77):k{fd, md}
dataclass  dd n=  D{awr,z7):T(7,v){vc,fd, md}
constraints ~ vc = T=v
fid. decl.  fd - fur
meth. decl. md = 7mla:k)(x:T){e}
value v = x| D(T,v)
expr. e = vl|ou.f|vm(r)(v)
| xisinst D(T,v) then e; else ey
| letz = e in es
type T = o T(T,0)| It |\ | TV
kind K = x|A|T—k

Figure 6. Syntax of DCIL

DCIL distinguishes two types of classes. All (non-primitive)
types in FINE are translated to abstract classes 1'. FINE values v:T
are translated to instances of data classes D, where D extends T,
the class corresponding to 7. Classes can be parameterized by a
list of type parameters &k and also by a list of value parameters
z:7. Both kinds of classes include field and method declarations,
although bodies of method declarations in 7'-classes are empty.
Data classes include value constraints v¢, which are analogous to
FINE’s pattern matching assumptions—we discuss these shortly.

Like FINE, the syntax of expressions in DCIL is presented in A-
normal form. Expressions include values v (variables or instances
of data classes D), field projections, method calls, and a runtime
type-test construct, (v isinst D(7, ) then e; else ey ). Let-bindings
are syntactic sugar for initialization of (immutable) local variables
in CIL. Both let-bindings and type-tests are macro instructions
in DCIL—each corresponds to several CIL instructions. Types in-
clude type variables and fully instantiated abstract classes T(7, D).
Affinely qualified types are written !7, as in FINE. DCIL includes
a restricted form of type-level functions (written \x:71.72) to rep-
resent dependent types. Type-level function application is denoted
7 v. Kinds include * and A as in FINE, and 7 — &, the kind of
type-level functions.

4.2 Overview of DCIL

DCIL contains three main innovations. First, in addition to x-kinded
type parameters, classes can include affine types, type-functions,
and values as parameters. Importantly, DCIL does not include type
parameters of kind x — k or A — &, a fundamental restriction of
.NET generics which we aim to preserve. A violation of this prop-
erty likely requires sweeping changes to CIL, contrary to our aim of
accommodating affine and dependent typing using only the existing
metadata facilities provided by .NET. In our approach, value pa-
rameters are represented using standard field declarations and type
functions are encoded using custom attributes, but, ignoring these
attributes still yields a valid .NET assembly.

Our second main contribution is a formalization of affine typ-
ing for DCIL. The mixture of affine and dependent typing is sub-
tle and can require tracking affine assumptions in types as well as
terms. Our formulation is streamlined by a crucial design element
of DCIL—the separation of classes that represent source-level types
(abstract classes T'(7, U)) from data classes (D (7, 7)). This separa-
tion makes sure that affine values never appear in types, much as in
the source language, greatly simplifying the metatheory of DCIL.
Affine types can be represented in CIL using .NET type modifiers—
these are opaque to the .NET runtime, and only need to be inter-
preted by a DCIL-aware bytecode verifier.

Finally, we retain separate compilation of DCIL classes by aug-
menting the declaration of data classes with value constraints. For
an intuitive sense of why separate compilation of DCIL classes

poses a difficulty, consider the following source program fragment:
match b with true — \y:int. ((Refl_bool b) :proof (Eq_bool b true))

When typing this program in FINE, we can convert the type of
Refl_bool b from proof(Eq_bool b b) to proof(Eq_bool b true), since
the sub-term Refl_bool b appears in a context where b=true. How-
ever, when translated to DCIL, the lambda-expression is closure
converted, and then translated to some data class D with a sin-
gle value parameter b. To type check D, we need to ensure that it
is only constructed in a context where its value parameter b can
be proved equal to true. Value constraints in DCIL serve just this
purpose—they record constraints about a class’s value parameters
so that the class can be checked independently of other classes; at
every construction site of a class, we check that its value constraints
are satisfied.

4.3 Static semantics of DCIL

Figure 7 shows several rules from the key judgments in the static
semantics of DCIL. Derivations use a context X that collect decla-
rations of both D- and T'-classes; I', a local typing environment;
and X a context containing usable affine assumptions.

