
Planet Scale Software Updates

Christos Gkantsidis∗, Thomas Karagiannis†, Pablo Rodriguez∗, Milan Vojnović∗

Microsoft Research, Cambridge, UK

ABSTRACT
Fast and effective distribution of software updates (a.k.a. patches)
to millions of Internet users has evolved into a critical task over the
last years. In this paper, we characterize “Windows Update”, one
of the largest update services in the world, with the aim to draw
general guidelines on how to best design and architect a fast and
effective planet-scale patch dissemination system. To this end, we
analyze an extensive set of data traces collected over the period
of a year, consisting of billions of queries from over 300 million
computers. Based on empirical observations and analytical results,
we identify interesting properties of today’s update traffic and user
behavior.

Building on this analysis, we consider alternative patch delivery
strategies such as caching and peer-to-peer and evaluate their per-
formance. We identify key factors that determine the effectiveness
of these schemes in reducing the server workload and the network
traffic, and in speeding-up the patch delivery. Most of our findings
are invariant properties induced by either user behavior or architec-
tural characteristics of today’s Internet, and thus apply to the gen-
eral problem of Internet-wide dissemination of software updates.

Categories and Subject Descriptors: C.2.2 [Computer - Commu-
nication Networks]: Network Protocols-Applications D.2.7 [Soft-
ware Engineering]: Distribution, Maintenance, and Enhancement

General Terms: Management, Measurement, Performance, De-
sign.

Keywords: software updates, peer-to-peer, caching.

1. INTRODUCTION
Large scale and fast dissemination of software updates to millions
of Internet users is becoming crucial to maintain high levels of pro-
tection and offer updated services and applications. As users be-
come more proactive in keeping their software updated, the amount
of traffic generated by software updates and security patches is
rapidly increasing. In fact, during certain periods of time, patch

∗{chrisgk,pablo,milanv}@microsoft.com
†UC Riverside, tkarag@cs.ucr.edu; while an intern at MSRC

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’06, September 11–15, 2006, Pisa, Italy.
Copyright 2006 ACM 1-59593-308-5/06/0009 ...$5.00.

distribution can account for a large fraction of the traffic in corpo-
rations and across the Internet (see Table 1).

URLRank Site GBytes %
1 download.microsoft.com 535.5 9.80%
2 www.download.windowsupdate.com 344.8 6.30%
4 au.download.windowsupdate.com 246.4 4.50%
8 download.windowsupdate.com 96.0 1.80%

Table 1: Patch traffic generated by downloads of Service Pack 2
(SP2) inside a large corporation (1-30 Sep 04). Windows Update
dominates the top 10 sites rated by bandwidth consumption.

Patches upgrade existing software with the intent to fix security
vulnerabilities, update drivers, distribute new virus definitions, or
release new functionality. The number of operating systems and
applications, such as web browsers, games, etc., that provide on-
line patching services is rapidly increasing. Despite the growing
popularity of software updates, little is known about the process of
creating and releasing patches, the traffic characteristics of patch
distribution, and the potential of alternative distribution strategies.

In this paper, we analyze one of the largest update services in the
world, the Windows Update system. Windows Update provides an
automated update service for the Windows operating system, Office
applications, and Exchange and SQL servers. Our goal is to find
general principles and properties that can be used as guidelines to
design and better architect fast and cost effective planet-scale patch
dissemination. Based on a combination of empirical observations
and analytical results, we identify interesting properties of today’s
update traffic and user behavior, such as the frequency of updates,
the possibility of grouping multiple patches, the spatial and tempo-
ral characteristics of user requests, and the percentage of computers
that are always online and, hence, can be instantaneously patched.

Furthermore, we study different patch delivery strategies (e.g.
caching and P2P) and evaluate their performance and their poten-
tial to improve speed of patch delivery. We identify key factors that
determine the effectiveness of these schemes both in terms of work-
load reduction on the central server and the overall Internet. For the
case of P2P, we find analytical and empirical evidence showing that
P2P patching is highly effective in reducing the load on the central
servers. Nonetheless, P2P can generate significant load into ISPs.
Hence, we analyze locality algorithms to reduce inter-ISP traffic.

We have analyzed a vast number of data traces collected over the
period of a year at different points of the Windows Update service
infrastructure. In total, we have parsed several billions of queries
from almost 300 million computers. We believe that we have ob-
served a significant fraction of all the computers in the Internet. To
the best of our knowledge, this is the first study of a very popu-
lar update service, and we deem it can be used to draw important
conclusions regarding software update distribution.

04/01 05/01 06/01 07/01 08/01
0

0.5

1

1.5

2

2.5

3

3.5

Date

Re
qu

es
ts

pe
r 1

0m
in

(m
illio

ns
)

Checking for updates
Requesting updates

Software update
release

Figure 1: Number of update queries and corresponding downloads
over three days. Note that a security patch is released during the
second day.

We deem that most of our findings are induced by user behavior,
architectural characteristics of today’s Internet, or standard soft-
ware engineering processes and development cycles, and thus apply
to the general problem of Internet-wide dissemination of software
updates. Some of the findings of our paper are as follows:

a) Software patches can be efficiently clustered into a small number
of groups, decreasing the complexity and improving the effective-
ness of any dissemination solution.

b) Approximately 80% of IPs appear during the first day of a patch
release, while the number of unique IPs drops abruptly with the
number of days. We also characterize the temporal correlation of
users and find that for more than 90% of the IP population arrival
rates are quite bursty.

c) We find that the percentage of machines that are always online
and thus could benefit from an idealized instantaneous patching
system is approximately 20% of the population.

d) Computers that use the update service seem to be highly updated,
with more than 90% of all observed users updated with all security
patches. This is expected and shows the importance of automated
update systems.

e) We have estimated that the potential workload reduction pro-
vided by existing caches varies from 25% to 35%, while a full
cache deployment by ISPs would result in almost all requests for
an update covered by caches.

f) Despite the small size of patches and the diversity of requests,
P2P distribution can considerably reduce the load on the server if
users stay online for a short time after completing the download.

g) We quantify analytically the impact of P2P locality on ISP traf-
fic. Based on analytical and experimental results, we show that lo-
cality can reduce inter-ISP traffic by more than an order of magni-
tude. (Similar observations have been made in [11] for file sharing
applications.)

The rest of the paper is organized as follows: Section 2 describes
our data sets and the Windows Update system, Section 3 charac-
terizes patches and studies their clustering, Section 4 characterizes
user’s behaviors, Section 5 compares different dissemination strate-
gies, Sections 6 and 7 present related work and conclude the paper.
Proofs are deferred to the appendix of the technical report [6].

2. SYSTEM AND DATA DESCRIPTION
For this study we used a variety of datasets that span a large number
of significant updates for over a year period. The discussion of the

various datasets presupposes knowledge of the Windows Update
(WU) system architecture and thus we will briefly present here its
basic characteristics.

2.1 System description
The windows update architecture consists of a set of update servers

where users query for new updates and a large number of distribu-
tion servers from which users download updates (see Fig. 2). Each
user querying for updates will first initiate a request to an update
server, and if available updates exist, will be redirected to one of
the distribution servers. Overall, there are two types of requests: a)
Requests through “Automatic Updates” that occur in pre-specified
time intervals or 5-10 minutes after boot time if the pre-specified
time expired in between reboots. b) Requests originating at the
Windows Update website after a manual query.

The automatic update system periodically queries for updates
with inter-polling times independent and identically distributed, uni-
form in [18, 22] hours (in fact, the left-end of the interval is slightly
smaller than 18). In most of our traces, only a very small percentage
of the queries happen through manual updates (we will indicate it
otherwise). In total, it is estimated that approximately 300 million
users are updated for every patch released.

