Multicore Acceleration of Priority-Based
Schedulers for Concurrency Bug Detection

Sebastian Burckhardt

Microsoft Research

Santosh Nagarakatte

University of Pennsylvania

santoshn@cis.upenn.edu sburckha@microsoft.com

Abstract

Testing multithreaded programs is difficult as threads can interleave
in a nondeterministic fashion. Untested interleavings can cause fail-
ures, but testing all interleavings is infeasible. Many interleaving
exploration strategies for bug detection have been proposed, but
their relative effectiveness and performance remains unclear as they
often lack publicly available implementations and have not been
evaluated using common benchmarks. We describe NeedlePoint,
an open-source framework that allows selection and comparison of
a wide range of interleaving exploration policies for bug detection
proposed by prior work.

Our experience with NeedlePoint indicates that priority-based
probabilistic concurrency testing (the PCT algorithm) finds bugs
quickly, but it runs only one thread at a time, which destroys par-
allelism by serializing executions. To address this problem we pro-
pose a parallel version of the PCT algorithm (PPCT). We show that
the new algorithm outperforms the original by a factor of 5x when
testing parallel programs on an eight-core machine. We formally
prove that parallel PCT provides the same probabilistic coverage
guarantees as PCT. Moreover, PPCT is the first algorithm that runs
multiple threads while providing coverage guarantees.

Categories and Subject Descriptors D.2.5 [Software Engineer-
ing]: Testing and Debugging

General Terms Algorithms, Reliability, Verification

Keywords Concurrency, priority-based scheduling, multithread-
ing, probabilistic concurrency testing, parallel testing

1. Introduction

Multithreaded programs are difficult to test and debug because their
behavior depends on the specific interleaving of shared memory ac-
cesses, which in turn depends on how the threads are interleaved
by multicore hardware and thread scheduling software. Because
thread interleaving is non-deterministic and largely unpredictable,
an astronomical number of interleavings is possible even for small
programs. However, due to the statistical nature of the interleav-
ings, repeatedly testing the program on the same platform results
in redundant exploration of similar interleavings. The untested un-
common interleavings can have concurrency bugs that escape the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PLDI’12, June 11-16, 2012, Beijing, China.

Copyright © 2012 ACM 978-1-4503-1205-9/12/06. .. $10.00

Milo M. K. Martin

University of Pennsylvania

Madanlal Musuvathi

Microsoft Research

milom@cis.upenn.edu madanm@microsoft.com

testing process but manifest in deployed systems, especially if dif-
ferences in the deployed system’s hardware or software influence
observed interleavings.

One way to address this problem is to increase the coverage
achieved during testing by steering executions towards uncommon
schedules. We classify prior proposals for such controlled schedul-
ing into two categories. Best-effort tools insert explicit thread yields
at selected points at runtime [7, 11, 12, 22-25]. The strategies for
inserting yield points vary, ranging from random selection [7, 24]
to heuristics based on identifying symptomatic bug patterns in the
code, such as data races [25], potential atomicity violations [22,
23], and potential deadlocks [12]. On the other hand, guaranteed-
coverage tools such as CHESS [21] and PCT [5] provide provable
guarantees of the schedule coverage achieved during concurrency
testing. To provide such coverage guarantees, both these tools re-
quire absolute control of the thread scheduling achieved by running
the threads serially one at a time. Although coverage guarantees are
appealing in practice, the serial execution limits the applicability of
these tools, a disadvantage not shared by best-effort approaches.

To better understand the relative effectiveness and performance
of prior best-effort and guaranteed-coverage tools, we set out to re-
produce and compare prior research proposals by reimplementing
several published algorithms. In this process, we identified a com-
mon set of mechanisms required by a wide range of bug detection
techniques. These mechanisms include instrumenting synchroniza-
tion accesses, identifying blocked threads, and handling starvation.
A systematic approach to providing these mechanisms is useful be-
cause manual instrumentation or annotations become quickly im-
practical when controlling schedules of large applications.

Motivated by this observation, we developed NeedlePoint, a
unified framework for implementing a wide range of controlled
scheduling approaches — ranging from simple random sleeps to
prioritized scheduling. The framework separates the mechanisms
required to implement the various scheduling policies from the
policies themselves. This separation allowed us to implement sev-
eral previously proposed approaches as policies that plug into the
framework. In particular, we reimplemented the following strate-
gies: (1) a randomized version of preemption bounding [19], (2)
AtomFuzzer [22], (3) simple random sleeps, and (4) probabilistic
concurrency testing (PCT) [5].

We then used Needlepoint to test a collection of multithreaded
programs containing known concurrency bugs and also bench-
marks from the SPLASH and Parsec suites. Our experience with
NeedlePoint shows empirically that PCT is highly effective at find-
ing bugs. However, it also reveals that PCT’s performance suffers
significantly from its inherent restriction of scheduling only one
thread at a time. Although running one thread is good enough for
running small unit tests, it becomes a problem and causes signifi-
cant slowdowns when testing large programs with a large number
of threads or when testing highly parallel benchmarks.

To alleviate this problem, we propose a new testing algorithm
called PPCT (parallel PCT). Like best-effort tools, PPCT can
schedule multiple threads at a time, thereby making better use
of hardware parallelism. At the same time, PPCT provides the
same coverage guarantees as PCT. To the best of our knowledge,
PPCT is the first algorithm to provide coverage guarantees without
requiring serial execution of threads.

We provide a brief overview of the PCT algorithm [5] before
explaining our improvement. PCT assigns thread priorities cho-
sen uniformly randomly at the beginning of the program. At every
step of the algorithm, PCT schedules the unblocked thread with the
highest priority. The scheduled thread executes instructions up to
the next synchronization event before yielding the control back to
the scheduler. During this execution, PCT performs a small num-
ber of priority changes at steps chosen uniformly randomly at the
beginning of the execution. The guarantees provided by PCT de-
pend on the depth of a concurrency bug, which is the number of
scheduling constraints sufficient to trigger the buggy interleaving.
For instance, ordering violations have a depth 1 and atomicity vio-
lations have a depth 2. Given a program with n threads that executes
a maximum of k instructions, PCT triggers a bug of depth d with
probability at least nk% For instance, PCT can find ordering vio-
lations with probability at least %

The key intuition behind PPCT is that when searching for bugs
of depth d, it is necessary to control the scheduling of only d
threads. In particular, PPCT schedules all unblocked threads with
a priority greater than d at every step of the algorithm. In the rare
case when all unblocked threads have a priority smaller than or
equal to d, PPCT resorts to serial scheduling and schedules the un-
blocked thread with the highest priority. We adapt the formal proof
of PCT to show that PPCT provides the same coverage guarantees
as PCT.

Empirically, our experiments confirm that PPCT detects bugs
with either the same or higher rate when compared to PCT. Com-
pared to PCT, however, PPCT provides significant speedups both
on multi-core and single-core machines. PPCT provides speedups
over PCT even on a single-core machine by providing more flexi-
bility to the operating system scheduler to schedule a thread from a
larger pool of enabled threads. On a multi-core machine with eight
cores, replacing PCT by PPCT reduces the overhead of executing
the program from 34X to just 6x on an average. Unlike a slow-
down of 34 x, a slowdown of 6 is still tolerable for testing interac-
tive applications, and it enabled us to run priority based exploration
with the Chrome web browser and other applications.

2. Background on Controlled Scheduling

This section provides background on the problem of schedule se-
lection when testing multithreaded programs and the use of con-
trolled scheduling to address the problem.

2.1 Schedule Selection

Of the many aspects of testing multithreaded programs, this paper
focuses on the schedule selection problem, which involves effec-
tively finding, among an astronomical number of possible thread
schedules, those schedules that drive a program to an error. To this
effect, we assume the existence of a test harness that provides nec-
essary inputs to a multithreaded program and a test mechanism that
determines a test failure, such as a program crash, an assertion vio-
lation, or an incorrect output.

Data-race detection is related to and is different from the sched-
ule selection problem. A data race occurs when two threads con-
currently access the same shared variable without appropriate syn-
chronization, such as a missing lock. Although they are indications
of erroneous programming, a data race is neither necessary or suffi-

cient for a concurrency error [8, 14].1 Schedule selection may also
help data race detectors to uncover additional races.