The (WF-dd) rule defines well-formedness of a data class dec-
laration. We include it here primarily to point out the scoping rules
for the type and value parameters of a class declaration. In the first
premise, we check that the kind ; assigned to each type parame-
ter o; is well-formed. We permit functional dependences among
the kinds: in the first premise of (WF-dd) we check each k; in
a context extended with the prefix of previous type parameters
Q1iK1, ..., ®i—1::K;—1. For example, DepArrow(al::*, a2:i] —
*) is a valid class declaration in DCIL, where the first type param-
eter oy appears in the kind of the second parameter. (DepArrow is
used to represent dependent functions from FINE—cf. §4.4.) Simi-
larly, we allow dependences among the value parameters x;:7; (the
second premise of (WF-dd)). The remaining premises check that
the super-class T'(7’, v'), each of the value constraints, field decla-
rations, and method declarations are all well-formed. An important
aspect of the last premise of (WF-dd) is that each method declara-
tion is checked with its own set of affine assumptions X; (disjoint
from others) drawn from the value parameters of the class.

Note also that, in the last premise of (WF-dd), the method dec-
larations are checked with the class’s value constraints V¢ in the
context—the key to enable separate type checking of DCIL classes.
For this rule to be sound, we need to check that the constraints hold
true at every construction site of the class. This check is handled by
(T-New). In the first premise of (T-New), we lookup the constructed
class’s declaration in the signature X.. In the second premise, we
check that the value constraints vc are valid for the actual argu-
ments U used to construct the class. The third premise of (T-New)
checks the type arguments 7 against their expected kinds %. Since
the scoping rules allow dependences among the type arguments,
when checking the ¢th argument, we substitute the prefix of argu-
ments for the bound type variables in the expected kind x;—we
write [T/@;—1] for the substitution [71 /a1 ... Ti—1/c;—1]. The last
premise of (T-New) is similar, but must account for dependences
among the value parameters.

The (y isinst D(7,T) then e; else ey) form is DCIL’s equiva-
lent of FINE’s match construct, where the data class D(7, Z) plays
the role of a pattern. This instruction is a macro that expands to
multiple CIL instructions, where in the then-branch we include pro-
jections of each of the fields corresponding to the value parameters
of y, the expression being scrutinized. DCIL provides no other way
to project the value parameters of a data class. When checking this
expression (T-Inst), we split the affine assumptions X, X’ between
the value y being scrutinized and the branches. We check the pat-
tern and the true-branch in a context I’ that includes bindings for
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Figure 7. Static semantics of DCIL (selected rules)

the pattern-bound variables. As a result of y matching the pattern,
we can deduce a number of equalities. These equalities, V¢, are
computed (in the fourth premise) by unifying the type 7, of y with
the type of the pattern 71. For example, if 71 is Cred(Alice) and 71
is Cred(z), the value constraints V¢ include z = Alice. The true-
branch, e, can use these equalities, in addition to an assumption
that y matches the pattern, i.e., y = D(7, T).

Finally, we show (T-App), the rule for method calls, which cap-
tures both type and term application in FINE. In the first premise,
we type the receiver object v. Note that v’s type is always an ab-
stract class 7', even though v is a constructed using a data class
D. The second premise looks up the method declaration; the third
checks the type argument; and the last premise checks the value
argument. In the conclusion, as is standard with dependent typing,
we substitute the actual v’ for the formal z in the return type.

In the kinding judgment, (TK-Fun) defines the well-formedness
of type-level functions. The first premise ensures that type-level
functions can only receive non-affine values as arguments. This
restriction, together with the separation of data classes D from type
classes 7', ensures that we do not have to track usages of affine
assumptions at the type level. Application of type-level functions is
handled by (TK-App), where the second premise shows the value v
typed without any affine assumptions X. Finally, (TK-T) shows the
kinding rule for abstract classes. As with (T-New), the dependences
among the type and value parameters require that we apply prefix
substitutions to the expected kinds and types. Also, as in (TK-App),
the last premise of (TK-T) makes no use of affine assumptions.