Updates are distributed through the binary delta compression
scheme [16]. Delta compression ensures that each user will receive
only a “diff-file”, which will correspond to the difference (delta)
between the latest version released and the current version of the
file being updated at the user machine. Thus, for every file to be
patched, there exists a collection of different deltas that specify all
the possible diffs between older releases of the specific file and the
latest release. Each delta is OS-specific as well as country-specific
(i.e., deltas differ per country or OS).

Patches1 are regularly released every month. The set of patches
that fix a given vulnerability is known as “Knowledge Bases”. At
larger time intervals (e.g., years), large collections of Knowledge
Bases are released at the same time, which are called Service Packs
(SPs). SPs consist of all the updates previously released up to that
point in time (i.e., all Knowledge Bases previously released) as well
as new files that introduce new functionality and/or major product
improvements. As such, Service Packs are significantly larger in
size compared to monthly patches. For example, Service Pack 2
(SP2) consisted of 800 Knowledge Bases compared to 8-10 Knowl-
edge Bases that are usually included in a monthly release. SP2 in-
troduced automatic updates by default. Prior to SP2, updates were
made mostly manually.

2.2 Data characteristics
In order to profile the distribution process of such a vast system
with myriads of interactions, we have collected an extensive num-
ber of traces, diverse in type and duration, at various points within
the aforementioned architecture. Our datasets are described in Ta-
ble 2. Overall our collected traces amount to approximately two
Terabytes worth of analyzed data.

3. CHARACTERISTICS OF PATCHES
Designing efficient mechanisms for distributing software updates,
requires understanding their characteristics, e.g. the number and
size of files affected, the frequency of update releases, and the re-
lations between the individual patches. The problem arises from
the fact that machines can have a large set of configuration states.
Recall that a single software update may change many files but in-

1We use the terms patches, updates, deltas, and diffs interchange-
ably.

Table 2: Characteristics of the collected data sets.

Set Period Characteristics Collection point Type Description

I 4-6th Jan ’06 300M polls/day All update servers Polls for updates. Mostly Automatic polls for new updates.
150M distinct IPs IIS Logs See Figure 1 for query rate.

II 10-12 Aug ’04 70K distinct IPs One download server Service Pack 2 (SP2). Manual downloads. Close to SP2 release (6 Aug’04).
14-16 Jan ’05 IIS Logs and packet-

level traces
SP2 patched a large number of files (>4K) and included 12K+
deltas. Aggregate size for all deltas equals 266MB.

III 10-26 Oct ’05 300K distinct IPs Two download servers Monthly patches. Mostly Automatic downloads.
14 June ’05 10
Aug ’05

IIS Logs and packet-
level traces

Regular monthly patches for small set of files (mostly critical up-
dates).

IV 2001-2006 - XP build release tree Update history for all
Windows XP files

Facilitates the study of delta production and publishing. Includes
delta creation time, size, hash key, version, etc.

Figure 2: Overview of the update process. A client checks first
with the update servers for new patches, and then, if it needs to get
updated, downloads the patches from the distribution servers.

dividual users may be interested in only a subset of them. The
primary reason is that users can patch at different times, ending up
with a different set of files or versions. Such differences in the con-
figuration and the interests of the users significantly complicate the
design of a patch delivery system. In Sec. 3.1 and 3.2 we examine
the relationships between the updates for individual files with the
objective to identify clusters of files that are updated together. If
efficient clustering is possible, then, the number of possible states
that need to be covered by a patching system can be significantly
reduced. This can result in simpler, more efficient and scalable de-
livery system since fewer distribution channels are required (e.g.
multicast channels, etc) and user requests are spread across fewer
files which translates into higher cache efficiencies.

A file patch describes the differences between the version that
exists in the user computer and the newest version. When a soft-
ware update requires changes in files that already exist in the user’s
computer, it is more efficient to send file patches instead of the files
themselves. Patches may be significantly smaller than the corre-
sponding files and, hence, transmitting patches results in signifi-
cant bandwidth savings at the server and improved update delivery
times for the user, especially for modem users. Using Set-II and
Set-IV we have determined that the mean size of a file distributed
during XP SP2 is 73.2 KBytes, while the mean patch size is 32.9
KBytes. We have also measured that for 30% of the files, patches
provide savings of at least 5x. On the other hand, the use of patches
increases the diversity of the user population since the users differ
not only in the components they wish to update, but also in the spe-
cific patch, which depends on the version of their files, they need
to obtain.

In Fig. 3 we plot the cumulative number of released patches and
new files as a function of their release time. Observe the large num-
ber of new files and deltas in three time instances that correspond

Jan01 Jan02 Jan03 Jan04
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Release Date

satle
D/seliF desaeleR fo re b

mu
N .

m
mu

C

Figure 3: Set of patches included in SP2 and their releases times.
Major jumps correspond to the release of XP-RTM (Aug 01), SP1
(Sep 02), and SP2 (Aug 04).

to the release of the XP operating system and the releases of two
major service packs (SP1 and SP2). Observe also the release of
many updates in between the SPs with an average rate of 21 new
patches per month.

3.1 Clustering of files
We will now try to identify clusters of files that are requested to-
gether (in the next section we will repeat the same exercise for
patches). To this extent, we have used traces of requests for the
Windows XP SP2 distribution and the full history of updates in the
XP source tree (data Set-II and Set-IV). In order to accurately de-
termine the clustering relationship across files, we first filter out
those clients for which we do not see a complete patching session.
Filtered entries corresponded mostly to slow (e.g. modem) users,
which required several sessions to fully patch. Filtering out those
users did not bias our clustering results as our goal is indeed to
sample users for which we see a complete patching session over
the observation interval.

To quantify the set of files that are clustered together, we do the
following analysis. Let xi be the binary vector of user requests for
file i; i.e., xi(u) = 1 iff user u requested file i. We compute the
cosine correlation ρi,j between any pair of files i and j as:

ρi,j =
xT

i · xjp
xT

i · xi ·
q

xT
j · xj

Files that are always requested together have a correlation ρi,j = 1.
We assume that files i and j are correlated if ρi,j > 0.9. We then
construct a graph of the files as follows. Each node represents a file
and there is an edge between two files if the correlation between
the files is greater than ρi,j > 0.9. We then identify the connected
components of that graph. Observe that, even though our method
does not guarantee that every two files assigned to the same com-
ponent are related to each other, we have observed that in every
component the minimum correlation between each pair of files is

Figure 4: Groups of files identified in the SP2 download. Dark dots
appear whenever two files are highly correlated. Group boundaries
appear as squares.

large (more than 0.8).
In total, our data set had requests for 2029 files. From our analy-

sis we were able to identify 26 non-overlapping groups accounting
for 2003 files; only 26 files could not be assigned to a group (see
Fig. 4). This represents an important clustering effect. The groups
correlate with functional components of the operating system; a
typical example of a group is the set of files related to the network-
ing functionality.

In Fig. 5(a) we plot in more detail the sizes of the groups. The
largest group, which includes 1460 files, was requested by all users.
This group corresponds to updates of core components of the OS,
as well as components that were introduced in SP2 for the first
time. The other groups included 200 files or less. Some of these
groups correspond to rare configurations, such as language specific
files, and received few requests. Observe that the clustering of files
can significantly reduce the complexity of the system; indeed, by
publishing groups of files instead of individual files, the number
of publishing elements reduces by two orders of magnitude (from
2029 to 26).

