
1

CheckFence: Checking Consistency
of Concurrent Data Types

on Relaxed Memory Models

Sebastian Burckhardt
Rajeev Alur

Milo M. K. Martin

Department of Computer and Information Science

University of Pennsylvania

June 6, 2007

2

General Motivation

Multi-threaded Software Shared-memory Multiprocessor

Concurrent Executions

Bugs

3

Specific Motivation

Multi-threaded Software
lock-free synchronization
(intentional races)

Shared-memory Multiprocessor
with relaxed memory model

Concurrent Executions
not sequentially consistent:
processors may
- buffer stores locally
- load from local buffer
- reorder loads
- reorder stores

Bugs

4

 concurrency libaries with lock-free synchronization

... are simple, fast, and safe to use
– concurrent versions of queues, sets, maps, etc.

– more concurrency, less waiting

– fewer deadlocks

... are notoriously hard to design and verify
– tricky interleavings often escape reasoning and testing

– exposed to relaxed memory models
on most multiprocessors, implementations do not work
correctly unless appropriate memory fences are inserted

Specific Motivation

5

... are simple, fast, and safe to use
– concurrent versions of queues, sets, vectors, etc.

– more concurrency, less waiting

– fewer deadlocks

... are notoriously hard to design and verify
– tricky interleavings

– exposed to relaxed memory models
code needs memory fences for correct operations

Specific Motivation

DATA TYPE IMPLEMENTATIONS ARE TINY
tens to hundreds lines of code

CLIENT PROGRAMS MAY BE LARGE
thousands, millions lines of code

 concurrency libaries with lock-free synchronization

6

Bridging
the Gap

Architecture:
+ Multiprocessors

+ Relaxed memory models

Concurrent Algorithms:
+ Lock-free queues, sets, deques

Computer-Aided Verification:
+ Model check C code

+ Sound counterexamples

CheckFence
Tool

methodology
described in
our papers in
[CAV 2006],
[PLDI 2007]

7

Example: Nonblocking Queue

The implementation

• optimized: no locks.

• not race-free

• exposed to memory model

The client program

• on multiple processors

• calls operations

....

... enqueue(1)

... enqueue(2)

....

....

Processor 1

....

...

...
a = dequeue()
b = dequeue()

Processor 2

void enqueue(int val) {
 ...
}

int dequeue() {
 ...
}

8

Michael & Scott’s Nonblocking Queue
[Principles of Distributed Computing (PODC) 1996]

boolean_t dequeue(queue_t *queue, value_t *pvalue)
{
 node_t *head;
 node_t *tail;
 node_t *next;

 while (true) {
 head = queue->head;
 tail = queue->tail;
 next = head->next;
 if (head == queue->head) {
 if (head == tail) {
 if (next == 0)
 return false;
 cas(&queue->tail, (uint32) tail, (uint32) next);
 } else {
 *pvalue = next->value;
 if (cas(&queue->head, (uint32) head, (uint32) next))
 break;
 }
 }
 }
 delete_node(head);
 return true;
}

1 2 3

head tail

9

Correctness Condition

Data type implementations must appear
sequentially consistent to the client program:

the observed argument and return values must be consistent
with some interleaved, atomic execution of the operations.

enqueue(1)
dequeue() -> 2

enqueue(2)
dequeue() -> 1

Observation Witness Interleaving

 enqueue(1)
enqueue(2)
dequeue() -> 1

 dequeue() -> 2

 Observation  Witness Interleaving

10

Part II: Solution

11

Bounded Model Checker

Pass: all executions of the
test are observationally
equivalent to a serial
execution

Fail:
CheckFence

Memory
Model Axioms

Inconclusive:
runs out of time
or memory

12

Demo: CheckFence Tool

13

Example: Memory Model Bug

Processor 1
links new node into list

Processor 2
reads value at head of list

--> Processor 2 loads uninitialized value

 ...
3 node->value = 2;
 ...
1 head = node;
 ...

 ...
2 value = head->value;
 ...

Processor 1 reorders the stores!
memory accesses happen in order 1 2 3

adding a fence between lines on left side prevents reordering.

1 2 3

head

14

Tool Architecture

C code

Symbolic Test

Trace

Symbolic test is nondeterministic, has exponentially many executions
(due to symbolic inputs, dyn. memory allocation, interleaving/reordering of instructions).

CheckFence solves for “bad” executions.