The bottom part of Figure 7 shows selected rules from DCIL’s
type equivalence judgment. The complete relation is the reflexive,
symmetric, transitive closure of the rules shown. The typing judg-
ment is free to appeal to this relation to convert types of expres-
sions at any point in a derivation—this makes our presentation of
the typing judgment for DCIL non-syntax-directed. To be syntax
directed, our implementation relies on annotations inserted by the
FINE type checker to determine where in a derivation type equiv-
alence is needed. The rule (TE-Beta) equates types related by -
reduction of type-level function applications. Type-level functions
are essentially drawn from the simply-typed lambda calculus and,
as such, are strongly normalizing. Thus, despite allowing computa-
tion in types, DCIL type checking remains decidable. (TE-Refine)
lifts the equivalence relation into the type and value parameters of

a class. Finally, (VE-Refine) equates value parameters v; and vs
when v1 = w2 is in the context.

Theorem 2 below establishes that DCIL is sound. The dynamic
semantics of DCIL is formulated (like FINE) to account for affine
typing. The small-step reduction relation for DCIL is written >
(M,e) ~ (M’,e"). Values with affine types are held in a mu-
table store M, where reads and writes to the store are destruc-
tive. Following a methodology adopted in our prior work (Swamy
et al. 2010), Theorem 2, in addition to showing that well-typed pro-
grams never get stuck, guarantees that DCIL programs never de-
struct affine values more than once.

Theorem 2 (Soundness of DCIL). For all well-formed signatures
3., environments I'; non-values e; and stores M typeable with 32; T,
the following statements are true:

1) If S;Tsdom(M) & e : 7 then there exists M, e’
such that X = M, e ~ M’ €.

) ST X Fe:Ttand S+ M, e~ M’ e for some M’ ¢,
and X C dom(M); then, there exists T, X' such that
SiTV: X' € 27 and M’ is typeable with ¥; 1. Furthermore,
for Ax = (dom(M) U dom(M')) \ (dom(M) N dom(M"))
if dom(M'") 2 dom(M) then X' = X U Ax;
otherwise X' = X \ Ax.

4.4 Translation of FINE to DCIL

This section illustrates our translation from FINE to DCIL using sev-
eral examples. The main subtleties arise in two parts of the trans-
lation. First, dependent functions are translated to instances of an
abstract class DepArrow, overriding a single method App containing
the translation of the function body. This idea is based on a scheme
proposed by Kennedy and Syme (2004), who translate a polymor-
phic (non-dependent) lambda calculus to an object-oriented lan-
guage like CIL. The primary novelty of our translation lies in the ex-
tension of this translation to capture the functional dependences in-
troduced by dependent types in FINE. We further extend this mech-
anism to account for affine types. The second novelty of our trans-
lation relates to the computation of value constraints in data class
declarations. These constraints are computed with the assistance of
the source-level type checker and, as mentioned previously, enable
separate compilation of DCIL classes.



Translation of type constructors. Type constructors are translated
to declarations of abstract classes 7'. The type and value parameters
of a type constructor are carried over directly. For example, the type
of proofs, proof::x — «, is represented in DCIL as an abstract class
with a single type parameter: proof<a:x >:x. Dependent type
constructors like Eq_att:: att — att — « are translated to abstract
classes with value parameters: Eq_att<x:att, y:att>::x.
Translation of data constructors. Data constructors in FINE are
translated to declarations of data classes D that extend the abstract
class corresponding to the type constructed by D. For example,
the And_elim_1: proof<And o 3 > — proof<a > data constructor is
translated to the class,

And_elim_1<a::x, B %, x:proof <And<a ,3 >>> : proof<a >

The value parameter of And_elim_1 corresponds to a field that holds
a proof<And<a,B3 >> value, but notice that this value parameter
does not appear in the type proof<a > constructed by And_elim_1.
This is in contrast to the data constructors of dependent types. For
example, the reflexivity axiom Refl_eq_att: a:att — proof (Eq-att a a)

is translated to a data class Refl_eq_att<a:att>:proof<Eq_att<a,a>>.

