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Abstract

Stateless model checking is a useful state-space exploration tech-
nique for systematically testing complex real-world software. Ex-
isting stateless model checkers are limited to the verification of
safety properties on terminating programs. However, realistic con-
current programs are nonterminating, a property that significantly
reduces the efficacy of stateless model checking in testing them.
Moreover, existing stateless model checkers are unable to verify
that a nonterminating program satisfies the important liveness prop-
erty of livelock-freedom, a property that requires the program to
make continuous progress for any input.

To address these shortcomings, this paper argues for incorporat-
ing a fair scheduler in stateless exploration. The key contribution
of this paper is an explicit scheduler that is (strongly) fair and at
the same time sufficiently nondeterministic to guarantee full cover-
age of safety properties. We have implemented the fair scheduler in
the CHESS model checker. We show through theoretical arguments
and empirical evaluation that our algorithm satisfies two important
properties: 1) it visits all states of a finite-state program achieving
state coverage at a faster rate than existing techniques, and 2) it
finds all livelocks in a finite-state program. Before this work, non-
terminating programs had to be manually modified in order to apply
CHESS to them. The addition of fairness has allowed CHESS to be
effectively applied to real-world nonterminating programs without
any modification. For example, we have successfully booted the
Singularity operating system under the control of CHESS.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification — formal methods, validation;
D.2.5 [Software Engineering]: Testing and Debugging — debug-
ging aids, diagnostics, monitors, tracing

General Terms  Algorithms, Reliability, Verification

Keywords Concurrency, fairness, liveness, model checking, multi-
threading, shared-memory programs, software testing

1. Introduction

Concurrent programs are difficult to get right. Subtle interactions
among communicating threads in the program can result in unex-
pected behaviors. These behaviors typically result in bugs that oc-
cur late in the software development cycle or even after the software
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Phil1:
while ( true ) {
Acquire ( forkl);
if ( TryAcquire ( fork2))
break;
Release ( forkl);
}
// eat
Release ( forkl );
Release ( fork2 );

Phil2:
while ( true ) {
Acquire ( fork2 );
if ( TryAcquire ( forkl))
break;
Release ( fork2 );
}
// eat
Release ( fork2 );
Release ( forkl );

Figure 1. Example of a nonterminating program.

is released. Traditional methods of testing, such as various forms of
stress and random testing, more often than not miss these bugs.

Model checking [5, 24] is a promising method for detecting and
debugging deep concurrency-related errors. A model checker sys-
tematically explores the state space of given system and verifies that
each reachable state satisfies a given property. This paper is con-
cerned with stateless model checking, a style of state-space search
first proposed in Verisoft [8]. A stateless model checker explores
the state space of the program without capturing the individual pro-
gram states. The program is executed under the control of a special
scheduler that controls all the nondeterminism in the program. This
scheduler systematically enumerates all execution paths of the pro-
gram obtained by the nondeterministic choices.

Stateless model checking is particularly suited for exploring the
state space of large programs, because precisely capturing all the
essential state of a large program can be a daunting task. Apart from
the global variables, heap, thread stacks, and register contexts, the
state of a running program can be stored in the operating system,
the hardware, and in the worst case, in a different machine across a
network. Even if all the program state can be captured, processing
such large states can be very expensive [12, 21].

On the downside, stateless model checking is directly applicable
only to terminating programs. Such programs terminate under all
executions and equivalently, have acyclic state spaces. In our expe-
rience, most realistic concurrent programs have cyclic state spaces.
This paper introduces the novel technique of fair stateless model
checking for effectively searching the state spaces of nonterminat-
ing programs.

Nontermination and cyclic state spaces present a significant ob-
stacle to existing stateless model checkers. To illustrate the prob-
lem, consider the nonterminating program in Figure 1. The pro-
gram is a variation of the dining philosophers example with two
threads Phill and Phil2 trying to acquire two resources forkil
and fork2. Phill acquires forkl and then attempts to acquire
fork2 without blocking. If this attempt fails, then it releases fork1
and retries. Phil2 tries to acquire the two resources in the reverse
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Figure 2. Number of nonterminating executions increases expo-
nentially with the depth bound.

order. The retry loops in the two threads create cycles in the state
space of the program.

A typical stateless model checker is ineffective in detecting er-
rors in such programs for two fundamental reasons. First, to avoid
divergence resulting from nonterminating executions, the model
checker must be run with a depth bound. To get good coverage for
safety verification, this bound must be large enough to allow ex-
ploring the deepest state in the state space. However, as the bound
increases, the model checker spends exponentially more resources
unrolling cycles in the state space than visiting new states. A use-
ful measure of the wasteful work performed during the search is
the number of non-terminating executions explored for a particu-
lar depth bound. Figure 2 shows that, for our example (Figure 1),
as the depth bound increases the number of nonterminating ex-
ecutions explored increases exponentially. Second, nontermina-
tion introduces the possibility of livelocks, an entirely new class
of errors characterized by the inability of the program to make
progress. For example, the repeated execution of the transition se-
quence Phill: Acquire(forkl), Phil2: Acquire(fork2),
Phill: TryAcquire(fork2), Phil2: TryAcquire(forkl),
Phill: Release(forkl), Phil2: Release(fork2) isa live-
lock. Depth-bounded stateless model checking does not have the
ability to detect such errors.

Fair stateless model checking solves both the aforementioned
problems by performing state-space search with respect to a fair
and demonic scheduler. Our first key insight is that correct pro-
grams make continuous progress on fair schedules. A schedule
is fair if every thread that is enabled infinitely often is sched-
uled infinitely often. Conversely, a schedule is unfair if a thread
is starved of its chance to execute despite being enabled in-
finitely often. ' For example, the schedule in which Phill per-
forms Acquire(forkl) and then Phil2 repeatedly executes
Acquire(fork2), TryAcquire(forkl), Release(fork2) is
unfair. A cycle in the state space of a correct program corresponds
to an unfair schedule in which an enabled thread is starved continu-
ously so that the other threads participating in the cycle are unable
to make progress. By performing state-space search with respect
to a fair scheduler, the model checker is able to prune such cycles
away. Note that a cycle in an incorrect program, such as the one in
Figure 1, might correspond to a livelock. However, such an erro-
neous cycle must be fair, otherwise it would not be considered an
error by the programmer. Our scheduler does not prune such cycles
and will in fact generate an infinite execution in the limit. It is this
ability to distinguish between fair and unfair executions that gives
fair stateless model checking the ability to detect livelocks.