We now quantify the benefits of publishing only a few major
groups (e.g. over a few multicast trees) and distribute the remain-
ing files individually. Fig. 5(c) shows the percentage of requests
that can be satisfied by publishing the largest k groups, for k =
1, . . . , 26. Note that the 5 largest groups account for 1877 of the
files and are responsible for more than 97% of the requests, which
indicates that the distribution a few groups can satisfy a very large
number of requests. It is outside of the scope of this paper to de-
scribe ways to automate cluster discovery. However, our analysis
demonstrates that clustering of patches has a large potential group-
ing in reducing the complexity of a patch distribution system.

3.2 Clustering of patches
We have repeated the same analysis as above using as input the
patch requests. In total, our data set had 3379 patches. In Fig.5(b)
we plot the sizes of the groups of patches (the groups are ordered
by their size). We have identified 125 groups that account for 3188
patches; 191 patches could not be assigned to a group. The num-
ber of groups is again significantly smaller than the total number of
patches. However, compared to file grouping, grouping of patches
provides a smaller aggregation factor. This is due to the larger num-
ber of possible user configurations that arise when considering in-
dividual patches; users differ not only in the component they need
to update, but also in the patch they need to download to update
their local version. From Fig. 5(c), we also observe that to sat-
isfy the same number of requests, the required number of groups of
patches is larger than the required number of groups of files. Thus,
the user population covered by each group of patches is smaller.

Figure 6: The rate of distinct IPs observed over three days, starting from
Jan 4, 2006, 8:00 UTC. The majority of distinct IPs are observed during day
1. Peaks are observed at around 14:00 UTC and 24:00 UTC. The break-
down of IP counts over continents reveals that the first peak is due to North
American users and the second due to Asian ones.

This analysis indicates that publishing individual deltas instead
of files decreases the clustering efficiency, consequently increas-
ing the complexity of the system. Ideally, software update sys-
tems should publish individual files rather than deltas, and generate
patches on-the-fly using chunck-based hash techniques (e.g. simi-
lar to LBFS [17]). The main challenge to produce deltas on-the-fly
is, however, the required computation capacity at the servers. To
scale such computation, one can use distributed systems such as
P2P networks that support on-the-fly generation of updates; deltas
can be generated automatically from updated peers, rather than
from the server. We will study the potential of such P2P patching
systems in Section 5.

4. USERS CHARACTERIZATION
In this section, we examine the intrinsic properties of update traffic
and user behavior with respect to software updates.

4.1 Traffic Properties
We now characterize the arrival patterns of update queries. Queries
arrive from two types of machines: always-online-machines (AOM)
and non-AOM. We define AOM as those machines that have an ac-
tive automatic update service that periodically queries for updates.
Non-AOM machines are those that go On and Off and stay offline
for a period greater than the pre-specified query interval. The au-
tomatic update service in those machines will query soon after re-
booting since the query time expired. Queries can also occur from
machines where the users manually check for updates, however,
these are rare events.

4.1.1 Distincts IPs over time
We first examine the aggregate volume of user queries with respect
to the distinct IPs using Set-I. We try to identify both AOM and
non-AOM users. Note that in the case of AOM, the aggregates
of queries will not exhibit spatial or temporal correlations due to
the randomization process of query polling. Correlations on the
other hand can be a consequence of queries that are initiated by
user actions, either by deliberate manual querying or because of
the queries initiated shortly after a computer boot time, for those
computers that missed a scheduled query time. Ideally, in a system
where instantaneous patching were feasible, it would be desirable
that the majority of users poll for updates as close in time to the
release of the patch as possible, so that the vulnerable population is
minimized.

Approximately 80% of the observed IPs appear within the first
day; the number of fresh IPs drops by an order of magnitude during
the second day, and is further reduced by factor of 2 in day three.

(a) (b) (c)

Figure 5: (a) Group size distribution for File grouping. (b) Group size distribution for Delta grouping. (c) Number of requests satisfied by
publishing an increasing number of groups for Delta and File grouping.

Figure 7: The fraction of distinct IPs per continent observed within the
first day versus time. The slope of each curve corresponds to the query
arrival rate per continent. The differences in the rates result from time-of-
day effects

Fig. 6 shows the number of distinct IPs per second for the three
day trace, where the large drops across the three days are evident
through the change in the mean of the time-series. Within each of
the three days, we respectively observe approximately 117, 22, and
11 millions of distinct IPs. Overall, the number of fresh IPs within a
day decreases abruptly with the number of the days since the initial
observation time.

4.1.2 Time-of-day effects
Time-of-day effects are present in user queries. This may be sur-
prising given that the system was designed to smooth the arrival of
update requests. However, it can be explained by the fact that a
large number of machines initiate a query shortly after a machine
boot time. Indeed, queries from non-AOM users will lead to time of
day dependencies on the rate of query arrivals. Such dependencies
will be pronounced when examining aggregate rates per continent;
by mapping IPs to their continent of origin.

Fig. 7 shows the cumulative fraction of distinct IPs observed
within the first day over time, where the slopes of individual curves
correspond to the arrival rates over time per continent. Our initial
observation time is 8:00 UTC and thus Europe exhibits the largest
query arrival rates at the beginning and at the end of the day. The
peak rate for North America happens within the interval 13:00 to
16:00 hours, which is consistent with the 5 hours time difference
between UTC and US East coast and additional three hours differ-

00:00 06:00 12:00 18:00 00:00
0

0.5

1

1.5

2

2.5

Time of day (local)

%
 o

f r
eq

ue
st

s
in

 1
0m

in

ISP 1
ISP 2

Figure 8: Number of queries for two European ISPs in the same country
over time (as % over total number of queries). While the time-of-day effect
pattern is similar, the different profile of ISP customers further affects the
query arrival rate (ISP1 focuses on business customers, while ISP2 focuses
on residential customers).

ence from US East to West coast. The time difference of UTC to
Beijing is 8 hours and as expected the query rates from Asia peak
at around 24:00 UTC. Similar curves are obtained for the second
and third day of our traces.

4.1.3 Uniformity and burstiness of queries
We further characterize the temporal correlation of user requests
by studying the statistical properties of the arrival process. While
time-of-day dependences are evident in the continent aggregate rates,
such correlations appear even more emphasized when we examine
the per-AS query arrival rate. However, in addition to time-of-day
effects, ASes may exhibit different query rates depending on the
profile of their customers. Fig. 8 presents a typical example of
two geographically collocated ISPs where the profile of their sub-
scribers (residential vs. corporate) results in dissimilar query arrival
patterns within the day.

In order to statistically characterize our entire sample of approx-
imately 19K observed ASes, we analyze the distribution of queries
in time and try to understand whether they are uniformly distributed
and, if not, quantify their burstiness.

Figure 9: Estimated percentage of distinct IPs classified as AOM
per country versus the total number of distinct IPs per country. The
estimates are upper bounds with 95% confidence. The larger the
number of distinct IPs per country, the tighter the estimate would
be to the uknown parameter.

We admit as null hypothesis that queries from an AS are uni-
formly distributed over time, which would be true if the users were
querying at random times, uniformly within 0-24 hours. To ex-
amine this hypothesis, we perform Kolmogorov-Smirnov test (KS-
test) for each AS. 2 Overall, for the first day of our trace the null
hypothesis cannot be rejected for 52% of ASes. However, these
ASes only amount to less than 0.1% of the distinct IP’s observed
over the day! We obtained the same percentages by running the KS
test for each of the other two days. Thus, for 50% of the ASes that
acount for more than 90% of our IP population, the uniformity of
query arrivals is rejected.
We also examined the magnitude of the query rate burstiness by
evaluating the maximum workload of a hypothetical server that
serves AS-aggregate of queries and quantified that, indeed, the bursti-
ness is in many cases larger than if the AS-aggregate query rates
were uniform in time.