The value parameter of Refl_eq_att corresponds both to a single
field declaration in the body of the class and additionally appears
as an index in the type proof<Eq_att<a,a>> that it constructs.

Translation of function types. Dependent function types in FINE
are translated to instances of the abstract class shown below:

(a2 ) App(z:a1){} }

Class DepArrow takes two type parameters: o for the argument
type and g for a type function—the return type of App is the
result of applying a2 to the argument x. Source-level types such
as p:prin — cred p are translated to instances of DepArrow; in this
case, PCredP:DepArrow({prin, \x:prin.cred(x)). The App method of
PCredP is of the form ((\z:prin.cred(z)) p) App(p:prin) (by instan-
tiating types in the declaration of DepArrow). By the rule (TE-Beta)
in the type equivalence relation, the return type of this method is
cred<p>, analogous to the type returned by the source-level func-
tion. Each function type in FINE is translated to a distinct class (like
PCredP) in DCIL and overrides the App method suitably. A closure
conversion step collects the free variables of a function and adds
these as additional type and value parameters to the class.

We also include the abstract classes shown below to represent
non-dependent functions, and functions that take affine arguments
or produce affine results. Notice that the second type parameter of
Arrow_AA is not a type-function, since the type system ensures that
affine values can never appear within types.

Arrow{au ik, aipiik) it %{  (a2) App(z:a1){} }
Arrow AA(a1::A, aoi:A) o x{  (a2) App(z:a){} }
DepArrow A(a1 ik, aaiiar — A) it %{ (a2 x) App(z:an){} }

Translation of dependent pairs. Dependent pairs are translated
similarly to dependent functions. The abstract class DepPair_A be-
low corresponds to the type of a dependent pair where the sec-
ond component is affine—as with functions, we include variants
of DepPair_A for pairs of other kinds.

DepPair A{ay ik, ap:aer — A A{}

Classes that represent pairs are just data containers with no meth-
ods at all. In contrast to functions, distinct dependent pair types in
FINE can be translated to the same class in DCIL. We include data
classes of the form shown below:

DepArrow (v ik, ity — *) 12 %{

DA{au:k, a1 — A, zian, y @ e ©) 2 DepPair{au, a2)

The data class DA can be instantiated appropriately to represent
specific source values. For example, the source value (s, tok) of
type (s:st * Statelss) is translated to a new DA value using the

constructor application DA(st, \s:st.Statels(s), s, tok) and is given
the type DepPair_A(st, \s:st.Statels(s)). As mentioned before, DCIL
provides no way to project value parameters—the only way to de-
struct a DepPair_A class is by using the isinst construct.

Using value constraints. To illustrate the use of value constraints,
consider, once again, the source term:

match b with true — Ay:int. ((Refl_bool b) :proof(Eq_bool b true))

The lambda expression is translated to a class D<b:bool>, a sub-
class of Arrow<int, proof<Eq_bool<b, true>>>, where closure
conversion adds the free variable b as a value parameter of D.
The body of the lambda-term is translated to the body of the over-
riden App method of D, where, to give the sub-term Refl_bool<b>
the type proof<Eq_bool<b,true>>, the DCIL checker needs an as-
sumption b = true. The translation from FINE to DCIL records this
assumption (provided by the match on b) as a value constraint in
the declaration of D. The match statement is itself translated to an
isinst statement in DCIL, and in its then-branch, where the D-class
is constructed, we check that the constraint b = true holds.

4.5 Type-preserving translation

Theorem 3 below states that the translation preserves types—]|| - ||
denotes the translation of environments, and the judgments that use
—» stand for translation of types and terms.