'n the literature, this notion of fairness is qualified as strong fairness. For
brevity, we simply refer to this notion without the qualifier in this paper.
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x:=0;
Thread t Thread u
a: x:=1; c: while (x !=1)
b: end; d: yield();
e: end;

Figure 3. Example of a nonterminating program.

Obviously, a fair scheduler is restricted from making some
scheduling decisions that are otherwise available to a scheduler
with no fairness requirement. It is important to ensure that these
restrictions do not reduce the coverage achieved during state-space
exploration. Our second key insight enables us to do so. We ob-
serve that threads in correct programs indicate when they are un-
able to make progress by yielding the processor. A yield is usually
indicated by the presence of a sleep operation or a timeout while
waiting on a resource. To achieve fairness, the scheduler only pe-
nalizes yielding threads and prioritizes threads that are able to make
progress. In particular, the scheduler is fully nondeterminstic in the
absence of yield operations. Section 3 describes the fair scheduling
algorithm and provides theoretical results to characterize its sound-
ness. To support these theoretical results, Section 4 provides exper-
imental results which indicate that our algorithm achieves complete
state coverage on a variety of programs.

We have implemented our scheduler in the CHESS model
checker. This algorithm extends the ability of CHESS to handle
nonterminating programs. Prior to this implementation, any pro-
gram given to the checker had to be manually modified to terminate
under all schedules. This manual effort was a significant hurdle to
the deployment of CHESS because in our experience, real programs
are almost always nonterminating. By not requiring this manual ef-
fort, the fair scheduling algorithm has significantly improved the
applicability of CHESS to real-world programs; we can now boot
the Singularity operating system [13] under the control of CHESS.
We present our evaluation, including several bugs found, in Sec-
tion 4.

In summary, the main novel contributions of this paper are the
following:

e We have introduced fair stateless model checking, a novel
technique for systematic testing of nonterminating programs.
Our method significantly enhances the applicability of stateless
model checking to large programs with cyclic state spaces. In
addition, it allows stateless model checkers to detect a new class
of livelock errors.

e We have implemented our algorithm in the stateless model
checker CHESS. The algorithm makes it much easier to apply
CHESS to large programs and found three previously unknown
errors in real-world programs of which two are livelocks.

2. Overview

In this section, we present an overview of our method for system-
atically testing nonterminating programs. We use the example pro-
gram in Figure 3 to motivate the discussion. This program has two
threads and a global variable x initially set to zero. The first thread
t sets x to 1, while the second thread u spins in a loop waiting for
the update of x by t. The state space of this program is shown at the



right of Figure 3. For this simple program, the state can be captured
by the program counter of the two threads. For instance, the state
(a,c) is the initial state where the two threads are about to execute
the instructions at locations a and c respectively. The state space
contains a cycle between (a,c) and (a,d), resulting from the the
spin loop of u. Obviously, this program does not terminate under
the schedule that continuously runs u without giving a chance for t
to execute.

Our method is applicable to programs that are expected to ter-
minate under all fair schedules. That is, nontermination under a
fair schedule is unexpected and is potentially an error. However,
there is no requirement on these programs to terminate under unfair
schedules. We call such programs fair-terminating. The program in
Figure 3 is fair-terminating since its only infinite execution is not
fair. This execution continuously starves thread t despite t being
enabled infinitely often.

Our intuition for fair-terminating programs is based upon our
observation of the test harnesses for real-world concurrent pro-
grams. In practice, concurrent programs are tested by combining
them with a suitable test harness that makes them fair-terminating.
A fair scheduler eventually gives a chance to every thread in the
program to make progress ensuring that the program as a whole
makes progress towards the end of the test. Such a test harness
can be created even for systems such as cache-coherence protocols
that are designed to “run forever”; the harness limits the number
of cache requests from the external environment. In addition, the
notion of fair termination coincides with the intuitive behavior pro-
grammers expect of their concurrent programs. For instance, one
expects the program in Figure 3 to terminate when run on a real
machine. This expectation is due to our implicit assumption that
the underlying thread scheduler in the operating system is fair.

In this paper, we provide a solution to the following important
problem:

Input: A concurrent program () and a safety property ¢
Problem: Determine if () is fair-terminating and satisfies .
If @ is not fair-terminating, produce a fair nonterminating
execution of Q. If @) violates ¢, produce a finite execution
of ) violating .

All previous solutions proposed for this problem are stateful; they
require capturing the state of the program (). As discussed in the
introduction, capturing the state of large program is error-prone
and expensive. The main contribution of this paper is a practical
stateless solution to this problem.

Our solution, called fair stateless model checking, uses a fair
and demonic scheduler for systematically exploring the set of fair
executions of the program . The scheduler maintains a partial
order on the set of threads in each state. Intuitively, this partial
order defines a scheduling priority over threads in each state —
an enabled thread cannot be scheduled in a state if a higher priority
thread, as determined by the partial order, is enabled in that state.
The priority is updated appropriately during the execution of a
program with the guarantee that any infinite execution generated
by our scheduler is fair (Section 3). An execution obtained by
unrolling an unfair cycle in the state space of a nonterminating
program is pruned by our scheduler, thereby leading to a more
efficient search.

While being fair, the scheduler must also be demonic and at-
tempt to generate enough schedules to achieve full state cover-
age. For example, a scheduler that generates a single fair sched-
ule is useless for finding bugs because it misses most behaviors of
the program! Similarly, a round-robin scheduler does not consider
many interleavings of the threads in the program. Ideally, it would
be desirable for a fair scheduler to generate all possible fair exe-
cutions of the program. But the set of all fair executions of a fair-

terminating program, even for a fixed input, may be (enumerably)
infinite. Therefore, it is impossible for any stateless model checker,
including ours, to generate all fair executions in a bounded amount
of time. However, for checking safety properties, it is only neces-
sary to generate enough executions to cover all reachable states of
the program.