4.2 Estimated Always on-line Machines
Always Online Machines (AOM) are of specific interest since they
can be instantaneously patched using an ideal push patching sys-
tem (e.g. for instance a ubiquitous multicast channel joining all
users). The polling instants of an AOM user can be modeled as
a renewal stochastic process with inter-polling times independent
and identically distributed, uniformly in [18, 22] hours.3

We use an estimation technique based on the aggregate counts of
queries to estimate an upper bound on the number of AOM users
with a fixed confidence, which is a good estimate for the unknown
number of AOM users in aggregates of many users, provided that
over some time intervals the number AOM users dominates, i.e.
the number of other users can be neglected (as it would be over
night periods for aggregates of users with geographical proximity).

2The KS statistic is defined as the maximum absolute deviation of
an empirical CDF and a candidate CDF assumed under null hy-
pothesis. If, instead of using the absolute deviation, we use either
the most positive or the most negative deviation, the KS statistic is
called one-sided.
3This polling rule may be regarded a good design choice as it is
a random walk on a 24 hour clock, with inter-polling times hav-
ing a density so that a host polling instant converges to a uniform
distribution over a day.

The estimation technique uses the fact that the number of fresh IPs
observed from AOM users over a time interval is a binomial ran-
dom variable and uses known large deviation bound that holds for
binomial random variables. For space reasons, the details of the es-
timation method are provided in [6]. Alternatively, we could have
collected per host query instants and classified the hosts by using
a hypothesis test to check whether the observed samples are drawn
from the known inter-query time distribution, but note that the du-
ration of our Set-I is 3 days and thus with mean per-host inter-query
time of 20 hours, we would have only 3.6 per host queries.

Using Set-I, our estimates suggest that approximately 20% of the
population is “always” online and thus could be patched inmedi-
ately. This estimate is based on the results in Fig. 9, which shows
the estimated percentage of AOM users for each country versus the
number of distinct IPs observed from that country. The estimates
are upper bounds and would be tight to the unknown percentage for
countries with sufficiently large number of the observed IP’s. Fig. 9
suggests this to hold for countries with > 300K distinct IP’s and it
is for those estimates that we assert the 20% figure.

The trace we used to determine Always On Machines (Set-I) also
includes requests from users that manually visit the Windows Up-
date site to search for updates using a browser (e.g. as opposed to
automatic updates). Such events could bias our estimation of AOM
users and add noise to our AOM estimation. However, such users
are a small percentage of the total population and account for very
few requests during the low activity periods (e.g. a user opening
their laptop in the middle of the night), thus, they add a very small
error to our AOM estimation.

4.3 Frequency of computer updates
We now study how up-to-date computers are kept around the world.
To this extent, we examine a Windows XP patch from June 2005
(Set-II).4 The minimum size of a requested delta for this patch is
22 KBytes, while the maximum was 800KBytes. Smaller deltas
correspond to updates for recent versions of the file, while larger
deltas update older versions. In Fig. 10, we plot the CDF of re-
quested delta sizes in different parts of the world. Jumps in the
graph correspond to requested deltas. For instance, we see a first
jump around 20KB, which corresponds to all computers that are
regularly updated and need few changes. Similarly, jumps at larger
deltas relate to less updated computers.

We can see that there is a large difference on how updated com-
puters are kept around the world. For instance, US and Japan users
keep their machines highly updated, with 90% of users updating
from the inmediate previous version, while this happens only for
50− 70% of users in China or France. The fact that users are more
or less updated, is likely a combination of download speeds and the
amount of time they spend on-line.

From this plot, we can also determine how many deltas per file
should be made available for download to satisfy a large number
of users. This is an interesting question that impacts the design of
an on-line patch system. Providing a large number of deltas per
file increases the chances that nodes do not have to download the
complete file. However, it increases system’s complexity and re-
duces the access reference locality of any given file, since requests
are spread across many deltas. From our data, we can observe that
90% or more of all users can be satisfied by very few deltas of re-
cent versions (e.g. 2-3). Thus, a very small set of deltas is sufficient
to patch most users, thereby, decreasing the need for publishing and
archiving a large number of older deltas per file.

4This is a security patch addressing HTML help vulnerability; see
http://support.microsoft.com/kb/896358.

3 4 5 6 7 8 x 105

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Patch Delta Size (Bytes)

F
D

C

delta size CDF for different countries

US
FR
CHN
JPN
KR

Figure 10: Distribution of the number of requests for different delta
sizes across different countries (US, FR, CHN, JPN, KR). Smaller
deltas indicate more updated computers. All deltas correspond to
the same file.

Jan01 Jan02 Jan03 Jan04 Jan05
0

0.5

1

1.5

2

2.5
x 10

5

Delta TimeStamp

R
eq

u
es

ts
 p

er
 D

el
ta

Figure 11: Requests per delta included in SP2. Notice three major
spikes, corresponding to people requesting SP2 installation on top
of XP-RTM, XP-SP1, or XP-SP1 plus all security patches released
to date.

Always Patched Users: We have also calculated the percentage
of users that are patched with the latest critical updates. To this
end, we have analyzed the behavior of 300 Million users that pe-
riodically query for updates (Set-I), and monitored the percentage
of them that need to patch at any point in time (see Figure 1). We
have observed that for the most part, the number of users that query
and are not fully updated with all previous patches (e.g. require an
update) is less than 10%. We have also tracked what happens in-
mediately after the release of a security patch during the second day
of the trace. We have observed that the number of users requiring
the security patch rapidly decreases to less than 20% of the total
users by the end of the second day.

In summary, the results indicate that a large percentage of the
population is highly updated. Such encouraging results are in sharp
contrast with the results obtained by analyzing the state of comput-
ers prior to the release of SP2, when the automate update service
was not turned On by default. To highlight this, Fig. 11 shows the
timestamp of those deltas requested during the SP2 distribution;
older timestamps indicate users updating from older versions. It
shows that the number of users that were updated with the most
recent patches was less than 5%, with 22% of users updating from
SP1 versions and 60% from XP RTM versions. This emphazises
the importance of automatic patching schemes, which do not rely
on manual intervention.

10
0

10
2

10
4

10
6

10
−8

10
−6

10
−4

10
−2

10
0

Number of requests per IP

1−
P

r[
X

>
x]

Figure 12: CCDF of the number of requests per IP address.

5. PATCH DISSEMINATION STRATEGIES
We now investigate alternative update-delivery strategies and com-
pare them to standard central server solutions. Using analytical and
empirical results we evaluate the potential of (i) caching, (ii) peer-
to-peer, and (iii) peer-to-peer with locality. Our purpose is not to
evaluate in detail the various strategies, but to study some ’what if’
scenarios and to provide qualitative results.

To evaluate the alternative strategies, we assume that hosts are
partitioned into groups, which we call subnets. For example, all
hosts that belong to the same ISP, or the same Autonomous System
(AS) belong to the same subnet; in the rest of this section, subnets
may be thought of ASes or ISP networks. We shall make the as-
sumption that inter-subnet traffic (e.g. cross ISP) is expensive and
intra-subnet is preferential. We shall study the effect of the alterna-
tive policies in reducing the server load and the inter-subnet traffic.

5.1 Caching
In this section we first estimate the benefits of a patching distribu-
tion system that uses the currently deployed Web caches. We then
estimate the potential benefits of an ideal full cache deployment
with caches at each AS.