2.2 Controlled Scheduling

Controlled scheduling techniques attempt to steer the program to-
wards less common interleavings. This is typically accomplished
by controlling the scheduling of threads and by allowing exactly
one thread to execute at a given time. These techniques can sys-
tematically explore all possible interleavings (for smaller codes) or
use various heuristics to guide which interleavings are explored (for
larger codes). Further, they can provide repeatability by enforcing
the same thread scheduling decisions, which aids debugging.

To control the order in which operations from various threads
are executed, such systems typically use OS-level threads but con-
trol the execution in user mode by preventing all but one thread
from making progress at a given time. A scheduling policy deter-
mines the thread that makes progress. A running thread invokes the
user-level scheduler at each scheduling point. Scheduling points
occur at thread creation, synchronization operations, and thread
termination. To achieve full coverage of sequentially consistent
behaviors, one also needs to insert scheduling points at certain
shared-memory accesses, such as accesses to volatile variables
(in Java), atomic variables (in C++), and variables participating in
a data race. Instrumenting such shared-memory accesses, however,
incurs additional overhead, requiring the tool designer to make an
explicit overhead versus coverage tradeoff.

Controlled scheduling allows the user-level scheduler to
determine the running/not-running status of each thread at each
scheduling point. The status of each thread is maintained in shared
memory. When the main thread spawns a thread, the newly created
thread’s status defaults to not-running. Whenever the running
thread encounters a scheduling point, it invokes the scheduling
policy which can then either (1) decide to execute the currently
running thread or (2) choose another thread to execute, in which
case the scheduling policy sets the other thread’s status to running
and sets the current thread’s status to not-running. Inactive threads
(ones that are marked as not-running by the user-level scheduler)
check their status whenever scheduled by the OS-level scheduler,
either discovering they have become the new active thread or
yielding otherwise. To ensure forward progress for busy-waiting
and other non-trivial synchronization idioms, the inactive threads
also periodically invoke the scheduling policy

Lock-based synchronization can potentially block, e.g., if the
lock is held by some other thread. A controlled scheduling system
must identify the threads that are blocked and should not sched-
ule blocked threads, as doing so can cause the system to livelock.
For simple locks, a controlled scheduling system can maintain a
hashtable of all acquired locks with information about threads ac-
quiring them. On a lock acquire operation, if the lock is already
held by some other thread, then (1) the thread’s status is changed to
blocked, (2) the thread is added to the list of threads waiting for the
lock, and (3) the scheduling policy is invoked as described above,
which chooses one of the non-blocked threads. On a successful lock
acquire, the hashtable is also updated with the information about
the acquired lock and the acquiring thread. On a lock release, the
scheduler changes the state of all blocked threads on the released
lock from blocked to not-running.

2.3 Challenges with Controlled Scheduling

Implementing controlled scheduling is conceptually simple, but
challenging in practice due to the following two reasons. First, real
world programs use a plethora of synchronization primitives. Many
programs define custom synchronization using the atomic primi-

! Here, we explicitly ignore weak-memory-model issues issues [3, 18]

tives provided by the hardware or use adhoc synchronization [26].
Accurately interpreting and handling all these synchronization op-
erations in a controlled scheduling system is difficult and infeasible
in practice. Further, even minor mistakes in interpreting synchro-
nization operations can lead to erroneous livelocks in the controlled
scheduling system and/or missed bugs. Second, the scheduling de-
cisions made by the underlying scheduling policy to steer the multi-
threaded program towards unexplored and buggy interleavings can
have pathological interactions with the synchronization operations
in the program. For example, scheduling a thread that is execut-
ing busy-wait synchronization operations or arbitrary spin loops to
completion with preemption bounded exploration or priority based
scheduling can cause starvation. These problems make interleav-
ing exploration of real world programs with controlled scheduling
challenging.

3. NeedlePoint Scheduling Framework

Although a large number of concurrency bug detection techniques
have been proposed to address the schedule selection problem [8,
13, 15, 16, 23], publicly available concurrency bug detectors are
primarily data race detectors such as Helgrind [1] and Intel Thread
Checker [2]. Thus, the efficacy of the various previously proposed
concurrency bug detectors with respect to each other is unknown.

To address this problem, we present NeedlePoint, a unified
framework for implementing a wide range of controlled scheduling
approaches — ranging from simple sleep insertions to randomized
prioritization — with support for repeatable execution. NeedlePoint
has two overall goals. First, the NeedlePoint framework is designed
to handle the real-world complexities of instrumentation for insert-
ing scheduling points and interpreting full-fledged synchronization
libraries, resulting in a tool robust enough for use in testing real-
world concurrent software with state-of-the-art controlled schedul-
ing policies. Second, NeedlePoint aims to provide researchers in
concurrency bug detection a framework to build upon when de-
signing and evaluating new scheduling policies.

3.1 Mechanisms

NeedlePoint’s key contribution is the separation of mechanisms
required to implement the various scheduling policies from the
scheduling policies themselves. This separation of concerns be-
tween the mechanisms required to implement controlled schedul-
ing and the scheduling policies enabled us to implement many pre-
viously proposed controlled scheduling techniques and test real-
world programs with them. We identified three key mechanisms for
building a wide range of concurrency bug detectors: (1) instrument-
ing synchronization operations, (2) identifying blocked threads,
and (3) ensuring starvation freedom.

3.1.1 Instrumenting Synchronization Operations

NeedlePoint invokes the underlying scheduling policy at every dy-
namic program point where threads can interleave. We name these
dynamic program points as schedule points. NeedlePoint uses bi-
nary instrumentation to identify such schedule points, namely all
synchronization operations, atomic operations, and user specified
synchronization operations. Furthermore, to detect bugs with data
races, NeedlePoint can be configured to instrument every memory
access and invoke the scheduling policy on such accesses. We have
built NeedlePoint using the Pin [17] dynamic binary instrumen-
tation framework running on a x86 Linux machine. Pin enables
NeedlePoint to identify synchronization operations (POSIX threads
API by default), atomic operations (x86 instructions with a lock
prefix), and memory operations. NeedlePoint uses Pin to insert a
call to the scheduling framework at these scheduling points.

3.1.2 Blocking Information

Accurately interpreting all synchronization operations becomes im-
practical in the presence of wide range of synchronization primi-
tives and adhoc synchronizations [26] used by real world programs.
Rather than interpreting the blocking semantics of each synchro-
nization operation, we decided to infer the blocked status. Needle-
Point lets the synchronization operation execute and infers whether
it is blocked based on the number of yields performed by other
threads spin-waiting to be scheduled. This scheme is based on the
following intuition: a thread executing a synchronization operation
that did not block will subsequently encounter another schedul-
ing point. In contrast, a thread trying to acquire a lock that is al-
ready held will block and thus not encounter another scheduling
point. NeedlePoint counts the number of yields performed by the
threads waiting to be scheduled. When this count exceeds a thresh-
old, NeedlePoint infers that the running thread is actually blocked
on a synchronization operation. This threshold is parameterizable.
Setting a smaller threshold can result in an unblocked thread being
erroneously considered as blocked by NeedlePoint, which can hurt
repeatability. In contrast, larger thresholds cause slowdowns in the
execution of the program. In our experiments, a threshold of ten
yields was sufficient to ensure repeatability (for serial scheduling
policies).

3.1.3 Fairness and Starvation Freedom

We found that many programs use busy wait synchronization (e.g.
waiting for a queue to become empty and sleeping, spinning,
barriers, spin loops, and others) and adhoc synchronization [26].
Scheduling a thread to completion (as in preemption bounding
or as in priority based scheduling) without inducing preemptions
or thread switches may cause starvation resulting in program
livelocks. To avoid such starvation, NeedlePoint must choose
some other thread to be scheduled. However, making a large
number of such choices arbitrarily in the presence of busy wait
synchronization can cause the tool to miss bugs losing the benefits
of controlled scheduling. To address this problem of starvation, we
make the following observation inspired from prior work on a fair
scheduler [20]: a program performing busy wait synchronization
will encounter numerous scheduling points, which inturn invoke
the scheduling policy. Hence, if we override the default scheduling
policy with a small probability, starvation will be avoided. Thus,
the NeedlePoint framework overrides the scheduling policy with
a small probability for a single scheduling point thereby ensuring
starvation freedom. As these starvation freedom mechanisms are
invoked uniformly for each schedule point rather than invoking
them based on the amount of time spent waiting, NeedlePoint
ensures repeatability using the same random seed.