Theorem 3 (Type-preserving translation). Suppose, for a well-
formed source environment S;1'; X, and for a source expression
esrc well-typed at type Tsrc (i.e., S;1; X b esre @ Tsre) we have
that esrc is derefined (for some b) to egyc at type Ty (ie., S;T; X F
esrc R €sre © Tere). Then, there exists a target expression ergt and
class declarations 3, such that ey is translated to ergr and 3 (i.e.,
1S11; [IT|| & €src = ergr; X); and there exists a target type Tygr such
that type Ty is translated 1o Tgt (i.e., | S|, 55 || T|| & Tére = Trgr).
Furthermore, ergr is well-typed at type Tygr, ie., ||S||, ;||| +
e;g; : Tigt-

5. Implementation

This section describes the implementation of our prototype com-
piler and our experience using it on several small programs. Our
compiler is implemented in approximately 20,000 lines of F# code,
extending the parser and the binary writing libraries of the F#
compiler. Our application programs are, for the most part, refer-
ence monitors—security-critical kernels of applications that are ex-
pected to be compact. These programs enforce many kinds of poli-
cies, including those based on security automata, information flow
controls, and role- and history-based authorization. Our measure-
ments show that, currently, the cost of carrying proofs can increase
the size of binaries by more than an order of magnitude. However,
despite their large size, type checking DCIL assemblies is fast. We
also report on an experiment with our largest benchmark, where,
through the use of a custom solver, we were able to reduce code size
by more than a factor of 25. In summary, our results indicate that
end-to-end verification is possible for programs that use common
security policies, and, with improvements in certifying solvers, the
overhead of carrying proofs can be made practical.

5.1 Application programs

Figure 8 shows the results of our compiler on six example pro-
grams. The columns from left to right are the name of the program;
the number of lines of source code (LOC); the time (in seconds)
for parsing and type checking source programs without extracting
proofs (SC); the time to extract proofs and to derefine (DR); the
time for translating to DCIL (Trans); the time to type check target
programs (TC); the size in bytes of .NET assemblies that do not



Name LOC SC DR Trans TC NoPf Pf
AuthAC 34 0.36 0.56 0.25 0.08 20K 30K
Automaton 121 1.53 0.76 0.41 0.09 20K 40K
iFlow 127 2.90 16.9 17.8 0.42 30K 840K
HealthWeb 318 2.82 474 65.7 1.14 80K 2.1IM
Lookout 519 4.99 54.3 37.8 0.71 120K 1.8M
ConfRM 647 10.1 68.5 81.2 1.47 110K 3.3M
Total 1766 | 22.7 188.42 | 203.26 391 380K 8.3M
ProofLib 9943 20.4 55.84 577.8 6.73 51.3M 51.3M
Conf(Z3) 177 6.83 554 62.9 1.25 45K 2.4M
Conf(SS) 177 6.83 37.8 0.39 0.11 45K 83K

Figure 8. Compilation times and binary sizes on benchmarks

include proof terms (NoPf); and the size of assemblies that do in-
clude proofs (Pf). Our experiments were performed on a 3.2 GHz
Pentium Core Duo running Windows Vista.

Standalone benchmarks. Our simplest benchmark is AuthAC,
which implements a password-based authentication mechanism
combined with a group-based access control policy. Proving the
correctness of AuthAC requires constructing a single proof term
showing that a principal making a request for a resource is a mem-
ber of the appropriate group. Automaton is more interesting—it
enforces a protocol on file system resources specified as a secu-
rity automaton. It uses refinement formulas to reason about the
equivalence of file handle aliases, and combines this with affine
and dependent typing to model the current state of a file. iFlow
implements a canonical lattice-based information flow policy, with
dynamic security labels (Zheng and Myers 2004). Types in iFlow
are refined using a proposition CanFlow | m, where | and m are se-
curity labels. We use runtime tests of dynamic labels together with
user-defined assumptions that defines the label lattice in order to
discharge proofs of the CanFlow proposition.

HealthWeb is a reference monitor for an application that manages
a database of electronic medical records. It enforces a stateful au-
thorization policy, where the authorization state records attributes
like role activations, current relationships between doctors and pa-
tients, and patient consent directives. Patient records are classified
by subject which, together with the authorization state, controls the
privilege to read, write, delete, annotate, or search for records. The
reference monitor serves requests from a web-based front-end writ-
ten in ASP.NET and C#, and provides a secure interface to a SQL
Server database with an object-relational mapping implemented us-
ing F#. As a server-side program, we anticipate that the proof terms
produced for the verification of HealthWeb could be logged at run-
time to construct audit trails of authorization decisions; however,
we have yet to implement such an auditing facility.