Assume that caches are deployed in a subset C of subnets. The
reduction in the workload of the download servers can be computed
using the assignment of hosts to subnets, and the number of patches
per host. Denote with Ni,j the number of hosts from subnet j that
need update i. The number of requests directed to the central server
from a subnet j ∈ C is at least 1, if there exists a host in j that needs
i. Indeed, a lower bound of the number of downloads D from the
central server is:

D ≥
X
j∈C

X
i

1Ni,j>0 +
X
j ∈| C

X
i

Ni,j

where the equality holds for infinite-capacity caches. Without caching,
the number of downloads from the central server is

P
j

P
i Ni,j ,

and, hence, caching reduces the load at the server by a factor α:

α = µ ·
„

1− 1

S

«
with

µ =

P
j∈C

P
i Ni,jP

j

P
i Ni,j

and S =

P
j∈C

P
i Ni,jP

j∈C
P

i 1Ni,j>0
.

In other words, µ is the fraction of updates needed in subnets cov-
ered by caches and S is simply the mean number of updates per
subnet over subnets that deploy caches. A similar approach can be
used to derive the benefit in terms of bytes.

Estimated caching deployment: To calculate the benefit of using
the currently deployed web caches for update dissemination, we

need to estimate the parameters µ and S. Using Set-I, we identify
IP addresses from which we have received multiple requests in a
period of 17hr. Since each (AOM) machine polls the update servers
at most once during a period of 17hr, those IP addresses are shared
by multiple machines and likely represent caches, NAT devices,
firewalls, modem pools, etc. It is impossible to identify the type
of the device using our data; instead, we assume that an IP address
belongs to a cache if the number of requests received from that IP
is above a threshold. Our estimate is an upper bound on the number
of currently deployed large caches, since we falsely classify large
NATed points as caches.

We have used Set-I and counted the number of polls and the num-
ber of distinct IP addresses observed. Fig. 12 plots the complemen-
tary CDF of the number of machines per IP address. We observe
that it follows a heavy-tailed distribution, with a few IPs having a
very large number of machines (as large as 240K machines).

We have experimented with various thresholds for identifying
caches and our estimates for µ, S, and α are given in Table 3.
For thresholds over 10 users/IP (which should exclude most home
NATed environments) the estimate of the percentage of requests
from users behind caches, µ is 20-29%. Note that larger thresholds
(e.g. 50 users/IP), do not change the estimate significantly. Al-
though the percentage of queries that can be satisfied from caches
is non-negligible, the central servers still need to handle 210-240M
users, hence, the benefit of using existing caches is rather limited.

Threshold # Caches Users Covered µ S α

> 2 25,351,342 186,766,792 62% 7.37 53.58%
> 5 5,504,963 115,942,495 38% 21.06 36.20%
> 10 1,718,094 88,419,310 29% 51.46 28.44%
> 25 656,903 69,701,692 23% 106.11 22.78%
> 50 209,765 59,933,202 20% 285.72 19.92%

Table 3: Estimate of the load reduction α at the server by using
existing caches. We assume that an IP address belongs to a cache if
we have received more than threshold requests from that IP. We also
assume the distribution of a single file, hence S =

P
j∈C NjP

j∈C 1Nj>0
.

Data from Set-I.

Full cache deployment: We now study the impact of an ideal
caching deployment with a cache at each subnet (µ = 1). We
have assumed that each subnet represents an AS. Even though this
scenario is not representative of the current Internet, it allows us to
estimate the potential benefit of deploying more caches. Observe
that if every subnet has a cache, then the server needs to serve at
most as many copies of an update as the number of subnets, there-
fore, for very popular files, the cache hit ratio will be close to one.
For less popular updates or those with many deltas, the hit ratio
may be significantly lower.

To evaluate the cache performance in a realistic setting with a
mixture of files, we have used the data from Set-II. Observe that
Set-II contains observations for a significantly smaller population
than Set-I (due to observing a single server), but, on the other hand,
allows us to identify the files and deltas requested by each user.
The diversity in the set of files and deltas requested by the users
may reduce the benefit of caching.

Using Set-II and assuming requests for files (and not deltas), we
have estimated S = 4.18, which translates into α = 76%. We
have also studied the impact of delta distribution on caching per-
formance (as opposed to publishing only the latest update), and
obtained values of S = 3.01, and α = 67%. The cache efficiency
would have been greater if we were able to monitor more servers
or collect data for larger periods of time. However, even for user

01:12 07:12 13:12 19:12 01:12 07:12
0

2

4

6

8

10

12
x 10

5

Time

se

rv
er

 r
eq

ue
st

s
pe

r
5m

in

Server
Caching
P2P
P2P Stay Longer
P2P Full

Figure 13: Aggregate server load for the distribution of one patch
with (i) client server; (ii) caching; (iii) p2p with upload time equal
to download time; (iv) p2p with upload time twice as download
time; (v) p2p with uploaded data as much as downloaded (full).

populations of tens of thousands (as opposed to hundreds of mil-
lions) that request many different sets of files and deltas, the cache
efficiency is still quite high.

5.2 Peer-to-Peer
We now consider P2P as a delivery mechanism for software up-
dates. In P2P , end-systems collaborate in the patch distribution,
e.g. a patch can be downloaded from any randomly chosen peer
that is online and has the file. P2P systems are already being used
to download software and they are becoming popular among con-
tent providers [2]. A P2P scheme is self-scalable, since the system
capacity increases with the number of users, copes well with flash-
crowds, and, hence, it is attractive for patch dissemination.

P2P systems are very effective when a large number of users de-
mand a large file. However, P2P patch distribution systems face a
number of challenges: a) average patch size is small, which limits
the periods that a peer stays connected, b) potentially large set of
patches, which increases the diversity of peer requests, c) multiple
versions per patch, which reduces even further the opportunities for
sharing. Only if a large number of peers target the same version of
the same patch at the same time, P2P provides significant savings
for the content provider and the end-users. Similarly, a P2P sys-
tem that favors intra-subnet connections is effective in reducing the
backbone traffic (i.e. inter-subnet traffic) only if there is a large
concentration of peers in the same subnet. For instance, for a given
arrival pattern it is not clear how long peers need to stay online to
satisfy a target fraction of requests within a subnet. This will be
addressed later in the paper (see Corollary 1 in Sec. 5.3.2).

There are many challenging problems in designing a patching
distribution system based on P2P, such as guaranteeing secure and
timely patch delivery, and protecting user privacy, which are out-
side of the scope of this paper. Instead, we focus on the potential
benefits for the content provider and the end users. We also do not
consider the impact of NATs, which has already been well stud-
ied [7, 9], but assume that efficient NAT traversal mechanism will
be in place to permit full peer connectivity.

In Fig. 13 we show the number of requests received by the server
after the release of a patch (on 5-Jan-06) over a period of 1.5 days.
In the same figure, we show the server load when using a P2P and
a caching system. The peer arrival pattern was derived from Set-I.
We have used data from Set-II to assign download rates to the peers.
We assume that peers have asymmetric bandwidth and can serve
at a fraction, 1/4 in our experiments, of their download capacity.

For the case of caches, we assume a scenario where caches have
infinite resources and are placed at each IP address from which we
have received more than 25 requests (see Table 3).

From Fig. 13, we can see that current caches provide a load re-
duction in the server roughly equal to 20%. The benefit of using
P2P depends on how long peers stay in the system. If peers dis-
connect from the P2P network immediately after downloading the
file, then they consume more download capacity into the system
that the upload capacity that they offer. This is due to the asym-
metric links that are common in today’s Internet; the server needs
to add extra capacity to deal with the asymmetry. However, even in
that case, P2P provides similar benefits to caching. If peers stay in
the system to serve as many bytes as they have received, then, the
benefit of the P2P system increases dramatically and the load at the
server becomes almost negligible (e.g. less than 10% of the load
with a client-server architecture). This is an interesting result since
it shows that for a given patch, there is enough overlap across peers
to ensure that a P2P system performs well, even if peers only stay
in the system for a small period of time.