3.2 Policies

We implemented five previously proposed concurrency bug detec-
tors using the NeedlePoint mechanisms.

® Random sleep (RS): The random sleep policy runs more than
one unblocked thread at any point in time. At every schedule
point, this policy introduces a small delay with an OS sleep
call with a small probability. We used a probability of 1/30 to
peform the sleep as it performed well in our experiments.

e Preemption always (PA): This policy runs one thread at a time
and attempts to introduce a preemption at every schedule point.
At every schedule point, the scheduler performs a preemption
switching the current running thread to a randomly chosen non-
blocked thread.

e Preemption bounding (PB) [19]: This policy performs an ex-
ploration with a predetermined number of preemptions by run-

Program | Lines of | Schedule | Threads Bug Bug
code points type depth
Pbzip2 | 15,188 | 1210 3 | Ordering |,
violation
Memc 845
t+15 2300 Atomicity
t+25 11,182 3400 4 violation 2
t+35 3900
am 79132
WSQ-1 1916 Atomicity 3
WSQ-2 541 1086 4 violation 2
WSQ-3 1717 2
Trans | 33,622 | 38118 p | Ordering |
violation
NSPR 1,100 5361 3 Deadlock 2

Table 1. Concurrency bugs used for NeedlePoint’s evaluation that
we obtained from prior research [5, 10, 16, 27, 28]. WSQ is an im-
plementation of the work stealing queue with lock free data struc-
tures. WSQ-1, WSQ-2, and WSQ-3 are the three distinct concur-
rency bugs in the WSQ implementation. Memc is the memcached
daemon. Trans is the Transmission BitTorrent client.

ning one thread at a time. At the beginning of the program, few
scheduling points are chosen as the preemption points using a
distribution. When a pre-determined preemption point is en-
countered, a forced preemption is induced and a non-blocked
thread is chosen to become the running thread. Unlike prior re-
search [19] that used a round robin scheme to select the next
running thread when a thread is blocked, this policy chooses
a random thread because we found it to be more effective at
detecting bugs.

AtomFuzzer (AF) [22]: This policy directs the search to find
atomicity violations by running one thread at a time. At ev-
ery schedule point, if the thread attempts to acquire a lock that
was previously acquired by the same thread, then it pauses the
thread and schedules another thread in an effort to trigger an
atomicity violation.

PCT [5]: Our prior work uses priorities to make a few random
choices at the beginning of the program and direct the search.
The policy assigns priorities to the thread before execution. It
runs the highest priority thread that is non-blocked at every step.
At predetermined schedule points, the priority of the executing
thread is changed to a predetermined priority.

The NeedlePoint framework is around 6K lines of C++ code.
The individual policies that implement random sleeps, preemption
always, randomized version of preemption bounding [19], Atom-
Fuzzer [24], and PCT [5] are 75, 125, 221, 208 and 258 lines of
C++ code respectively, signifying the ease of writing a custom
scheduler with NeedlePoint. As a proof of concept, we have tested
large multi-threaded programs including the Chrome web browser
with various scheduling policies in the NeedlePoint framework.

4. Evaluation of Previous Techniques

This section provides an evaluation of previously proposed tech-
niques using the NeedlePoint framework on a common set of con-
currency bugs.

4.1 Concurrency Bugs

We evaluate the effectiveness of various scheduling policies with
the previously known bugs listed in Table 1. These bugs have been
widely used in prior research in this area [5, 10, 16, 27, 28]. Al-

though many bug reports provided test cases or patches that in-
troduce sleeps at appropriate places to trigger the bug, we did not
patch or modify the application to increase the likelihood of finding
bugs. For the memcached bug, we designed a test harness and cre-
ated various instances of the memcached bug by varying the num-
ber of memcached operations performed before performing the in-
crement operation that has the atomicity violation. These instances
are listed as ¢ +x in Table 1. We also created an instance of mem-
cached bug where NeedlePoint introduces a schedule point before
every memory access and it is listed am in Table 1.

4.2 Comparison of Various Scheduling Policies

To compare the bug detection abilities of various scheduling poli-
cies in Section 3.2, we ran each application listed in Table 1 with
each scheduling policy 100,000 times. We checked each run to see
if the bug was triggered. Figure 1 reports the number of executions
in which the bug was triggered. Similarly, Figure 2 reports the num-
ber of executions that triggered the bug with the different instances
of the memcached configurations created by our test harness with
the various scheduling policies. Both the graphs have five bars for
each bug where each individual bar represents the number of buggy
executions.

The bug detection efficacy of the scheduling policies varies with
the bug. Simple choices such as random sleep and preemption al-
ways are effective for some bugs. From Figure 1, we observe that
the random sleep policy performs reasonably well with the mem-
cached bug but does not detect other bugs. We found that random
sleep policy works best when the test case is small and the bugs are
localized. Further Figure 2 shows that the random sleep policy’s
bug detection ability decreases with the increase in the amount of
work done before the buggy access for the memcached bug.

Figure 1 and Figure 2 show that preemption bounding is reason-
ably effective in triggering most of the bugs except the Pbzip bug.
Preemption bounding requires more executions to trigger some
bugs as they execute a large number of schedule points. Figure 1
also shows that AtomFuzzer, which is directed to find atomicity vi-
olations, performs better than preemption bounding for many of the
atomicity violations.

Our prior work PCT triggers all these bugs with similar or bet-
ter efficacy than other scheduling policies. Only PCT detected the
Pbzip bug. Pbzip uses adhoc synchronization with spin loops to sig-
nal when the compression is over. The program crashes with a seg-
mentation fault when the main thread frees a synchronization vari-
able that is later used by one of the other threads. In the presence of
such adhoc synchronization, the threads need to be scheduled with
a few random choices to trigger the bug. A combination of priority
based scheduling with a robust starvation freedom mechanisms en-
able PCT to trigger the Pbzip bug effectively. Table 2 summarizes
the ability of the scheduling policies to trigger the bug at least once
in 1000 executions on average. We observe that our prior work PCT
triggers all these bugs at least once within the 1000 runs.

4.3 Deficiencies of PCT

As a result of running one thread at a time, PCT suffers from
two major problems in testing long running parallel applications.
First, running one thread at at time cannot leverage multicores to
speedup each execution. Further even on a single core, pathological
interactions with PCT scheduling decisions and the OS scheduling
decisions can cause significant performance slowdowns. Second,
many multithreaded applications that use adhoc synchronization
and busy-wait synchronization incur large slowdowns. PCT, which
uses priority based scheduling with only one thread executing at
any time, causes starvation in the presence of such synchronization
idioms. PCT relies NeedlePoint’s starvation freedom mechanisms
to make progress thereby incurring large slowdowns that effectively

9

£ 100000 g

o) =

G] a

a0 10000 4 E /H=

o 3 ‘/‘ -

2 1000 — /

+ 3 - - - -

=] - - —| ‘/ ‘ |

i~ E - - - ‘ ‘ -

g 10 + - - - / -

B=] 3 - - - / -

8] - / | = ‘ ‘ =

g 1+ - pl L - \/,\ |

e SEERp REE%) LEE%[SiE%p 2SE2p LER%) LZE%p ESEED
memc pbzip2 nspr wsq-1 wsq-2 wsqg-3 trans memc-am

Figure 1. Bug detection abilities on common concurrency bugs for five different scheduling policies described in Section 3.2: Random
Sleep (RS), Preemption Always (PA), Preemption Bounding (PB), AtomFuzzer (AF), and Probabilistic Concurrency Testing (PCT).

e

S 10000 5

g 3

E 1000 -

e A ERy =

: “MAENAELAE 4E
3 : | L] L] L]
z 104 ; u I;I: I;I: ;I:
E T - -] L]
g 1 1NA = -7 = -‘ - -‘--
A ESEE%‘E) 2ERZE QZEE%Q &’SEE%‘E)

t+35

Figure 2. Bug detection ability of various scheduling policies with
the variants of the memcached bug generated by the test harness.

memc memc t+15 memc t+25 mem

o
o

Program Random Preemption Atom | PCT
Sleep | Always [Bound | Fuzzer
Memc Yes Yes Yes Yes Yes
Pbzip2 No No No No Yes
NSPR No No Yes No Yes
WSQ-1 No Yes No Yes Yes
WSQ-2 Yes Yes No Yes Yes
WSQ-3 No No Yes Yes Yes
Trans No Yes Yes Yes Yes
Memc-am No No Yes No Yes

Table 2. Do they trigger the bugs in 1000 runs?

prohibit the usage of PCT to test such applications. To enable test-
ing of large parallel programs with large inputs rather than unit
tests, we pursued parallelization of PCT. The key contribution of
our parallelization effort is that our parallel PCT (PPCT) algorithm
runs multiple threads while retaining the same probabilistic guar-
antee of PCT running one thread at at time.