To achieve full state-coverage, our scheduler depends on an
important characteristic of correct programs. We observed that
threads in correct programs indicate when they are unable to make
progress by yielding the processor. Whenever a thread waits for
a resource that is not available, it either blocks on the resource
or yields the processor. A block or a yield tells the operating
system scheduler to perform a context switch, hopefully to the
thread holding the resource required by the waiting thread. If the
waiting thread does not yield the processor and continues to spin
idly, it will needlessly waste its time slice and slow down the
program; such a behavior is consequently considered an error.
Therefore, in addition to being fair-terminating, correct programs
also satisfy the following good samaritan property: if a thread
is scheduled infinitely often, then it yields infinitely often. The
program in Figure 3 satisfies this property because there is a yield
statement in the spin loop of thread u. Also, a thread that terminates
after executing a finite number of steps obviously satisfies the good
samaritan property.

Our scheduler introduces an edge in the priority order only
when a thread yields and thereby indicates lack of progress. Thus,
our scheduler ensures that in the absence of yield operations, the
priority order remains empty and all threads have equal priority. At
each scheduling point, the scheduler nondeterministically attempts
all scheduling choices that respect the priority order. Our intuition
is that programs are parsimonious in the use of the yield operations
as their excessive use may unnecessarily decrease performance.
Therefore, these operations are used sparingly, typically at the back
edges of spin loops. Consequently, every reachable state is likely to
be reachable via a yield-free execution along which our algorithm
behaves like the standard nondeterministic scheduler used in model
checkers. We provide theoretical results (in Section 3) characteriz-
ing the coverage of our algorithm. We also provide experimental
evaluation (in Section 4) to show that our algorithm provides com-
plete state coverage on a variety of realistic programs.

In summary, fair stateless model checking is a semi-algorithm
which takes as input a program that is expected to satisfy the good
samaritan property and be fair-terminating. There are four out-
comes possible when this algorithm is applied to such a program.

1. The algorithm terminates with a safety violation.

2. The algorithm diverges and generates, in the limit, an infinite
execution that violates the good samaritan property.

3. The algorithm diverges and generates, in the limit, an infinite
fair execution.

4. The algorithm terminates without finding any errors.

In theory, the second and third outcomes manifest in an infinite
execution being generated. In practice, it is not possible for a
stateless model checker to identify or generate an infinite execution.
Therefore, we ask the user to set a large bound on the execution
depth. This bound can be orders of magnitude greater than the
maximum number of steps the user expects the program to execute.
The model checker stops if an execution exceeding the bound is
reached and reports a warning to the user. This execution is then
examined by the user to see if it actually indicates an error. In the
rare case it is not, the user simply increases the bound and runs the
model checker again. Using this mechanism, our algorithm is able
to detect the livelock in the program of Figure 1.



3. Fair stateless model checking

In this section, we describe fair stateless model checking in detail.
We fix a multithreaded program @) with a finite set T%d of threads.
The program () starts execution in its initial state so. At each step,
one thread in 7'd performs a transition and updates the state. In this
presentation, we assume that the transition relation of each thread is
deterministic and consequently thread scheduling is the only source
of nondeterminism. However, our method is easily generalized
to accommodate a nondeterministic but finitely-branching thread
transition relation.

The program @ is equipped with state predicates enabled(t)
and yield(t) for each thread ¢t € T'id. The predicate enabled(t) is
true in a state s iff thread ¢ is enabled in s. The predicate yield(t)
is true in a state s iff thread ¢ is enabled in s and executing thread ¢
in s results in a yield.

. to ty . . P

An execution sp — s1 — Sz ... is a finite or infinite sequence
of states and transitions. Each such execution is equipped with a
state predicate sched(t) for each thread ¢ € Tid such that for

all n > 0, sched(t) is true in s, if and only if t, = t. A finite
. to t1 . . . . .
execution so — S1 — S2...Sp i8S terminating if enabled(t) is

false at s, for each t € Tid. Such a state s, is called a deadlock.
A state s is reachable if it is the final state of an execution.

An infinite execution o = sg Lo, S1 by S2 ... is fair iff for
all threads ¢ € Tud, if ¢ is enabled infinitely often in o then ¢ is
scheduled infinitely often in o. This property is formalized as the
following linear temporal logic [23] formula:

SF =Vt € Tid : GFenabled(t) = GF sched(t)

Every infinite execution o of @) is expected to satisfy the following
good samaritan property:

GS =Vt € Tid : GFsched(t) = GF(sched(t) A yield(t))

Intuitively, this property states that for all threads ¢, if ¢ is scheduled
infinitely often, then in infinitely many of those ¢ transitions thread
t also yields. The fair stateless model checking algorithm, apart
from detecting safety violations, also attempts to detect an infinite
execution that either violates the good samaritan property or is fair.

We refer to the value of the predicates enabled(t), sched(t),
and yield(t) in state s as s.enabled(t), s.sched(t), and s.yield(t)
respectively. We also use s.ES to refer to the set {x € Tid |
s.enabled(t)} of threads enabled in state s. Given a relation R C
Tid x Tid and a set X C Tid, we define

pre(R,X)={zxe€ Tid |3y € Tid : (x,y) € RNy € X}.

We present the fair model checking algorithm (Algorithm 1) as
a nondeterministic fair scheduler. Our algorithm makes explicit the
available nondeterministic choices at each scheduling point. It is
easy to augment this description with either a stack to perform
depth-first search or a queue to perform breadth-first search. To
focus on the essence of our algorithm, we have elided the (standard)
search mechanism from the algorithm description.

The algorithm takes as input a multithreaded program @ to-
gether with its initial state init. It assumes that the program @
comes with a function NextState that takes a state s and a thread ¢
and returns the state that results from executing ¢ in state s. The al-
gorithm starts with the initial state and an empty execution. In each
iteration of the loop (lines 7-30), the algorithm extends the current
execution by one step. The algorithm terminates with a complete
terminating execution, when the return statement on line 9 is exe-
cuted.