Note that the assumption of infinite cache capacity may be un-
realistic, and that our predictions of the cache performance may be
optimistic. In fact many caches may not be able to handle the load
generated by large flash crowds that follow the release of a patch.
On the other hand, a P2P system is able to easily cope with this load
as presented in Fig. 13 as long as peers stay on-line a little longer
after they finish the download. Admittedly, the precise benefits of
P2P will depend on the exact details of the P2P system, which we
have not modeled in our analysis; however, our results suggest that
P2P has great potential for patch dissemination.

5.3 Peer-to-Peer impact on the network

5.3.1 Peer-to-Peer with Random Matching
In P2P systems the burden of patch delivery shifts from the cen-
tral server to the individual peers and, subsequently, to their subnet
(e.g. AS, ISP). If the matching is random, then the vast majority
of the peer exchanges will be between peers of different subnets.
Assuming that each peer uploads as much as it downloads, then,
the traffic that enters a subnet (total download) will equal the traffic
that exits (total upload). As a result, the traffic at the inter-subnet
links will double with random P2P matchings compared to the case
of downloading from the server.

We use the user arrival pattern of Set-I to quantify the amount of
inter-subnet traffic. We assume that a new update is made available
at the beginning of the trace that is of interest to all users. We map
IP addresses to autonomous systems5 and use the ASes to assign
users to subnets. We assume that users stay online for a short period
of time, equal to 1min in our experiments. The 1min interval is
roughly equal to the mean online time observed in our data; later
we will consider with different online times. In Fig. 14 we plot
the normalized number of downloads from and uploads to remote
subnets as a function of the size of the subnet, i.e. the number
of hosts in that subnet. From Fig. 14 we observe that, for large
enough subnets, the upload and download traffic is linear to the size
of the subnet. Moreover, the incoming traffic to a subnet equals the
outgoing, and both of them increase with the size of the subnet.

5.3.2 Peer-to-Peer with Locality
To alleviate the adverse impact of inter-subnet traffic, we should
augment the peer matching algorithm to give preference to “local”
connections; in other words, peers should give priority to connec-
tions with other peers in the same subnet, instead of choosing peer
5Using data provided by the MS operations group.

Figure 14: Peer-to-peer: (Left) per subnet downloads from remote
subnets versus the number of distinct IPs per subnet; (Right) same
but for per subnet uploads from remote subnets. One day worth of
requests. Each host remains online for a fixed time of 1 min.

uniformly at random [11]. We assume that peers have an efficient
mechanism for discovering peers in the same subnet; the discus-
sion of such mechanisms is outside the scope of this paper. Next
we analyze and quantify the impact of P2P with locality.

We wish to derive analytical estimates for (i) the amount of data
downloaded from remote subnets, and (ii) the amount of data up-
loaded to other subnets. We perform trace-driven simulations to
validate our analytical predictions and to estimate the workload re-
duction.

In order to simplify the exposition of the analysis, and with no
loss of generality, we consider the dissemination of a single update.
In the remainder of this section, we omit the details of the analysis
details and present only the main results. The interested reader can
find proofs in [6].

In summary, our findings are:

a) Locality decreases the amount of data uploaded per subnet by a
factor that (approximately) decreases exponentially with the mean
number of active users per subnet.

b) With locality the ratio of uploads to downloads per subnet in-
creases as a function of the size of the subnet (recall that without
locality the ratio was constant for large enough subnets).

c) Simple formulas that approximate the uploads and downloads
per subnet.

Download traffic: We first analyze the impact of P2P with locality
on the number of downloads from remote subnets. Recall that these
downloads occur when a local host cannot find another (online)
host in the same subnet to download from.

We assume that there are Nj hosts from subnet j that are inter-
ested in the update.6 Each user query appears at a random time
from the patch release, independent of other users, with cumulative
distribution function (CDF) A(·) and density a(·).7 After query-
ing for an update, each user stays online for a random time drawn
from a CDF B(·) with the complementary CDF denoted by B(·).
The number of downloads from remote subnets depends on the two
distributions A(·) and B(·), and on the size of the subnet Nj as
follows:

THEOREM 1. The expected number of downloads, Dj(t), from
a remote subnet j in a time interval [0, t] is

E(Dj(t)) = Nj

Z t

0

`
1−B ? a(s)

´Nj−1
a(s)ds (1)

where B ? a(t) is the convolution of B(·) and a(·).8

6Since we focus on a single update, we drop the index i in Ni,j .
7For our polling users, the CDF A(·) is the residual-time distribu-
tion of the user inter-query time CDF (observed from a user query
instant).
8That is, B ? a(t) =

R t

0
B(t− s)a(s)ds.

PROOF. See appendix of [6].

The ratio E(Dj(+∞))/Nj can be interpreted as the expected
fraction of queries requested from remote hosts. Observe that for
given A(·) and B(·) the fraction of remote downloads decreases
exponentially with the size of the local subnet.

We next present an estimate from the previous formula that re-
quires to know only the mean host online time and a quantity that
relates to the query arrival rate.

COROLLARY 1. Suppose a(t) is non-increasing9 with t and that
the following limit exists a∗ = supt>0 A(t)/t. Denote with b the
mean host online time and let ρ = ba∗. Then, if ρ ≤ 1, we have:

E(Dj(+∞)) ≥ Nj(1− ρ)Nj−1.

PROOF. See appendix of [6].

If the queries arrive from always on machines, or if the inter-
poll times can be approximated by exponential distribution with
mean 1/a∗, then the parameter a∗ is precisely the per-host query
rate. Under the same assumptions, ρ can be interpreted as the mean
number of host queries that fall in a time interval of length equal to
the mean host online time. Note that for ρ � 1, (1 − ρ)Nj−1 ≈
e−ρNj and thus for large subnets the estimate of downloads that
cannot be served locally can be approximated by Nje

−ρNj .10

We assign users to subnets using the data in Set-I and simulate
peer-to-peer with locality with a) query times randomly generated
as if all users were AOM and b) with query times as observed in
our data. Due to space limitations we only present the results of
(a), but note that very similar results hold for (b). We first calculate
the data downloaded from remote subnets and show the results in
Fig. 15 (a) and (b). Observe that the analytical results are very close
to the experimental. The number of requests that cannot be satisfied
locally is less than about 500 for any subnet and drops significantly
for larger subnets.

Recall that the number of requests that cannot be satisfied lo-
cally for a subnet j can be estimated by Nje

−ρNj . This func-
tion achieves maximum at Nj = 1/ρ and the maximum value is
(1/ρ)e−1. Given that the per-host query rate is 1 in 20 hours and
the mean host online time equals 1 min, this yields an estimate
for the maximum download from remote subnets of approximately
442, which agrees with the results of Fig. 15.

Upload traffic: We now present similar analysis for the number of
remote uploads from a local subnet j with Nj hosts. This result
will provide us the estimate of the upload traffic reduction for p2p
with locality. Due to the underlying sampling of the peering hosts,
the following distribution over “subnet sizes” plays a crucial role in
determining the benefit of locality:

ν(i) =
number of subnets with i hosts · i

total number of hosts
. (2)

9This assumption on the query arrival process does not hold always
in practice as we observed from our data of queries from distinct
IPs, but it does hold for queries from AOM users and, for instance,
it holds approximately for flash-crowds.

10Observe that the result of Corollary 1 holds exactly for systems
where each poll counts as an update. Suppose each host polls ac-
cording to a Poisson process with a rate λ > 0. Then, the result of
Theorem 1 reads as limt→+∞

E(Dj(t))

λt
= Nje

−ρNj and similarly

for the result in Theorem 2, limt→+∞
E(Uj(t))

λt
∼ NjE(e−ρS),

where ρ is the ratio of the mean host online time to the mean host
inter-polling time.