5. Parallel PCT (PPCT)

In this section we provide background on the bug depth metric de-
fined by PCT and used by our PPCT algorithm to classify con-
currency bugs. We subsequently provide the PPCT algorithm for a
particular bug depth.

5.1 Background on PCT’s Bug Depth

Concurrency bugs in multithreaded software occur when instruc-
tions are scheduled in an order not envisioned by the programmer.
Bug depth is defined as the minimum set of these ordering con-
straints between instructions from different threads that are suffi-

cient to trigger the bug. It is possible for different sets of ordering
constraints to trigger the same bug. In such a case, we focus on
the set with the fewest constraints. For bugs of greater depth, more
orderings need to enforced by the scheduler to trigger the bug, in-
creasing the hardness of finding it. Figure 3 shows examples of
common concurrency errors with ordering constraints, represented
by arrows, that are sufficient to trigger the bug. Any schedule that
satisfies these ordering constraints is guaranteed to trigger the bug
irrespective of how it schedules instructions not relevant to the bug.
For the examples in Figure 3 the depth respectively is 1, 2, and 2. In
practice, we have found that many concurrency bugs to have small
depths [5].

5.2 Intuition Behind the PPCT Algorithm

Both the original PCT algorithm and the PPCT algorithm use
thread priorities to probabilistically enforce ordering constraints
that drive the program to an error. The key difference between the
two algorithms is the number of choices they provide to the adver-
sary, which in our case is the underlying operating system sched-
uler, to schedule threads at each step.

The PCT algorithm allows the adversary exactly one thread, the
highest priority thread, to schedule at each step. In contrast, the
PPCT algorithm maintains two sets of threads, a higher priority set
and a lower priority set. At each step, the adversary is allowed to
pick any thread in the higher priority set. If this set is empty, then
the adversary is required to pick the highest priority thread in the
lower priority set.

In other words, while PCT serializes the execution of all threads,
PPCT serializes the execution only of the threads in the lower-
priority set. The threads in the higher-priority set can be executed in
parallel. Importantly, the PPCT algorithm guarantees that the num-
ber of threads in the lower priority set is bounded by the param-
eter d, the depth of the bug the algorithm is attempting to trigger.
Thus, any implementation of the algorithm is required to control
the scheduling of only at most d threads, while the operating sys-
tem is freely allowed to schedule the remaining threads on multiple
cores as it deems fit.

Apart from the crucial difference above, the PPCT algorithm
functions exactly like the PCT algorithm, assigns random priorities
to the threads and changes priorities at randomly chosen points in
the execution. We start with an informal description of the PPCT
algorithm in the next subsection, before giving precise pseudocode
and a proof of the guarantees in Section 6.

5.3 Informal Description of the PPCT Algorithm

Given inputs: number of threads n, total number of dynamic in-
structions k and the depth of the bug being explored d, PPCT works
as follows.

Thread 1 Thread 2 Thread 1 Thread 2 Thread 1 Thread 2
t = new T() S e if (x 1= null) lock(A) \>< l0ok(B):
\. if(t->state) T~ xpint(lock(B) & Klock(A);

(a) (b)

(©)

Figure 3. Three typical concurrency bugs and ordering edges sufficient to find each. (A) This ordering bug manifests whenever the test by
thread 2 is executed before the initialization by thread 1. (B) This atomicity violation manifests whenever the test by thread 2 executed before
the assignment by thread 1, and the latter is executed before the method call by thread 2. (C) This deadlock manifests whenever thread 1

locks A before thread 2, and thread 2 locks B before thread 1.

¢ Pick a random low priority thread: At the beginning of the
program, pick a thread uniformly at random and assign it a
priority d. In addition, insert this thread into the lower priority
set L. Insert all other threads into the higher priority set H.

Pick random priority change points: At the beginning of the
program, pick d — 1 priority change points ki,...,k;_; in the
range [1,k]. Each k; has an associated priority value of i.

Scheduler choice: At each step, the scheduler picks any non-
blocked thread in H to schedule. If H is empty or if all threads
in H are blocked, the scheduler picks the highest priority thread
in L.

Priority change: After a step, increment a step counter. If the
step counter matches k; for some 7, change the priority of the
just executed thread to i and insert it into L.

5.4 Coverage Guarantees of PPCT

Given a program with n threads that executes at most k steps, the
PPCT algorithm described above finds every bug of depth d with
probability at least nk% in every run of the algorithm. This proba-
bilistic guarantee exactly matches the original PCT algorithm, de-
spite allowing more parallelism. We explain and prove this proba-
bilistic bound in Section 6 below.

5.5 Starvation and Priority Based Scheduling

Not allowing a lower priority thread to execute can cause starvation.
In the presence of starvation, to make progress, a lower priority
thread must be scheduled for a single step. We randomly choose a
thread with priority lower than d to run for a single step (execute
one schedule point) by bumping its priority to the highest priority
in the system and reverting back the priority of the thread to the
original priority when it completes executing the step. We use the
mechanisms provided by NeedlePoint to identify when we should
make the policy decision to avoid starvation.

6. Proof of PPCT’s Probabilistic Guarantees

In this section, we give a detailed description of PPCT and present
a proof of its probabilistic guarantee. We start with a high-level in-
formal description of the proof strategy and the differences between
PPCT and PCT. We then walk through the proof in detail and fully
formalize all concepts (bugs, programs, schedules) in the process.

6.1 Overview

The basic idea is to find bugs by guessing a directive that leads to
the bug. A directive is essentially a sequence of program points. We
say a directive finds a bug if all schedules that follow the directive’s
sequencing points trigger the bug. Directives exist for all bugs (be-
cause if we restrict the scheduler enough, we can guarantee that it
finds the bug). The size of the directive (i.e. the number of sequenc-
ing points it contains) reflects how hard it is to trigger the bug. We

call the size of the smallest directive that can find a given concur-
rency bug the depth of that bug. As explained in Section 5.1, our
intuition about typical concurrency bugs suggests that many bugs
have a relatively small depth and can thus benefit from a scheduler
that is tuned to do well at covering small depths.

Although we know that a directive of size d exists for all bugs of
depth d (by definition), in the concurrency testing scenario we do
of course not know the actual bugs and which directives will find
them. It turns out, however, that PPCT has a reasonable probability
of just guessing the directive.

In the remainder of this section, we formalize and prove this
claim. The basic proof strategy is to construct and compare two
schedulers:

e A randomized scheduler that schedules the program under test
based on a few random choices. This scheduler has no knowl-
edge about the structure of the program under test or the bug we
are targeting.

A directed scheduler that schedules the program under test
based on an explictly supplied directive. This directive identi-
fies points of interest in the program under test, and it prescribes
an order in which they should be executed. Note that we did not
actually implement such a directed scheduler: its only purpose
is to construct a proof.

We then show that given a directive of size d, the randomized
scheduler and the directed scheduler produce the same schedule
with probability at least ﬁ (where n is the number of threads
and k is the number of schedule points in the program). This im-
plies that the randomized scheduler finds any bug of depth d with
probability at least Wl,,, without any knowledge about the pro-
gram or the bug.

6.2 PPCT vs. PCT

Once we understood in what way PCT does in fact require serial
execution (it needs to execute the sequencing points of the direc-
tive in order) and in what way it does not (threads that are not at
a sequencing point can be executed in any order and in parallel),
we were able to leave the original algorithm and proof almost com-
pletely intact.

Thus the presented algorithms for the randomized and the di-
rected scheduler are exactly the same as in [5] except for one line,
where the scheduler is now allowed to pick from more threads. The
proof of the probabilistic guarantees is also exactly the same, ex-
cept for the proof of Lemma 12, which shows that the scheduling
restrictions we removed (by providing more choices to the sched-
uler) do not compromise the invariants of the original algorithm.

Although these changes are few in number and localized, they
are difficult to understand out of context. Thus we reproduce the
complete proof here.