Each thread ¢ € T'd partitions an execution ¢ into windows; a
window of thread ¢ lasts from a state immediately after a yielding
transition by thread ¢ to the state immediately after the next yielding
transition by t. Our algorithm maintains for each state s several

1 nit.P:={};

2 Yu € Tid : init.E(u) := {};

3 Yu € Tid : init.D(u) := Tid;

4 Yu € Tid : init.S(u) := Tid;

5 curr := wat;

6 while true do

7 T := curr.ES \ pre(curr.P, curr.ES);
8 if T = {} then

9 return;

10 end

11 t := Choose(T);

12 next := NextState(curr,t);

13 next.P := curr.P \ (Tid x {t});

14 foreach u € T'id do

15 next.E(u) := curr.E(u) N next. ES;
16 if u = t then

17 next.D(u) :=

curr.D(u) U (curr.ES \ next.ES);

18 else

19 next.D(u) := curr.D(u);
20 end

21 next.S(u) := curr.S(u) U {t};
22 end
23 if curr.yield(t) then

24 H := (next.E(t) U next.D(t)) \ next.S(t);
25 next.P := next.P U ({t} x H);

26 next.E(t) := next.ES,

27 next.D(t) := {};
28 next.S(t) := {};

29 end
30 curr := next;
31 end

Algorithm 1: Fair stateless model checking

auxiliary predicates that record information about a window of
thread ¢.

1. S(t) is the set of threads that have been scheduled since the last
yield by thread ¢.

2. E(t) is the set of threads that have been continuously enabled
since the last yield by thread ¢.

3. D(t) is the set of threads that have been disabled by some
transition of thread ¢ since the last yield by thread ¢.

In addition to these predicates, each state s also contains a relation
s.P which represents a priority ordering on threads. Specifically, if
(t,u) € s.P then ¢ will be scheduled in s only when s.enabled(t)
and —s.enabled (u).

In each iteration, the algorithm first computes 1" (line 7), the set
of schedulable threads that satisfy the priorities in curr.P. If T' is
empty, then the execution terminates. Otherwise, the algorithm se-
lects a thread t nondeterministically from T" (line 11) and schedules
t to obtain the next state. It is this nondeterminism inherent in the
execution of the Choose(T") on line 11 that a model checker must
explore. As explained earlier, it is easy to add systematic depth-first
or breadth-first search capability to our algorithm. Line 13 removes
all edges with sink ¢ from P to decrease the relative priority of ¢.

The loop at lines 1422 updates the auxiliary predicates for each
thread v € Tid. The set E of continuously enabled threads is
updated by taking the intersection of its current value with the set
of enabled threads in next (line 15). The set D of threads disabled
by thread ¢ is updated by taking the union of its current value with
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Figure 4. Emulation of Algorithm 1 on the spin loop in Figure 3.
When thread u yields in the second transition from state (a,d), the
P in the subsequent state ensures that u does not enter the spin loop
the second time.

the set of threads disabled by the latest transition (line 17). The set
of scheduled threads is updated on line 21.

Finally, if the transition just executed is a yielding transition,
then the data structures are updated appropriately to mark the
beginning of a new window of u (line 23-29). The set H computed
on line 24 contains only those threads that were never scheduled
in the current window of thread ¢ and were either continuously
enabled, or disabled by thread ¢ at some point in the window.
Line 25 reduces the priority of ¢ with respect to the threads in H.

Figure 4 shows an emulation of Algorithm 1 for the program
in Figure 3. For conciseness, Figure 4 only shows the emulation
when the scheduler attempts to schedule the thread u continuously.
We focus the emulation on the values of the relation P and the
predicates S(u), D(u), and E(u). The relation P is initialized to
be empty. The predicates S(u), D(u) and E(u) are initialized in
such a way that their values remain unchanged until the first yield
of thread u. These values also provide the additional guarantee that
the update of P at the first yield of any thread is guaranteed to
leave the value of P unchanged. This behavior ensures that the first
window of any thread begins after its first yield at which point the
predicates S(u), D(u) and E(u) get initialized appropriately.

In the emulation, the scheduler executes thread u continuously.
Starting from the initial state (a,c), the first window of u begins
once the scheduler has scheduled u twice. At this point, u has gone
through the spin loop once and the state is (a,c) again. In this
state, P = {}, S(u) = {}, D(u) = {},and E(u) = ES = {t,u}.
When u is executed for one more step, u is added to S(u) and the
state becomes (a,d). In this state, yield(u) is true as u will yield
if executed from this state. However, the P relation is still empty
allowing the scheduler to choose either of the two threads.

If the scheduler chooses to schedule u again, the thread com-
pletes the second iteration of the loop and the program enters the
state (a,c). Algorithm 1 adds the edge (u,t) to P because the
set H on line 24 evaluates to {¢}. Thus, the algorithm giving the
yielding thread u a lower priority than the pending thread t. This

update to P makes the set of scheduler choices T' = {¢}. Thus, the
scheduler is forced to schedule t, which enables u to exit its loop.

Generalizing this example, if the thread t was not enabled in
the state (a,c), say if t was waiting on a lock currently held by
u, the scheduler will continue to schedule u till it releases the lock.
Further, if t was waiting on a lock held by some other thread v in
the program, the fairness algorithm will guarantee that eventually
v makes progress releasing the lock.

THEOREM 1. Every infinite execution o generated by Algorithm 1
satisfies the property GS = SF.

PROOF. We do the proof by contradiction. Suppose Algorithm 1

. . . to ty
generates an infinite execution ¢ = sp — S1 — S2... that

satisfies GS but does not satisfy SF. Therefore, there is a thread
u such that o satisfies GFenabled(u) A FG—sched(u). That is,
the execution o eventually reaches a state s; after which w is never
scheduled but is enabled infinitely often. Let 7" be the set of threads
that are scheduled infinitely often in o. Since 7T%d is finite and o is
an infinite execution, the set 7" is nonempty. Since o satisfies GS,
every thread in 7" must yield infinitely often. There are two cases:
thread v is enabled forever after s; or thread w is both enabled
infinitely often and disabled infinitely often after s;.

Case 1: Suppose thread v is enabled forever after s;. Consider
an arbitrary ¢ € 7. Since o satisfies GS and ¢ is scheduled
infinitely often in o, there exist j and k such that i < j < k,
sj.sched(t), s;.yield(t), sk.sched(t) and sg.yield(t). Consider
the iteration of the loop in lines 6-31 of Algorithm 1 in which the
curr = 8. Since u is forever enabled but never scheduled after
si, we have that u € next.E(t) and v ¢ next.S(t) at line 24.
Therefore, at line 25 v € H and the edge (¢, u) is added to next.P.
Since thread w is continuously enabled after s; and therefore after
sk, the edge (¢, u) precludes the scheduling of ¢ after si (line 7).
This is a contradiction since ¢ is scheduled infinitely often.