Figure 16: The CDF of ν (aggregated number of hosts in all subnets
with i hosts). (Data: Set-I)

Before stating our result, we present estimates for the distribution ν
of subnets that partition the users according to the autonomous sys-
tem they belong to, and according to the two most important bytes
of their IP address (/16 subnetting). Fig. 16 plots the empirical
CDF’s of ν using the data of Set-I.

The following result gives an estimate for the uploads from a
local subnet to remote subnets:

THEOREM 2. For subnet sizes Nj , bounded by an aribtrarily
fixed constant, assume that the distribution ν is given by (2) for the
total number of hosts N =

P
j Nj going to infinity. The expected

uploads, Uj(t), from a local subnet j to remote subnets in a time
interval [0, t] satisfies

E(Uj(t))

Nj
→ Rt, as N tends to infinity,

where Rt is:

Rt =

Z t

0

E
“`

1−B ? a(s)
´S−1

”
a(s)ds

with random variable S having distribution ν.

PROOF. See appendix of [6].

In the limit, the uploads to remote nodes is R∞. R∞ depends on
(i) the rate of queries over time, (ii) the distribution of host online
time, and (iii) the distribution of subnet sizes ν. A small value of
R∞ implies that the number of inter-subnet uploads is small, hence,
the benefit of using P2P with locality is large.

Suppose now that the per-host query rate a(t) is non-increasing
with t (see also Corollary 1). A lower bound for Rt is given by:

Rt ≥ E
“
(1− ρ)(S−1)

”
A(t), for ρ ≤ 1, (3)

where recall that ρ may be interpreted as number of polls in an
interval of length equal to the average host online duration (see
Corollary 1). The lower bound implies that R∞ is larger than
E

`
(1− ρ)S−1

´
(since A(∞) = 1). This lower bound is tight

in our data set, and, we believe, that is a good estimate of R∞.
We now revisit the simulation results presented in Fig. 15, which

were computed assuming that users stay online for 1min. We are
interested in relating the user online times with R∞ and, as a result,
with the reduction in inter-subnet traffic by uploading preferential
to nodes in the same subnet. Recall that the parameter ρ depends on
the mean user online time b, since ρ = ba∗. We use Eq. 3 and the
observed distribution of subset sizes (this is the distribution ν from
which we pick the values S; the distribution is drawn in Fig. 16)
to evaluate R∞. Observe that R∞ is decreasing with ρ, the mean
number of polls during a typical online interval. Fig. 17 plots the
value of R∞ as a function of ρ. Observe that R∞ decreases fast as
we increase ρ. The average polling frequency in the Windows Up-
date system is a∗ = 1/20hr. For that polling frequency, we have

(a) (b) (c) (d)

Figure 15: Impact of peer-to-peer with locality. Simulation results are shown with crosses and analytical results with solid lines. (a) number
of downloads per subnet; (b) same but normalized with number of IPs in a subnet; (c) fraction of uploads per subnet normalized to subnet
size; (d) upload to download ratio per subnet. The host online time is fixed to 1 min.

Table 4: Host online times to achieve a certain reduction in the
number of remote uploads with P2P with locality. The hosts poll
with a rate of 1 every 20 hours.

Subnet type vs R∞ 1/10 1/100 1/1,000 1/10,000
/16 14 sec 72 sec 10 min 72 min
AS 2.15 sec 72 sec 24 min 4 hours

computed the required mean host online time to achieve some spe-
cific numbers of remote uploads (small R∞); the results are given
in Table 4. Host online times as low as few minutes can reduce
the number of remote uploads by more than an order of magnitude.
In particular, if hosts stay online for 1min, then ρ = 1/1200. Ex-
perimentally we find that R∞ ≈ 0.015 (see Fig. 15(c)) for large
enough subnets. This is an important result, since it implies that
with locality the required upload traffic for large subnets decreases
to 1.5% of the traffic without locality (e.g. random matching); an
improvement of almost two orders of magnitude!

We have shown that locality reduces both the remote downloads
(Theorems 1 and Corollary 1) and the remote uploads (Theorems 2
and Eq. 3). However, how does locality affect the balance of per-
subnet uploads and downloads? Are there subnets that upload to
other subnets significantly more than what they receive? To an-
swer those questions we study the ratio of the remote uploads to
the remote downloads; the result is shown in Fig. 15(d). We ob-
serve that large subnets, with more than 5K users in Fig. 15(d), up-
load to other subnets more than what they download; large subnets
contribute resources. We use our results of Theorem 1 and The-
orem 2 to numerically compute the expected per-subnet upload to
download ratio. The results in Fig. 15(d) demonstrate conformance
of the analytical result (solid line) with the experimental findings.
Ideally, the ratio of uploads to downloads for all subnets should
be close to 1. However, from Fig. 15(d) we observe that, even
though the upload traffic reduces, the ratio of uploads to downloads
is greater than 1 for subnets larger than (1/ρ) log(1/R∞) ≈ 5040
(as observed experimentally). This implies that with locality large
subnets contribute more resources than what they receive. It re-
mains an interesting issue to design P2P matching algorithms with
low inter-subnet traffic and balanced uploads to downloads for all
subsets, even for the very large ones.

A final remark is due concerning the nature of the results pre-
sented in Theorem 2 and Eq. 3. Both of them are asymptotic and
should hold for large host populations. Indeed, our data set con-
tains measurements for a large population (around 300M users),
and, as a result, our empirical findings agree well with our anal-

Figure 17: The estimate of upload reduction factor for peer-to-peer
with local subnet preference for AS and /16 subnets, versus the
product of the mean host online time and the characterization of
host request arrival rate a∗ = supt>0 A(t)/t. The result is an
exact lower bound under assumption that host query arrival rate is
non-increasing with time.

ysis. (Note that the results in Theorem 1 and Corollary 1 are for
arbitrarily given subnet sizes Nj .)

6. RELATED WORK
The problem of keeping a large number of machines updated with
the latest software, fixes and software upgrades has been of great
interest to many professionals especially in large IT departments.
Previous work focused primarily on designing middleware and con-
figuring systems to enable remote software installations and up-
grades [5, 10, 18, 21–23]. Even though the networking issues in-
volved in updating many machines in parallel have not been explic-
itly addressed in those papers and, to the best of our knowledge, in
previous work, Shaddock et al. notices the problem that may arise
by many machines simultaneously connecting to the software dis-
tribution center and attempting to download large files over a shared
network [10]; they propose the use of a ticket system to distribute
the load.

In terms of commercial interest there are many and diverse prod-
ucts that propose and/or use automatic updates [13, 15, 20, 25, 27].
We expect that in the future the number of products that use auto-
matic updates will increase significantly.

From a networking point of view, the problem of distributing
software updates is a content distribution problem. Content distri-
bution, which has been studied for more than a decade, proposed
various technologies, such as multicasting, caching, CDNs [1], peer-
to-peer networks [4, 8], that can be used for the distribution of up-
dates. Indeed the current Windows Update system uses an exten-

sive and geographically distributed content distribution network.
However, software updates have distinct characteristics that distin-
guish them from traditional content distribution problems; exploit-
ing those characteristics may lead to more efficient distribution. As
an example, since the downloading of software updates is typically
a background activity, user downloads can be scheduled appropri-
ately with the goal of balancing the network load.

The design of an update distribution system that exploits similar-
ities between users depends on understanding typical machine con-
figurations and the software update process, in particular how and
when the configuration of a machine changes. [12, 26] performed
extensive studies for understanding the state of typical machines
with the goal of understanding typical misconfiguration problems
and increasing the reliability of end systems. [3] reports statistics
on machine availability and load characteristics. The findings of
[3, 12, 26] can be used to understand the state of a typical machine
and are complementary to our work. Even though our analysis pro-
vides statistics at a coarser granularity, we study much larger and
diverse population.