Require: program P,d >0

Require: n > maxthreads(P), k > maxsteps(P)
Require: random variables k,...,k;_; € {1,... k}
Require: random variable &t € Permutations(n)

1: procedure RandS(n,k,d) begin
2: var S : schedule
3: var p : array[n] of N
4 S<+¢
/1 set initial priorities
5: forall re{l,...,n} do
6 plt] «—d+mn(r)—1
7: end for
8: while enp(S) # 0 do
9: /* schedule thread of admissible priority */
0 t + element of enp(S) such that p[t] > d or p[t] maximal
1

S8t
/* are we at priority change point? */
12: forallic {1,....d—1} do
13: if length(S) = k; then
14: pltl=d—i
15: end if
16: end for

17: end while
18: return S
19: end

Figure 4. The PPCT randomized scheduler.

6.3 Definitions

We briefly recount some standard notation for operations on
sequences. Let T be any set. Define T* to be the set of finite
sequences of elements from 7. For a sequence S € T*, define
length(S) to be the length of the sequence. We let € denote the
sequence of length 0. For a sequence S € T* and a number n
such that 0 < n < length(S), let S[n] be the n-th element of §
(where counting starts with 0). For r € T and S € T*, we write
t € S as a shorthand for Im : S[m] =t. For any S C T* and for
any n,m such that 0 < n < m < length(S), let S[n,m] be the
contiguous subsequence of S starting at position n and ending at
(and including) position m. For two sequences S1,S> € T*, we
let S18; denote the concatenation as usual. We do not distinguish
between sequences of length one and the respective element. We
call a sequence S7 € T* a prefix of a sequence S € T* if there exists
a sequence Sy € T* such that S = §15,. A set of sequences P C T*
is called prefix-closed if for any S € P, all prefixes of S are also
in P.

DEFINITION 1. Define T = N to be the set of thread identifiers.
Define Sched = T* to be the set of all schedules. Define a program
to be a prefix-closed subset of Sched. For a given program P C
Sched, we say a schedule S € P is complete if it is not the prefix of
any schedule in P other than itself, and partial otherwise.

Thus, we represent a program abstractly by its schedules, and each
schedule is simply a sequence of thread identifiers. For example,
the sequence 1221 represents the schedule where thread 1 takes
one step, followed by two steps by thread 2, followed by another
step of thread 1. We think of schedules as an abstract representation
of the program state. Not all threads can be scheduled from all
states, as they may be blocked. We say a thread is enabled in a
state if it can be scheduled from that state.

DEFINITION 2. Let P C Sched be a program. For a schedule S € P,
define enp(S) to be the set {t € T | St € P}. Define maxsteps(P) =
max{length(S) | S € P} and maxthreads(P) = max{S[i] | S € P} (or
oo if unbounded).

Finally, we represent a concurrency bug abstractly as the set of
schedules that find it:

DEFINITION 3. Let P C Sched be a program. Define a bug B of P
to be a subset B C P.

6.4 The Algorithm

We now introduce the PPCT randomized scheduler (Fig. 4), which
is identical to the original PCT scheduler [5] except for line 10, in
which the scheduler now has more choice when picking the next
thread to schedule.

As in the original algorithm, we expect RandS(n,k,d) to be
called with a conservative estimate for n (number of threads) and k
(number of steps). During the progress of the algorithm, we store
the current schedule in the variable S, and the current thread pri-
orities in an array p of size n. The thread priorities are initially
assigned random values (chosen by the random permutation 7).

In each iteration, we pick an admissible thread for scheduling.
As in the original PCT algorithm, we can always pick the enabled
thread of maximal priority to execute next. In addition, however, we
also allow any thread to be picked whose priority is larger than d. 2
Once we have (nondeterministically) picked a thread ¢, we execute
it for one step. Then we check if we have reached a priority change
point (determined by the random values k;), and if so, we change
the priority of ¢ accordingly. This process repeats until no more
threads are enabled (that is, we have reached a deadlock or the
program has terminated).

6.5 Probabilistic Coverage Guarantee

In this section, we precisely state and then prove the probabilistic
coverage guarantees for our randomized scheduler, in three steps.
First, we introduce a general mechanism for identifying dynamic
events in threads, which is a necessary prerequisite for defining or-
dering constraints on such events. Next, we build on that basis to
define the depth of a bug as the minimum number of ordering con-
straints on thread events that will reliably reveal the bug. Finally,
we state and prove the core theorem.

6.5.1 Event Labeling

The first problem is to clarify how we define the events that par-
ticipate in the ordering constraints. For this purpose, we introduce
a general definition of event labeling. Event labels must be unique
within each execution, but may vary across executions. Essentially,
an event labeling E defines a set of labels Lr (where each label
a € Lg belongs to a particular thread rhreadg(a)) and a function
nextg (S,t) that tells us what label (if any) the thread ¢ is going to
emit if scheduled next after schedule S. More formally, we define:

DEFINITION 4. Let P be a program. An event labeling E is a triple
(Lg,threadg ,nextg) where Lg is a set of labels, thread is a func-
tion Lg — T, and nextg is a function P x T — (Lg U{L}), such
that the following conditions are satisfied:

1. (Affinity) If nextg (S,t) = a for some a € L, then threadg (a) =
t

2. (Stability) If nextg (S1,t) # nextg(S1S2,t) , thent € ;.

3. (Uniqueness) If nextg (S1,t) = nextg (S1S2,t) = a for some a €
Lg, thent ¢ S,.

4. (NotFirst) nextg (e,t) =L forallt € T.

Sometimes, we would like to talk about labels that have already
been emitted in a schedule. For this purpose we define the auxiliary

2 This scheduling policy corresponds precisely to the informal description
in Section 5.3, where (1) all threads with priority larger than d are in the
high priority set and (2) all other threads are in the low priority set.

functions labelg and labelsg as follows. For S € P and 0 < m <
length(S), we define labelg (S,m) = a if the label a is being emitted
at position m, and we define labelsg (S) to be the set of all labels
emitted in S (more formally, labelg(S,m) = a if nextg(S[0,m —
1],S[m]) = a, and labelg(S,m) =L otherwise; and labelsg(S) =
{labelg (S,m) | 0 < m < length(S)}).

6.5.2 Bug Depth

‘We now formalize the notion of ordering constraints and bug depth
that we motivated earlier. Compared to our informal introduction
from Section 5.1, there are two variations worth mentioning. First,
we generalize each edge constraint (a,b) (where a and b are event
labels) to allow multiple sources (A,b), where A is a set of labels
all of which have to be scheduled before b to satisty the constraint.
Second, because we are using dynamically generated labels as our
events, we require that the ordering constraints are sufficient to
guide the scheduler to the bug without needing to know about ad-
ditional constraints implied by the program structure (as motivated
by the example in Fig. 3).

We formulate the notion of a directive D of size d, which con-
sists of a labeling and d constraints. The idea is that a directive can
guide a schedule towards a bug, and that the depth of a bug is de-
fined as the minimal size of a directive that is guaranteed to find it.

DEFINITION 5. For some d > 1, a directive D for a program P is a
tuple (E,Ay,b1,A2,by,...,Aq,ba) where E is an event labeling for
P, where Ay,...,Ay C Lg are sets of labels, and where by,...bg €
Lg are labels that are pairwise distinct (b; # b for i # j). The size
of D is d and is denoted by size(D).

DEFINITION 6. Let P be a program and let D be a directive for P.
We say a schedule S € P violates the directive D if either (1) there
exists an i € {1,...,d} and an a € A; such that b; € labelsg(S),
but a ¢ labelsg (S), or (2) there exist 1 <i < j <d such thatb; €
labelsg (S), but b; ¢ labelsg (S). We say a schedule S € P satisfies
D if it does not violate D, and if b; € labelsg(S) for all 1 <i<d.

DEFINITION 7. Let P be a program, B be a bug of P, and D be a
directive for P. We say D guarantees B if and only if the following
conditions are satisfied:

1. For any partial schedule S € P that does not violate D, there
exists a thread t € enp(S) such that St does not violate D.