Case 2: Suppose thread u is both enabled infinitely often and
disabled infinitely often after s;. Since 7' is finite, there must
be some thread ¢ € 7T that disables u infinitely often. Since
o satisfies GS and t is scheduled infinitely often in o, ¢ dis-
ables u at some point after ¢ and between two states where
yield(t) holds. Formally, there exist j such that i < j <
k < 1, sj.sched(t), s;.yield(t), si.sched(t), si.enabled(u),
—Sk+1.enabled(u), s;.sched(t), and s;.yield(t). Consider the
iteration of the loop in lines 6-31 of Algorithm 1 in which the
curr = s;. Since u is never scheduled after s;, we have that
u € next.D(t) and u ¢ next.S(t) at line 24. Therefore, at line 25
u € H and the edge (¢,u) is added to next.P. Since thread u is
never scheduled after s; and therefore after s, the edge (¢, u) is
present in s,,. P for all n > k. This edge precludes the scheduling
of t after s (line 7) whenever thread u is also enabled. This is a
contradiction since thread ¢ disables thread v infinitely often. O

Theorem 1 yields the following termination guarantee about
Algorithm 1.

THEOREM 2. If no infinite execution of @ satisfies the property
GS = SF, then Algorithm 1 terminates on Q.

PROOF. We do the proof by contradiction. Suppose Algorithm 1
does not terminate on (). Then the tree of executions explored
by the algorithm is infinite. Since T%d is finite, this execution
tree is finitely branching. By Konig’s lemma, there must be an
infinite execution in this tree. Since every execution generated by
Algorithm 1 is an execution of (), this execution must satisfy
GS = SF (by Theorem 1). Hence, we arrive at a contradiction.
[m]

Now, we prove certain desirable properties of the fair model
checking algorithm.



THEOREM 3. At line 7 of Algorithm 1, the set T is empty if and
only if the set curr.ES is empty.

PROOF. The proof relies on the fact that the P relation when viewed
as edges in a graph with nodes from 7id contains no cycles. The
loop invariant at line 6 requiring that curr.P is an acyclic relation
is sufficient to prove our theorem.

We first prove this loop invariant. Upon loop entry, we have
curr = 1nit. The relation curr.P is empty and the invariant
is trivially true. Consider an arbitrary iteration of the loop. We
assume the loop invariant at the beginning of this iteration and
prove it at the end. In each iteration of the loop, whenever outgoing
edges from ¢ are added to P at line 25, all incoming edges into
t have already been removed earlier at line 13. Line 21 adds ¢
to next.S(u) for all u € Tid and therefore it is guaranteed that
t € next.S(t) at line 24 and ¢t ¢ H at line 25. Thus, even line 25
does not add any incoming edges into ¢ and each iteration of the
loop leaves P acyclic.

We now show that the loop invariant implies our theorem.
Clearly, if curr.ES is empty at line 7 then T is also empty.
We prove the other direction by contradiction. Suppose 1’ is
empty but curr.EnabledSet is nonempty. Therefore curr.ES C
pre(curr.P, curr.ES). Consider the projection of the relation
curr. P relation on to the set curr. ES. Since curr. P is acyclic and
curr.ES is nonempty, this projection is a nonempty acyclic rela-
tion and therefore contains a maximal element. That is, there exists
t € curr.ES such that Vu € curr.ES : (t,u) & curr.P. This
contradicts our assumption curr.ES C pre(curr.P, curr.ES). O

Theorem 3 guarantees that Algorithm 1 never reports a false
deadlock. In practice, this means that the algorithm can always
drive the program to a terminating state, without requiring the
execution to be pruned at a partial execution. Such pruning, as can
typically happen with depth-bounding techniques, avoids wasting
scarce model checking resources.

While the theorems above hold even for infinite-state systems,
the theorems stated below provide intuition for the efficacy of the
fair model checking algorithm on finite-state systems. For the re-
mainder of this section, we assume that () is a finite-state program.

For finite-state systems, all infinite behaviors traverse cycles

. . .. to
in the state space. A cycle T is a transition sequence zo —

T1- - Tp In xo such that the states xo, z1, ..., x, are all distinct.
The cycle 7 is reachable if the state xq is reachable. The cycle 7
is fair if for every thread t € Tid, either —x;.enabled(t) for all
i € [0,n] or t = t; for some ¢ € [0,n]. The cycle T is unfair if
it is not fair. Note that an infinite execution that traverses an unfair
cycle forever is not fair.

The following theorem shows that our algorithm unrolls an
unfair cycle fully at most twice and thus significantly reduces
wasteful search.

THEOREM 4. Suppose every infinite execution of @ satisfies the

t . . .
property GS, so — s1---xo Iis a finite execution of @, and
to t . . . .
To — T1-c-Tm — Xo is an unfair cycle in Q. Then, Algorithm 1
. t to tn
does not generate the execution so — s1---Tg — T1-' Ty —

to tn to
Xo —> 1 "Tpn — o — T1** Tn.
PROOF. Since xg 5 L1+ Tn In o is an unfair cycle, there is
a thread u such that u # ¢; for all ¢ € [0, n] and x;.enabled (u)
for some ¢ € [0,n]. Let N(¢) denote (i + 1)mod(n + 1). Since
x;.enabled(u) for some i € [0, n], there are only two cases: either
x;.enabled(u) for all ¢ € [0, n] or there exists ¢ € [0, n] such that
x;.enabled(u) and ~x ;). enabled (u).

Case 1: Suppose x;.enabled(u) for all i € [0, n]. Since every
infinite execution of ) satisfies G5, there exists ¢ € [0,n] such
that z;.yield(t;) is true. Therefore the edge (¢;, u) is in the priority

graph after the execution of ¢; the second time the unfair cycle is
executed. Since u is never scheduled, this edge is not removed, and
consequently ¢; cannot be scheduled at the next occurrence of x;.