ConfRM is a reference monitor based on Continue, a widely used
conference management tool (Krishnamurthi 2003). This applica-
tion was previously implemented and described in detail in our
prior work Swamy et al. (2010) and is currently our largest bench-
mark. It enforces a stateful authorization policy that is divided into
9 temporal phases and manages 12 different kinds of privileges.

Lookout is a larger version of the example described in §2. Two
additional features of Lookout are of particular interest. First, in ad-
dition to the stateful authorization policy shown in §2, we provide
facilities to track information flows through plugin code. For ex-
ample, rather than return a string, the readEmail function from Fig-
ure 1 returns a value of the abstract type labeled string (Email e)—
the label Email e records the provenance of the string, namely, that
it originated from the email e. User policies can refer to these la-
bels to specify information flow controls. For example, one of our
example user policies prevents plugins from replying to an email
with content derived from other, more sensitive, emails.

Second, we provide a way for plugins to selectively share in-
formation with each other via the cookie store. Rather simply
asserting (using Permit p a) that a principal p holds the privi-

lege to perform an action a, our implementation uses a policy
in which a privilege is granted by one principal to another, e.g,
Permits p q a records a permission granted by p to q to perform
the action a. We use this decentralized model of permissions
to build secure plugin mashups. When placing a cookie in the
store, a plugin can register an function closure that mediates ac-
cess to that cookie. When the reference monitor returns a cookie
to the principal p, we check that the returned value has the type
{c:cookie | Derivable (Permits owner p (ReadCookie c.name)) s}), in-
dicating that the cookie’s owner authorizes p to read the cookie.

ProofLib is an auto-generated library of commonly used (verified)
lemmas that assist with translation of Z3 proof terms. Z3 proofs
often use rewriting steps that may, for example, rearrange the order
of clauses in a formula. Or, a proof may use a number of variants of
a rule to eliminate double negation. Rather than reconstruct proofs
of these steps each time, proof terms simply use lemmas exported
by the ProofLib module.

5.2 Compilation times and producing smaller proofs

In general, our measurements show that type checking DCIL pro-
grams is fast. For example, typechecking the 5IMB ProofLib takes
less than 7 seconds. However, the last two columns of Figure 8
show that the increase in code size due to proof terms can be
quite substantial—21x on average, as much as 53X in some cases
(Conf(Z3)). Clearly, this is much larger than we would like. Large
proofs contribute to the bulk of the total compilation time for our
application programs, both in derefinement which must synthe-
size these proofs, and in the translation from FINE to DCIL. When
actively developing code, we often use a “source-checking only”
mode for quicker feedback (the SC column). This mode typechecks
source programs and uses Z3 to decide refinement formulas, but
does not extract proofs.

The overhead due to proofs can be much lower with appropri-
ate support from an external solver. The last two rows of Figure 8
are Conf(Z3) and Conf(SS). These are identical programs represent-
ing the main event loop of ConfRM, where much of the verifica-
tion burden lies. The Conf(Z3) row shows measurements for this
program compiled with all proofs produced by Z3. The Conf(SS)
line shows compilation results for this benchmark where all proofs
were generated using a simple, unification-based first-order solver
that we wrote for this purpose. Our measurements show that our
simple solver can produce proofs that are 25 times smaller than Z3
proofs. However, our simple solver is not nearly as full-featured
as Z3 and can only produce proofs by repeated application of and-
introduction and elimination, quantifier instantiation, and modus
ponens. Getting all of Conf’s proof obligations to fall into this frag-
ment required some careful rewriting—so, our simple solver is in
no way a substitute for Z3.