2. Any complete schedule S that does not violate D does satisfy D
and is in B.

DEFINITION 8. Let P be a program, and let B be a bug of P. Then
we define the depth of B to be

depth(B) = min{size(D) | D guarantees B}

6.5.3 Coverage Theorem

The following theorem states the key guarantee: the probability that
one invocation RandS(n,k,d) of our randomized scheduler (Fig. 4)
detects a bug of depth d is at least nkd%‘

THEOREM 9. Let P be a program with a bug B of depth d, let
n > maxthreads(P), and let k > maxsteps(P). Then

1

PROOF. Because B has depth d, we know there exists a directive D
for B of size d. Of course, in any real situation, we do not know D,
but by Def. 8 we know that it exists, so we can use it for the pur-
poses of this proof. Essentially, we show that even without knowing
D, here is a relatively high probability that RandS(n,k,d) follows
the directive D by pure chance. To prove that, we first construct an

Require: program P,d >0

Require: n >= maxthreads(P)

Require: ki,...,kz_1>1

Require: T € Permutations(n)

Require: random variables k,...,k;_; € {1,... k}
Require: random variable &t € Permutations(n)
Require: bug B

Require: directive D = (E,Ay,by,...,Ay4,by) for B

1: procedure DirS(n,k,d,D) begin
2: var S : schedule
3: var p : array[n] of N
4: S¢
/1 set initial priorities

5: forall re{l,....n} do
6: plt] —d+mn(r)—1
7: end for
8: [assert: p[threadg(b))] =d]
9: while enp(S) # 0 do
/* schedule thread of admissible priority */
10: t < element of enp(S) such that p[t] > d or p[t] maximal
11: S+ St
/* change priority first time we peek a b-label */
12: forallic {1,...,d—1} do
13: if nextg (S,t) = b;y1 and p[r] # d — i then
14: pltj=d—i
15: [assert: length(S) =k; |
16: end if
17: end for

18: end while
19: return S
20: end

Figure 5. The directed scheduler.

auxiliary algorithm DirS(n,k,d,D) (Fig. 5) that uses the same ran-
dom variables as RandS, but has knowledge of D and constructs its
schedule accordingly.

Comparing the two programs, we see two differences. First,
Line 13 uses a condition based on D to decide when to change pri-
orities. In fact, this is where we make sure the call to DirS(n,k,d,D)
is following the directive D: whenever we catch a glimpse of thread
t executing one of the labels b; (for i > 1), we change the priority
of t accordingly. Second, DirS has assertions which are not present
in RandS. We use these assertions for this proof to reason about
the probability that DirS guesses the right random choices. The in-
tended behavior is that DirS fails (terminating immediately) if it
executes a failing assertion.

The following three lemmas are key to our proof construc-
tion. The proofs of these lemmas are unchanged from the original
proofs [5] except for Lemma 12, and the proofs of these lemmas
are included in the subsections 6.5.4 through 6.5.7 below.

LEMMA 10. The probability that DirS(n,k,d,D) succeeds is at
least nk%

LEMMA 11. If DirS(n,k,d,D) succeeds, then
RandS(P,n,d) = DirS(n,k,d,D).

LEMMA 12. If DirS(n,k,d,D) succeeds, it returns a schedule that
finds the bug.

We can formally assemble these lemmas into a proof as fol-
lows. Our sample space consists of all valuations of the random
variables 7 and ki, ...,k;_1. By construction, each variable is dis-
tributed uniformly and independently (thus, the probability of each

valuation is equal to n!k?=1). Define S to be the event (that is, set
of all valuations) such that DirS(n,k,d,D) succeeds, and let S be
its complement.

Pr[RandS(n,k,d) € B
= Pr[RandS(n,k,d) € B| S]- Pr[S]

+ Pr[RandS(n,k,d) € B | 5] - Pr[S]
> Pr[RandS(n,k,d) € B | 5] - Pr[S]

= Pr[DirS(n,k,d,D) € B| S]- Pr[S] (by Lemma 11)

=1-Pr[S] (by Lemma 12)
1
> AT (by Lemma 10)

d

6.5.4 Auxiliary Lemmas

To prepare for proving the three core lemmas used in the proof
above, we state and prove the following four auxiliary lemmas.

LEMMA 13. If nextg(S,t) = b right before executing line 11 of
DirS(n,k,d,D), and if S does not violate D, then plt] =d — j+ 1.

PROOF. Distinguish cases j > 1 and j = 1.

Case j > 1. Def. 4 implies that the first action by any thread is
not labeled, so our assumption nextg (S,t) = b; implies that there is
am < length(S) such that S[m] =t. Choose a maximal such m. Then
we know nextg (S[0,m],t) = b; (because Def. 4 implies that the next
label does not change if other threads are scheduled). Thus, in the
iteration that added S[m] to the schedule, the test nextg (S[0,m],t) =
bit1 on line 13 must have evaluated to true for i = j— 1 (and for
no other i, because the b; are pairwise distinct by Def. 4). So we
must have assigned p[t] <— d — j+ 1 on line 14. Because we chose
m maximal, ¢+ was never scheduled after that, so its priority did not
change and must thus still be p[t] =d —j+ 1.

Case j = 1. If we are about to execute line 11, then the as-
sertion on line 8 must have succeeded, so at that time it was the
case that p[t] = d — j+ 1. After that, p[¢] could not have changed:
suppose line 14 was executed at some point to change p[f]. Say
the value of variable S at that point was S[0,m]. Then the con-
dition nextg(S[0,m],7) = bj;1 on line 13 must have evaluated to
true for some i. Now, because we know nextg(S,t) = b; and be-
cause b; # b;y| (by Def. 4), there must exist a m' > m such that
S[m'] =t (by Def. 4). But that implies labelg (S,m’') = b;11, and
since b; ¢ labelsg(S), S violates D which contradicts the assump-
tion. [J

LEMMA 14. Let 1 <t <n, and let p|[t'] =d — j+ 1 for some j > 2
at the time line 10 is executed. Then either b; € labelsg(S), or
nextg(S,t') = b;.

PROOF. The only way to assign priorities less than d is through the
assignment p[t] = d — i on line 14. So this line must have executed
witht =" and i = j — 1. Thus, the condition nextg (S,t) = b; 1 was
true at that point, which is identical to nextg (S,#') = b;. If ¢’ is not
scheduled after that point, this condition is still true; conversely,
if ' is scheduled, then it must execute the label b, implying b; €
labelsg (S). O

LEMMA 15. During the execution of DirS(n,k,d,D) the assertion
on line 15 is executed at most once for eachi € {1,...,d —1}.

PROOF. Consider the first time the assertion length(S) = k;
on line 15 is executed for a given i. Then it must the case that
nextg (S,t) = bi11. Because labels don’t repeat, the only chance

for this condition to be true again is for the same i (because the b;
are pairwise distinct) during the immediately following iterations
of the while loop, and only if threads other than ¢ are scheduled.
But in that scenario, the priority p[t] does not change, so the sec-
ond part p[t] # d — i of the condition on line 13 can not be satisfied.
d

LEMMA 16. If DirS(n,k,d,D) succeeds, it executes the assertion
length(S) = k; on line 15 at least once for each i € {1,...,d —1}.

PROOF. Because DirS(n,k,d,D) succeeds, it produces a complete
schedule S which does not violate D. Thus, b; € labelsg (S) for all
i € {1,...,d}. Thus, for each i € {2,...,d}, there must be an m
such that S[0, m], threadg (b;)) = b;. Thus, the condition on line 13
must be satisfied at least once for each i € {1,...,d — 1}, so we
know the assertion length(S) = k; on line 15 gets executed for each

ie{l,....d-1}.0
6.5.5 Proof of Lemma 11

To prove the claim, we now show that the two respective conditions
on lines 13

length(S) = k;)
nextg(S,t) = by and p[r] #d —i 2)

evaluate the same way, for any given iteration of the while and
for loops (identified by current values of S and i, respectively).
Clearly, if (2) evaluates to true for some S and i, DirS executes
the assertion on line 15, thus guaranteeing that (1) also evaluates to
true. Conversely, if (1) evaluates to true for some S and i, consider
that DirS must execute an assertion of the form length(S') = k; at
some point (by Lemma 16); but it turns out that this must happen in
the very same iteration because the length of S uniquely identifies
the iteration of the while loop, so the condition (2) must be satisfied.