Previous work has presented extensive studies of very popular
Internet applications, such as Web servers and video streaming ser-
vices [3, 19, 24]. The problem of propagating updates to a large
number of non-homogeneous users using broadcast channels has
also been studied in [14]. To the best of our knowledge, our study
is the first large scale study of a live patching system.

7. CONCLUSIONS
In this paper, we characterize a large commercial update service
with the aim to draw general guidelines on how to best design and
architect a fast and effective planet-scale patch dissemination sys-
tem. Automatic software updating is one of the most prominent
architectural issues in today’s Internet since fast and effective up-
date distribution to millions of machines is increasingly popular as
a method for keeping machines up-to-date with the latest software
features and bug fixes. In particular, rapid distribution of security
patches is vital for protecting against security attacks and malware.
Unlike traditional content distribution systems, such as the Web,
patch distribution systems use a near-push functionality, have pub-
lication times that depend on development cycles or malware ap-
pearances, use differential update mechanisms, have distinct traffic
patterns, and require minimum delivery times.

Based on a combination of empirical observations and analytical
results, we identify interesting properties of today’s update traffic
and user behavior. We provide evidence that patches can be clus-
tered into a small set of functional components, thus, reducing the
complexity of any patch delivery system. We estimate the percent-
age of always on-line users and the characteristics of the user ar-
rival pattern, and, using those estimates, study the performance of
an (ideal) patching solution. We consider two standard content dis-
tribution architectures, caching and peer-to-peer, and evaluate their
applicability to patch dissemination. We demonstrate that P2P has a
great potential for providing fast and effective patch delivery. This
is an interesting observation since current P2P systems work best
when many users download few large files, rather than many small
files as it is the case with patching systems.

Using extensive measurement data, we characterize the behav-
ior of current patching systems which leads to insights that may
help design more efficient distribution mechanisms. We believe
that the workloads used in this study represent common behavior
for live patching systems. Most of our findings are general proper-
ties induced by either user behavior, architectural characteristics of
today’s Internet, or properties of current software engineering sys-
tems and development cycles, and thus apply to the general prob-

lem of Internet-wide dissemination of software updates.

Acknowledgments
We would like to thank the MS Software Distribution, Windows
Update and MSCOMS teams for their tremendous support and help
during the data collection process and for providing us with in-
valuable information. In particular, we would like to express our
deepest gratitude to Ryan Auld, Jeff Davis, Josh Dunn, Taqi Jaffri,
Deighton Maragh, Tom McGuire, Kurt Parent, Mark Roellich, Rob
Satterwhite, Manoj Shende, and Mike Sligger.

8. REFERENCES
[1] Akamai home page. <http://www.akamai.com>.
[2] BBC iMP. http://www.bbc.co.uk/imp/.
[3] W. Bolosky, J. Douceur, D. Ely, and M. Theimer. Feasibility of a serverless

distributed file system deployed on an existing set of desktop pcs. In ACM
SigMetrics, 2000.

[4] B. Cohen. Bittorrent. <http://www.bittorrent.com>.
[5] J. Dunagan, R. Roussev, B. Daniels, A. Johnson, C. Verbowski, and Y.-M.

Wang. Towards a self-managing software patching process using black-box
persistent-state manifests. In IEEE Intl. Conf. on Autonomic Computing, 2004.

[6] C. Gkantsidis, T. Karagiannis, P. Rodriguez, and M. Vojnović. Planet scale
software updates. Technical Report MSR-TR-2006-85, Microsoft Research,
2006.

[7] C. Gkantsidis, J. Miller, and P. Rodriguez. Anatomy of a p2p content
distribution system with network coding. In 5th Int. Work. on P2P System
(IPTPS), 2006.

[8] Gnutella. <http://p2pjournal.com/main/gnutella.htm>.
[9] S. Guha and P. Francis. Characterization and measurement of tcp traversal

through nats and firewalls. In ACM IMC, 2005.
[10] C. Hemmerich. Automatic request-based software distribution. In USENIX 14th

System Administration Conf. (LISA), 2000.
[11] T. Karagiannis, P. Rodriguez, and K. Papagiannaki. Should internet service

providers fear peer-assisted content distribution? In ACM/USENIX IMC, 2005.
[12] E. Kiciman and C. Verbowski. Analyzing persistent state interactions to

improve state management. 2005.
[13] Mac OS X: Updating your software. http:

//docs.info.apple.com/article.html?artnum=106704, 2005.
[14] S. Mahajan, M. Donahoo, S. Navathe, M. Ammar, and S. Malik. Grouping

techniques for update propagation in intermittently-connected databases. In
IEEE Conf. on Data Engineering, 1998.

[15] Microsoft update faq. http://update.microsoft.com/
microsoftupdate/v6/default.aspx?ln=en-us.

[16] Using binary delta compression (bdc) technology to update windows operating
systems. Microsoft online White Paper.

[17] A. Muthitacharoen, B. Chen, and D. Mazieres. A low-bandwidth network file
system. In SOSP, 2001.

[18] P. Osel and W. Gnsheimer. OpenDist - incremental software distribution. In
USENIX 9th System Administration Conf. (LISA), 1995.

[19] V. Padmanabhan and L. Qiu. The content and access dynamics of a busy web
site: Findings and implications. In ACM SigComm), 2000.

[20] Red Hat Network. http://www.redhat.com/en_us/USA/rhn/, 2005.
[21] D. Ressman and J. Valdes. Use of Cfengine for automated, multiplatform

software and patch distribution. In USENIX 14th System Administration Conf.
(LISA), 2000.

[22] M. Shaddock, M. Mitchell, and H. Harrison. How to upgrade 1500 workstations
on saturday, and still have time to mow the yard on sunday. In USENIX 9th
System Administration Conf. (LISA), 1995.

[23] L. Sobr and P. Tuma. SOFAnet: Middleware for software distribution over
Internet. In IEEE Symp. on Applications and the Internet (SAINT’05), 2005.

[24] K. Sripanidkulchai, A. Ganjam, B. Maggs, and H. Zhang. The feasibility of
supporting large-scale live streaming applications with dynamic application
end-points. In ACM SigComm, 2004.

[25] Symantec corp. http://www.symantec.com/.
[26] H. Wang, J. Platt, Y. Chen, R. Zhang, and Y.-M. Wang. Automatic

misconfiguration troubleshooting with peerpressure. In USENIX OSDI, 2004.
[27] ZDNet updates.com. http://updates.zdnet.com.

http://www.akamai.com
http://www.bbc.co.uk/imp/
http://www.bittorrent.com
http://p2pjournal.com/main/gnutella.htm
http://docs.info.apple.com/article.html?artnum=106704
http://docs.info.apple.com/article.html?artnum=106704
http://update.microsoft.com/microsoftupdate/v6/default.aspx?ln=en-us
http://update.microsoft.com/microsoftupdate/v6/default.aspx?ln=en-us
http://www.redhat.com/en_us/USA/rhn/
http://www.symantec.com/
http://updates.zdnet.com

	Introduction
	System and data description
	System description
	Data characteristics

	Characteristics of Patches
	Clustering of files
	Clustering of patches

	Users Characterization
	Traffic Properties
	Distincts IPs over time
	Time-of-day effects
	Uniformity and burstiness of queries

	Estimated Always on-line Machines
	Frequency of computer updates

	Patch Dissemination Strategies
	Caching
	Peer-to-Peer
	Peer-to-Peer impact on the network
	Peer-to-Peer with Random Matching
	Peer-to-Peer with Locality

	Related Work
	Conclusions
	References