Case 2: Suppose there exists ¢ € [0, n] such that ;. enabled (u)
and —z y ;). enabled (u). Since every infinite execution of ) satis-
fies GS, there exists j € [0,n] such that ¢; = t; and z;.yield(t;)
is true. Therefore the edge (¢;, u) is added to the priority graph af-
ter the execution of ¢; the second time the unfair cycle is executed.
Since wu is never scheduled, this edge is not removed, and conse-
quently ¢; = t; cannot be scheduled at the next occurrence of x;.
O

Now, we present two theorems that characterize the soundness
of our algorithm on finite-state systems. Consider a finite transition

sequence o = o Lo, x1---xn. The yield count of thread ¢ in
a, denoted by &(a,t), is the cardinality of the set {0 < i <
n | t = ti A x.yield(t)}. The yield count of c, denoted by
0(a) is the maximum of §(c,t) over all threads ¢ € Tid. The
yield count of a reachable state s is the minimum of d(c) over all
executions o whose final state is s. The following theorem captures
the soundness guarantee of our algorithm for safety properties.

THEOREM 5. Algorithm 1 either generates an infinite execution or
visits every reachable state of () whose yield count is zero.

PROOF. Suppose Algorithm 1 does not generate an infinite execu-
tion. Therefore, the tree of executions explored by the algorithm
is finite (by Konig’s lemma). This tree is guaranteed to contain all
executions whose yield count is zero because along such an execu-
tion the priority graph remains empty throughout. Every reachable
state of () with yield count zero is the final state of an execution
in which there are no yields. Therefore, the algorithm eventually
visits all such reachable states. O

Every infinite execution generated by our algorithm reveals a
liveness error (Theorem 1). Theorem 5 indicates that our algorithm
is sound with respect to safety properties if the program ) does
not have any liveness errors and all reachable states are reachable
by yield-free executions. Theorem 6 below captures the soundness
of our algorithm with respect to liveness properties as well.

THEOREM 6. Suppose xo is a reachable state of Q whose yield

. to 29 . .
count is zero and T = xg — X1 -+ Tn — Xo IS a fair cycle whose
yield count is at most one. Then Algorithm 1 generates an infinite
execution.

PROOF. We do the proof by contradiction. Suppose Algorithm 1
does not generate an infinite execution. By Theorem 5, the state
xo is eventually visited with an empty priority graph. If the yield
count of 7 is zero, then there are no yields in 7 and 7 can be
executed repeatedly to generate an infinite execution. Suppose the
yield count of 7 is one. Since 7 is fair, every thread that is enabled
anywhere in the cycle is also scheduled in the cycle. Moreover,
a thread ¢ may yield at most once in 7. Therefore, the set S(t)
contains both E(t) and D(t) at the unique yield point of ¢, if any.
Consequently, the yield of ¢ does not add any edges to P. O

As discussed in Section 2, we expect that all reachable states
are reachable by a yield-free execution due to the parsimonious use
of the yield operation by real programs. If this is not the case, then
our algorithm can be parameterized by a small constant £ > 0 so
as to only process every k-th yield of a thread. The soundness theo-
rems (both for safety and liveness) for the parameterized algorithm
are straightforward generalizations of the corresponding theorems
stated above.

4. Evaluation

This section presents the empirical evaluation of the fair demonic
scheduler described in Section 3. We have implemented our algo-



Programs LOC Threads | Synch Ops
Dining Philosophers 54 3 48
Work-Stealing Queue 1266 3 99
Promise 14044 3 26
APE 18947 4 247
Dryad Channels 16036 5 273
Dryad Fifo 18093 25 4892
Singularity kernel 174601 14 167924

Table 1. Characteristics of input programs to CHESS

rithm in the CHESS software model checker. CHESS is designed for
systematic testing of shared-memory multithreaded programs. To
use CHESS, the user provides a test case that exercises a concurrent
scenario. CHESS executes this test repeatedly, while controlling the
thread schedule such that every execution of the test takes a differ-
ent interleaving. CHESS is stateless and avoids capturing any state,
including the initial state of the program, during state-space search.

The implementation of the fair scheduler in CHESS maintains
data structures to implement the auxiliary state used in Algorithm 1.
An important issue is the inference of yielding transitions; our im-
plementation treats every synchronization operation with a finite
timeout and every explicit processor yield as yielding operations.
Another important issue is the integration of fair-scheduling with
the context-bounded search [22] strategy implemented in CHESS.
In a concurrent execution, a preemption occurs when the scheduler
forces a context switch despite the current running thread being en-
abled. Context-bounded search explores only those executions in
which the number of preemptions is bounded by a small number
provided by the user of CHESS. Fair scheduling is easily combined
with context-bounding. The only subtle aspect of the combination
is that fair scheduling can introduce a preemption when the cur-
rently running thread gets a lower priority than another enabled
thread. For soundness of the context-bounded search, it is impor-
tant to not count such preemptions.

4.1 Ability to handle large nonterminating programs

Prior to the implementation of the fair scheduler, CHESS, like other
stateless model checkers, could only handle terminating programs.
As depth bounding was unsatisfactory for our purposes, any in-
put program with nonterminating behavior required manual mod-
ification. As an example of the effort required, consider the sim-
ple program in Figure 3. One can fix the nonterminating behavior
by introducing a synchronization variable that u blocks on when
waiting for an update to x. In addition, the behavior of t (and all
other threads that access x) should be modified to appropriately
signal the synchronization variable after an update to x, a non-local
change to the program. Finally, one has to ensure that the intro-
duced synchronization does not result in deadlocks due to adverse
interactions with existing synchronizations in the program. In prac-
tice, such modifications typically require intimate knowledge of the
program, and in our experience, are difficult and error-prone. Pre-
viously, it took us several weeks to prepare a realistic program as
an input to CHESS.

With the fair scheduler in place, CHESS could readily handle
nonterminating programs. Table 1 describes the programs CHESS is
currently able to handle. Table 1 also provides the maximum num-
ber of threads created and synchronization operations performed
per execution of these programs in CHESS. In particular, we are
able to systematically test the entire boot and shutdown process of
the Singularity operating system [13]. Also, we have run CHESS
on unmodified versions of Dryad, a distributed execution engine
for coarse-grained data-parallel applications [15], and APE (Asyn-
chronous Processing Environment), a library in the Windows oper-

ating system that provides a set of data structures and functions for
asynchronous multithreaded code.

Apart from these large programs, CHESS is also able to handle
low-level synchronization libraries that typically employ nonblock-
ing algorithms. Manually modifying them to be terminating is ei-
ther impossible or requires algorithmic changes. We have applied
CHESS to an implementation [20] of the work-stealing queue algo-
rithm originally designed for the Cilk multithreaded programming
system [7], and Promise, a library for data-parallel programs.