6.5.6 Proof of Lemma 10

DirS(n,k,d,D) succeeds if and only if if (1) the assertion
plthreadg(by)] = d on line 8 passes, and (2) the assertion
length(S) = k; on line 15 passes every time it is executed. The
probability of the former passing is 1/n (because a random
permutation assigns the lowest priority to any given thread with
probability 1/n), while the probability of each latter passing is
1/k (because the random variables k; range over {1,...,k}). By
Lemma 15, the assertions length(S) = k; are executed at most
once for each i. Thus, all of the assertions involve independent
random variables, so we can multiply the individual success
probabilities to obtain a total success probability for DirS of at
least (1/n)- (1/k)4~1,

6.5.7 Proof of Lemma 12

To prove the lemma, we will first prove that the following invariant
holds during the execution of DirS(n,k,d,D):

the variable S is a schedule that does not violate D.

Clearly, this invariant implies the claim of the lemma (the sched-
ule returned in the end finds the bug), because if the while-loop
terminates, S is a complete schedule, and by Def. 6, any complete
schedule that does not violate D is in B.

Proving this invariant for PPCT is slightly harder than for PCT,
since the scheduler can pick any thread with priority larger than d,
not just the highest priority thread. However, it turns out that this
has no ill effect since only threads of priority d or lower are capable
of breaking the invariant!

More formally, we can prove the invariant as follows, proceed-
ing indirectly. If S violates D, the first moment it does so must be
right after executing S <— St on line 11. Now, consider the state right

before that. S does not violate D, but St does, so by Def. 5, there
exists an i such that nextg (S,t) = b;. By Lemma 13 this implies
that p[t] = d — i+ 1. Now, by Def. 6 there must exist an alternate
choice ¢’ € enp(S) such that S¢’ does not violate D. However, the
scheduler did not pick ¢/, but ¢, and ¢ has priority at most d, so
¢/ must have priority less than d. Therefore p[t'] =d — j+ 1 for
some j > i. By Lemma 14, that implies that either b; € labelsg (S)
or bj € nextg(S,t'). But both of these lead to a contradiction:
b;j € labelsg (S) means that S violates D (because b; ¢ labelsg (S)),
and b; € nextg(S,1") means that St’ violates D.

7. Experimental Evaluation of PPCT

The goal of the experimental evaluation of PPCT is to (1) evaluate
the effectiveness of PPCT with respect to bug finding and (2) un-
derstand and evaluate the runtime speedups with PPCT algorithm
compared to PCT. We implemented PPCT using the NeedlePoint
framework. The PPCT scheduling policy obtains the set of non-
blocked threads from NeedlePoint and chooses the thread to be
scheduled at any given time. PPCT ensures starvation freedom by
scheduling one of the lower priority threads for a single schedule
point when indicated by the NeedlePoint starvation freedom pol-
icy. Using NeedlePoint, implementing a complete PPCT schedul-
ing policy is just 230 lines of C++ code.

7.1 Effectiveness in Finding Bugs

Figure 7.2 shows the effectiveness of PPCT in comparison to PCT
in terms of finding concurrency bugs in Table 1. The left and right
bars show the number of executions in which the bug was detected
by PPCT and PCT respectively. The graph shows us that PPCT
finds concurrency bugs either as effectively as PCT and in many
cases better than PCT. This empirically validates the fact that paral-
lel bug exploration with PPCT still retains the detection guarantees
formally proved in Section 6.

We found two new bugs when we were testing multithreaded
applications with PPCT. During our experimentation with Parsec
benchmarks, we found a concurrency bug in the Parsec 2.0 bench-
mark Streamcluster. The root cause of the bug was a missing barrier
that caused non-deterministic outputs. This bug was simultaneously
discovered by others resulting in a patch that is distributed with the
latest Parsec versions. We also found a new bug in the Transmis-
sion BitTorrent client in which a platform specific robustness assert
was triggered.

7.2 Performance Evaluation

To evaluate the execution time performance overhead of testing par-
allel applications, we use benchmarks from the Parsec benchmark
suite [4]. We also added the Pbzip2 that performs parallel compres-
sion as it is included in our bug benchmarks. We use the native
inputs to run the Parsec benchmarks. We performed all the experi-
ments on a quad-core dual-socket Intel Core 2 machine (eight cores
total). In our performance experiments with multiple cores, we re-
strict the number of threads to be equal to the number of cores in
the system.

There are three sources of runtime overhead incurred when run-
ning any scheduling policy with NeedlePoint: (1) binary instru-
mentation overhead, (2) overhead due to NeedlePoint’s mechanism
to identify blocked threads, and (3) overhead due to serializations
caused by the underlying scheduling policy. Introducing a sched-
ule point using Pin before synchronization operations and atomic
operations without doing anything at these schedule points slows
down the program by 2x compared to native execution on eight
cores. Further, introducing a schedule point at every memory ac-
cess along with the synchronization accesses introduces another
5x slowdown. These represent the overhead of performing binary
instrumentation.

100000

O PPCT @ PCT
10000

1000
100

10

Runs with the bug found

ol vvood vvd veed] 4

—

¢ .9 5 N 2 > ©
A A &
(0@

Figure 6. Bug detection of PPCT compared to PCT.

The overheads due to NeedlePoint’s mechanisms for identifying
blocked threads and scheduling policy serializations are dependent
on the individual scheduling policies. Further, NeedlePoint mech-
anism’s overhead for identifying blocked threads can be reduced
in the presence of more information about synchronization opera-
tions. Reducing the serializations in the scheduling policy will re-
duce the third source of overhead. PPCT runs multiple threads and
reduces the overhead due to serializations with PCT.

Figure 7 presents the execution time overhead of running PCT
and PPCT over native execution on eight cores (smaller bars are
better as they represent lower runtime overheads). The graph con-
tains three bars for each benchmark. The height of the leftmost bar
represents the overhead of running PCT on eight cores. On an av-
erage, the slowdown with PCT is 34 x compared to the native exe-
cution on eight cores.

The height of the middle bar represents the overhead of run-
ning PPCT on a single core (which we performed by pinning all
the threads in the process to a single core). It shows that running
PPCT even on a single core reduces a significant portion of the
overhead with PCT. This reduction is attributed to two reasons: (1)
real programs have busy wait synchronization and in the presence
of such constructs, the programs makes slow progress while run-
ning one thread at a time and (2) the underlying operating system
scheduler has more flexibility to choose among the enabled threads
to be run with PPCT when compared to PCT. On an average, PPCT
on a single core incurs an overhead of 11 on a average compared
to native execution on eight cores. The height of the rightmost bar
in Figure 7 presents the overhead of PPCT running on eight cores.
On an average, the slowdown with PPCT is 6 x compared to native
execution on eight cores.

PPCT serializes at most d threads when performing an explo-
ration to trigger a bug of depth d. In contrast, PCT serializes all the
threads. Figure 8 reports the speedup obtained with PPCT when
compared to PCT for executions with various bug depths running
on eight cores. There are four bars for each benchmark representing
speedups over PCT exploration for bug depths from 1 to 4. On an
average, PPCT provides 439%, 353%, 278% and 168% speedups
on eight cores when compared to PCT for executions with bug
depths 1, 2, 3 and 4 respectively. These results show that PPCT
can provide significant speedups over PCT even for higher bug
depth explorations. This speedup likely encourages the testing of
long running parallel programs with PPCT even in the late stages
of testing.

7.3 Testing with Real World Applications

Our goal is to enable controlled scheduling to be applied to real-
world applications. However, we found PCT suffers debilitating
slowdowns as a result of running one thread at a time, which pre-
vented us from testing large real-world applications such as the
Chrome web browser, the Intel Thread Building Blocks (TBB) test

g 60x 114x _ 83x

5 COPCT (W PPCT-Singlecore B PPCT

>

2 40x |

=

g

>

E X

g N\

2

2 ox NS s
bodytrack facesim swaptions canneal dedup vips x264 pbzip2 Geo. mean

Figure 7. Runtime slowdown of PCT, PPCT on a single core and PPCT when compared to native multithreaded execution.

[N
=)
v
O 00 0
800% SR
H
$ 600%
g
© 400% —
o,
=
3
§ 200% —
O%_1234 1234 1234 1234 1234 1234 1234 1234 1234
bodytrack facesim swaptions canneal dedup vips x264 pbzip2 Geo. mean

Figure 8. PPCT speedup over PCT that on a multicore machine for explorations with various bug depths. Bug depth of each PPCT explo-

ration is indicated at the bottom of the bar.

suite, and applications using the LevelDB key value store. While
experimenting with the Chrome browser, we found that Chrome
creates approximately 30 threads in the single process mode, and
PCT was executing the operations extremely slowly running one
thread at a time. Further inspection revealed that starvation with
PCT in the presence of busy-waiting synchronization also added
additional slowdowns. These slowdowns resulted in browser warn-
ings and prevented us from successfully applying PCT to Chrome.
In contrast, PPCT’s ability to execute multiple threads reduces the
performance overhead significantly, enabling us to successfully test
the Chrome web browser with PPCT without triggering browser
warnings.