A closer examination of Z3’s proofs for Conf(Z3) suggests a few
reasons why its proofs are so big. First, proofs contain a number
of steps that pertain to manipulating the structure of quantified
formulas. A first-order solver that used a more direct treatment of
quantification is likely to produce more compact proofs. Second,
SMT solvers have for long been optimized for speed rather than
proof size. For example, a number of proof steps reported by
Z3 involve rewriting formulas into specific normal forms since
these are conducive to faster proof search. However, each of these
rewrite steps has to be translated in to a proof term. Finally, proofs
occasionally contain truly redundant steps, e.g., proofs of formulas
that have already been assumed. Our proof extraction modules
attempt to detect and discard such steps. However, there remain
several opportunities to post-process Z3 proofs to produce smaller
proof terms—we plan to investigate this in future work.



6. Related work

This section discusses related work not already covered elsewhere
in this paper. Our approach of compiling FINE to DCIL is an in-
stance of proof-carrying code (PCC) (Necula 1997) and typed as-
sembly language (TAL) (Morrisett et al. 1999). Traditionally, both
TAL and PCC have been applied to prove the memory safety of
assembly language programs, rather than for security verification
of bytecode. More recently, Yu and Islam (2006) have proposed
a typed assembly language for confidentiality and prove that it
enforces a noninterference property. Also related is Barthe et al.
(2007) type system for noninterference for Java bytecode. Barthe
et al. provide a formally certified implementation of their bytecode
verifier by extracting an implementation from Coq. Their bytecode
language also includes features like exceptions, which are omitted
from DCIL. However, both these systems focus solely on checking
the enforcement of information flow policies. In contrast, DCIL pro-
vides general support for dependent and affine types at the bytecode
level, rather than building in special support for information flow
policies. Our prior work Swamy et al. (2010) shows that both in-
formation flow policies and policies like stateful authorization can
be enforced in FINE. Our type preservation result extends this re-
sult to DCIL. Additionally, both Barthe et al. and Yu and Islam’s
systems only enforce information flow policies with static security
labels. Dependent types in DCIL allow us to enforce information
flow policies with dynamic labels (Zheng and Myers 2004), and
we put this to good use in our implementation of Lookout.

Dependently typed object-oriented programming languages
have been studied previously. For example, the X10 programming
language (Nystrom et al. 2008) and the HOOP calculus (Flana-
gan et al. 2006), use dependent types to state invariants on object-
oriented programs. However, both of these are source languages,
whereas DCIL is a bytecode language. X10 and HOOP also have
imperative features; DCIL is functional, but uses affine types to
model mutable state.

Refinement typing in FINE is closely related to similar con-
structs in F7 (Bengtson et al. 2008). Our work was designed, in part,
to be directly applicable to F7, which like FINE, is also based on
F#. In the future, we plan to investigate using our tools to certify the
compilation of F7 programs that have been verified to correctly im-
plement a number of cryptographic authentication protocols. Like
F7, the Sage language (Flanagan 2006) also uses a trusted exter-
nal solver to discharge proofs of refinement formulas, but auto-
matically insert runtime checks when the prover fails to discharge
a proof obligation. Failed runtime checks can cause subtle leaks of
information, and so automatic insertion of runtime checks is not yet
a feature of our compiler, where security is the primary concern.

Concurrent with our work, Bohme (2009) has implemented a
tool to verify Z3 proofs in Isabelle/HOL. As discussed in §3.2,
proof terms in FINE cannot make use of higher-order logic, due
to constraints imposed by the type system of CIL. Relying only on
first-order constructors for proofs complicates our proof extraction
libraries, and also requires a larger proof kernel to represent spe-
cialized axioms about equality at each type.

7. Conclusions

This paper has presented a type-preserving compiler that translates
FINE, a source-level programming language for enforcing rich se-
curity policies, to DCIL, a new extension of the bytecode language
for the .NET virtual machine. We have used our compiler to con-
struct and verify the security-critical modules of a number of ap-
plications. Although verification for DCIL is already relatively fast,
we anticipate further improvements to come as proofs produced by
solvers become more compact. As such, our work makes it possible
for developers to use a high-level language to program security-

critical code, and for end-users to receive formal proofs that the
code they rely on is secure.
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