4.2 Coverage of safety properties

This section demonstrates that the fairness algorithm is effective
for checking safety properties. First, we show that the algorithm
achieves 100% state coverage for the first two programs in Table 1.
Also, we show that fairness significantly improves the speed of the
state space search, for various search strategies. Finally, we demon-
strate the ability of the the fairness algorithm to find both existing
and previously unknown safety violations in large programs.

All the experiments described in the paper were performed on
an off-the-shelf computer with Intel Xeon 2.80GHz CPU with 2
processors and 3 GB of memory running Windows Vista Enterprise
operating system.

4.2.1 State coverage

CHESS is a stateless model checker and thus does not have the
capability to capture program states. To measure state coverage,
we manually added facilities to extract states for two examples;
the dining philosophers and the work-stealing queue. The state of
these programs consists of the state of all global variables, the heap,
and the stack of all threads in the program. While the bits com-
prising the state can be automatically extracted, we had to manu-
ally abstract the (infinite) state of the program into a reasonable,
finite representation. Also, in order to avoid multiple representa-
tions of behaviorally equivalent heaps, we used a simple heap-
canonicalization algorithm [14].

Table 2 shows the results from our coverage experiments for
these two examples, each with two configurations. For each of the
configurations, we used four search strategies — a context-bounded
search with bounds (cb) from 1 to 3 and a depth-first search (dfs).
For each strategy, we ran CHESS with and without the fairness
algorithm. As termination is not guaranteed without fairness, the
search proceeds only upto a depth bound (db) varying from 20
to 60. Once the depth-bound is reached, a random search [17] is
performed until the end of the execution is reached. New states
visited during the random search are included while measuring
state coverage. To measure the total number of states reachable
with a strategy, we also performed a stateful search of the state
space and stored the state signatures in a hash table. We used this
table to check if the subsequent runs cover all of the states.

In our experiments, we found that the fairness algorithm achieves
100% coverage on all but one of the cases. The fairness algorithm
times out for a depth-first search strategy on the work-stealing
queue with two stealers. The fourth column in Table 2 shows the
number of states explored with fairness, and except for the one
case above, this number is greater than or equal to the total number
of states in the third column. The number of states explored with
fairness is larger than the total number of states, as the fairness
algorithm introduces additional preemption points. This essentially
forces the fairness algorithm to visit states that are beyond the cur-
rent context-bound.

For comparison, Table 2 also shows the number of states visited
for runs without fairness with different depth bounds. For some
runs, the search with small depth bounds terminate without visiting
all the states. In other cases with larger depth-bounds, the search



Search Total With Without fairness
Configuration | Strategy | States | Fairness | db=20 db=30 db=40 db=50 db=60
Dining cb=1 27 27 27 27 27 27 27
Philosophers cb=2 28 28 28 28 28 28 28
2 philosophers cb=3 29 29 29 29 29 29 29
dfs 29 29 29 29 29 29 29
Dining cb=1 102 102 102 102 102 102 102
Philosophers cb=2 144 144 143 144 144 144 144
3 philosophers cb=3 167 171 167 169 169 169 169
dfs 177 177 174 177 177 168* 139*
Work-Stealing cb=1 278 278 236 278 278 278 278
Queue cb=2 814 814 554 765 814 814 814
1 stealer cb=3 1287 1297 694 1133 1287 1287 1287
dfs 1726 1726 871 1505 1726  1307*  683*
Work-Stealing cb=1 350 378 238 334 350 350 350
Queue cb=2 1838 2000 971 1630 1822 1838 1838
2 stealers cb=3 3271 3311 1805 2955 3269 3271 3271
dfs 4826 1321%* 1686*  1239*  460* 245% 245%

Table 2. Number of states visited for the context-bounded and depth-first strategies both with and without fairness. Search without fairness
is not guaranteed to terminate and thus needs to be pruned at a depth bound. The state coverage achieved for runs that did not terminate

within 5000 seconds is marked with a *.

times out. For the work-stealing queue with two stealers, all runs
using the depth-bounded strategy time out.

4.2.2 Rate of state coverage

Fair stateless search can be more efficient as it does not unroll un-
fair cycles in the state space (Theorem 4). To quantify this, Fig-
ures 5 and 6 show the time taken to complete the search for two of
the four configurations in Table 2. The results were similar for the
other two (smaller) configurations. The figures show the time taken
to complete the search for each of the search strategies with and
without fairness. For the runs without fairness, we report the time
for various depth bounds. Note, the y-axis on these figures is in log
scale. The runs with fairness explores the state space exponentially
faster than the runs without fairness, without sacrificing state cov-
erage. In Figure 6, for cb=3 strategy, the run with a depth bound of
20 completes faster than the run with fairness but does not cover all
states. Also, the depth-first strategy times out in all runs.

4.2.3 Ability to find errors

The experiments above show that fairness improves the efficacy of
safety checking without sacrificing soundness for two programs.
On larger programs, for which state extraction is not manually
feasible, we demonstrate the efficacy of the fairness algorithm
indirectly by demonstrating its ability to find safety errors in the
programs.

A prior version of CHESS had found six bugs on versions of the
work-stealing queue and the Dryad channels, modified to be termi-
nating. We ran CHESS on the unmodified programs with a context-
bound of 2 preemptions, both with and without fairness. Since these
programs are nonterminating, we set the depth-bound to 250 for
the search without fairness. This depth-bound is the minimum re-
quired to find these errors. Table 3 compares the performance of
the search with fairness to the search without fairness. As the table
shows the fairness algorithm finds the first five errors much faster
both in terms of the number of executions explored prior to the
buggy execution and the time taken for the search. The sixth error
is not found by the search without fairness.

The seventh row in Table 3 shows a previously unknown bug
that the fairness algorithm found in Dryad. The bug is caused by an
incorrect fix of bug 3 by the developer of Dryad. This error is also
not found by the search without fairness.
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Figure 5. Dining philosophers (3).
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Figure 6. Work-stealing queue (2).

4.3 Liveness violations

The fairness algorithm diverges in two cases, when the program
violates the good samaritan property (Section 2) or contains a live-
lock. Both these outcomes indicate correctness or performance er-
rors in the program. We demonstrate one instance of each violation
that CHESS found in existing programs.