8. Related Work

Existing work on concurrency bug detection widely falls into best
effort detection and detection with coverage guarantees. A com-
monly used best effort technique is stress testing where a pro-
gram is run multiple times under heavy loads to trigger crashes.
To introduce scheduling variety, researchers have proposed various
heuristics to (1) detect suspicious activity in a program (such as
variable access patterns that indicate potential atomicity violations
[15, 16, 23], typestate errors [8], crashes [28] or lock acquisition
orderings that indicate potential deadlocks [12]) and (2) direct the
schedule towards suspected bugs [11, 22].

Other approaches such model checking [6] systematically enu-
merate the possible schedules either exhaustively or within some
bound, such as the bound on the length of the execution [9] or the
number of preemptions [21] and provide mathematical guarantees.
Burckhardt et. al [S] proposed a randomized algorithm for sched-
ule selection providing probabilistic guarantees of finding a bug in
every run of the algorithm. All these prior techniques that provide

guarantees run one thread at a time making them impractical for
testing highly parallel applications and require mechanisms to care-
fully prevent starvation. PPCT is primarily motivated by the need
to achieve the scalability of the stress and heuristic-directed testing
without losing the ability to provide coverage guarantees.

9. Conclusion

This paper compared several previously proposed techniques for
concurrency bug detection using a common set of concurrency bugs
on a common framework. We found that simple policies do work
well for concurrency bugs that are localized but not so well for
hidden bugs. For hidden bugs, we propose PPCT, that not only
detects these bugs but also detects them while running programs
more than fives times faster than the serial PCT while retaining
the mathematical coverage guarantees. Together, NeedlePoint and
PPCT provide a framework and a scheduling policy for testing large
real-world programs.

Acknowledgments

The authors thank Nicholas Jalbert and Jie Yu for providing infor-
mation about RADBench and sharing the concurrency bugs respec-
tively. We also thank the reviewers for their feedback on the pa-
per. This paper is based upon work supported by the National Sci-
ence Foundation (NSF) under Grant No. CCF-0644197 and CCF-
0905464. Any opinions, findings and conclusions or recommenda-
tions expressed in this paper are those of the authors and do not
necessarily reflect the views of NSE.

References

[1] Helgrind: A Thread Error Detector. http://valgrind.org/docs/
manual/hg-manual.html.

[2] Intel Thread Checker. http://software.intel.com/en-us/
articles/intel-thread-checker-documentation/.

[3] S. Adve and K. Gharachorloo. Shared Memory Consistency Models:
A Tutorial. Computer, 29(12):66-76, 1996.

[4] C. Bienia. Benchmarking Modern Multiprocessors.
Princeton University, January 2011.

[5] S. Burckhardt, P. Kothari, M. Musuvathi, and S. Nagarakatte. A Ran-
domized Scheduler with Probabilistic Guarantees of Finding Bugs.
In Proceedings of the 15th International Conference on Architectural
Support for Programming Languages and Operating Systems (ASP-
LOS), 2010.

[6] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press,
1999.

[7]1 O. Edelstein, E. Farchi, E. Goldin, Y. Nir, G. Ratsaby, and S. Ur.
Framework for testing multi-threaded Java programs. Concurrency
and Computation: Practice and Experience, 15(3-5):485-499, 2003.

[8] Q. Gao, W. Zhang, Z. Chen, M. Zheng, and F. Qin. 2ndStrike: Toward
Manifesting Hidden Concurrency Typestate Bugs. In Proceedings of
the 16th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS), 2011.

PhD thesis,

[9] P. Godefroid. Model Checking for Programming Languages using
VeriSoft. In Proceedings of the 24th ACM Symposium on Principles
of Programming Languages (POPL), 1997.

[10] N. Jalbert, C. Pereira, G. Pokam, and K. Sen. RADBench: A Con-
currency Bug Benchmark Suite. In Proceedings of the 3rd USENIX
Conference on Hot Topics in Parallelism (HotPar), 2011.

P. Joshi, M. Naik, C.-S. Park, and K. Sen. CalFuzzer: An Extensible
Active Testing Framework for Concurrent Programs. In Proceedings
of the 21st International Conference on Computer Aided Verification
(CAV), 2009.

P. Joshi, C.-S. Park, K. Sen, and M. Naik. A Randomized Dynamic
Program Analysis Technique for Detecting Real Deadlocks. In Pro-
ceedings of the ACM SIGPLAN 2009 Conference on Programming
Language Design and Implementation (PLDI), 2009.

H. Jula, D. Tralamazza, C. Zamfir, and G. Candea. Deadlock Immu-
nity: Enabling Systems to Defend Against Deadlocks. In Proceedings
of the 8th USENIX Symposium on Operating Systems Design and Im-
plementation (OSDI), 2008.

S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from Mistakes: A
Comprehensive Study on Real World Concurrency Bug Characteris-
tics. In Proceedings of the 13th International Conference on Archi-

tectural Support for Programming Languages and Operating Systems
(ASPLOS), 2008.

S. Lu, J. Tucek, F. Qin, and Y. Zhou. AVIO: Detecting Atomicity Vio-
lations via Access Interleaving Invariants. In Proceedings of the 12th

International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2006.

[11]

[12]

[13]

[14]

[15]

[16] B. Lucia and L. Ceze. Finding Concurrency Bugs with Context-
Aware Communication Graphs. In Proceedings of the 42nd Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO),
2009.

C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wal-
lace, V. J. Reddi, and K. Hazelwood. Pin: Building Customized Pro-
gram Analysis Tools with Dynamic Instrumentation. In Proceedings
of the ACM SIGPLAN 2005 Conference on Programming Language
Design and Implementation (PLDI), 2005.

[18] J. Manson, W. Pugh, and S. Adve. The Java Memory Model. In Pro-
ceedings of The 32nd ACM SIGPLAN/SIGACT Symposium on Princi-
ples of Programming Languages (POPL), 2005.

[19] M. Musuvathi and S. Qadeer. Iterative Context Bounding for System-
atic Testing of Multithreaded Programs. In Proceedings of the ACM
SIGPLAN 2007 Conference on Programming Language Design and
Implementation (PLDI), 2007.

[20] M. Musuvathi and S. Qadeer. Fair Stateless Model Checking. In
Proceedings of the ACM SIGPLAN 2008 Conference on Programming
Language Design and Implementation (PLDI), 2008.

[21] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A. Nainar, and
I. Neamtiu. Finding and Reproducing Heisenbugs in Concurrent Pro-
grams. In Proceedings of the 8th USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2008.

C.-S. Park and K. Sen. Randomized Active Atomicity Violation De-
tection in Concurrent Programs. In Proceedings of the 16th ACM SIG-
SOFT International Symposium on the Foundations of Software Engi-
neering (FSE), 2008.

S. Park, S. Lu, and Y. Zhou. CTrigger: Exposing Atomicity Viola-
tion Bugs from their Hiding Places. In Proceedings of the 14th Inter-
national Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS), 2009.

K. Sen. Effective Random Testing of Concurrent Programs. In Pro-
ceedings of 22nd IEEE/ACM International Conference on Automated
Software Engineering (ASE), 2007.

[25] K. Sen. Race Directed Random Testing of Concurrent Programs. In
SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI), 2008.

[26] W. Xiong, S. Park, J. Zhang, Y. Zhou, and Z. Ma. Ad Hoc Synchro-
nization Considered Harmful. In Proceedings of the 9th USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI),
2010.

[27] J. Yu and S. Narayanasamy. A Case for an Interleaving Constrained
Shared-Memory Multi-Processor. In Proceedings of the 36th Annual
International Symposium on Computer Architecture (ISCA), 2009.

[28] W. Zhang, C. Sun, and S. Lu. ConMem: Detecting Severe Concur-
rency Bugs through an Effect-Oriented Approach. In Proceedings of
the 15th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS), 2010.

(17]

[22]

[23]

[24]