15

C code

Symbolic Test

Trace

Symbolic Test

automatic, lazy
loop unrolling

automatic specification mining
(enumerate correct observations)

construct CNF formula whose solutions
correspond precisely to the concurrent executions

16

Which Memory Model?
• Memory models are

platform dependent &
ridden with details

• We use a conservative
abstract approximation
“Relaxed” to capture
common effects

• Once code is correct for
Relaxed, it is correct for
stronger models

• Finding simple, general
abstraction is hard (work
in progress)

TSO

PSO

IA-32

Alpha

Relaxed

RMO

z6
SC

17

Part VI: Results

18

Bounded Tags

CAS-based

“snark” algorithm

Nonblocking list

Lazy list-based set

Non-blocking queue

Two-lock queue

Description

198

74

159

174

141

98

80

loc

Moir (PODC 1997)LL/VL/SC

LL/VL/SC

Detlefs et al. (DISC 2000)Deque

Harris (DISC 2001)Set

Heller et al. (OPODIS 2005)Set

Queue

Michael and Scott (PODC 1996)Queue

SourceType

Studied Algorithms

19

2 known

1 unknown

regular

bugs

Bounded Tags

CAS-based

fixed “snark”

original “snark”

Nonblocking list

Lazy list-based set

Non-blocking queue

Two-lock queue

Description

Deque

LL/VL/SC

LL/VL/SC

Deque

Set

Set

Queue

Queue

Type

Results
– snark algorithm has 2 known bugs, we found them
– lazy list-based set had a unknown bug

(missing initialization; missed by formal correctness proof
[CAV 2006] because of hand-translation of pseudocode)

20

Fences inserted

2 known

1 unknown

regular

bugs

4

1

1

2

1

Store
Store

2

4

Load
Load

4

2

3

1

1

Dependent
Loads

4

3

6

3

2

Aliased
Loads

Bounded Tags

CAS-based

fixed “snark”

original “snark”

Nonblocking list

Lazy list-based set

Non-blocking queue

Two-lock queue

Description

Deque

LL/VL/SC

LL/VL/SC

Deque

Set

Set

Queue

Queue

Type

Results
– snark algorithm has 2 known bugs, we found them
– lazy list-based set had a unknown bug

(missing initialization; missed by formal correctness proof
[CAV 2006] because of hand-translation of pseudocode)

– Many failures on relaxed memory model
• inserted fences by hand to fix them
• small testcases sufficient for this purpose

21

Typical Tool Performance

• Very efficient on small testcases (< 100 memory accesses)
Example (nonblocking queue): T0 = i (e | d) T1 = i (e | e | d | d)
- find counterexamples within a few seconds
- verify within a few minutes
- enough to cover all 9 fences in nonblocking queue

• Slows down with increasing number of memory accesses in test
Example (snark deque):
Dq = (pop_l | pop_l | pop_r | pop_r | push_l | push_l | push_r | push_r)
- has 134 memory accesses (77 loads, 57 stores)
- Dq finds second snark bug within ~1 hour

• Does not scale past ~300 memory accesses

22

Related Work

Bounded Software Model Checking
Clarke, Kroening, Lerda (TACAS'04) Rabinovitz, Grumberg (CAV'05)

Correctness Conditions for Concurrent Data Types
Herlihy, Wing (TOPLAS'90) Alur, McMillan, Peled (LICS'96)

Operational Memory Models & Explicit Model Checking
Park, Dill (SPAA'95) Huynh, Roychoudhury (FM'06)

Axiomatic Memory Models & SAT solvers
Yang, Gopalakrishnan, Lindstrom, Slind (IPDPS'04)

23

Contribution
First model checker for C code on relaxed memory models.

• Handles ``reasonable’’ subset of C
(conditionals, loops, pointers, arrays, structures, function calls, dynamic memory allocation)

• No formal specifications or annotations required

• Requires manually written test suite

• Soundly verifies & falsifies individual tests, produces counterexamples

Relaxed Memory
Models

Lock-free implementations

Software
Verification

24

END

25

Bounded Model Checker

Pass: all executions of the
test are observationally
equivalent to a serial
execution

Fail:
CheckFence

Memory
Model Axioms

Inconclusive:
runs out of time
or memory

26

Future Work

• Make CheckFence publicly available

• Experiment with more memory models
– hardware (PPC, Itanium), language (Java, C++ volatiles)

• Improve solver component
– enhance SAT solver support for total/partial orders

• Develop reasoning techniques for relaxed memory models

• Develop scalable methods for finding specific, common bugs

• Build concurrent library

27

Axioms for Relaxed

A set of addresses V set of values
X set of memory accesses S  X subset of stores L  X subset of loads
a(x) memory address of x v(x) value loaded or stored by x

<p is a partial order over X (program order)

<m is a total order over X (memory order)

For a load l  L, define the following set of stores that are “visible to l”:
S(l) = { s  S | a(s) = a(l) and (s <m l or s <p l) }

Executions for the model Relaxed are defined by the following axioms:
1. If x <p y and a(x) = a(y) and y  S, then x <m y

2. For l  L and s  S(l), always either v(l) = v(s) or there exists another store
s’  S(l) such that s <m s’

28

 → 2
 → 0

Relaxed Memory Model Example
• Example:

output not sequentially consistent
(that is, not consistent with any interleaved execution) !

• processor 1 may perform stores out of order

• processor 2 may perform loads out of order

• relaxed ordering guarantees improve processor performance

• Q: Why doesn’t everything break?
A: Relaxations are designed in a way to guarantee that

• uniprocessor programs are safe

• race-free programs are safe

 x = 1
 y = 2

 print y
 print x

thread 1 thread 2