No. of executions Time (secs)

With Without With Without
Bugs Fairness | Fairness | Fairness | Fairness
WSQ bug 1 82 182 2 8
WSQ bug 2 112 432 8 24
WSQ bug 3 212 843 12 74
Dryad bug 1 310 11024 8 273
Dryad bug 2 4002 47030 114 1247
Dryad bug3 | 25113 - 754 >7200
Dryad bug4 | 21014 - 677 >7200

Table 3. Number of executions of the test and the time required
to find errors with and without fairness in work-stealing queue
(WSQ) and Dryad channels. The fourth Dryad error is a previously
unknown error that CHESS found in the fix of the first three errors.

void Worker::Run(Object obj) {
while (!stop) {
while (!stop && task != null) {
// perform task

task = PopNextTask();

}
if (!'stop) {

task = group.Idle(this);
}

}

Task WorkerGroup::Idle(Worker currentWorker) {
while (!stop) {

// No work to be found
// Yield to other threads.
currentWorker.YieldExponential();

}
return null;

}

Figure 7. Violation of the good samaritan property. Under certain
cases, the outer loop in Worker : : Run results in the thread spinning
idly till time-slice expiration.

4.3.1 Good samaritan property violation

We used CHESS to test the implementation of a library that provides
efficient parallel execution of tasks. This library maintains a col-
lection of worker threads, partitioned into a set of worker groups.
CHESS detected a violation of the good samaritan property during
the shutdown of the library. There is a field called stop in both
the Worker and WorkerGroup classes. During the shutdown pro-
cess, the stop field in a worker group and the stop field in each
worker of that worker group is set to true, causing all the workers
to eventually finish. However, there is a small window of time dur-
ing which the stop field in the worker group is true but the stop
field in one of the workers is false. In this situation, if the queue of
tasks is empty, then the worker spins in a loop without yielding the
processor until its time-slice expires. This behavior starves other
threads, potentially including the one that is responsible for setting
the stop field of the worker to true.

volatile int x;

//...

int x_temp = InterlockedRead(x);
if (common case 1) break;

if (common case 2) break;

// spin in the uncommon case
while(x_temp '= 1){

Sleep(1); //yield

// BUG: should read x once again

}

Figure 8. The spinloop incorrectly waits on a temporary cache of
the global variable, resulting in a livelock.

4.3.2 Livelock in Promise

We used CHESS to test the implementation of promises, a con-
currency primitive for specifying data parallelism. The implemen-
tation is optimized for efficiency and selectively uses low-level
hardware primitives for performance. CHESS detected a livelock
in promises caused by simple programming error. While we are
unable to provide the actual code snippet, Figure 8 shows pseudo-
code exhibiting the same error.

For the sake of performance, programmers tend to make local
copies of shared global variables. The livelock in Figure 8 occurs
when the program erroneously waits for the local copy to change,
without updating the copy with the value in the global variable.
This bug was hard to detect as it only occurred in those rare thread
interleavings in which the common cases shown in the pseudo-code
were inapplicable.

5. Related work

The need for fairness when reasoning about concurrent programs
is well known [19, 2, 6, 3, 10]. Of the different useful notions of
fairness [6, 18], this paper deals with strong fairness (also known
as strong process fairness [3] or fairness [19]).

Fairness has also been studied extensively in the context of
model checking [5, 24, 25, 1, 12] of temporal logic specifications,
all of which deal with stateful model checking. To our knowledge,
this paper is the first to propose fairness as a means of improving
the efficacy of stateless model checking for safety verification.
Also, this paper is the first to extend the ability of stateless model
checking to comprehensively detect livelocks.

Our fair scheduling algorithm is related to the explicit scheduler
construction in Apt and Olderog [2, 6]. This scheduler is primarily
used as a proof methodology for proving the termination of con-
current programs. In particular, the scheduler requires generating a
random integer for the priority of a thread after every step. Such
“unbounded nondeterminism” [10], while useful in generating all
fair schedules of a program, cannot be effectively implemented in
a model checker. In contrast, our algorithm requires a finite choice
among a subset of enabled threads at each step of the execution.

Most operating system schedulers employ mechanisms to fairly
share resources among competing threads and users. These algo-
rithms typically manipulate priorities [16, 11] based on resource
usage or use randomized schemes [27] to guarantee fairness. These
algorithms are not designed to expose the nondeterministic choices
of the scheduler and cannot be used in a model checker.

The model checker described in this paper belongs to the class
that directly execute programs [8, 26, 21, 28] (as opposed to ana-
lyzing abstract program models). The technique of stateless model
checking was proposed in Verisoft [8] and has been successful for
systematically testing industrial concurrent systems [4]. Stateless



model checking typically relies on partial-order reduction tech-
niques [9] to reduce the state space explored. Partial-order reduc-
tion can only determine the equivalence of two executions of the
same length and thus is inherently incapable of detecting equiva-
lence of executions that revisit the same state in a cycle. Partial-
order reduction, however, can be used to significantly reduce the
set of all fair schedules of fair-terminating programs, an interesting
avenue of future research that we are currently pursuing.

Killian et al. [17] use a hybrid stateful and stateless technique
to find liveness errors in network protocols. Their algorithm can
only find those liveness violations that are characterized by the
presence of “dead states” and will not find the livelock in the
dining philosopher example (Section 1) or the violation of the
good samaritan property, described in Section 4.3.1. Also, their
algorithm provides no soundness guarantees of finding livelocks.

6. Conclusions and future work

This paper proposes the use of a fair scheduler in stateless model
checking. Fairness both enables the detection of liveness errors
and substantially improves the efficiency of safety verification in
a stateless model checker. The incorporation of the fair scheduling
algorithm in the CHESS model checker has significantly improved
the applicability of CHESS to large nonterminating programs. The
fairness-enhanced CHESS has found many liveness errors in several
industry-scale programs.

Currently, CHESS checks two liveness properties: fair termina-
tion and the good-samaritan rule. We would like to extend CHESS
to check an arbitrary liveness property. To motivate this work, we
are currently identifying liveness properties that are useful for mul-
tithreaded software. We are also investigating extensions to the fair
scheduler to handle unbounded thread creation.
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